GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 1"

Transkripsi

1 GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 1 Berlaku mulai: Gasal/2010 MATA KULIAH : MATRIK DAN TRANSFORMASI LINEAR KODE MATA KULIAH / SKS : / 3 SKS MATA KULIAH PRASYARAT : - DESKRIPSI MATA KULIAH : Mata Kuliah Aljabar Linear merupakan mata kuliah dengan dasar Matematika, yang diajarkan guna menunjang mata kuliah lain di jurusan Sistem Informasi TUJUAN INSTRUKSIONAL : a. Mahasiswa dapat menyelesaikan Operasi Matriks, baik secara manual maupun menggunakan soft ware b. Mahasiswa dapat menyelesaikan Sistem Persamaan Linear, baik secara manual maupun menggunakan soft ware c. Mahasiswa dapat menyelesaikan Operasi Vektor, baik secara manual maupun menggunakan soft ware d. Mahasiswa dapat menyelesaikan Aljabar Linear Numerik, baik secara manual maupun menggunakan soft ware PUSTAKAAN/SUMBER BELAJAR : Wajib: 1. Anton, H Dasar-dasar Aljabar Linear jilid 1 dan 2. Jakarta: Penerbit Inter Aksara. (Ant) 2. Dewiyani Buku Materi Kuliah STIKOM : Aljabar Linear. Surabaya : STIKOM. (Dewi) Anjuran: 3. Kolman, Bernard Elementary Linear Algebra. New Jearsey: Prentice Hall. (Bern) 4. Leon, S. J Aljabar Linier dan Aplikasinya. Jakarta : Penerbit Airlangga. (Leon) PERSENTASE PENILAIAN : UTS UAS Tugas & Quiz : 30% : 30% : 40%

2 PERT. TUJUAN INSTRUKSIONAL 1 Mahasiswa memahami pengertian matriks (C2) serta dapat mengoperasikan matriks (C3). Pengertian Matriks 1. Jenis jenis matriks 2. Operasi Matriks 1. Definisi Matriks 2. Jenis jenis matriks : o Matriks Baris o Matriks Kolom o Matriks Bujur Sangkar o Matriks diagonal o Matriks Skalar o Matriks Identitas o Matriks Segitiga Atas o Matriks Segitiga Bawah o Matriks Nol o Matirks Transpose 3. Kesamaan Matriks 4. Operasi Matriks 5. Sifat sifat operasi Matriks Tanya Jawab PUSTAKAAN I ) 2 Mahasiswa dapat menentukan nilai determinan dari suatu matriks (C2). Determinan Matriks 2. Menentukan nilai berordo 2 x 2 3. Menentukan nilai berordo 3 x 3 dengan aturan Sarrus 4. Sifat sifat Determinan 5. Menentukan nilai berordo n x n dengan matriks Kofaktor Tanya Jawab II)

3 PERT. TUJUAN INSTRUKSIONAL 6. Menentukan nilai berordo n xn dengan Transformasi Baris Elementer (TBE) PUSTAKAAN 3. Mahasiswa dapat menentukan invers matriks (C2). Invers Matriks 2. Sifat sifat invers matriks 3. Mencari invers matriks berordo 2 x 2 4. Mencari invers matriks berordo n x n dengan matriks Kofaktor 5. Mencari invers matriks berordo n x n dengan TBE Tanya Jawab III). 5 Mahasiswa dapat menentukan penyelesaian dari SPL ( Sistem Persamaan Linear ) (C2) Sistem Persamaan Linear 2. Jenis jenis SPL 3. Jenis jenis 4. Menentukan dengan 2 persamaan dan 2 variabel 5. Menentukan dengan n persamaan dan n variabel, dengan V)

4 PERT. TUJUAN INSTRUKSIONAL menggunakan metoda Matriks. 6. Menentukan dengan n persamaan dan n variabel, dengan menggunakan metoda Cramer. 7. Menentukan dengan n persamaan dan n variabel, dengan menggunakan metoda TBE PUSTAKAAN 6 Mahasiswa dapat menyelesaikan SPL Homogen dan SPL dimana banyaknya persamaan banyaknya variabel (C2) SPL dimana banyaknya persamaan banyaknya variabel, SPL Homogen 1. Menentukan penyelesaian dari SPL dimana banyaknya persamaan banyaknya variabel. 2. Menentukan penyelesaian dari SPL Homogen VI). 7. Mahasiswa dapat menentukan penyelesaian dari Sistem Persamaan Linear dengan menggunakan MATLAB dan dapat Mat lab 1. Matlab 2. Penggunaan SPL dalam penyelesaian masalah sehari hari Demo MATLAB VII).

5 PERT. TUJUAN INSTRUKSIONAL menggunakan SPL untuk menyelesaikan masalah sehari hari (C3). UTS 8 Mahasiswa dapat memahami konsep vektor (C2) dan dapat mengoperasikan vektor (C3) Vektor 2. Cara menyatakan vektor 3. Vektor Ekuivalen 4. Vektor Nol 5. Vektor Negatif 6. Operasi Vektor o Penjumlahan Vektor o Pengurangan Vektor o Perkalian vektor dengan skalar 7. Sifat sifat operasi vektor 8. Norma vektor PUSTAKAAN VIII). 9 Mahasiswa dapat mengoperasikan vektor (C2) Perkalian vektor Sudut antara 2 vektor Vektor satuan Proj (u,v) dan komp(u,v) 1. Perkalian vektor : dot product, cross product 2. Sudut antara 2 vektor 3. Vektor Satuan 4. Prjo (u,v) dan komp(u,v) IX) 10. Mahasiswa dapat menentukan ruang vektor umum dari sekumpulan vektor Ruang vektor 1. Ruang vektor real 2. Sub ruang 3. Kombinasi linear X)

