DESAIN DAN SINTESIS AMINA SEKUNDER RANTAI KARBON GENAP DARI ASAM KARBOKSILAT RANTAI PANJANG RAHMAD FAJAR SIDIK

Ukuran: px
Mulai penontonan dengan halaman:

Download "DESAIN DAN SINTESIS AMINA SEKUNDER RANTAI KARBON GENAP DARI ASAM KARBOKSILAT RANTAI PANJANG RAHMAD FAJAR SIDIK"

Transkripsi

1 DESAIN DAN SINTESIS AMINA SEKUNDER RANTAI KARBN GENAP DARI ASAM KARBKSILAT RANTAI PANJANG RAMAD FAJAR SIDIK SEKLA PASCASARJANA INSTITUT PERTANIAN BGR BGR 2007

2 PERNYATAAN TENTANG TESIS DAN SUMBER INFRMASI Dengan ini saya menyatakan bahwa tesis Desain dan Sintesis Amina Sekunder Rantai Karbon Genap dari Asam Karboksilat Rantai Panjang adalah karya saya sendiri dan belum diajukan dalam bentuk apapun kepada perguruan tinggi mana pun. Sumber informasi yang berasal atau dikutip dari karya yang diterbitkan maupun tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan dicantumkan dalam Daftar Pustaka di bagian akhir tesis ini. Bogor, Januari 2007 Rahmad Fajar Sidik NIM G

3 ABSTRACT RAMAD FAJAR SIDIK. The Design for the Synthesis of Secondary Fatty Amine from its Corresponding Fatty Acid. Under the direction of ZAINAL ALIM MAS UD and M. ANWAR NUR. The method for synthesizing secondary amine from its corresponding fatty acid has been successfully carried out using a synthesis design through amideprimary amines. The design involved the reactions of amide formation followed by reduction into amine. The secondary amines successfully produced were dipalmitylamine, distearylamine, and dioleylamine. The resulted total output obtained of each secondary amine was 36.28, 35.43, and 36.35%, respectively. The successful synthesis was indicated by the change in the functional groups monitored using the fourier transform infrared spectroscopic method. The change of the functional group was monitored through the change of primary amide to primary amine and secondary amide to secondary amine.

4 DESAIN DAN SINTESIS AMINA SEKUNDER RANTAI KARBN GENAP DARI ASAM KARBKSILAT RANTAI PANJANG RAMAD FAJAR SIDIK Tesis sebagai salah satu syarat untuk memperoleh gelar Magister Sains pada Departemen Kimia SEKLA PASCASARJANA INSTITUT PERTANIAN BGR BGR 2007

5 Judul Tesis Nama NIM : Desain dan Sintesis Amina Sekunder Rantai Karbon Genap dari Asam Karboksilat Rantai Panjang : Rahmad Fajar Sidik : G Disetujui Komisi Pembimbing Dr. Zainal Alim Mas ud, DEA Ketua Prof. Dr. Ir. M. Anwar Nur, MSc Anggota Diketahui Ketua Program Studi Kimia Dekan Sekolah Pascasarjana Institut Pertanian Bogor Prof. Dr. Ir. Latifah K. Darusman, M.S Prof. Dr. Ir. Khairil Anwar Notodiputro, M.Sc Tanggal Ujian : 11 Januari 2007 Tanggal Lulus :

6 PRAKATA Puji dan syukur penulis panjatkan ke hadirat Allah SWT atas segala rahmat dan karunia-nya sehingga penulis dapat menyelesaikan karya ilmiah ini. Judul yang dipilih dalam penelitian ini Desain dan Sintesis Amina Sekunder Rantai Karbon Genap dari Asam Karboksilat Rantai Panjang. Penulis menyampaikan terimakasih kepada Tim Pascasarjana atas bantuan dana penelitian, dan ungkapan terima kasih kepada Dr. Zainal Alim Mas ud, DEA dan Prof. Dr. Ir. M. Anwar Nur, MSc selaku pembimbing yang telah memberikan bimbingan, pengarahan, serta semangat dalam penelitian dan penyusunan karya tulis ini. Penghargaan penulis sampaikan juga kepada seluruh staf Laboratorium Terpadu, IPB serta staf Lab Pangan UIN Syarif idayatullah atas segala bantuan dan pengarahan yang diberikannya. Kepada teman-teman Pascasarjana dan temanteman Ke Lesap terima kasih atas segala bantuan, semangat, perhatian serta kebersamaan yang tidak dapat dilupakan. Ungkapan terima kasih juga kepada ibu, bapak, kakak, keponakan tercinta atas kasih sayang dan doanya. Semoga karya ilmiah ini bermanfaat. Bogor, Januari 2007 Rahmad Fajar Sidik

7 RIWAYAT IDUP Penulis dilahirkan di Pamekasan pada tanggal 3 Januari 1979 dari Bapak Ahmad dan Ibu j Ummu anik. Penulis merupakan anak terakhir dari empat bersaudara. Tahun 1997 penulis lulus dari SMU Negeri 2 Pamekasan dan pada tahun yang sama lulus seleksi masuk Universitas Negeri Malang (UM) melalui jalur Penerimaan Mahasiswa DKhusus (PMDK). Penulis memilih Program Studi Kimia, Jurusan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam. Lulus tahun Selama mengikuti perkuliahan, penulis aktif sebagai pengurus impunan Mahasiswa Kimia Jurusan ( ). Penulis juga aktif sebagai anggota UKM INKAI UM dan dipercaya menjabat sebagai ketua periode Selain itu penulis juga pernah menjadi asisten praktikum mata kuliah Kimia Dasar 1999/2000; Kimia rganik II 2000/2001; Kimia Anorganik 2001/2002; Kimia Fisik 2001/2002. Sejak tahun 2001 Penulis menjadi Dosen di Universitas Islam Madura. Pada tahun 2002 Penulis diangkat sebagai Guru Kontrak oleh ICMI RWIL JATIM di SMU Al Miftah Pamekasan. Dan pada tahun 2003 Penulis menjadi Guru Bantu pada SMU yang sama. Pada tahun 2003 Penulis mendapat kesempatan melanjutkan pendidikan di Sekolah Pascasarjana Institut Pertanian Bogor Program Studi Kimia.

8 ak cipta milik Rahmad Fajar Sidik, Tahun 2007 ak cipta dilindungi Dilarang mengutip dan memperbanyak tanpa izin tertulis dari Institut Pertanian Bogor, sebagian atau seluruhnya dalam bentuk apa pun, baik cetak, fotokopi, microfilm, dan sebagainya

9 DAFTAR ISI alaman DAFTAR ISI i DAFTAR TABEL iii DAFTAR GAMBAR iv PENDAULUAN Latar Belakang Tujuan Penelitian Ruang Lingkup TINJAUAN PUSTAKA Sumber-sumber Minyak Nabati Potensi Minyak Sawit sebagai Sumber Asam Lemak Kegunaan Asam Lemak dan Turunannya Amina Sekunder Rantai Karbon Panjang Kegunaan Amina Sekunder Rantai Karbon Panjang Desain Lintas Amida-Amina Primer Sintesis Amina Sekunder Lintas Amida-Amina Primer BAAN DAN METDE Tempat dan Waktu Penelitian Alat dan Bahan Desain dan Sintesis Amina Sekunder Preparasi Asil Klorida Preparasi Amida Primer Preparasi Amida Sekunder Pemurnian Amida Reduksi Amida Pemurnian Amina Karakterisasi asil Sintesis ASIL DAN PEMBAASAN Sintesis Amina Sekunder dengan Atom Karbon Genap Konversi Asam Lemak menjadi Asil Klorida Konversi Asil Klorida menjadi Amida Primer i

10 Konversi Amida Primer menjadi Amina Primer Kondensasi Asil Klorida dengan Amina Primer Menjadi Amida Sekunder Konversi Amida Sekunder menjadi Amina Sekunder KESIMPULAN DAFTAR PUSTAKA ii

11 DAFTAR TABEL alaman 1. Komposisi asam lemak minyak sawit, minyak kedelai, dan minyak kelapa Jenis amina sekunder rantai karbon genap target Konversi asam karboksilat rantai panjang menjadi asil kloridanya Konversi asil klorida menjadi amida primer Konversi amida primer menjadi amina primer Reaksi amina primer dengan asil klorida menjadi amida sekunder Konversi amida sekunder menjadi amina sekunder Efek gugus G pada serapan gugus C= iii

12 DAFTAR GAMBAR alaman 1. Metode sintesis amina rantai karbon pendek atau siklik Mekanisme preparasi asil klorida dengan SCl Mekanisme preparasi amida primer Mekanisme reduksi amida primer menjadi amina primer Tahapan konversi asam lemak ke amina sekunder dan karakterisasi intermediat dan produknya Diagram sintesis amina sekunder rantai karbon genap lintas amida-amina primer Bentuk dimer asam stearat Spektra asam stearat Stearoil klorida hasil konversi dari asam stearat Palmitilamida hasil konversi dari palmitoil klorida Palmitilamina hasil konversi dari palmitilamida N-Palmitilpalmitilamida dari palmitoil klorida dan palmitilamina Dipalmitilamina hasil konversi dari N-palmitilpalmitilamida Kromatogram PLC amina sekunder (C N-C ) Efek gugus G terhadap C= menyebabkan (a) induksi dan (b) resonansi iv

13 PENDAULUAN Latar Belakang Indonesia merupakan salah satu negara produsen minyak sawit terbesar di dunia, bahkan diramalkan menjadi produsen utama dalam 5 tahun mendatang (MPB 2005; Rakyat Merdeka 2006). al ini dapat dilihat dari peningkatan ekspor minyak sawit mentah (CP) Indonesia di pasar minyak sawit dunia, dari 18% pada 1998 menjadi 32% pada 2002 (Bank Mandiri 2005; Basiron 2001; Miura et al. 2001). Sebagian besar produk olahan minyak sawit dari Indonesia diekspor dalam bentuk minyak sawit mentah (CP) dan minyak inti sawit (PK). Nilai tambah dari kedua produk ini masih relatif kecil jika dibandingkan produkproduk olahan berbasis minyak sawit dari negara-negara lain. Sebagai contoh Indonesia mengekspor CP dan PK dengan harga relatif murah tetapi mengimpor surfaktan dan produk oleokimia dengan harga yang tinggi. Peningkatan nilai tambah produk olahan berbasis minyak sawit akan dapat meningkatkan pemasukan devisa negara secara maksimal. Dengan demikian usaha diversifikasi pemanfaatan minyak sawit dan produk turunannya di Indonesia harus terus digalakkan. Salah satunya dengan mengubah komponen utama dari minyak sawit, yaitu asam palmitat, stearat, oleat dan linoleat, menjadi senyawa amina rantai panjang. Golongan amina merupakan senyawa antara yang mudah ditransformasikan menjadi senyawa lain yang bernilai ekonomis tinggi. Menurut Gervajio (2005) berbagai produk turunan yang dapat diperoleh dari senyawa amina rantai panjang, antara lain sebagai bahan dasar yang digunakan sebagai katalis transfer fasa (PTC), pengemulsi atau bahan pelembut, oksida amina rantai panjang sebagai bahan pembuatan shampo. Penelitian tentang konversi asam lemak menjadi amina sekunder sangat menarik sekaligus menantang untuk dilakukan. Karena sintesis amina sekunder yang saat ini banyak dilakukan adalah yang melibatkan cincin aromatis, yang memang lebih mudah dilakukan karena intermediat-intermediat yang terjadi dapat distabilkan oleh adanya stuktur resonansi. Penelitian pengubahan asam karboksilat rantai pendek menjadi amina sekunder telah dilakukan peneliti lain menggunakan desain reaksi yang ada, namun desain yang sama belum tentu dapat digunakan 1

14 pada pengolahan asam karboksilat rantai panjang. Karena dapat diduga dampak sterik molekul panjang terhadap jalannya reaksi akan berbeda daripada reaksi dengan rantai pendek. Penelitian ini akan dilakukan terhadap 3 jenis asam karboksilat rantai panjang yaitu asam palmitat, asam stearat, dan asam oleat. Penelitian ini akan dibatasi pada sintesis amina sekunder dengan kombinasi rantai karbon (R) dari komponen-komponen utama minyak sawit dengan mempertahankan jumlah dan jenis ikatan rantai karbon. Asam lemak yang digunakan dalam penelitian ini ada tiga macam, yaitu asam palmitat, stearat dan oleat. Tujuan Penelitian Penelitian ini bertujuan memperoleh suatu desain sintesis amina sekunder rantai karbon genap yang mudah dilakukan dan memberikan hasil yang tinggi. Dari desain tersebut diharapkan dapat dilakukan sintesis berbagai prototipe amina sekunder rantai panjang dengan rantai atom karbon genap dari asam lemak jenuh maupun takjenuh. Ruang Lingkup Penelitian ini merancang suatu desain untuk mengkonversi asam lemak yang analog dengan komponen utama trigliserida sawit, menjadi senyawa turunan amina sekunder rantai karbon genap. Dalam prosesnya digunakan tiga jenis asam lemak, yang mewakili rantai alkil jenuh dan takjenuh yaitu asam palmitat, stearat dan oleat. Dalam setiap langkah konversi keutuhan rantai alkil, baik jenuh maupun takjenuh tetap dijaga. 2

