KLASIFIKASI BINARY TREE

Ukuran: px
Mulai penontonan dengan halaman:

Download "KLASIFIKASI BINARY TREE"

Transkripsi

1 TREE (Struktur Pohon) TREE merupakan struktur data yang menyatakan simpul-simpul data sebagai hubungan hirarki (parent and child structured), dimana simpul yang mempuyai derajat/hirarki lebih tinggi berada di atas, contoh : Silsilah keluarga Struktur organisasi D E F G H I KLSIFIKSI TREE 1. TREE UMUM Istilah-istilah dalam TREE merupakan simpul KR/ROOT D, G, H, & I disebut simpul luar/dun,, E, F disebut simpul dalam 0, 1, 2, 3 merupakan level/tingkatan kedalaman setiap simpul Level yang sama merupakan generasi yang sama Edge/sisi merupakan garis yang menghubungkan simpul yang satu dengan yang lain. E G atau F I, disebut lintasan (PTH) Tinggi simpul : panjang lintasan dari simpul tersebut ke daun keturunannya yang paling jauh Kedalaman (level) simpul : panjang lintasan dari simpul tersebut ke KR Tree umum adalah tree dimana jumlah anak/keturunan masing-masing simpulnya 0, 1, 2,, N. 2. INRY TREE inary Tree adalah tree dimana jumlah anak/keturunan masing-masing simpulnya 0, 1 atau 2. KLSIFIKSI INRY TREE 1. Strictly inary Tree / 2-Tree / Extended -Tree : Pohon iner yang setiap simpulnya mempunyai NK 0 atau 2. Jika Jumlah daun = N, maka jumlah keseluruhan simpul dalam tree tersebut adalah 2N 1 simpul. 2. Pohon iner Komplit : Merupakan pohon seimbang komplit, dimana setiap DUN-nya memiliki level/kedalaman yang sama (misalkan d) dan setiap simpul yang bukan DUN memiliki NK 2. (DUN) = 2 d, dan (Simpul dalam) = 2 d 1. Stmikp3m@ojit.ac.id Halaman 1

2 D E D E G F Extended -Tree Pohon iner Komplit 3. Pohon iner Hampir Komplit : Pohon iner yang mempunyai DUN pada level d atau d 1, dan jika setiap simpul keturunan kanan berada pada level d, maka setiap simpul keturunan kiri yang merupakan daun juga memiliki level d atau d + 1. D E G F H I Pohon iner Hampir Komplit TRVERSING INRY TREE Metode pembacaan/kunjungan pada sebuah Tree dapat dilakukan dengan beberapa cara, yaitu : 1. PREORDER : R T1 T2 R 2. INORDER : T1 R T2 3. POSTORDER : T1 T2 R T1 T2 Informasi yang diperoleh dari operasi travesing thd tree di samping adalah: PREORDER : D E F G D E F G INORDER : D E F G POSTORDER : D E F G Stmikp3m@ojit.ac.id Halaman 2

3 PLIKSI TREE 1. Mengubah Notasi Infix Menjadi PreFix dan PostFix ila model 2-Tree digunakan untuk mempresentasikan ekspresi aritmatika dalam notasi Infix, maka pohon dibentuk dengan ketentuan sebagai berikut : Simpul dalam tempat meyimpan operator Simpul luar (daun) tempat meyimpan operand Operand kiri menjadi anak kiri dan Operand kanan jadi anak kanan dari Operatornya Evaluasi ekspresi dilakukan mulai Operator yang mempunyai derajat kedalaman tertinggi hingga terendah, dengan mengoperasikan dua Operand terhadap Operator orang tuanya. ontoh : Notasi Infix : * Notasi Infix : + * (D / E * F + G) Notasi Postfix : * Notasi Postfix : * + D E / F * G + * + + * G * Keterangan : Simpul Luar (DUN) Simpul Dalam / F D E Latihan : uatlah Pohon iner dari ekspresi aritmatika berikut ini, P * Q / R S * T + U / V * ( ) / (D + E) * F * G V * (W / (X (Y + Z))) (2 * 3 / 2 7) * (9 + 5 / 3). Stmikp3m@ojit.ac.id Halaman 3

4 PNJNG LINTSN Panjang Lintasan Luar (LE) adalah jumlah panjang lintasan dari akar sampai ke semua simpul luar (DUN) Panjang Lintasan Dalam (LI) adalah jumlah panjang lintasan dari akar sampai kesemua simpul dalam Panjang Lintasan Luar berbobot (P) adalah jumlah panjang lintasan dari akar ontoh: sampai ke semua simpul luar (DUN) dikalikan dengan bobot masingmasing DUN P = (bobot masing-masing DUN * Level daun tersebut ) LE = = 5 8 * 3 2 LI = 1 P = 8 * * * 1 = = 23 Latihan: Hitunglah: * 7 * a. LE =.? b. LI =.? c. P =.? 1 3 / Tree Dengan Panjang Lintasan Luar erbobotnya (P) Minimum Untuk membentuk 2-Tree dengan P minimum dapat dilakukan dengan menerapkan algoritma HUFFMN. ontoh: entuklah 2-tree dengan bobot masing-masing daunya dalah: 6, 5, 3, 7, 10. Sehingga P-nya minimum. Stmikp3m@ojit.ac.id Halaman 4