6 PERT. TUJUAN INSTRUKSIONAL (C3) 4. Membangun / merentang Latihan soal 5. Bebas Linear 6. Basis PUSTAKAAN 11. Mahasiswa dapat menggunakan PGS untuk mengubah basis yang bukan ortonormal menjadi basis ortonormal (C3) Proses Gram Schmidt 1. Ruang Hasil Kali dalam 2. Himpunan ortogonal dan himpunan ortonormal 3. Proses Gram Schmidt XI) 12. Mahasiswa dapat menentukan Transformasi Linear, Kernel dan Jangkauan dari sebuah vektor (C2) 13. Mahasiswa dapat menentukan nilai eigen dan vektor eigen dari suatu matriks. (C3) -Transformasi Linear Kernel Jangkauan Nilai Eigen, Vektor Eigen 1. Pengantar Transformasi Linear 2. Kernel dan jangkauan 3. Menentukan rumus transformasi linear 2. Menentukan nilai Eigen dan vektor Eigen Dewi (Pert.XII) XIII) 14. Mahasiswa dapat mengoperasikan vektor dengan MATLAB. (C3) Mahasiswa dapat menggunakan PGS dengan MATLAB (C3) Mahasiswa dapat menentukan nilai Eigen dan vektor Eigen degnan MATLAB - MATLAB MATLAB XIV)

7 Disahkan Oleh: Diperiksa Oleh: Dibuat Oleh: Helmy Widyantara, S.Kom., M.Eng Tutut Wurijanto, M.Kom Dra. Sulis Janu Hartati, MT Wakil Ketua I Kaprodi S1 Sistem Informasi Ketua Tim GBPP

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMPUTER Semester : 2

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMPUTER Semester : 2 GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMPUTER Semester : 2 Berlaku mulai: Genap/2011 MATA KULIAH : MATRIK DAN TRANSFORMASI LINEAR NOMOR KODE / SKS : 410202051/ 3 SKS PRASYARAT

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 4

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 4 GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 4 Berlaku mulai: Genap/2010 MATA KULIAH : RISET OPERASIONAL KODE MATA KULIAH/SKS : 410102053 / 3 SKS MATA KULIAH PRASYARAT

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN GARIS-GARIS BESAR PROGRAM PEMBELAJARAN Mata Kuliah : Aljabar Linear Kode / SKS : TIF-5xxx / 3 SKS Dosen : - Deskripsi Singkat : Mata kuliah ini berisi Sistem persamaan Linier dan Matriks, Determinan, Vektor

Lebih terperinci

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : Matematika Diskrit 2 Kode / SKS : IT02 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi. Pendahuluan 2. Vektor.. Pengantar mata kuliah aljabar linier.

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN 1 SATUAN ACARA PERKULIAHAN Mata Kuliah : Aljabar Linear Kode Mata Kuliah : Bobot Kuliah/Praktek : 3 SKS Semester : II (Dua) Tujuan Instruksional Umum : memahami konsep-konsep dan tranformasi linier, dan

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 4

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 4 GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 4 Berlaku mulai : Genap/2010 JUDUL MATA KULIAH : METODOLOGI PENELITIAN KODE MATA KULIAH / SKS : 410103080 / 2 SKS PRASYARAT

Lebih terperinci

APLIKASI MATRIKS DAN RUANG VEKTOR, oleh Dr. Adiwijaya Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta Telp: ;

APLIKASI MATRIKS DAN RUANG VEKTOR, oleh Dr. Adiwijaya Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta Telp: ; APLIKASI MATRIKS DAN RUANG VEKTOR, oleh Dr. Adiwijaya Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283 Telp: 0274-889398; Fax: 0274-889057; E-mail: info@grahailmu.co.id Hak Cipta

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: SISTEM INFORMASI Semester : 7

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: SISTEM INFORMASI Semester : 7 GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: SISTEM INFORMASI Semester : 7 MATA KULIAH : Sistem Pakar KODE MATA KULIAH / SKS : 410103101 / 3 SKS MATA KULIAH PRASYARAT : - DESKRIPSI MATA KULIAH :

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 1

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 1 GARIS-GARIS BESAR PROGRAM PENGAJAR PROGRAM STUDI : S1 STEM INFORMA Semester : 1 Berlaku mulai: Gasal/2010 MATA KULIAH : MAJEMEN UMUM KODE MATA KULIAH / SKS : 410102046 / 2 SKS MATA KULIAH PRASYARAT : -

Lebih terperinci

Satuan Acara Perkuliahan

Satuan Acara Perkuliahan FM-UAD-PBM-08-05/R0 Satuan Acara Perkuliahan Kode / Nama Mata Kuliah : TC19153 /Matriks dan Ruang Vektor Revisi ke : 0 Satuan Kredit Semester : 3 sks Tanggal revisi : - Jumlah jam kuliah dalam seminggu

Lebih terperinci

MATRIKS SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA TEKNIK 1

MATRIKS SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA TEKNIK 1 Mata : MATEMATIKA TEKNIK 1 Jurusan : TEKNIK ELEKTRO SKS : 2 Sks Kode Mata : KD-041205 MATRIKS SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA TEKNIK 1 Minggu Ke Pokok Bahasan dan TIU 1 Vektor tentang pengertian

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : Definisi, Notasi, dan Operasi Vektor 2.