15 TINJAUAN PUSTAKA Sumber-sumber Minyak Nabati Minyak dan lemak dapat diperoleh dari dua sumber utama, yaitu minyak nabati maupun lemak hewani. Sumber minyak nabati dapat berasal dari berbagai macam tumbuhan penghasil minyak antara lain kelapa, kelapa sawit, biji jarak, kedelai, dan biji bunga matahari. Komponen utama dari minyak nabati adalah suatu trigliserida, senyawa yang terbentuk dari gabungan gliserol dan asam lemak. Tabel 1. Komposisi asam lemak minyak sawit, minyak kedelai, dan minyak kelapa (Ahmad 2000) Jenis Persentase berat Asam Lemak Minyak Sawit Fraksi lein Fraksi Stearin Minyak Inti Sawit Fraksi lein Inti sawit Minyak Kelapa Minyak Kedelai C6:0 C8:0 C10:0 C12:0 C14:0 C16:0 C18:0 C18:1 C18:2 Lain-lain Bil Iod Komposisi asam lemak dalam suatu minyak dari sumber tertentu (Tabel 1) menentukan pemanfaatan minyak-minyak tersebut selanjutnya (ill 2000; Gervajio 2005). Sebagai contoh asam lemak dengan rantai karbon C6-C10 adalah material yang bagus untuk membuat plastik dan ester-ester poliol. Asam lemak dengan jumlah C12 dan C14 yang banyak terdapat dalam minyak kelapa dan PK, cocok untuk diproses menjadi surfaktan sebagai agen pencuci dan pembersih dan juga sebagai bahan kosmetik. Minyak-minyak yang berasal dari sawit, kedelai, dan bunga matahari banyak memiliki kandungan asam lemak rantai 3

16 panjang C18, baik jenuh maupun tak jenuh, cocok untuk menjadi bahan baku polimer dan pelumas. Potensi Minyak Sawit sebagai Sumber Asam Lemak Minyak sawit merupakan komoditi primadona dari sektor agribisnis bagi Indonesia, karena telah menyumbangkan devisa terbesar dari hasil ekspor nonmigas bagi negara. Untuk menguasai pasar ekspor minyak sawit pemerintah Indonesia telah berusaha meningkatkan produksi dengan cara ekstensivikasi perkebunan kelapa sawit (Bangun 2006). Ada dua jenis produk olahan berbasis minyak sawit yaitu CP dan PK, yang diekspor Indonesia dengan tujuan utama Jepang, India, USA, Belanda dan China (Siraj 2003; Bank Mandiri 2005). Pengolahan amina sekunder berbasis asam lemak dari minyak sawit sangat potensial karena sumber bahan baku dari perkebunan kelapa sawit sudah mapan di Indonesia. Perkebunan kelapa sawit yang dikelola rakyat, swasta maupun pemerintah, tersebar di seluruh nusantara dari Sumatera, Kalimantan, Sulawesi bahkan Papua (Bangun 2006; Rakyat Merdeka 2006). Dengan lahan perkebunan yang demikian luas diharapkan dapat memberikan pasokan bahan baku asam lemak yang kontinyu. Minyak sawit mentah diperoleh dari proses pengempaan daging buah kelapa sawit (Elais queneenis, Jaqs), yang dalam bentuk kasar berwarna kemerahmerahan (artley 1967). Minyak ini disebut sebagai minyak sawit mentah atau CP. Pada suhu kamar CP berbentuk semipadat dengan titik leleh berkisar di antara C. Sedangkan PK diperoleh dari bagian biji sawit. Berbeda dengan CP, kandungan utama asam lemak dari PK memiliki rantai karbon yang lebih pendek yaitu asam laurat dan miristat (Tabel 1). Berdasarkan titik lelehnya minyak sawit terdiri dari dua fraksi besar. lein sebagai fraksi berwujud cair pada suhu kamar dan stearin sebagai fraksi yang berwujud padat pada suhu kamar. Pada umunya fraksi olein mengandung lebih banyak asam lemak tak jenuh, contohnya asam oleat (C18:1), dan asam linoleat (C18:2). Sebaliknya fraksi stearin mengandung asam lemak jenuh lebih banyak, contohnya asam palmitat (C16:0) dan asam stearat (C18:0). 4

17 Kegunaan Asam Lemak dan Turunannya Penggunaan minyak sawit dan turunannya antara lain: 1. Produk Turunan CP. Penggunaan langsung CP dan PK termasuk substitusi BBM dengan CP, pelumas pengeboran, bahan baku produk karet, produk lilin, dan softener, produk minyak sawit yang terepoksidasi (EPP), poliol, poliuretan dan poliakrilat (Ahmad 2000). Produk turunan CP selain sebagai bahan minyak pangan dapat dihasilkan margarin, bahan perenyah, vanaspati (vegetable ghee), es krim, bakery fats, mie instan, sabun dan deterjen, cocoa butter extender, chocolate and coatings, specialty fats, dry soap mixes, sugar confectionary, biskuit cream fats, filled milk, pelumas, textiles oils dan biodiesel (Deptan 2005). 2. Produk Turunan Minyak Inti Sawit. Dari produk turunan minyak inti sawit dapat dihasilkan bahan perenyah, cocoa butter substitute (CBS), specialty fats, es krim, coffee whitener/cream, sugar confectionary, biscuit cream fats, filled mild, imitation cream, sabun dan deterjen, shampo dan kosmetik (Deptan 2005). Menurut Ahmad (2000), minyak sawit juga menjadi bahan baku sabun, baik yang diperoleh dari proses netralisasi ataupun sabun non metal. Asam stearat, palmitat dan miristat banyak digunakan sebagai bahan baku kosmetik. Trigliserida dari minyak sawit dengan rantai medium cocok untuk digunakan sebagai bahan baku dalam industri parfum dan bumbu. 3. Produk Turunan leokimia Kelapa Sawit. Dari produk turunan minyak kelapa sawit dalam bentuk oleokimia dapat dihasilkan metil ester, plastik, industri tekstil, pengerjaan industri logam, pelumas, emulsifier, deterjen, gliserin, kosmetik, bahan peledak, produk-produk farmasi dan food protective coating (Deptan 2005). Amina Sekunder Rantai Karbon Panjang Senyawa amina sekunder aromatik maupun yang berbentuk siklik banyak terdapat di alam. Banyak sekali senyawa amina sekunder yang memiliki aktivitas biologis yang menarik oleh karena itu secara khusus amina sekunder menjadi 5

18 farmakopore, yang sangat penting dalam hal penemuan senyawa aktif biologis yang banyak digunakan dalam penemuan obat-obatan (Salvatore et al. 2001). Amina sekunder alifatik rantai karbon panjang bukan senyawa yang biasa berada di alam. Tetapi amina sekunder dengan unsur aromatik atau siklik yang mendominasi, seperti senyawa-senyawa golongan alkaloid dan flavonoid. Dengan demikian, untuk memperoleh amina sekunder alifatik rantai karbon panjang hanya dapat diperoleh dengan jalan sintesis menggunakan berbagai macam metode yang mungkin. Beberapa metode sintesis amina sekunder alifatik pada rantai-rantai pendek yang telah dilakukan diilustrasikan pada Gambar 1. Gambar 1. Metode sintesis amina rantai karbon pendek atau siklik (Salvatore et al. 2001) Walaupun sintesis amina sekunder sangat penting karena kegunaannya yang luas, tetapi dalam prosesnya masih banyak permasalahan yang sering timbul. Antara lain kebutuhan kondisi reaksi yang cukup ekstrim, pemurnian produk, hasil yang rendah, dan atau permasalahan selektivitas (Salvatore et al. 2001). leh karena itu, setiap permasalahan dapat dijadikan acuan dalam pemilihan metode sintesis pada setiap tahapan sintesis, dan pada akhirnya dapat dirumuskan suatu desain untuk sintesis amina sekunder rantai panjang yang mudah dilakukan dengan hasil yang tinggi. 6

19 Kegunaan Amina Sekunder Rantai Karbon Panjang Gervajio (2005) menyebutkan beberapa kegunaan amina rantai panjang dan turunannya, antara lain: 1. Alkohol dan amina rantai panjang disebut-sebut sebagai bahan dasar oleokimia, karena senyawa-senyawa tersebut sangat penting dalam pembuatan senyawa turunan berupa oleokimia. Proses-proses lanjutan dari bahan-bahan dasar oleokimia tersebut dilakukan melalui berbagai macam cara, seperti esterifikasi, etoksilasi, sulfasi, dan amidasi. Produk-produk oleokimia yang dihasilkan disebut sebagai oleokimia turunan. 2. Amina rantai panjang dan turunannya mewakili senyawa nitrogen yang paling penting yang berasal dari asam lemak. Di antara turunan alkil amonia yang lain, senyawa-senyawa tersebut memiliki konstanta ionisasi paling besar. Senyawa tersebut memiliki sifat kationik, basa, aktif secara biologis, dan terabsorpsi secara kuat terhadap berbagai permukaan karena memiliki potensi terabsorpsi yang tinggi. Senyawa turunan amonia dengan sifat fisikokimia demikian memiliki bidang aplikasi yang luas dalam berbagai industri seperti bahan pelembut, katalis transfer fasa (PTC), biosida, zat aktif sanitasi untuk mengontrol pertumbuhan alga dalam pengolahan air, bahan untuk membantu pengapungan bijih dalam penambangan (flotasi), inhibitor korosi yang efektif, dan pelumas dalam pengeboran. 3. Senyawa turunan amina rantai panjang yang lain adalah oksida amina rantai panjang, yang diperoleh dari reaksi amina rantai panjang dengan suatu peroksida. ksida-oksida amina rantai panjang banyak diaplikasikan sebagai bahan pembuatan shampo karena memiliki sifat-sifat daya pembersih dan pembentuk busa yang baik selain itu cukup lembut untuk kulit. 4. Amina rantai panjang sekunder dan tersier asimetrik adalah bahan dasar untuk pembuatan mineral lempung, suatu amina rantai panjang yang dimodifikasi dengan logam. Aplikasi produk ini cukup luas mulai dari industri petroleum sampai pembuatan biosida dan algasida. 7

20 Desain Lintas Amida-Amina Primer Sintesis amina sekunder dapat dilakukan menggunakan desain lintas amidaamina primer, merupakan serangkaian metode sintesis yang diperoleh dari studi literatur. Metode-metode sintesis yang terlibat di dalamnya bukanlah temuan yang baru, akan tetapi penggunaan bahan-bahan dengan rantai karbon yang lebih panjang tentunya akan memberikan pengaruh pada jalannya reaksi antarreaktan dan mungkin memberikan hasil yang berbeda. Keuntungan dari desain lintas tersebut ada pada kesederhanaan metode, karena sebagian langkah sintesis serupa dengan langkah-langkah sebelumnya, hal ini memudahkan penanganan di laboratorium. Alat dan bahan yang dibutuhkan dapat dengan mudah tersedia di laboratorium. Keuntungan lainnya, hampir setiap langkah sintesis yang dilaporkan (menggunakan bahan-bahan dengan rantai karbon pendek) memberikan hasil tinggi. Ada beberapa desain sintesis yang dirancang sebelumnya tetapi tidak dipilih karena hambatan yang susah ditangani dan memerlukan biaya cukup besar. Salah satu contoh desain lintas aldehida-amina primer, pada tahap oksidasi alkohol menjadi aldehida menggunakan katalis pyridinium chlorochromates (PCC) memberikan hasil samping kerak yang susah dibersihkan. Karena hal ini akan menambah biaya, maka desain ini selanjutnya tidak digunakan. Desain sintesis amina sekunder lain yang tidak dapat digunakan dalam laboratorium sederhana adalah metode konversi asam lemak menjadi aldehida rantai panjang secara langsung (Rao et al. 1967). Dalam metode tersebut dibutuhkan suatu reaktor dengan suhu reaksi yang cukup ekstrim sampai -70 C. Sintesis Amina Sekunder Lintas Amida-Amina Primer Untuk memperoleh amina sekunder dengan rantai karbon genap melalui lintas amida-amina primer dapat ditempuh tahapan-tahapan sesuai skema pada Gambar 3. Dimulai dari asam lemak sebagai bahan dasar, melewati intermediat amida-amina primer sampai tahapan reduksi ke amina sekunder. Asil klorida dapat dibuat dengan berbagai cara, salah satunya dengan mereaksikan asam karboksilat dengan tionil klorida (Furniss et al. 1989; Greeves et al. 2000). Reagen lain untuk membuat asil klorida adalah fosfor triklorida dan 8

21 fosfor pentaklorida, tetapi penggunaannya terbatas untuk asam karboksilat aromatis. Cara yang pertama lebih menguntungkan karena hasil samping akan menguap dan tidak mencemari produk yang diperoleh. Kelebihan tionil klorida dapat dipisahkan dari campuran hasil reaksi dengan cara distilasi, dengan demikian diperoleh asil yang lebih murni. R Cl Cl S R Cl - S Cl Cl - R S Cl R S Cl + Cl - R S Cl + R Cl S 2 Cl Cl - Gambar 2. Mekanisme preparasi asil klorida dengan SCl 2 Mekanisme preparasi asil klorida dengan SCl 2 dan asam karboksilat diberikan pada Gambar 2. Tionil klorida adalah spesies elektrofilik pada atom sulfur yang mengikat dua atom klorin dan satu oksigen. Atom pusat sulfur dapat diserang oleh ikatan pi gugus karbonil pada karboksilat dan membentuk suatu intermediat tak stabil yang sangat elektrofilik. Intermediat tidak stabil bersifat elektrofilik cukup kuat untuk bereaksi dengan nukleofil lemah Cl - dan dihasilkan asil klorida, sulfur dioksida, dan hidrogen klorida. Tahapan ini terjadi secara irreversibel karena S 2 and Cl berupa gas yang dapat langsung menguap dari campuran reaksi. 9

22 R Cl R N 2 2 N Cl - Cl R N 2 R N 2 Cl - Cl 2 N N 4 Cl Gambar 3. Mekanisme preparasi amida primer Preparasi amida primer dapat dilakukan dengan metode Furniss et al. (1989), dengan mereaksikan asil klorida dengan larutan amonia encer pada kondisi dingin dengan tekanan atmosfer memberikan hasil yang cukup baik. Mekanisme reaksi dimulai dari serangan pasangan elektron bebas N 3 pada karbonil menghasilkan intermediat tak stabil. Eliminasi ion klorida dan pelepasan proton dari atom oksigen seperti pada mekanisme Gambar 3, memberikan produk amida primer. Dari mekanisme pada Gambar 3 dapat diketahui bahwa dalam preparasi amida primer selalu diikuti pembentukan Cl yang harus dinetralkan dengan suatu basa dalam jumlah ekivalen yang sesuai. Karena basa yang ada hanya berasal dari amonia dalam pelarut air maka dalam reaksi harus ada sejumlah N 3 yang menetralkan Cl yang terbentuk. Reaksi lengkap yang terjadi dapat dituliskan sebagai RCCl + 2N 3 RCN 2 + N 4 Cl. Preparasi amida sekunder dapat dilakukan dengan metode yang serupa dengan amida primer sebelumnya, yaitu dengan mereaksikan asil klorida langsung dengan amina primer. Akan tetapi cara ini jelas merugikan karena untuk setiap mol asil klorida yang direaksikan dibutuhkan 2 mol amina primer. Satu mol amina primer bereaksi dengan asil membentuk produk sedangkan satu mol lagi akan dipakai untuk menetralkan Cl yang dihasilkan. Padahal dalam reaksi ini diharapkan seluruh amina primer akan terkonversi ke amida sekunder seluruhnya. 10

23 Lain hal dengan kasus amida primer, larutan N 3 dari segi harga murah dan tersedia dengan mudah dilaboratorium, tidak demikian halnya dengan amina primer rantai karbon panjang. Cara alternatif sintesis amida sekunder yang lebih baik adalah memakai metode Schotten-Baumann. Dalam prosesnya, asil klorida dan amina primer direaksikan dalam sistem pelarut 2 fasa yang tidak saling melarutkan yaitu fasa air (larutan Na) dan fasa diklorometan. Metode ini dapat mengatasi dua permasalahan sekaligus yaitu (1) seluruh amina primer dapat dikonversi ke amida sekunder karena peran untuk menetralkan Cl yang terbentuk telah digantikan Na sebagai basa yang lebih kuat (2) mencegah terjadinya reaksi asil klorida dengan - untuk menjadi karboksilat, karena asil klorida ada pada fasa diklorometan sedangkan - ada pada fasa air (oman 1998). Amida primer maupun amida sekunder yang dihasilkan dapat direduksi dengan berbagai cara. Salah satu metode mereduksi amida dengan kuat adalah menggunakan reduktor LiAl 4. Reduktor ini sangat kuat bahkan untuk amida sekalipun, padahal amida (khususnya amida sekunder) merupakan turunan asam karboksilat yang paling tidak reaktif (Greeves et al. 2000). Walaupun demikian, karena daya reduksi LiAl 4 sangat kuat dikhawatirkan akan menimbulkan masalah jika reaktan yang digunakan mengandung rantai kabon tak jenuh. Untuk mengatasi hal yang demikian diperlukan metode dengan kondisi yang lebih lembut. Salah satu metode yang sudah pernah dilakukan adalah menggunakan katalis B 3 yang dibuat in situ dari sistem NaB 4 /I 2 (Prasad et al. 1992). Dari penelitian tersebut dilaporkan bahwa reagen ini hanya akan mereduksi gugus karbonil saja tanpa mengganggu gugus tak jenuh rantai karbon. Mekanisme reduksi amida dengan metode Prasad et al. (1992) diberikan pada Gambar 4. Proses reduksi amida sekunder menjadi amina sekunder lebih sulit dilakukan dibandingkan amina primer, karena pada amina sekunder memiliki halangan sterik yang lebih besar dibandingkan amina primer. Dengan halangan sterik yang besar mungkin reagen pereduksi - akan lebih sulit masuk pada pusat karbon elektrofilik. 11

24 R B R B 2 N 2 N R B R B 2 N 2 N R B R B 2 N 2 N B B R R N 2 2 N Gambar 4. Mekanisme reduksi amida primer menjadi amina primer 12

25 BAAN DAN METDE Tempat dan Waktu Penelitian Sintesis amina sekunder rantai karbon genap dan intermediat-intermediat sebelumnya dilaksanakan di Laboratorium Terpadu Institut Pertanian Bogor. Sedangkan karakterisasi hasil dilakukan di Laboratorium Pangan Universitas Islam Negeri Syarif idayatullah Jakarta dan Laboratorium Terpadu Institut Pertanian Bogor. Penelitian berlangsung mulai dari bulan April 2005 sampai Juli Alat dan Bahan Bahan yang digunakan dalam penelitian ini adalah asam lemak jenuh (palmitat dan stearat) dan asam lemak tak jenuh (oleat). Pelarut yang digunakan adalah akuades, TF, eter, kloroform, dioksan dan diklorometan. Untuk keperluan sintesis dan berbagai macam konversi digunakan peralatan gelas seperti labu leher tiga, yang dilengkapi dengan termometer, penangas air dan kondenser, dan pengaduk dengan hot plate. Untuk proses pemurnian digunakan seperangkat alat distilasi dan rotavapor. Selain itu juga dibutuhkan erlenmeyer, gelas piala, pipet tetes dan pipet volume, neraca analitik dan spatula. Instrumen yang digunakan untuk identifikasi dan kuantifikasi produk yang dihasilkan adalah FTIR dan PLC. Desain dan Sintesis Amina Sekunder Sintesis berbagai prototipe amina sekunder rantai genap, baik rantai jenuh maupun tak jenuh, dilakukan dari asam karboksilat yang bersesuaian. Adapun desain sintesis amina sekunder yang dipilih adalah lintas intermediat amida dan amina primer. Reaksi-reaksi yang terlibat dalam desain ini cukup sederhana dan mudah dilakukan dilaboratorium dengan menggunakan peralatan gelas biasa. Pemisahan yang diperlukan juga tidak terlalu rumit antara lain dengan ekstraksi, kristalisasi dan penyaringan. Reaksi-reaksi yang berjalan cukup sederhana karena beberapa tahap sebenarnya merupakan pengulangan tahap sebelumnya, seperti terlihat pada Gambar 5. 13

26 Asam Lemak (C16:0, C18:0, C18:1) Preparasi Asil Klorida Pemurnian Preparasi Amida Primer Pemurnian FTIR Reduksi Amida primer Pemurnian Preparasi Amida Sekunder Pemurnian PLC Reduksi Amida Sekunder Pemurnian Gambar 5. Tahapan konversi asam lemak ke amina sekunder dan karakterisasi intermediat dan produknya. Preparasi Asil Klorida Preparasi asil klorida mengikuti metode Furniss et al. (1989) dan metode Rao et al. (1967). Kedua metode memiliki banyak kesamaan dalam prosedur, 14

27 hanya berbeda pada bahan. Metode pertama diterapkan pada karboksilat rantai pendek sedangkan metode kedua sudah memakai karboksilat rantai panjang. Tionil klorida ditambahkan secara perlahan-lahan pada masing-masing asam karboksilat (perbandingan mol SCl 2 : asam karboksilat = 3:1) dalam labu leher tiga sambil dipanaskan dalam waterbath. Labu selalu dikocok selama penambahan tionil klorida agar terjadi campuran yang sempurna. Campuran direfluks selama 30 menit sambil tetap dikocok. Kelebihan tionil klorida diisolasi dengan cara distilasi, sehingga diperoleh asil klorida kasar. Preparasi Amida Primer Amida primer dibuat dengan metode Furniss et al. (1989). Masing-masing asil klorida ditambahkan secara perlahan-lahan pada larutan amonia pekat dalam labu leher tiga (nisbah mol asil klorida : amonia = 1:1). Laju penambahan sedemikian rupa sampai keluarnya asap putih berhenti, labu selalu diaduk selama penambahan asil klorida. Amida yang terbentuk secara cepat terpisah, dan setelah dingin padatan disaring dan amida yang tertinggal ditransfer menggunakan filtratnya. Setelah dikering udarakan diperoleh amida primer kasar berupa padatan putih. Preparasi Amida Sekunder Preparasi amida sekunder dilakukan dengan menggunakan metode Schotten- Baumann (oman 1998). Dalam kondisi diaduk kuat dan didinginkan dengan aires, menggunakan labu leher tiga masing-masing asil klorida dalam C 2 Cl 2 diteteskan ke dalam campuran garam amina primer (nisbah mol asil:amina = 3:1), larutan Na 10% dan C 2 Cl 2. Campuran dibiarkan pada suhu ruang, pengadukan dilanjutkan selama 18 jam. Campuran dituangkan dalam 2 dan fase yang terjadi dipisahkan. Fase air diekstraksi dengan C 2 Cl 2, fase organik dikumpulkan kemudian dicuci dengan larutan NaC 3 10% dan 2. Setelah dikeringkan dengan MgS 4 anhidrat, lapisan C 2 Cl 2 disaring dan diuapkan dengan rotavapor sehingga diperoleh amida sekunder kasar berupa padatan putih. 15

28 Pemurnian Amida Pemurnian amida dilakukan dengan cara melarutkan amida kasar dalam pelarut heksana dengan kondisi refluks kemudian disaring dalam kondisi panas. Setelah pelarut heksana (filtrat) diuapkan diperoleh amida murni berupa padatan putih (Personal Communication) 1. Reduksi Amida Primer dan Sekunder Amida primer maupun amida sekunder direduksi mengikuti metode Prasad et al. (1992). Masing-masing amida dan NaB 4 dalam TF kering dimasukkan ke dalam labu leher tiga sambil terus dikocok. Pada campuran ditambahkan I 2 dalam TF dalam tekanan gas N 2 dan kondisi 0 o C selama 2,5 jam (nisbah mol amida: NaB 4 : I 2 = 1:1:3). Setelah itu campuran direfluks selama 3 jam pada suhu 70 o C, lalu dibiarkan dingin kembali sampai 0 o C, kelebihan hidrida dihilangkan dengan penambahan Na 3N. Lapisan organik dipisahkan dan lapisan air diekstraksi dengan eter. Lapisan organik total dicuci dengan air, air garam, dan dikeringkan dengan MgS 4 anhidrat. Pemurnian Amina Semua amina, primer maupun sekunder yang diperoleh, dimurnikan dengan cara menambahkan gas asam klorida pada filtrat yang mengandung amina kasar (Personal Communication) 2. Garam amina-cl yang terbentuk akan segera mengendap. Endapan yang diperoleh dipisahkan dengan cara filtrasi. Karakterisasi asil Sintesis Instrumentasi yang digunakan untuk mengkarakterisasi produk adalah seperangkat alat spektroskopi inframerah (FTIR) dan kromatografi cair kinerja tinggi (PLC). FTIR digunakan untuk memantau perubahan gugus fungsi dalam setiap tahap reaksi konversi yang dilakukan, mulai dari asam lemak rantai panjang sampai pada amina sekunder yang bersesuaian. Yang menjadi titik-titik pantau FTIR adalah perubahan amida primer ke amina primer, amida sekunder ke amina sekunder. 1) Personal Communication dengan Dr Zainal Alim Mas ud DEA tentang pemurnian amida 2) Personal Communication dengan Dr Zainal Alim Mas ud DEA tentang pemurnian amina 16