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : Definisi, Notasi, dan Operasi Vektor 2. SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : 3 Minggu Ke Pokok Bahasan dan TIU Sub Pokok Bahasan Sasaran Belajar Cara Pengajaran Media Tugas Referens i 1

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 3

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 3 GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 3 Berlaku mulai: Gasal/2010 JUDUL MATA KULIAH : ANALISA SISTEM INFORMASI NOMOR KODE / SKS : 410103076 / 2 SKS PRASYARAT

Lebih terperinci

MODEL PEMBELAJARAN BERBASIS E-LEARNINGDENGANAUTHENTIC ASSESSMENT PADA MATA KULIAHALJABAR LINIER PRODI PENDIDIKAN MATEMATIKA FKIP UNIVERSITAS JEMBER

MODEL PEMBELAJARAN BERBASIS E-LEARNINGDENGANAUTHENTIC ASSESSMENT PADA MATA KULIAHALJABAR LINIER PRODI PENDIDIKAN MATEMATIKA FKIP UNIVERSITAS JEMBER MODEL PEMBELAJARAN BERBASIS E-LEARNINGDENGANAUTHENTIC ASSESSMENT PADA MATA KULIAHALJABAR LINIER PRODI PENDIDIKAN MATEMATIKA FKIP UNIVERSITAS JEMBER Arika Indah Kristiana 25 Abstrak. Belajar adalah suatu

Lebih terperinci

Program Studi Teknik Mesin S1

Program Studi Teknik Mesin S1 SATUAN ACARA PERKULIAHAN MATA KULIAH : MATEMAA TEKNIK 1 KODE / SKS : IT042220 / 2 SKS Pokok Bahasan Pertemuan dan 1 Vektor : pengertian vektor, operasi aljabar vektor ruang, vektor cross product serta

Lebih terperinci

MODUL E LEARNING SEKSI -1 MATA KULIAH : ALJABAR LINIER KODE MATA KULIAH : ESA 151 : 5099 : DRA ENDANG SUMARTINAH,MA

MODUL E LEARNING SEKSI -1 MATA KULIAH : ALJABAR LINIER KODE MATA KULIAH : ESA 151 : 5099 : DRA ENDANG SUMARTINAH,MA MODUL E LEARNING SEKSI - MATA KULIAH : ALJABAR LINIER KODE MATA KULIAH : ESA DOSEN : : DRA ENDANG SUMARTINAH,MA TUJUAN MATA KULIAH : A.URAIAN DAN TUJUAN MATA KULIAH : Mahasiswa mempelajari Matriks, Determinan,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang

Lebih terperinci

SILABUS MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT304. (1) (2) (3) (4) (5) (6) (7) (8) (9) 1 Matriks dan Operasinya. 1. Pengertian Matriks

SILABUS MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT304. (1) (2) (3) (4) (5) (6) (7) (8) (9) 1 Matriks dan Operasinya. 1. Pengertian Matriks JURUSAN PENDIDIKAN MATEMATIKA FPMIPA UNIVERSITAS PENDIDIKAN MATEMATIKA MINGGU KE SILABUS MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT304 POKOK & SUB POKOK TUJUAN INSTRUKSIONAL TUJUAN INSTRUKSIONAL KHUSUS

Lebih terperinci

Kata Pengantar. Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan.

Kata Pengantar. Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan. i Kata Pengantar Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan. Modul ajar ini dimaksudkan untuk membantu penyelenggaraan kuliah jarak

Lebih terperinci

MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI

MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI SAP (1) Buku : Suryadi H.S. 1991, Pengantar Aljabar dan Geometri analitik Vektor Definisi, Notasi, dan Operasi Vektor Susunan

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 2

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 2 GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 2 Berlaku mulai: Genap/2010 MATA KULIAH : BAHASA PEMROGRAMAN KODE MATA KULIAH / SKS : 410103074 / 3 SKS MATA KULIAH PRASYARAT

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 3

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 3 GBPP ST-RK-1.00-014-003/R- GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 3 Berlaku mulai: Gasal/2010 JUDUL MATA KULIAH : MANAJEMEN SUMBER DAYA MANUSIA (MSDM) NOMOR

Lebih terperinci

Kriteria Unjuk Kerja. Besaran vektor. Vektor satuan Menggambar Vektor

Kriteria Unjuk Kerja. Besaran vektor. Vektor satuan Menggambar Vektor DESKRIPSI KOMPETENSI MATA KULIAH Mata Kuliah : Matematika Kode Mata Kuliah : TKF 201 SKS : 2 Unit Kompetensi : Memecahkan persoalan matematika dasar. Kompetensi 1. Menguasai teori a) Menggambar Vektor

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT / 2 SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT / 2 SKS SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT0143231 / 2 SKS Deskripsi: - Mata kuliah ini mempelajari konsep aljabar linear sebagai dasar untuk membuat algoritma dalam permasalahan

Lebih terperinci

Aljabar Linear Elementer MA SKS. 07/03/ :21 MA-1223 Aljabar Linear 1

Aljabar Linear Elementer MA SKS. 07/03/ :21 MA-1223 Aljabar Linear 1 Aljabar Linear Elementer MA SKS 7//7 : MA- Aljabar Linear Jadwal Kuliah Hari I Hari II jam jam Sistem Penilaian UTS 4% UAS 4% Quis % 7//7 : MA- Aljabar Linear Silabus : Bab I Matriks dan Operasinya Bab

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER

RENCANA PEMBELAJARAN SEMESTER RENCANA PEMBELAJARAN SEMESTER F-0653 Issue/Revisi : A0 Tanggal Berlaku : 1Februari 2016 Untuk Tahun Akademik : 2015/2016 Masa Berlaku : 4 (empat) tahun Jml Halaman : Xx halaman Mata Kuliah : Probabilitas

Lebih terperinci

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel.