29 Berbagai tahapan konversi dari asam karboksilat rantai panjang menuju amina sekunder rantai karbon genap dapat diidentifikasi menggunakan spektroskopi FTIR. Setiap perubahan gugus fungsi akan terlihat jelas pada spektra hasil dan dapat dibandingkan dengan spektra reaktan serta didukung kajian teoritis. Penggunaan alat ini cukup sederhana dan mudah ditangani dengan harga pemakaian yang tidak terlalu mahal. Bahan-bahan yang digunakan dalam berbagai tahapan penelitian berkualitas pro analysis maka selain reaktan dan produk utama dan sampingan tidak ada senyawa lain yang terlibat. Karena produk samping dan pengotor yang mencemari produk dapat diperkirakan maka pemisahan dan analisisnya akan lebih mudah. al ini memudahkan proses identifikasi sekaligus menghilangkan keraguan akan hasil konversi. Pemantauan secara kualitatif tujuannya hanya menjaga agar proses-proses sintesis tetap berada dalam koridor desain sintesis amina sekunder yang telah direncanakan. akan tetapi informasi FTIR tidak cukup untuk mengetahui kemurnian produk yang diperoleh. Identifikasi amina sekunder hasil sintesis secara kuantitatif dilakukan menggunakan PLC, sehingga dapat diketahui rendemen amina sekunder yang dihasilkan pada langkah terakhir sintesis. Analisis senyawa amina sekunder dapat dilakukan dengan cara titrasi maupun teknik-teknik kromatografi (UP method T 1971). Metode titrasi membutuhkan jumlah sampel amina sekunder yang relatif lebih banyak dibandingkan dengan metode kromatografi. Dan jika menggunakan campuran sampel yang mengandung senyawa lain yang bersifat basa maka hasil analisis menjadi tidak akurat. Jika dibandingkan antara metode PLC dengan titrasi untuk menganalisis amina alifatik turunan asam lemak, tentunya analisis pertama lebih dapat diandalkan. Akan tetapi karena amina sekunder tidak memiliki gugus aromatik, maka analisis dengan kepekaan tinggi menggunakan detektor uv-visible sulit dilakukan jika tidak melakukan derivatisasi terlebih dahulu. Analisis senyawa amina sekunder rantai panjang dapat dilakukan dengan menggunakan metode PLC setelah dipreparasi menjadi derivat m-toluoil. Derivat yang terjadi dapat dianalisa dengan menggunakan kolom oktadesilamin 17

30 fase terbalik dengan menggunakan detektor ultraviolet. Fase gerak yang digunakan adalah asetonitril-air (Simon dan Lemacon 1987). 18

31 ASIL DAN PEMBAASAN Sintesis Amina Sekunder dengan Atom Karbon Genap Penelitian ini difokuskan pada konversi asam lemak jenuh (palmitat dan stearat) dan asam lemak tak jenuh (oleat) menjadi amina sekunder turunannya, dengan jumlah atom karbon genap. Dalam hal ini, jika masing-masing alkil dari 3 macam asam dipasangkan maka dapat diperoleh 6 jenis amina sekunder dengan atom karbon genap dengan rincian seperti pada Tabel 2. Dari 6 kombinasi pasangan alkil R1 dan R2 diperoleh 3 amina sekunder simetrik (S) dan 3 amina sekunder asimetrik (A). Untuk mencapai sasaran penelitian (Tabel 2), konversi dilakukan mengikuti tahapan-tahapan umum seperti diberikan dalam skema Gambar 5. Dimulai dari asam lemak analog dengan komponen utama dari trigliserida sawit, dengan variasi rantai alkil R seperti pada Tabel 2. Tahapan konversi yang dilakukan dimulai dari preparasi intermediat-intermediat seperti asil klorida, amida primer, amina primer, dan amida sekunder. Tabel 2. Jenis amina sekunder rantai karbon genap target R1 R2 Total C Jenis Amina C16 C18 C18 C18:1 C18:1 C18:1 C16 C16 C18 C18 C16 C18: S A S A A S Sintesis amina sekunder rantai karbon panjang dilakukan dengan menggunakan desain sintesis lintas amida-amina primer (Gambar 6). Inti dari jalur sintesis ini adalah pembentukan amida dan amina primer. Pembentukan intermediat amida primer diperoleh dari dari asil klorida dan amonia, amida sekunder diperoleh dengan metode yang serupa. Selanjutnya semua amida yang diperoleh masing-masing direduksi menggunakan reduktor B 3 dalam medium 19

32 tetrahidrofuran sehingga diperoleh berturut-turut amina primer dan sekunder. Asil klorida diperoleh dari asam lemak yang sesuai, tiga macam asam lemak yang pakai dalam penelitian adalah asam palmitat, stearat dan oleat. RC 2 C RC 2 CCl RC 2 CN 2 RC 2 N 2 R C 2 C-NR R C 2 C 2 -NR Gambar 6. Diagram sintesis amina sekunder rantai karbon genap lintas amida-amina primer Konversi Asam Lemak menjadi Asil Klorida Konversi asam lemak menjadi amida primer dapat langsung dilakukan dengan mereaksikan asam lemak dengan amonia. Akan tetapi cara ini kurang baik dari segi hasil, karena asam lemak bersifat kurang reaktif dan hasil samping berupa molekul air semakin membuatnya kurang reaktif. leh karena itu konversi asam lemak menjadi asil klorida merupakan tahap permulaan yang sangat dibutuhkan dalam sintesis lintas amida-amina primer. Karena bentuk asil klorida merupakan turunan asam lemak yang paling reaktif sehingga mudah dikonversi menjadi bentuk-bentuk turunan asam lemak lainnya. Ada beberapa prosedur konversi asam lemak menjadi asil klorida yang dapat dilakukan antara lain dengan menggunakan PCl 5, tetapi prosedur dengan menggunakan SCl 2 dipilih karena untuk sintesis dengan menggunakan rantairantai pendek memberikan hasil yang tinggi dan produk sampingan yang ada mudah dipisahkan. Salah satu kelebihan metode ini tidak memerlukan pemisahan yang rumit karena hasil samping ( 2 dan S 2 ) berbentuk gas dan akan menguap 20

33 pada akhir konversi. asil konversi asam lemak menjadi asil klorida yang bersesuaian ditabulasikan pada Tabel 6. Tabel 3. Konversi asam karboksilat rantai panjang menjadi asil kloridanya Jenis Rendemen Alkil (R) (%) Palmitil Stearil leil Secara teoritis reaksi pembentukan asil klorida ini berlangsung secara sempurna, tetapi pada penelitian ini hanya diperoleh rendemen rata-rata 74,2%. Beberapa penelitian menyebutkan rendemen asil klorida yang dihasilkan selalu lebih kecil dari 90% (Furniss et al. 1989; Rao et al. 1967; Greeves et al. 2000). Diduga hasil tersebut terjadi karena dua hal, yaitu (1) tionil klorida adalah reagen yang bersifat korosif dan toksik, sehingga menyulitkan penanganan di laboratorium (2) isolasi kelebihan tionil klorida dari campuran hasil sangat tergantung pada teknologi alat distilasi yang digunakan, semakin canggih alat distilasi rendemen yang dihasilkan semakin tinggi. asil konversi ditandai oleh hilangnya serapan pita lebar dan kuat di sekitar 3500 cm -1 pada spektra FTIR (bandingkan Gambar 8 dan 9), ciri khas dari gugus hidroksil pada karboksilat yang membentuk ikatan hidrogen. Pada spektra stearoil klorida tidak ada lagi serapan dari regangan C- dimer 1299 cm -1 seperti pada stearat. Adanya regangan C- dimer menunjukkan molekul asam stearat membentuk ikatan hidrogen antar molekul dengan molekul asam stearat lain membentuk suatu dimer. R R Gambar 7. Bentuk dimer asam stearat 21

34 %T cm-1 Gambar 8. Spektra asam stearat A. Regangan -, cm -1. B. Regangan C dan 2849 cm -1. C. Regangan C= normal dimer asam 1702 cm -1. D. Tekukan in plane C cm -1. E. Regangan C- dimer 1299 cm -1. F. Tekukan out of plane cm %T cm-1 Gambar 9. Spektra stearoil klorida hasil konversi dari asam stearat A. Regangan C dan 2853 cm -1. B. Regangan C= 1799 cm -1. C. Tekukan C cm -1. D. Regangan C-N 1128 cm -1. Konversi Asil klorida menjadi Amida Primer Prosedur yang dipakai berdasarkan metode Furniss et al. (1989), walaupun sudah cukup tua tetapi prosedur ini tetap memberikan hasil yang memuaskan baik dari segi hasil maupun segi kemudahan penanganan dan harga bahan dasar. Asil klorida merupakan turunan asam karboksilat yang paling reaktif, dan akan mudah bereaksi dengan nukleofil kuat seperti amonia menggantikan posisi klorida 22

35 sebagai gugus pergi yang baik. Reaksi ini bahkan dapat berjalan pada suhu ruang dengan bantuan pengadukan dalam waktu yang tidak terlalu lama. Secara teori semua asil klorida dapat dihidrolisis oleh air membentuk asam karboksilat (Fessenden et al. 1998), sehingga akan mengurangi rendemen hasil pada preparasi amida primer dengan metode Furniss et al. (1989). Akan tetapi kecepatan reaksi hidrolisis dalam air setiap asil klorida berbeda bergantung pada kelarutan bahan dalam air. Semakin ruah gugus alkil pada asil klorida yang digunakan maka kelarutan semakin rendah. Sebagai contoh asetil klorida terhidrolisis dalam air hampir secara eksplosif, sedangkan butanoil klorida membutuhkan kondisi refluks yang cukup kuat (Fessenden et al. 1998). Dengan demikian kecepatan hidrolisis asil klorida dengan jumlah atom C16-C18 akan sangat rendah. Asil klorida bereaksi dengan asil klorida dengan cepat N 3 dan amina membentuk amida (Fessenden et al. 1998). Dari segi nukleofilitas amonia lebih kuat daripada air dan akan bereaksi dengan asil klorida lebih dengan kecepatan reaksi yang lebih tinggi. Rendemen hasil reaksi asil klorida dengan amonia diberikan pada Tabel 4. Tabel 4. Konversi asil klorida menjadi amida primer Jenis Rendemen Alkil (R) (%) Palmitil Stearil leil Identifikasi hasil konversi ditandai dengan munculnya dua buah puncak serapan (kopling) dari regangan N- dari gugus amida primer pada 3394 dan 3197 cm -1 pada spektra palmitilamida. al ini menunjukkan telah terjadi perubahan gugus fungsi dari gugus klorida menjadi amina. Sebagai ilustrasi dapat dilihat dari spektra palmitilamida pada Gambar 10. Kereaktifan asil klorida sebagai salah satu intermediat pada sintesis ini dapat ditunjukkan dari tingginya hasil konversi yang diperoleh (Tabel 4). 23

36 %T cm-1 Gambar 10. Spektra palmitilamida hasil konversi dari palmitoil klorida A. Regangan N- asimetrik 3394 cm -1 ; simetrik 3197 cm -1. B. Regangan C- alifatik 2955 dan 2849 cm -1. C. Regangan C= berimpit dengan tekukan menggunting N cm -1. D. Tekukan C cm -1. E. Regangan C-N 1121 cm -1. F. Tekukan N- out of plane, cm -1. Konversi Amida Primer menjadi Amina Primer Reduksi amida primer dengan bantuan katalis dilakukan untuk memperoleh amina primer. Prosedur yang dipilih adalah reduksi dengan menggunakan reduktor B 3 yang dibuat secara in situ dengan bahan NaB 4 dan I 2 dalam pelarut tetrahidrofuran (Prasad et al. 1992). Pada tahap ini perlu dipastikan bahwa penambahan I 2 dilakukan sampai warna larutan kuning terbentuk nyata untuk memastikan bahwa NaB 4 yang dipakai telah berubah menjadi B 3 seluruhnya. Setelah itu NaB 4 ditambahkan untuk memastikan I 2 berlebih telah habis sebelum direfluks. Prosedur Prasad et al. (1992) dipakai karena ada kesulitan memperoleh B 3 dalam bentuk kompleks B 3 -TF ataupun B 3 -dimetilsulfida secara komersil. Boran (B 3 ) berada dalam bentuk dimer diboran berada dalam fase gas, bersifat sangat reaktif karena atom boron hanya memiliki 6 elektron pada kulit valensinya. Jika proses reduksi amida dapat dilakukan langsung menggunakan B 3 diduga hasilnya akan lebih baik daripada metode Prasad et al. (1992), yang sangat tergantung pada keberhasilan generasi boran dari sisterm NaB 4 /I 2. Tahap reduksi dengan metode ini menjadi titik lemah dari sintesis amina sekunder lintas amidaamina primer secara keseluruhan. 24

37 Pada proses reduksi menggunakan reagen natrium borohidrida, organolitium ataupun organomagnesium penggunaan pelarut aprotik sangat penting. Reagenreagen tersebut adalah basa yang sangat kuat dan setara dengan nukleofil kuat. Jika dalam reaksi digunakan pelarut protik seperti air, maka oraganologam akan terprotonasi dan tidak dapat berfungsi. Pada proses generasi boran dari sistem NaB 4 /I 2 digunakan pelarut TF. TF dipilih sebagai medium reduksi amida karena dua hal, yaitu (1) dapat mengikat boran yang sangat reaktif membentuk kompleks yang lebih stabil, dan mengubah fase dimer boran dari gas menjadi cair (2) dalam beberapa penelitian reaksi reduksi amida dengan boran memberikan hasil yang paling tinggi (Prasad et al. 1992) (3) merupakan pelarut aprotik. Reduktor B 3 lebih disukai daripada NaB 4 (Greeves et al. 2000) karena B 3 lebih kuat daya reduktornya daripada NaB 4 untuk pusat C (dari gugus karbonil) yang kurang elektrofil. Amida yang memiliki gugus -N 2 yang berperan sebagai gugus pendorong elektron sehingga gugus karbonil amida kurang elekrofil dibandingkan asil kloridanya. Untuk pusat karbon yang demikian B 3 cocok untuk digunakan sebagai reduktor amida. Sebaliknya NaB 4 lebih cocok untuk mereduksi spesies dengan pusat karbon yang sangat kekurangan elektron seperti asil klorida, karena dalam larutan kompleks berada dalam spesies aktif B - 4. Pemilihan reduktor kompleks B 3 -TF berdasarkan pada daya reduksi yang kuat, mudah dilakukan, aman, dan spesifik pada gugus karbonil. Dari penelitian diketahui kompleks B 3 -TF mampu mereduksi gugus amida menjadi amina. Menurut McMurry (2004) boran mereduksi gugus fungsi karbonil secara selektif pada asam p-nitrofenilasetat maenjadi p-nitrofeniletanol dengan rendemen hasil yang tinggi (94%). Tabel 5. Konversi amida primer menjadi amina primer Jenis Rendemen Alkil (R) (%) palmitil stearil oleil

38 Amina primer dimurnikan dengan cara menggaramkan amina kasar dihasilkan. Keuntungan cara pemisahan ini adalah mudah dilakukan dan spesifik karena hanya amina yang akan membentuk garam dengan Cl (g) sedangkan dengan pengotor seperti sisa amida tidak terbentuk garam. Keuntungan lainnya adalah amina lebih stabil dalam bentuk garamnya daripada dalam bentuk bebasnya. asil konversi amida primer menjadi amina primer pada Tabel 5. asil konversi ditandai dengan hilangnya serapan kuat dan tajam dari gugus C= pada 1646 cm -1. Serapan ganda dari regangan N- simterik dan asimetrik disekitar cm -1 masih tetap ada dan dua gugus serapan ini membedakan spektrum amina primer dengan serapan N- tunggal dari amina sekunder. Sebagai illustrasi dapat dilihat spektrum palmitilamina pada Gambar %T cm-1 Gambar 11. Spektra palmitilamina hasil konversi dari palmitilamida A. Regangan N- asimetrik 3392 cm -1 dan simetrik 3195 cm -1. B. Regangan C- alifatik 2955; 2918 dan 2849 cm -1. C. Tekukan menggunting N dan 1645 cm -1. D. Tekukan menggunting C cm -1. E. Regangan C-N 1103 cm -1. Reaksi Asil klorida dengan Amina Primer menjadi Amida Sekunder Untuk memperoleh amida sekunder dilakukan menggunakan metode Schotten dan Baumann (oman 1998). Metode ini hampir sama dengan prosedur preparasi amida primer, tetapi ada sedikit modifikasi dengan menggunakan sistem pelarut C 2 Cl 2 -larutan Na. Penggunaan larutan Na memiliki beberapa keuntungan, selain sebagai medium reaksi sekaligus menggantikan amina primer untuk menetralkan Cl yang dihasilkan pada preparasi amida sekunder. 26

39 Pemisahan yang dilakukan pada hasil konversi ini menggunakan metode yang sama seperti pada amida primer. Tabel 6. Reaksi amina primer dengan asil klorida menjadi amida sekunder Jenis Rendemen Alkil (R) (%) palmitil stearil oleil asil konversi ke amida sekunder, ditandai dengan munculnya kembali serapan kuat dan tajam dari gugus C= di sekitar 1637 cm -1. Ikatan N- dari amida sekunder memberikan satu puncak serapan disekitar 3313 cm -1 karena amida sekunder hanya memiliki satu ikatan N-, seperti terlihat pada spektra N- palmitilpalmitilamida pada Gambar %T cm-1 Gambar 12. Spektra N-Palmitilpalmitilamida dari palmitoil klorida dan palmitilamina A. Regangan N- tunggal 3313 cm -1. B. Regangan C- alifatik 2955; 2917 dan 2848 cm -1. C. Regangan C= 1637 cm -1 D. Tekukan menggunting N cm -1 D. Tekukan menggunting C cm -1. Konversi Amida Sekunder menjadi Amina Sekunder Reduksi amida sekunder dilakukan dengan metode yang serupa dengan reduksi amida primer menjadi amina primer. Demikian juga dengan proses 27

DESAIN DAN SINTESIS AMINA SEKUNDER RANTAI KARBON GENAP DARI ASAM KARBOKSILAT RANTAI PANJANG RAHMAD FAJAR SIDIK

DESAIN DAN SINTESIS AMINA SEKUNDER RANTAI KARBON GENAP DARI ASAM KARBOKSILAT RANTAI PANJANG RAHMAD FAJAR SIDIK DESAIN DAN SINTESIS AMINA SEKUNDER RANTAI KARBON GENAP DARI ASAM KARBOKSILAT RANTAI PANJANG RAHMAD FAJAR SIDIK SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2007 PERNYATAAN TENTANG TESIS DAN SUMBER

Lebih terperinci

BAHAN DAN METODE Tempat dan Waktu Penelitian Alat dan Bahan Desain dan Sintesis Amina Sekunder

BAHAN DAN METODE Tempat dan Waktu Penelitian Alat dan Bahan Desain dan Sintesis Amina Sekunder BAHAN DAN METODE Tempat dan Waktu Penelitian Sintesis amina sekunder rantai karbon genap dan intermediat-intermediat sebelumnya dilaksanakan di Laboratorium Terpadu Institut Pertanian Bogor. Sedangkan

Lebih terperinci

TINJAUAN PUSTAKA. Tabel 1. Komposisi asam lemak minyak sawit, minyak kedelai, dan minyak kelapa (Ahmad 2000) Persentase berat Asam Lemak

TINJAUAN PUSTAKA. Tabel 1. Komposisi asam lemak minyak sawit, minyak kedelai, dan minyak kelapa (Ahmad 2000) Persentase berat Asam Lemak TINJAUAN PUSTAKA Sumber-sumber Minyak Nabati Minyak dan lemak dapat diperoleh dari dua sumber utama, yaitu minyak nabati maupun lemak hewani. Sumber minyak nabati dapat berasal dari berbagai macam tumbuhan

Lebih terperinci

Chapter 20 ASAM KARBOKSILAT

Chapter 20 ASAM KARBOKSILAT Chapter 20 ASAM KARBOKSILAT Pengantar Gugus fungsi dari asam karboksilat terdiri atas ikatan C=O dengan OH pada karbon yang sama. Gugus karboksil biasanya ditulis -COOH. Asam alifatik memiliki gugus alkil

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. 4:1, MEJ 5:1, MEJ 9:1, MEJ 10:1, MEJ 12:1, dan MEJ 20:1 berturut-turut

BAB IV HASIL DAN PEMBAHASAN. 4:1, MEJ 5:1, MEJ 9:1, MEJ 10:1, MEJ 12:1, dan MEJ 20:1 berturut-turut BAB IV HASIL DAN PEMBAHASAN A. HASIL 5. Reaksi Transesterifikasi Minyak Jelantah Persentase konversi metil ester dari minyak jelantah pada sampel MEJ 4:1, MEJ 5:1, MEJ 9:1, MEJ 10:1, MEJ 12:1, dan MEJ

Lebih terperinci

Bab IV Hasil dan Pembahasan. IV.2.1 Proses transesterifikasi minyak jarak (minyak kastor)

Bab IV Hasil dan Pembahasan. IV.2.1 Proses transesterifikasi minyak jarak (minyak kastor) 23 Bab IV Hasil dan Pembahasan IV.1 Penyiapan Sampel Kualitas minyak kastor yang digunakan sangat mempengaruhi pelaksanaan reaksi transesterifikasi. Parameter kualitas minyak kastor yang dapat menjadi

Lebih terperinci

4 Pembahasan Degumming

4 Pembahasan Degumming 4 Pembahasan Proses pengolahan biodiesel dari biji nyamplung hampir sama dengan pengolahan biodiesel dari minyak sawit, jarak pagar, dan jarak kepyar. Tetapi karena biji nyamplung mengandung zat ekstraktif

Lebih terperinci

Bab IV Hasil dan Pembahasan

Bab IV Hasil dan Pembahasan Bab IV Hasil dan Pembahasan 4.1 Tahap Sintesis Biodiesel Pada tahap sintesis biodiesel, telah dibuat biodiesel dari minyak sawit, melalui reaksi transesterifikasi. Jenis alkohol yang digunakan adalah metanol,

Lebih terperinci

Bab IV Hasil dan Pembahasan

Bab IV Hasil dan Pembahasan 19 Bab IV Hasil dan Pembahasan 4.1 Sintesis Biodiesel Minyak jelantah semula bewarna coklat pekat, berbau amis dan bercampur dengan partikel sisa penggorengan. Sebanyak empat liter minyak jelantah mula-mula

Lebih terperinci

Memiliki bau amis (fish flavor) akibat terbentuknya trimetil amin dari lesitin.

Memiliki bau amis (fish flavor) akibat terbentuknya trimetil amin dari lesitin. Lemak dan minyak merupakan senyawa trigliserida atau trigliserol, dimana berarti lemak dan minyak merupakan triester dari gliserol. Dari pernyataan tersebut, jelas menunjukkan bahwa lemak dan minyak merupakan

Lebih terperinci

Sintesis Organik Multitahap: Sintesis Pain-Killer Benzokain

Sintesis Organik Multitahap: Sintesis Pain-Killer Benzokain Sintesis Organik Multitahap: Sintesis Pain-Killer Benzokain Safira Medina 10512057; K-01; Kelompok IV shasamedina@gmail.com Abstrak Sintesis ester etil p-aminobenzoat atau benzokain telah dilakukan melalui

Lebih terperinci

I. DASAR TEORI Struktur benzil alkohol

I. DASAR TEORI Struktur benzil alkohol JUDUL TUJUAN PERCBAAN IV : BENZIL ALKL : 1. Mempelajari kelarutan benzyl alkohol dalam berbagai pelarut. 2. Mengamati sifat dan reaksi oksidasi pada benzyl alkohol. ari/tanggal : Selasa, 2 November 2010

Lebih terperinci

LAPORAN PRAKTIKUM KIMIA ORGANIK

LAPORAN PRAKTIKUM KIMIA ORGANIK LAPORAN PRAKTIKUM KIMIA ORGANIK ACARA 4 SENYAWA ASAM KARBOKSILAT DAN ESTER Oleh: Kelompok 5 Nova Damayanti A1M013012 Nadhila Benita Prabawati A1M013040 KEMENTRIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS

Lebih terperinci

LAPORAN PENDAHULUAN PRAKTIKUM KIMIA ORGANIK II

LAPORAN PENDAHULUAN PRAKTIKUM KIMIA ORGANIK II LAPORAN PENDAHULUAN PRAKTIKUM KIMIA ORGANIK II I. Nomor Percobaan : VI II. Nama Percobaan : Reaksi Asetilasi Anilin III. Tujuan Percobaan : Agar mahasiswa dapat mengetahui salah satu cara mensintesa senyawa

Lebih terperinci

4. Hasil dan Pembahasan

4. Hasil dan Pembahasan 4. asil dan Pembahasan 4.1 Analisis asil Sintesis Pada penelitian ini aldehida didintesis dengan metode reduksi asam karboksilat menggunakan reduktor ab 4 / 2 dalam TF. 4.1.1 Sintesis istidinal dan Fenilalaninal

Lebih terperinci

TURUNAN ASAM KARBOKSILAT DAN REAKSI SUBSTITUSI ASIL NUKLEOFILIK

TURUNAN ASAM KARBOKSILAT DAN REAKSI SUBSTITUSI ASIL NUKLEOFILIK BAB 4 TURUNAN ASAM KARBOKSILAT DAN REAKSI SUBSTITUSI ASIL NUKLEOFILIK Asam karboksilat hanya merupakan salah satu anggota kelas turunan asil, RCOX, di mana substituen X mungkin oksigen, halogen, nitrogen

Lebih terperinci

III. METODOLOGI PENELITIAN

III. METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN A. BAHAN DAN ALAT Bahan-bahan dasar yang digunakan dalam penelitian ini adalah biji karet, dan bahan pembantu berupa metanol, HCl dan NaOH teknis. Selain bahan-bahan di atas,

Lebih terperinci

I. ISOLASI EUGENOL DARI BUNGA CENGKEH

I. ISOLASI EUGENOL DARI BUNGA CENGKEH Petunjuk Paktikum I. ISLASI EUGENL DARI BUNGA CENGKEH A. TUJUAN PERCBAAN Mengisolasi eugenol dari bunga cengkeh B. DASAR TERI Komponen utama minyak cengkeh adalah senyawa aromatik yang disebut eugenol.