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel. 1. Persamaan Linier 5. PERSAMAAN LINIER Persamaan linier adalah suatu persamaan yang variabel-variabelnya berpangkat satu. Disamping persamaan linier ada juga persamaan non linier. Contoh : a) 2x + 3y

Lebih terperinci

MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT 304

MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT 304 MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT 304 Deskripsi: Perkuliahan ini bertujuan mengembangkan kemampuan mahasiswa memahami konsep-konsep dasar Aljabar Matriks sebagai bekal untuk mengajar matematika

Lebih terperinci

PROGRAM STUDI TEKNIK KOMPUTER

PROGRAM STUDI TEKNIK KOMPUTER 12-08-28 Pengesahan Nama Dokumen : SILABUS No Dokumen : FIK/TK-III/S-1 No Diajukan oleh ISO 90:2008/IWA 2 1dari 5 Ir. Hastha Sunardi, MT (Dosen Pengampu) Diperiksa oleh Ir. Dedy Hermanto, MT (GKM) Disetujui

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 2

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 2 GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 2 Berlaku mulai: Genap/2010 MATA KULIAH : SISTEM INFORMASI MANAJEMEN KODE MATA KULIAH / SKS : 410102048 / 2 SKS MATA

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 6

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 6 GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 6 Berlaku mulai: Genap/2010 MATA KULIAH : MANAJEMEN PROYEK KODE MATA KULIAH / SKS : 410103089 / 3 SKS MATA KULIAH PRASYARAT

Lebih terperinci

S I L A B U S. Kode Mata Kuliah : SKS : 3. Dosen Pembimbing : M. Soenarto

S I L A B U S. Kode Mata Kuliah : SKS : 3. Dosen Pembimbing : M. Soenarto 081316373780 S I L A B U S Mata Kuliah : ALJABAR LINIER Kode Mata Kuliah : SKS : 3 Prasyarat : MATEMAA DASAR Dosen Pembimbing : M. Soenarto Prodi / Jenjang : MATEMAA / S1 Buku Sumber : Singapore : Mc-Graw-

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 6

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 6 GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 6 Berlaku mulai: Genap/2010 MATA KULIAH : SISTEM PENDUKUNG PUTUSAN KODE MATA KULIAH / SKS : 410103090 / 3 SKS MATA KULIAH

Lebih terperinci

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA

Lebih terperinci

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : September 2014 A. Identitas 1. Nama Matakuliah : A11. 54303/ Matriks & Ruang Vektor 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer

Lebih terperinci

Buku 1: RPKPS (Rencana Program dan Kegiatan Pembelajaran Semester) ALJABAR LINEAR ELEMENTER

Buku 1: RPKPS (Rencana Program dan Kegiatan Pembelajaran Semester) ALJABAR LINEAR ELEMENTER UNIVERSITAS GADJAH MADA FAKULTAS MIPA, JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara Yogyakarta Buku 1: RPKPS (Rencana Program dan Kegiatan Pembelajaran Semester) ALJABAR LINEAR ELEMENTER

Lebih terperinci

Program Studi Sistem Informasi

Program Studi Sistem Informasi FIK / SI /S- 24-0-204 Pengesahan Nama Dokumen : SILABUS ALJABAR LINIER No Dokumen : FIK/SI/S- No Diajukan oleh ISO 900:2008/IWA 2 dari 5 Ir. Hastha Sunardi, MT (Dosen Pengampu) Diperiksa oleh Ir. Dedy

Lebih terperinci

DIAGONALISASI MATRIKS KOMPLEKS

DIAGONALISASI MATRIKS KOMPLEKS Buletin Ilmiah Mat Stat dan Terapannya (Bimaster) Volume 04, No 3 (2015), hal 337-346 DIAGONALISASI MATRIKS KOMPLEKS Heronimus Hengki, Helmi, Mariatul Kiftiah INTISARI Matriks kompleks merupakan matriks

Lebih terperinci

GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 5

GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 5 GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 5 Mata Kuliah Kode Mata Kuliah/SKS Mata Kuliah Prasyarat Diskripsi Mata Kuliah Manfaat Mata Kuliah Tujuan Kepustakaan : Sistem

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer BAB I RUANG VEKTOR Pada kuliah Aljabar Matriks kita telah mendiskusikan struktur ruang R 2 dan R 3 beserta semua konsep yang terkait. Pada bab ini kita akan membicarakan struktur yang merupakan bentuk

Lebih terperinci

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode / Nama Mata Kuliah : A11. 54303/ Matriks & Ruang Vektor Revisi 2 Satuan Kredit Semester : 3 SKS Tgl revisi : Agustus 2014 Jml Jam kuliah dalam

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 2

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 2 GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 2 Berlaku mulai: Genap/2010 MATA KULIAH : SISTEM BASIS DATA KODE MATA KULIAH / SKS : 410102050 / 3 SKS MATA KULIAH PRASYARAT