Lebih terperinci

Prarancangan Pabrik Asam Stearat dari Minyak Kelapa Sawit Kapasitas ton/tahun BAB I PENDAHULUAN

Prarancangan Pabrik Asam Stearat dari Minyak Kelapa Sawit Kapasitas ton/tahun BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Industri kimia memiliki peranan penting dalam kehidupan masyarakat dikarenakan industri kimia banyak memproduksi barang mentah maupun barang jadi untuk mencukupi kebutuhan

Lebih terperinci

SINTESIS SENYAWA ANALOG UK-3A DAN UJI AKTIVITAS SECARA IN VITRO TERHADAP SEL KANKER MURINE LEUKEMIA P-388 UJIATMI DWI MARLUPI

SINTESIS SENYAWA ANALOG UK-3A DAN UJI AKTIVITAS SECARA IN VITRO TERHADAP SEL KANKER MURINE LEUKEMIA P-388 UJIATMI DWI MARLUPI SINTESIS SENYAWA ANALOG UK-3A DAN UJI AKTIVITAS SECARA IN VITRO TERHADAP SEL KANKER MURINE LEUKEMIA P-388 UJIATMI DWI MARLUPI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2007 PERNYATAAN MENGENAI

Lebih terperinci

Bab III Metodologi Penelitian

Bab III Metodologi Penelitian Bab III Metodologi Penelitian 3.1 Alat dan Bahan Peralatan yang diperlukan pada penelitian ini meliputi seperangkat alat gelas laboratorium kimia (botol semprot, gelas kimia, labu takar, erlenmeyer, corong

Lebih terperinci

Prarancangan Pabrik Asam Stearat dari Minyak Kelapa Sawit Kapasitas Ton/Tahun BAB I PENDAHULUAN

Prarancangan Pabrik Asam Stearat dari Minyak Kelapa Sawit Kapasitas Ton/Tahun BAB I PENDAHULUAN BAB I PENDAHULUAN Kelapa sawit merupakan salah satu komoditas utama yang dikembangkan di Indonesia. Dewasa ini, perkebunan kelapa sawit semakin meluas. Hal ini dikarenakan kelapa sawit dapat meningkatkan

Lebih terperinci

1 PENDAHULUAN Latar Belakang

1 PENDAHULUAN Latar Belakang 1 PENDAHULUAN Latar Belakang Minyak atau lemak merupakan ester dari gliserol dan asam lemak, tersusun atas campuran sebagian besar triasilgliserol dan sebagian kecil senyawa pengotor (di-gliserida dan

Lebih terperinci

LAPORAN LENGKAP PRAKTIKUM ANORGANIK PERCOBAAN 1 TOPIK : SINTESIS DAN KARAKTERISTIK NATRIUM TIOSULFAT

LAPORAN LENGKAP PRAKTIKUM ANORGANIK PERCOBAAN 1 TOPIK : SINTESIS DAN KARAKTERISTIK NATRIUM TIOSULFAT LAPORAN LENGKAP PRAKTIKUM ANORGANIK PERCOBAAN 1 TOPIK : SINTESIS DAN KARAKTERISTIK NATRIUM TIOSULFAT DI SUSUN OLEH : NAMA : IMENG NIM : ACC 109 011 KELOMPOK : 2 ( DUA ) HARI / TANGGAL : SABTU, 28 MEI 2011

Lebih terperinci

REAKSI-REAKSI ALKOHOL DAN FENOL

REAKSI-REAKSI ALKOHOL DAN FENOL REAKSI-REAKSI ALKHL DAN FENL TUJUAN Tujuan dari Percobaan ini adalah: 1. Membedakan alkohol dengan fenol berdasarkan reaksinya dengan asam karboksilat 2. Membedakan alkohol dan fenol berdasarkan reaksi

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Salah satu produksi bahan kehidupan sehari-hari yang menggunakan bahan dapat diperbaharui adalah produksi amina rantai panjang melalui proses aminasi alkohol rantai

Lebih terperinci

LAPORAN PRAKTIKUM SINTESIS KIMIA ORGANIK

LAPORAN PRAKTIKUM SINTESIS KIMIA ORGANIK LAPORAN PRAKTIKUM SINTESIS KIMIA ORGANIK PEMBUATAN t - BUTIL KLORIDA NAMA PRAKTIKAN : KARINA PERMATA SARI NPM : 1106066460 PARTNER PRAKTIKAN : FANTY EKA PRATIWI ASISTEN LAB : KAK JOHANNES BION TANGGAL

Lebih terperinci

BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN

BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN BAB 4 ASIL PECBAAN DAN PEMBAASAN Transesterifikasi, suatu reaksi kesetimbangan, sehingga hasil reaksi dapat ditingkatkan dengan menghilangkan salah satu produk yang terbentuk. Penggunaan metil laurat dalam

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Asam Palmitat Asam palmitat adalah asam lemak jenuh rantai panjang yang terdapat dalam bentuk trigliserida pada minyak nabati maupun minyak hewani disamping juga asam lemak

Lebih terperinci

Sintesis Asam Salisilat Dari Minyak Gandapura Dan Kenaikan Titik Leleh

Sintesis Asam Salisilat Dari Minyak Gandapura Dan Kenaikan Titik Leleh Sintesis Asam Salisilat Dari Minyak Gandapura Dan Kenaikan Titik Leleh Jumat, 4 April 2014 Raisa Soraya*, Naryanto, Melinda Indana Nasution, Septiwi Tri Pusparini Jurusan Pendidikan Imu Pengetahuan Alam

Lebih terperinci

4023 Sintesis etil siklopentanon-2-karboksilat dari dietil adipat

4023 Sintesis etil siklopentanon-2-karboksilat dari dietil adipat NP 4023 Sintesis etil siklopentanon-2-karboksilat dari dietil adipat NaEt C 10 H 18 4 Na C 2 H 6 C 8 H 12 3 (202.2) (23.0) (46.1) (156.2) Klasifikasi Tipe reaksi and penggolongan bahan Reaksi pada gugus

Lebih terperinci

METODOLOGI PENELITIAN. Penelitian dilakukan pada bulan September 2013 sampai bulan Maret 2014

METODOLOGI PENELITIAN. Penelitian dilakukan pada bulan September 2013 sampai bulan Maret 2014 25 III. METODOLOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian dilakukan pada bulan September 2013 sampai bulan Maret 2014 yang dilakukan di Laboratorium Kimia Organik Fakultas MIPA Unila, dan

Lebih terperinci

LAPORAN PRAKTIKUM KIMIA ORGANIK I PERCOBAAN III SIFAT-SIFAT KIMIA HIDROKARBON

LAPORAN PRAKTIKUM KIMIA ORGANIK I PERCOBAAN III SIFAT-SIFAT KIMIA HIDROKARBON LAPORAN PRAKTIKUM KIMIA ORGANIK I PERCOBAAN III SIFAT-SIFAT KIMIA HIDROKARBON OLEH NAMA : HABRIN KIFLI HS. STAMBUK : F1C1 15 034 KELOMPOK ASISTEN : VI (ENAM) : HERIKISWANTO LABORATORIUM KIMIA FAKULTAS

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Gliserol Biodiesel dari proses transesterifikasi menghasilkan dua tahap. Fase atas berisi biodiesel dan fase bawah mengandung gliserin mentah dari 55-90% berat kemurnian [13].

Lebih terperinci

BAB III METODE PENELITIAN. Pelaksanaan penelitian dimulai sejak Februari sampai dengan Juli 2010.

BAB III METODE PENELITIAN. Pelaksanaan penelitian dimulai sejak Februari sampai dengan Juli 2010. BAB III METODE PENELITIAN 3.1 Waktu dan Lokasi Penelitian Pelaksanaan penelitian dimulai sejak Februari sampai dengan Juli 2010. Sintesis cairan ionik, sulfonasi kitosan, impregnasi cairan ionik, analisis

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Energi merupakan aspek penting dalam kehidupan manusia dan merupakan kunci utama diberbagai sektor. Semakin hari kebutuhan akan energi mengalami kenaikan seiring dengan

Lebih terperinci

ESTERIFIKASI MINYAK LEMAK [EST]

ESTERIFIKASI MINYAK LEMAK [EST] MODUL PRAKTIKUM LABORATORIUM INSTRUKSIONAL TEKNIK KIMIA ESTERIFIKASI MINYAK LEMAK [EST] Disusun oleh: Lia Priscilla Dr. Tirto Prakoso Dr. Ardiyan Harimawan PROGRAM STUDI TEKNIK KIMIA FAKULTAS TEKNOLOGI

Lebih terperinci

Reaksi Dehidrasi: Pembuatan Sikloheksena. Oleh : Kelompok 3

Reaksi Dehidrasi: Pembuatan Sikloheksena. Oleh : Kelompok 3 Reaksi Dehidrasi: Pembuatan Sikloheksena Oleh : Kelompok 3 Outline Tujuan Prinsip Sifat fisik dan kimia bahan Cara kerja Hasil pengamatan Pembahasan Kesimpulan Tujuan Mensintesis Sikloheksena Menentukan

Lebih terperinci

LAPORAN PRAKTIKUM SINTESIS SENYAWA ORGANIK

LAPORAN PRAKTIKUM SINTESIS SENYAWA ORGANIK Paraf Asisten LAPRAN PRAKTIKUM SINTESIS SENYAWA RGANIK Judul : Sintesis Para Nitroasetanilida Tujuan Percobaan : Memperlajari reaksi nitrasi senyawa aromatis Pendahuluan Asetanilida adalah senyawa turunan

Lebih terperinci

HASIL DAN PEMBAHASAN A. ANALISIS GLISEROL HASIL SAMPING BIODIESEL JARAK PAGAR

HASIL DAN PEMBAHASAN A. ANALISIS GLISEROL HASIL SAMPING BIODIESEL JARAK PAGAR IV. HASIL DAN PEMBAHASAN A. ANALISIS GLISEROL HASIL SAMPING BIODIESEL JARAK PAGAR Gliserol hasil samping produksi biodiesel jarak pagar dengan katalis KOH merupakan satu fase yang mengandung banyak pengotor.