Lebih terperinci

KONTRAK PERKULIAHAN (ALJABAR LINIER)

KONTRAK PERKULIAHAN (ALJABAR LINIER) KONTRAK PERKULIAHAN (ALJABAR LINIER) Bobot SKS : 3 SKS Semester : 4 Hari Pertemuan : 16 Pertemuan Dosen Pengampuh : Dra. Cecil Hiltrimartin, M.Si 1. Deskripsi Mata Kuliah Mata kuliah ini membahas konsep

Lebih terperinci

Aljabar Linear Elementer MUG1E3 3 SKS

Aljabar Linear Elementer MUG1E3 3 SKS // ljabar Linear Elementer MUGE SKS // 9:7 Jadwal Kuliah Hari I Selasa, jam. Hari II Kamis, jam. Sistem Penilaian UTS % US % Quis % // 9:7 M- ljabar Linear // Silabus : Bab I Matriks dan Operasinya Bab

Lebih terperinci

PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS VETERAN BANGUN NUSANTARA SUKOHARJO

PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS VETERAN BANGUN NUSANTARA SUKOHARJO PERANGKAT PEMBELAJARAN MATA KULIAH : ALJABAR LINIER 2 KODE : MKK414515 DOSEN PENGAMPU : Annisa Prima Exacta, M.Pd. PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS

Lebih terperinci

RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 526 Nama Mata Kuliah : Analisis Fungsional

RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 526 Nama Mata Kuliah : Analisis Fungsional Ming gu ke RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 56 Nama Mata Kuliah : Analisis Fungsional T o p i k S u b T o p i k 1. Ruang Banach - Ruang metrik - Ruang vektor bernorm - Barisan di ruang

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 1

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 1 GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 1 Berlaku mulai: Gasal/2010 MATA KULIAH : AGAMA BUDHA KODE MATA KULIAH / SKS : 410101029 / 2 SKS MATA KULIAH PRASYARAT

Lebih terperinci

SATUAN ACARA PERKULIAHAN (SAP)

SATUAN ACARA PERKULIAHAN (SAP) SATUAN ACARA PERKULIAHAN (SAP) Nama matakuliah : Aljabar Linier Kode matakuliah : MKK 315 Dosen Pengampu : Ega Gradini, M.Sc Diberikan pada : Semester 3 Jumlah sks : 2 SKS Jenis sks Alokasi Waktu Prasyarat

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 7

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 7 GBPP ST-RK-1.00-014-003/R- GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 7 Berlaku mulai: Gasal/2010 JUDUL MATA KULIAH : TESTING DAN IMPLEMENTASI SISTEM NOMOR KODE

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Pembahasan mendasar mengenai matriks terutama yang berkaitan dengan matriks yang dapat didiagonalisasi telah jelas disajikan dalam referensi yang biasanya digunakan

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : Genap

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : Genap GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : Genap Berlaku mulai: Genap/2010 MATA KULIAH : TEKNIK PERAMALAN KODE MATA KULIAH/ SKS : 410103096 / 3 SKS MATA KULIAH PRASYARAT

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : Genap

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : Genap GARIS-GARIS BESAR PROGRAM PENGAJAR PROGRAM STUDI: S1 SISTEM INFORMASI Semester : Genap Berlaku mulai: Genap/2010 MATA KULIAH : SISTEM INFORMASI GEOGRAFIS KODE MATA KULIAH : 410103097 / 3 SKS MATA KULIAH

Lebih terperinci

Modul Praktikum. Aljabar Linier. Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih:

Modul Praktikum. Aljabar Linier. Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih: Modul Praktikum Aljabar Linier Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih: David Abror Gabriela Minang Sari Hanan Risnawati Ichwan Almaza Nuha Hanifah Riza Anggraini Saiful Anwar Tri

Lebih terperinci

KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS

KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 279 284. KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS Adrianus Sumitro, Nilamsari Kusumastuti, Shantika Martha

Lebih terperinci

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg uiopasdfghjklzxcvbnmqwertyuiopasd Qwertyuiopasdfghjklzxcvbnmqwerty cvbnmqwertyuiopasdfghjklzxcvbnmq fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

Lebih terperinci

JURUSAN TEKNIK ELEKTRO

JURUSAN TEKNIK ELEKTRO DEPARTEMEN PENDIDIKAN NASIONAL UNIVERSITAS ANDALAS FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) Mata Kuliah Matematika Teknik I Dosen Heru Dibyo Laksono

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 5

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 5 GARIS-GARIS BESAR PROGRAM PENGAJAR PROGRAM STUDI: S1 STEM INFORMA Semester : 5 Berlaku mulai: Gasal/2010 MATA KULIAH : DATA WAREHOUSE KODE MATA KULIAH / SKS : 4010103084 / 2 SKS MATA KULIAH PRASYARAT :

Lebih terperinci

Operasi Pada Matriks a. Penjumlahan pada Matriks ( berlaku untuk matriks matriks yang berukuran sama ). Jika A = a ij. maka matriks A = ( a ij)

Operasi Pada Matriks a. Penjumlahan pada Matriks ( berlaku untuk matriks matriks yang berukuran sama ). Jika A = a ij. maka matriks A = ( a ij) MATRIKS a a a... a n a a a... an A a a a... a n............... am am am... a mn Matriks A dengan m baris dan n kolom (A m n). Notasi Matriks : a, dimana a adalah elemen pada baris ke i kolom ke j Kesamaan