Lebih terperinci

ISOLASI BAHAN ALAM. 2. Isolasi Secara Kimia

ISOLASI BAHAN ALAM. 2. Isolasi Secara Kimia ISOLASI BAHAN ALAM Bahan kimia yang berasal dari tumbuhan atau hewan disebut bahan alam. Banyak bahan alam yang berguna seperti untuk pewarna, pemanis, pengawet, bahan obat dan pewangi. Kegunaan dari bahan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Pendahuluan Proses pembuatan MCT dapat melalui dua reaksi. Menurut Hartman dkk (1989), trigliserida dapat diperoleh melalui reaksi esterifikasi asam lemak kaprat/kaprilat

Lebih terperinci

Jurnal Kimia Sains dan Aplikasi Journal of Scientific and Applied Chemistry

Jurnal Kimia Sains dan Aplikasi Journal of Scientific and Applied Chemistry Jurnal Kimia Sains dan Aplikasi 12 (3) (2009) : 88 92 88 ISSN: 1410-8917 Jurnal Kimia Sains dan Aplikasi 12 (3) (2009): 1 5 Jurnal Kimia Sains dan Aplikasi Journal of Scientific and Applied hemistry Journal

Lebih terperinci

METODOLOGI PENELITIAN

METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN A. WAKTU DAN TEMPAT Penelitian dilaksanakan mulai 1 Agustus 2009 sampai dengan 18 Januari 2010 di Laboratorium SBRC (Surfactant and Bioenergy Research Center) LPPM IPB dan Laboratorium

Lebih terperinci

Bab IV Hasil dan Pembahasan

Bab IV Hasil dan Pembahasan Bab IV Hasil dan Pembahasan IV.1 Mensintesis Senyawa rganotimah Sebanyak 50 mmol atau 2 ekivalen senyawa maltol, C 6 H 6 3 (Mr=126) ditambahkan dalam 50 mmol atau 2 ekivalen larutan natrium hidroksida,

Lebih terperinci

PENUNTUN PRAKTIKUM KIMIA DASAR II KI1201

PENUNTUN PRAKTIKUM KIMIA DASAR II KI1201 PENUNTUN PRAKTIKUM KIMIA DASAR II KI1201 Disusun Ulang Oleh: Dr. Deana Wahyuningrum Dr. Ihsanawati Dr. Irma Mulyani Dr. Mia Ledyastuti Dr. Rusnadi LABORATORIUM KIMIA DASAR PROGRAM TAHAP PERSIAPAN BERSAMA

Lebih terperinci

BAB I PENDAHULUAN I.1 Latar Belakang

BAB I PENDAHULUAN I.1 Latar Belakang BAB I PENDAHULUAN I.1 Latar Belakang Ketertarikan dunia industri terhadap bahan baku proses yang bersifat biobased mengalami perkembangan pesat. Perkembangan pesat ini merujuk kepada karakteristik bahan

Lebih terperinci

REAKSI SAPONIFIKASI PADA LEMAK

REAKSI SAPONIFIKASI PADA LEMAK REAKSI SAPONIFIKASI PADA LEMAK TUJUAN : Mempelajari proses saponifikasi suatu lemak dengan menggunakan kalium hidroksida dan natrium hidroksida Mempelajari perbedaan sifat sabun dan detergen A. Pre-lab

Lebih terperinci

A. Sifat Fisik Kimia Produk

A. Sifat Fisik Kimia Produk Minyak sawit terdiri dari gliserida campuran yang merupakan ester dari gliserol dan asam lemak rantai panjang. Dua jenis asam lemak yang paling dominan dalam minyak sawit yaitu asam palmitat, C16:0 (jenuh),

Lebih terperinci

Gambar IV 1 Serbuk Gergaji kayu sebelum ekstraksi

Gambar IV 1 Serbuk Gergaji kayu sebelum ekstraksi Bab IV Pembahasan IV.1 Ekstraksi selulosa Kayu berdasarkan struktur kimianya tersusun atas selulosa, lignin dan hemiselulosa. Selulosa sebagai kerangka, hemiselulosa sebagai matrik, dan lignin sebagai

Lebih terperinci

Bab IV Hasil Penelitian dan Pembahasan

Bab IV Hasil Penelitian dan Pembahasan Bab IV asil Penelitian dan Pembahasan IV.1 Isolasi Kitin dari Limbah Udang Sampel limbah udang kering diproses dalam beberapa tahap yaitu penghilangan protein, penghilangan mineral, dan deasetilasi untuk

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Indonesia merupakan negara penghasil minyak sawit terbesar di dunia dan banyak sekali produk turunan dari minyak sawit yang dapat menggantikan keberadaan minyak

Lebih terperinci

4001 Transesterifikasi minyak jarak menjadi metil risinoleat

4001 Transesterifikasi minyak jarak menjadi metil risinoleat 4001 Transesterifikasi minyak jarak menjadi metil risinoleat castor oil + MeH Na-methylate H Me CH 4 (32.0) C 19 H 36 3 (312.5) Klasifikasi Tipe reaksi dan penggolongan bahan Reaksi pada gugus karbonil

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. Minyak Goreng 1. Pengertian Minyak Goreng Minyak goreng adalah minyak yang berasal dari lemak tumbuhan atau hewan yang dimurnikan dan berbentuk cair dalam suhu kamar dan biasanya

Lebih terperinci

LAPORAN PENELITIAN PRAKTIKUM KIMIA BAHAN MAKANAN Penentuan Asam Lemak Bebas, Angka Peroksida Suatu Minyak atau Lemak. Oleh : YOZA FITRIADI/A1F007010

LAPORAN PENELITIAN PRAKTIKUM KIMIA BAHAN MAKANAN Penentuan Asam Lemak Bebas, Angka Peroksida Suatu Minyak atau Lemak. Oleh : YOZA FITRIADI/A1F007010 LAPORAN PENELITIAN PRAKTIKUM KIMIA BAHAN MAKANAN Penentuan Asam Lemak Bebas, Angka Peroksida Suatu Minyak atau Lemak Oleh : YOZA FITRIADI/A1F007010 PROGRAM STUDI PENDIDIKAN KIMIA FAKULTAS KEGURUAN DAN

Lebih terperinci

Transesterifikasi parsial minyak kelapa sawit dengan EtOH pada pembuatan digliserida sebagai agen pengemulsi

Transesterifikasi parsial minyak kelapa sawit dengan EtOH pada pembuatan digliserida sebagai agen pengemulsi Transesterifikasi parsial minyak kelapa sawit dengan EtOH pada pembuatan digliserida sebagai agen pengemulsi Rita Arbianti *), Tania S. Utami, Heri Hermansyah, Ira S., dan Eki LR. Departemen Teknik Kimia,

Lebih terperinci

SINTESIS KLOROFORM. I. TUJUAN 1. Membuat kloroform dengan bahan dasar aseton dan kaporit. 2. Menghitung rendemen kloroform yang terbentuk.

SINTESIS KLOROFORM. I. TUJUAN 1. Membuat kloroform dengan bahan dasar aseton dan kaporit. 2. Menghitung rendemen kloroform yang terbentuk. SINTESIS KLOROFORM I. TUJUAN 1. Membuat kloroform dengan bahan dasar aseton dan kaporit. 2. Menghitung rendemen kloroform yang terbentuk. II. TEORI Kloroform merupakan senyawa turunan dari alkana yaitu

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Korosi adalah suatu proses perusakan logam, dimana logam akan mengalami penurunan mutu (degradation) karena bereaksi dengan lingkungan baik itu secara kimia atau elektrokimia

Lebih terperinci

II. TINJAUAN PUSTAKA. sawit kasar (CPO), sedangkan minyak yang diperoleh dari biji buah disebut

II. TINJAUAN PUSTAKA. sawit kasar (CPO), sedangkan minyak yang diperoleh dari biji buah disebut 7 II. TINJAUAN PUSTAKA 2.1. Minyak Kelapa Sawit Sumber minyak dari kelapa sawit ada dua, yaitu daging buah dan inti buah kelapa sawit. Minyak yang diperoleh dari daging buah disebut dengan minyak kelapa

Lebih terperinci

Kelompok G : Nicolas oerip ( ) Filia irawati ( ) Ayndri Nico P ( )

Kelompok G : Nicolas oerip ( ) Filia irawati ( ) Ayndri Nico P ( ) Kelompok G : Nicolas oerip (5203011028) Filia irawati (5203011029) Ayndri Nico P (5203011040) Mempelajari reaksi esterifikasi Apa sih reaksi esterifikasi itu? Bagaimana reaksi esterifikasi itu? Reaksi

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Kelapa sawit merupakan tanaman dengan nilai ekonomis yang cukup tinggi karena merupakan salah satu tanaman penghasil minyak nabati yaitu CP (crude palm oil). Bagi

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. M yang berupa cairan berwarna hijau jernih (Gambar 4.1.(a)) ke permukaan Al 2 O 3

BAB IV HASIL DAN PEMBAHASAN. M yang berupa cairan berwarna hijau jernih (Gambar 4.1.(a)) ke permukaan Al 2 O 3 BAB IV HASIL DAN PEMBAHASAN 4.1. Sintesis Katalis Katalis Ni/Al 2 3 diperoleh setelah mengimpregnasikan Ni(N 3 ) 2.6H 2 0,2 M yang berupa cairan berwarna hijau jernih (Gambar 4.1.(a)) ke permukaan Al 2

Lebih terperinci

Molekul, Vol. 2. No. 1. Mei, 2007 : REAKSI TRANSESTERIFIKASI MINYAK KACANG TANAH (Arahis hypogea. L) DAN METANOL DENGAN KATALIS KOH

Molekul, Vol. 2. No. 1. Mei, 2007 : REAKSI TRANSESTERIFIKASI MINYAK KACANG TANAH (Arahis hypogea. L) DAN METANOL DENGAN KATALIS KOH REAKSI TRANSESTERIFIKASI MINYAK KACANG TANAH (Arahis hypogea. L) DAN METANOL DENGAN KATALIS KOH Purwati, Hartiwi Diastuti Program Studi Kimia, Jurusan MIPA Unsoed Purwokerto ABSTRACT Oil and fat as part

Lebih terperinci

1. Werthein E, A Laboratory Guide for Organic Chemistry, University of Arkansas, 3 rd edition, London 1953, page 51 52

1. Werthein E, A Laboratory Guide for Organic Chemistry, University of Arkansas, 3 rd edition, London 1953, page 51 52 I. Pustaka 1. Werthein E, A Laboratory Guide for Organic Chemistry, University of Arkansas, 3 rd edition, London 1953, page 51 52 2. Ralph J. Fessenden, Joan S Fessenden. Kimia Organic, Edisi 3.p.42 II.

Lebih terperinci

Bab IV Hasil dan Pembahasan

Bab IV Hasil dan Pembahasan Bab IV Hasil dan Pembahasan Penelitian ini dilakukan dalam dua tahap. Penelitian penelitian pendahuluan dilakukan untuk mendapatkan jenis penstabil katalis (K 3 PO 4, Na 3 PO 4, KOOCCH 3, NaOOCCH 3 ) yang

Lebih terperinci

I. PENDAHULUAN. Potensi PKO di Indonesia sangat menunjang bagi perkembangan industri kelapa

I. PENDAHULUAN. Potensi PKO di Indonesia sangat menunjang bagi perkembangan industri kelapa 1 I. PENDAHULUAN 1.1. Latar Belakang Potensi PKO di Indonesia sangat menunjang bagi perkembangan industri kelapa sawit yang ada. Tahun 2012 luas areal kelapa sawit Indonesia mencapai 9.074.621 hektar (Direktorat

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Industri leokimia leokimia adalah bahan kimia yang dihasilkan dari minyak dan lemak, yaitu yang diturunkan dari trigliserida menjadi bahan oleokimia. Secara industri, sebagian

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Aspal adalah material perekat berwarna coklat kehitam hitaman sampai hitam dengan unsur utama bitumen. Aspal merupakan senyawa yang kompleks, bahan utamanya disusun

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Energi merupakan salah satu kebutuhan wajib bagi seluruh masyarakat dunia, khususnya masyarakat Indonesia. Bahan bakar minyak (BBM) menjadi salah satu

Lebih terperinci

LAPORAN PRAKTIKUM SINTESIS SENYAWA ORGANIK : Reaksi Pembuatan Alkena dengan Dehidrasi Alkohol

LAPORAN PRAKTIKUM SINTESIS SENYAWA ORGANIK : Reaksi Pembuatan Alkena dengan Dehidrasi Alkohol Paraf Asisten Judul LAPORAN PRAKTIKUM SINTESIS SENYAWA ORGANIK : Reaksi Pembuatan Alkena dengan Dehidrasi Alkohol Tujuan Percobaan : 1. Mempelajari reaksi dehidrasi dari suatu alkohol untuk menghasilkan

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN III. METODE PENELITIAN A. BAHAN DAN ALAT Bahan yang digunakan dalam penelitian kali ini terdiri dari bahan utama yaitu biji kesambi yang diperoleh dari bantuan Pusat Penelitian dan Pengembangan Hasil Hutan

Lebih terperinci

4. Hasil dan Pembahasan

4. Hasil dan Pembahasan 4. Hasil dan Pembahasan 4.1 Isolasi Kitin dan Kitosan Isolasi kitin dan kitosan yang dilakukan pada penelitian ini mengikuti metode isolasi kitin dan kitosan dari kulit udang yaitu meliputi tahap deproteinasi,

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian ini akan dilakukan pada bulan Januari Februari 2014.