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMputer Semester : 4

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMputer Semester : 4 GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMputer Semester : 4 Berlaku mulai : Genap/2011 MATA KULIAH : STATISTIKA DAN PROBABILITAS KODE MATA KULIAH / SKS : 410202061 / 3 SKS MATA

Lebih terperinci

6- Operasi Matriks. MEKANIKA REKAYASA III MK Unnar-Dody Brahmantyo 1

6- Operasi Matriks. MEKANIKA REKAYASA III MK Unnar-Dody Brahmantyo 1 6- Operasi Matriks Contoh 6-1 : Budi diminta tolong oleh ibunya untuk membeli 2 kg gula dan 1 kg kopi. Dengan uang Rp. 10.000,- Budi mendapatkan uang kembali Rp. 3.000,-. Dihari yang lain, Budi membeli

Lebih terperinci

MATRIKS Nuryanto, ST., MT.

MATRIKS Nuryanto, ST., MT. MateMatika ekonomi MATRIKS TUJUAN INSTRUKSIONAL KHUSUS Setelah mempelajari bab ini, anda diharapkan dapat : 1. Pengertian matriks 2. Operasi matriks 3. Jenis matriks 4. Determinan 5. Matriks invers 6.

Lebih terperinci

a11 a12 x1 b1 Lanjutan Mencari Matriks Balikan dengan OBE

a11 a12 x1 b1 Lanjutan Mencari Matriks Balikan dengan OBE a11 a12 x1 b1 a a x b 21 22 2 2 Lanjutan Mencari Matriks Balikan dengan OBE a11 a12 x1 b1 a a x b 21 22 2 2 Untuk DIPERHATIKAN! a A c Untuk mencari Matriks INVERS ordo 2, rumus: 1 1 d b A a d b c c a b

Lebih terperinci

SUMMARY ALJABAR LINEAR

SUMMARY ALJABAR LINEAR SUMMARY ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta

Lebih terperinci

Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut

Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut dinamakan entri dalam matriks atau disebut juga elemen

Lebih terperinci

SILABUS MATA KULIAH. Tanggal Berlaku : 4 September 2015

SILABUS MATA KULIAH. Tanggal Berlaku : 4 September 2015 SILABUS MATA KULIAH Tanggal Berlaku : 4 September 2015 A. Identitas 1. Nama Matakuliah : dan Ruang Vektor 2. Program Studi : Teknik Industri 3. Fakultas : Teknik 4. Bobot sks : 3 5. Elemen : MKK 6. Jenis

Lebih terperinci

KS KALKULUS DAN ALJABAR LINEAR Ruang Vektor TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Ruang Vektor TIM KALIN KS091206 KALKULUS DAN ALJABAR LINEAR Ruang Vektor TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat mengetahui definisi dan sifat-sifat dari ruang vektor

Lebih terperinci

GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 5

GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 5 GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 5 JUDUL MATA KULIAH : Etika Profesi NOMOR KODE / SKS : 410105007 / 2 SKS PRASYARAT : - DESKRIPSI SINGKAT : Etika Profesi membahas

Lebih terperinci

LAPORAN TUGAS AKHIR. Topik Tugas Akhir : Kajian Matematika Murni PENERAPAN PROSES ORTHOGONALISASI GRAM-SCHMIDT DALAM MEMBENTUK FAKTORISASI QR

LAPORAN TUGAS AKHIR. Topik Tugas Akhir : Kajian Matematika Murni PENERAPAN PROSES ORTHOGONALISASI GRAM-SCHMIDT DALAM MEMBENTUK FAKTORISASI QR LAPORAN TUGAS AKHIR Topik Tugas Akhir : Kajian Matematika Murni PENERAPAN PROSES ORTHOGONALISASI GRAM-SCHMIDT DALAM MEMBENTUK FAKTORISASI QR TUGAS AKHIR Diajukan Kepada Fakultas Keguruan dan Ilmu Pendidikan

Lebih terperinci

Banyaknya baris dan kolom suatu matriks menentukan ukuran dari matriks tersebut, disebut ordo matriks

Banyaknya baris dan kolom suatu matriks menentukan ukuran dari matriks tersebut, disebut ordo matriks MATRIKS DEFINISI Matriks adalah susunan bilangan real atau bilangan kompleks (atau elemen-elemen) yang disusun dalam baris dan kolom sehinggga membentuk jajaran persegi panjang. Matriks memiliki m baris

Lebih terperinci

3 Langkah Determinan Matriks 3x3 Metode OBE

3 Langkah Determinan Matriks 3x3 Metode OBE 3 Langkah Determinan Matriks 3x3 Metode OBE Ogin Sugianto sugiantoogin@yahoo.co.id penma2b.wordpress.com Majalengka, 10 Oktober 2016 Selain metode Sarrus dan Minor-Kofaktor, ada satu metode lain yang dapat

Lebih terperinci

SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR

SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 03, No. 1 (2014), hal 91 98. SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR Febrianti,

Lebih terperinci

SATUAN ACARA PENGAJARAN (SAP) Kode Mata Kuliah : SM SKS : 3 (3-0) Waktu Pertemuan : 3 x 50

SATUAN ACARA PENGAJARAN (SAP) Kode Mata Kuliah : SM SKS : 3 (3-0) Waktu Pertemuan : 3 x 50 1 SATUAN ACARA PENGAJARAN (SAP) Mata Kuliah : Matematika Bisnis I Kode Mata Kuliah : SM 20-030 SKS : 3 (3-0) Waktu Pertemuan : 3 x 50 Pertemuan ke : I (pertama) A. Tujuan : 1. Instruksional Umum Setelah