BAB III METODE PENELITIAN. Penelitian ini akan dilakukan pada bulan Januari Februari 2014. BAB III METODE PENELITIAN A. Waktu dan Tempat Penelitian 1. Waktu Penelitian ini akan dilakukan pada bulan Januari Februari 2014. 2. Tempat Penelitian ini dilaksanakan di Laboratorium Kimia Teknik Pengolahan

Lebih terperinci

BAB III METODA PENELITIAN. yang umum digunakan di laboratorium kimia, set alat refluks (labu leher tiga,

BAB III METODA PENELITIAN. yang umum digunakan di laboratorium kimia, set alat refluks (labu leher tiga, 24 BAB III METODA PENELITIAN A. Alat dan Bahan 1. Alat Alat yang akan digunakan dalam penelitian ini adalah semua alat gelas yang umum digunakan di laboratorium kimia, set alat refluks (labu leher tiga,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Minyak Sawit Mentah / Crude Palm Oil (CPO) Komoditas kelapa sawit merupakan salah satu komoditas perkebunan yang peranannya sangat penting dalam penerimaan devisa negara, penyerapan

Lebih terperinci

ABSTRAK. POTENSI BIJI ASAM JAWA (Tamarindus indica) SEBAGAI BAHAN BAKU ALTERNATIF BIODIESEL

ABSTRAK. POTENSI BIJI ASAM JAWA (Tamarindus indica) SEBAGAI BAHAN BAKU ALTERNATIF BIODIESEL ABSTRAK POTENSI BIJI ASAM JAWA (Tamarindus indica) SEBAGAI BAHAN BAKU ALTERNATIF BIODIESEL Produksi minyak bumi mengalami penurunan berbanding terbalik dengan penggunaannya yang semakin meningkat setiap

Lebih terperinci

METODE PENELITIAN Bahan dan Alat Penelitian Waktu dan Tempat Penelitian Prosedur Penelitian 1. Epoksidasi Minyak Jarak Pagar

METODE PENELITIAN Bahan dan Alat Penelitian Waktu dan Tempat Penelitian Prosedur Penelitian 1. Epoksidasi Minyak Jarak Pagar METODE PENELITIAN Bahan dan Alat Penelitian Bahan yang digunakan dalam penelitian ini adalah : minyak jarak pagar, asam Akrilat (Sigma), natrium hidrogen karbonat (E.Merck), natrium sulfat anhydrous (E.Merck),

Lebih terperinci

ETER dan EPOKSIDA. Oleh : Dr. Yahdiana Harahap, MS

ETER dan EPOKSIDA. Oleh : Dr. Yahdiana Harahap, MS ETER dan EPOKSIDA Oleh : Dr. Yahdiana Harahap, MS ETER Senyawa yang mempunyai 2 gugus organik melekat pada atom O tunggal R1 O R 2 atau Ar O R Atau Ar O Ar Ket : R : alkil Ar : fenil atau gugus aromatis

Lebih terperinci

III. BAHAN DAN METODE. Penelitian ini dilaksanakan di Laboratorium Analisis Hasil Pertanian, Jurusan

III. BAHAN DAN METODE. Penelitian ini dilaksanakan di Laboratorium Analisis Hasil Pertanian, Jurusan 16 III. BAHAN DAN METODE 3.1. Tempat dan Waktu Penelitian Penelitian ini dilaksanakan di Laboratorium Analisis Hasil Pertanian, Jurusan Teknologi Hasil Pertanian, Fakultas Pertanian, Universitas Lampung

Lebih terperinci

BAB IV GAMBARAN UMUM. yang dibawa oleh Mauritius dari Amsterdam dan ditanam di Kebun Raya

BAB IV GAMBARAN UMUM. yang dibawa oleh Mauritius dari Amsterdam dan ditanam di Kebun Raya 62 BAB IV GAMBARAN UMUM A. Profil Komoditas Kelapa Sawit Kelapa sawit pertama kali diperkenalkan di Indonesia oleh pemerintah kolonial Belanda pada tahun 1848. Ketika itu ada empat bibit kelapa sawit yang

Lebih terperinci

5004 Asetalisasi terkatalisis asam 3-nitrobenzaldehida dengan etanadiol menjadi 1,3-dioksolan

5004 Asetalisasi terkatalisis asam 3-nitrobenzaldehida dengan etanadiol menjadi 1,3-dioksolan 5004 Asetalisasi terkatalisis asam 3-nitrobenzaldehida dengan etanadiol menjadi 1,3-dioksolan H O O O NO 2 + HO HO 4-toluenesulfonic acid + NO 2 O H 2 C 7 H 5 NO 3 C 2 H 6 O 2 C 7 H 8 O 3 S. H 2 O C 9

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Katalis Katalis merupakan suatu senyawa yang dapat meningkatkan laju reaksi tetapi tidak terkonsumsi oleh reaksi. Katalis meningkatkan laju reaksi dengan energi aktivasi Gibbs

Lebih terperinci

BAB III METODE PENELITIAN. Pada bab ini akan diuraikan mengenai metode penelitian yang telah

BAB III METODE PENELITIAN. Pada bab ini akan diuraikan mengenai metode penelitian yang telah BAB III METODE PENELITIAN Pada bab ini akan diuraikan mengenai metode penelitian yang telah dilakukan. Sub bab pertama diuraikan mengenai waktu dan lokasi penelitian, desain penelitian, alat dan bahan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Perumusan Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Perumusan Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Lemak dan minyak adalah trigliserida yang berarti triester (dari) gliserol. Perbedaan antara suatu lemak adalah pada temperatur kamar, lemak akan berbentuk padat dan

Lebih terperinci

5007 Reaksi ftalat anhidrida dengan resorsinol menjadi fluorescein

5007 Reaksi ftalat anhidrida dengan resorsinol menjadi fluorescein 57 Reaksi ftalat anhidrida dengan resorsinol menjadi fluorescein CH H H + 2 + 2 H 2 H C 8 H 4 3 C 6 H 6 2 C 2 H 12 5 (148.1) (11.1) (332.3) Klasifikasi Tipe reaksi dan penggolongan bahan Reaksi pada gugus

Lebih terperinci

SINTESIS DIDODEKIL AZELAT DARI REAKSI ESTERIFIKASI DODEKIL KLORIDA DENGAN DIKALIUM AZELAT

SINTESIS DIDODEKIL AZELAT DARI REAKSI ESTERIFIKASI DODEKIL KLORIDA DENGAN DIKALIUM AZELAT SINTESIS DIDODEKIL AZELAT DARI REAKSI ESTERIFIKASI DODEKIL KLORIDA DENGAN DIKALIUM AZELAT Henry Aritonang 1, Mariana Br. Surbakti 1 dan Julimina Riupassa 2 1 Jurusan Jurusan Kimia, Fakultas Matematika

Lebih terperinci

BAB 11 TINJAUAN PUSTAKA. yang jika disentuh dengan ujung-ujung jari akan terasa berlemak. Ciri khusus dari

BAB 11 TINJAUAN PUSTAKA. yang jika disentuh dengan ujung-ujung jari akan terasa berlemak. Ciri khusus dari x BAB 11 TINJAUAN PUSTAKA 2.1. Pengertian Lipid Pengertian lipid secara umum adalah kelompok zat atau senyawa organik yang jika disentuh dengan ujung-ujung jari akan terasa berlemak. Ciri khusus dari zat

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Waktu dan Lokasi Penelitian Penelitian dilaksanakan dari bulan Nopember 2012 sampai Januari 2013. Lokasi penelitian di Laboratorium Riset dan Laboratorium Kimia Analitik

Lebih terperinci

GRAVIMETRI PENENTUAN KADAR FOSFAT DALAM DETERJEN RINSO)

GRAVIMETRI PENENTUAN KADAR FOSFAT DALAM DETERJEN RINSO) LAPORAN PRAKTIKUM KIMIA ANALITIK GRAVIMETRI PENENTUAN KADAR FOSFAT DALAM DETERJEN RINSO) NAMA : KARMILA (H311 09 289) FEBRIANTI R LANGAN (H311 10 279) KELOMPOK : VI (ENAM) HARI / TANGGAL : JUMAT / 22 MARET

Lebih terperinci

BAB III RANCANGAN PENELITIAN

BAB III RANCANGAN PENELITIAN BAB III RANCANGAN PENELITIAN 3.1. Metodologi Merujuk pada hal yang telah dibahas dalam bab I, penelitian ini berbasis pada pembuatan metil ester, yakni reaksi transesterifikasi metanol. Dalam skala laboratorium,

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN A. SIFAT FISIKO-KIMIA BIJI DAN MINYAK JARAK PAGAR Biji jarak pagar (Jatropha curcas L.) yang digunakan dalam penelitian ini didapat dari PT. Rajawali Nusantara Indonesia di daerah

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN A. PERSIAPAN BAHAN 1. Ekstraksi Biji kesambi dikeringkan terlebih dahulu kemudian digiling dengan penggiling mekanis. Tujuan pengeringan untuk mengurangi kandungan air dalam biji,

Lebih terperinci

BAB 17 ALKOHOL DAN FENOL

BAB 17 ALKOHOL DAN FENOL Slaid kuliah Kimia Organik I untuk mhs S1 Kimia semester 3 BAB 17 ALKOHOL DAN FENOL Bagian Kimia Organik Departemen Kimia FMIPA-IPB TIU TIK 1 Daftar Pustaka: Fessenden RJ, Fessenden JS. 1998. Organic Chemistry.

Lebih terperinci

4 HASIL DAN PEMBAHASAN

4 HASIL DAN PEMBAHASAN 14 4 HASIL DAN PEMBAHASAN Pembuatan glukosamin hidroklorida (GlcN HCl) pada penelitian ini dilakukan melalui proses hidrolisis pada autoklaf bertekanan 1 atm. Berbeda dengan proses hidrolisis glukosamin

Lebih terperinci

Sintesis Metil Ester dari Minyak Goreng Bekas dengan Pembeda Jumlah Tahapan Transesterifikasi

Sintesis Metil Ester dari Minyak Goreng Bekas dengan Pembeda Jumlah Tahapan Transesterifikasi Jurnal Kompetensi Teknik Vol. 2, No. 2, Mei 2011 79 Sintesis Metil Ester dari Minyak Goreng Bekas dengan Pembeda Jumlah Tahapan Transesterifikasi Wara Dyah Pita Rengga & Wenny Istiani Program Studi Teknik

Lebih terperinci

HASIL DAN PEMBAHASAN. Kadar air = Ekstraksi

HASIL DAN PEMBAHASAN. Kadar air = Ekstraksi 2 dikeringkan pada suhu 105 C. Setelah 6 jam, sampel diambil dan didinginkan dalam eksikator, lalu ditimbang. Hal ini dilakukan beberapa kali sampai diperoleh bobot yang konstan (b). Kadar air sampel ditentukan

Lebih terperinci

KIMIA. Sesi HIDROKARBON (BAGIAN II) A. ALKANON (KETON) a. Tata Nama Alkanon

KIMIA. Sesi HIDROKARBON (BAGIAN II) A. ALKANON (KETON) a. Tata Nama Alkanon KIMIA KELAS XII IPA - KURIKULUM GABUNGAN 16 Sesi NGAN HIDROKARBON (BAGIAN II) Gugus fungsional adalah sekelompok atom dalam suatu molekul yang memiliki karakteristik khusus. Gugus fungsional adalah bagian

Lebih terperinci

PERCOBAAN 2 KONDENSASI SENYAWA KARBONIL DAN REAKSI CANNIZARO

PERCOBAAN 2 KONDENSASI SENYAWA KARBONIL DAN REAKSI CANNIZARO PERCOBAAN 2 KONDENSASI SENYAWA KARBONIL DAN REAKSI CANNIZARO Septi Nur Diana 10510036 K-02 Kelompok J septinurdiana92@yahoo.com Abstrak Pada percobaan ini telah dilakukan sintesis senyawa organik dengan

Lebih terperinci

LAPORAN PRAKTIKUM BIOKIMIA PANGAN LEMAK UJI SAFONIFIKASI

LAPORAN PRAKTIKUM BIOKIMIA PANGAN LEMAK UJI SAFONIFIKASI LAPORAN PRAKTIKUM BIOKIMIA PANGAN LEMAK UJI SAFONIFIKASI Diajukan Untuk Memenuhi Persyaratan Praktikum Biokimia Pangan Oleh : Nama : Fanny Siti Khoirunisa NRP : 123020228 Kel / Meja : H / 10 Asisten :

Lebih terperinci

A. RUMUS STRUKTUR DAN NAMA LEMAK B. SIFAT-SIFAT LEMAK DAN MINYAK C. FUNGSI DAN PERAN LEMAK DAN MINYAK

A. RUMUS STRUKTUR DAN NAMA LEMAK B. SIFAT-SIFAT LEMAK DAN MINYAK C. FUNGSI DAN PERAN LEMAK DAN MINYAK 8 LEMAK DAN MINYAK A. RUMUS STRUKTUR DAN NAMA LEMAK B. SIFAT-SIFAT LEMAK DAN MINYAK C. FUNGSI DAN PERAN LEMAK DAN MINYAK Lipid berasal dari kata Lipos (bahasa Yunani) yang berarti lemak. Lipid didefinisikan

Lebih terperinci