Lebih terperinci

Part III DETERMINAN. Oleh: Yeni Susanti

Part III DETERMINAN. Oleh: Yeni Susanti Part III DETERMINAN Oleh: Yeni Susanti Perhatikan determinan matriks ukuran 2x2 berikut: Pada masing-masing jumlahan dan Terdapat wakil dari setiap baris dan setiap kolom. Bagaimana dengan tanda + (PLUS)

Lebih terperinci

Matematika Teknik INVERS MATRIKS

Matematika Teknik INVERS MATRIKS INVERS MATRIKS Dalam menentukan solusi suatu SPL selama ini kita dihadapkan kepada bentuk matriks diperbesar dari SPL. Cara lain yang akan dikenalkan disini adalah dengan melakukan OBE pada matriks koefisien

Lebih terperinci

7. NILAI-NILAI VEKTOR EIGEN. Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal

7. NILAI-NILAI VEKTOR EIGEN. Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal 7. NILAI-NILAI VEKTOR EIGEN Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal Nilai Eigen, Vektor Eigen Diketahui A matriks nxn dan x adalah suatu vektor pada R n, maka biasanya tdk ada

Lebih terperinci

ALJABAR LINIER DAN MATRIKS

ALJABAR LINIER DAN MATRIKS ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Macam Matriks Matriks Nol (0) Matriks yang semua entrinya nol. Ex: Matriks Identitas (I) Matriks persegi dengan entri pada diagonal utamanya

Lebih terperinci

Aljabar Matriks. Aljabar Matriks

Aljabar Matriks. Aljabar Matriks Aljabar Matriks No No Unit Unit Kompetensi 1 Menerapkan keamanan web dinamis 2 Membuat halaman web dinamis dasar 3 Membuat halaman web dinamis lanjut 4 Menerapkan web hosting 5 Menerapkan konten web memenuhi

Lebih terperinci

Pertemuan 8 Aljabar Linear & Matriks

Pertemuan 8 Aljabar Linear & Matriks Pertemuan 8 Aljabar Linear & Matriks 1 Jika A adl matriks nxn yg invertible, untuk setiap matriks b dgn ukuran nx1, maka sistem persamaan linier Ax = b mempunyai tepat 1 penyelesaian, yaitu x = A -1 b

Lebih terperinci

Diagonalisasi Matriks Segitiga Atas Ring komutatif Dengan Elemen Satuan

Diagonalisasi Matriks Segitiga Atas Ring komutatif Dengan Elemen Satuan Diagonalisasi Matriks Segitiga Atas Ring komutatif Dengan Elemen Satuan Fitri Aryani 1, Rahmadani 2 Jurusan Matematika Fakultas Sains dan Teknologi UIN Suska Riau e-mail: khodijah_fitri@uin-suskaacid Abstrak

Lebih terperinci

METODE MATRIKS (MATRIKS) Mekanika Rekayasa IV. Norma Puspita, ST. MT. a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n

METODE MATRIKS (MATRIKS) Mekanika Rekayasa IV. Norma Puspita, ST. MT. a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n METODE MATRIKS (MATRIKS) Mekanika Rekayasa IV Norma Puspita, ST MT Matriks Matriks adlah susunan bilangan (elemen) yang disusun menurut baris dan kolom sehingga berbentuk persegi panjang Matriks dinotasikan

Lebih terperinci

ALJABAR VEKTOR MATRIKS. oleh: Yeni Susanti

ALJABAR VEKTOR MATRIKS. oleh: Yeni Susanti ALJABAR VEKTOR MATRIKS oleh: Yeni Susanti Materi SPL : Definisi, Solusi, SPL Nonhomogen, SPL Homogen, Matriks Augmented, Bentuk Eselon Baris (Bentuk Eselon baris Tereduksi), Eliminasi Gauss (Eliminasi

Lebih terperinci

Determinan. Untuk menghitung determinan ordo n terlebih dahulu diberikan cara menghitung determinan ordo 2

Determinan. Untuk menghitung determinan ordo n terlebih dahulu diberikan cara menghitung determinan ordo 2 Determinan Determinan Setiap matriks bujur sangkar A yang berukuran (nxn) dapat dikaitkan dengan suatu skalar yang disebut determinan matriks tersebut dan ditulis dengan det(a) atau A. Untuk menghitung

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMPUTER Semester : 1

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMPUTER Semester : 1 GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMPUTER Semester : 1 MATA KULIAH : FISIKA KODE MATA KULIAH / SKS : 410202045 / 2 SKS MATA KULIAH PRASYARAT : - DESKRIPSI MATA KULIAH : MANFAAT

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LINEAR KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI NILAI SINGULAR (SVD) TUGAS AKHIR. Oleh : DEWI YULIANTI

PENYELESAIAN SISTEM PERSAMAAN LINEAR KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI NILAI SINGULAR (SVD) TUGAS AKHIR. Oleh : DEWI YULIANTI PENYELESAIAN SISTEM PERSAMAAN LINEAR KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI NILAI SINGULAR (SVD) TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains Pada Jurusan Matematika

Lebih terperinci

Eigen value & Eigen vektor

Eigen value & Eigen vektor Eigen value & Eigen vektor Hubungan antara vektor x (bukan nol) dengan vektor Ax yang berada di R n pada proses transformasi dapat terjadi dua kemungkinan : 1) 2) Tidak mudah untuk dibayangkan hubungan

Lebih terperinci

MATRIKS. a A mxn = 21 a 22 a 2n a m1 a m2 a mn a ij disebut elemen dari A yang terletak pada baris i dan kolom j.

MATRIKS. a A mxn = 21 a 22 a 2n a m1 a m2 a mn a ij disebut elemen dari A yang terletak pada baris i dan kolom j. MATRIKS A. Definisi Matriks 1. Definisi Matriks dan Ordo Matriks Matriks adalah susunan bilangan (elemen) yang disusun menurut baris dan kolom dan dibatasi dengan tanda kurung. Jika suatu matriks tersusun

Lebih terperinci

TEKNIK INFORMATIKA FENI ANDRIANI

TEKNIK INFORMATIKA FENI ANDRIANI EKNIK INFORMIK FENI NDRINI Definisi: Matriks adalah sekumpulan bilangan yang disusun dalam sebuah empat persegi panjang, secara teratur, di dalam baris-baris dan kolom-kolom. a a... a n a a... a n... a

Lebih terperinci

MENENTUKAN NILPOTENT ORDE 4 PADA MATRIKS SINGULAR MENGGUNAKAN TEOREMA CAYLEY HAMILTON TUGAS AKHIR

MENENTUKAN NILPOTENT ORDE 4 PADA MATRIKS SINGULAR MENGGUNAKAN TEOREMA CAYLEY HAMILTON TUGAS AKHIR MENENTUKAN NILPOTENT ORDE 4 PADA MATRIKS SINGULAR MENGGUNAKAN TEOREMA CAYLEY HAMILTON TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh: IRMA

Lebih terperinci

Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse

Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Matriks Tujuan Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Pengertian Matriks Adalah kumpulan bilangan yang disajikan secara teratur dalam

Lebih terperinci

Pertemuan 2 Matriks, part 2

Pertemuan 2 Matriks, part 2 Pertemuan 2 Matriks, part 2 Beberapa Jenis Matriks Khusus 1. Matriks Bujur Sangkar Suatu matriks dengan banyak baris = banyak kolom = n disebut matriks bujur sangkar berukuran n (berordo n). Barisan elemen

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Salah satu cabang ilmu matematika yang sangat penting adalah Aljabar. Aljabar berasal dari Bahasa Arab yaitu al-jabr yang berarti pertemuan atau hubungan atau

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LINEAR FUZZY KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI QR TUGAS AKHIR

PENYELESAIAN SISTEM PERSAMAAN LINEAR FUZZY KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI QR TUGAS AKHIR PENYELESAIAN SISTEM PERSAMAAN LINEAR FUZZY KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI QR TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh :

Lebih terperinci

Matematika Teknik I: Matriks, Inverse, dan Determinan. Oleh: Dadang Amir Hamzah STT DR. KHEZ MUTTAQIEN 2015

Matematika Teknik I: Matriks, Inverse, dan Determinan. Oleh: Dadang Amir Hamzah STT DR. KHEZ MUTTAQIEN 2015 Matematika Teknik I: Matriks, Inverse, dan Determinan Oleh: Dadang Amir Hamzah STT DR. KHEZ MUTTAQIEN 2015 Dadang Amir Hamzah (STT) Matematika Teknik I Semester 3, 2015 1 / 33 Outline 1 Matriks Dadang

Lebih terperinci

SILABUS. Mengenal matriks persegi. Melakukan operasi aljabar atas dua matriks. Mengenal invers matriks persegi.

SILABUS. Mengenal matriks persegi. Melakukan operasi aljabar atas dua matriks. Mengenal invers matriks persegi. SILABUS Nama Sekolah Mata Pelajaran Kelas / Program Semester : SMA NEGERI 2 LAHAT : MATEMATIKA : XII / IPA : GANJIL STANDAR KOMPETENSI: 3. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan

Lebih terperinci

ALJABAR LINEAR ELEMENTER

ALJABAR LINEAR ELEMENTER BAHAN AJAR ALJABAR LINEAR ELEMENTER Disusun oleh : Indah Emilia Wijayanti Al. Sutjijana Jurusan Matematika Fakultas MIPA Universitas Gadjah Mada Desember, 22 ii Daftar Isi Sistem Persamaan Linear dan Matriks.

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMPUTER Semester : 2

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMPUTER Semester : 2 GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMPUTER Semester : 2 Berlaku mulai: Genap/2011 MATA KULIAH : ELEKTRONIKA KODE MATA KULIAH / SKS : 410202055 / 3 SKS MATA KULIAH PRASYARAT

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dipaparkan mengenai konsep dasar tentang matriks meliputi definisi matriks, jenis-jenis matriks, operasi matriks, determinan, kofaktor, invers suatu matriks, serta

Lebih terperinci

Aljabar Linier Elementer. Kuliah 7

Aljabar Linier Elementer. Kuliah 7 Aljabar Linier Elementer Kuliah 7 Materi Kuliah Ekspansi kofaktor Aturan Cramer 2 2.4 Espansi Kofaktor; Aturan Cramer Definisi: Jika A adalah matriks bujur sangkar, maka minor dari entri a ij dinyatakan

Lebih terperinci

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO SPMI- UNDIP GBPP xx.xx.xx xx Revisi ke Tanggal Dikaji Ulang Oleh Dikendalikan Oleh Disetujui Oleh Ketua Program Studi GPM DekanFakultas. UNIVERSITAS

Lebih terperinci