5 lgoritma HUFFMN Digunakan untuk mebentuk 2-tree dengan Panjang Lintasan Luar erbobotnya minimum, dengan langkah-langkah sebagai berikut : 1. Pilih 2 DUN (hild) atau KR (Parent) dengan nilai terkecil 2. Padukan kedua DUN atau KR tersebut menjadi sebuah Sub Tree dengan nilai KR (Parent) hasil penjumlahan kedua DUN atau KR tersebut 3. Ulangi langkah ke 1 sampai terbentuk sebuah 2-tree yang utuh. Step 0: Step 1: Step 2: Step 3: Step 4:: P = 3 * * * * * 2 P = P = 70 Stmikp3m@ojit.ac.id Halaman 5

6 INRY SERH TREE (ST) inary Search Tree (ST) merupakan suatu Pohon iner yang mempunyai aturan sebagai berikut : T1 < R < T2. Fungsi dari ST adalah: 1. Pencarian data 2. Menghilangkan duplikasi data 3. Sorting Data Searching dan Inserting ontoh: bentuklah ST dari data berikut : 60, 80, 30, 50, 65, 20, 10, 90, 25. Untuk membentuk ST dapat dilakukan dengan langkah-langkah sebagai berikut: 1. Data pertama sebagai Root 2. Untuk penyisipan data berikutnya ikuti aturan : T1 < R < T2 R Left < Root < Right T1 T2 Tree yang terbentuk sebagai berikut : Stmikp3m@ojit.ac.id Halaman 6

BAB IV POHON. Diktat Algoritma dan Struktur Data 2

BAB IV POHON. Diktat Algoritma dan Struktur Data 2 iktat lgoritma dan Struktur ata 2 V POON efinisi Pohon Struktur pohon merupakan kumpulan elemen yang salah satu elemennya disebut akar dan sisa elemennya terpecah menjadi sejumlah himpunan yang saling

Lebih terperinci

B C D E F G H I J K L M N O P Q R S T. Tinaliah, S.Kom POHON BINER

B C D E F G H I J K L M N O P Q R S T. Tinaliah, S.Kom POHON BINER A B C D E F G H I J K L M N O P Q R S T U V W X Y Z POHON BINER Tinaliah, S.Kom DEFINISI Pohon (dalam struktur data) struktur berisi sekumpulan elemen dimana salah satu elemen adalah akar (root) dan elemen-elemen

Lebih terperinci

Pohon (Tree) Universitas Gunadarma Sistem Informasi 2012/2013

Pohon (Tree) Universitas Gunadarma Sistem Informasi 2012/2013 Pohon (Tree) Universitas Gunadarma Sistem Informasi 2012/2013 Pohon (Tree) Pohon (Tree) didefinisikan sebagai graf terhubung yang tidak mengandung sirkuit. Karena merupakan graf terhubung, maka pohon selalu

Lebih terperinci

BAB VII Tujuan 7.1 Deskripsi dari Binary Tree

BAB VII Tujuan 7.1 Deskripsi dari Binary Tree A VII Tree Tujuan 1. Mempelajari variasi bagian-bagian dari tree sebagai suatu bentuk struktur tak linier 2. Mempelajari beberapa hubungan fakta yang direpresentasikan dalam sebuah tree, sehingga mampu

Lebih terperinci

Tree. Perhatikan pula contoh tree di bawah ini : Level. Level 2. Level 3. Level 4. Level 5

Tree. Perhatikan pula contoh tree di bawah ini : Level. Level 2. Level 3. Level 4. Level 5 TR (POHON) Tree/pohon merupakan struktur data yang tidak linear/non linear yang digunakan terutama untuk merepresentasikan hubungan data yang bersifat hierarkis antara elemenelemennya. efinisi tree : Kumpulan

Lebih terperinci

TERAPAN POHON BINER 1

TERAPAN POHON BINER 1 TERAPAN POHON BINER 1 Terapan pohon biner di dalam ilmu komputer sangat banyak, diantaranya : 1. Pohon ekspresi 2. Pohon keputusan 3. Kode Prefiks 4. Kode Huffman 5. Pohon pencarian biner 2 Pohon Ekspresi

Lebih terperinci

KUNJUNGAN PADA POHON BINER

KUNJUNGAN PADA POHON BINER KUNJUNGAN PADA POHON BINER Kunjungan pada Pohon Binar merupakan salah satu operasi yang sering dilakukan pada suatu Pohon Binar tepat satu kali(binary Tree Traversal). Operasi ini terbagi menjadi 3 bentuk:

Lebih terperinci

INFIX, POSTFIX, dan PREFIX Bambang Wahyudi

INFIX, POSTFIX, dan PREFIX Bambang Wahyudi INFIX, POSTFIX, dan PREFIX Bambang Wahyudi (bwahyudi@staff.gunadarma.ac.id) Ada tiga bentuk penulisan notasi matematis di komputer, satu bentuk adalah yang umum digunakan manusia (sebagai input di komputer)

Lebih terperinci

Definisi. Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit. pohon pohon bukan pohon bukan pohon

Definisi. Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit. pohon pohon bukan pohon bukan pohon 1 Definisi Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit a b a b a b a b c d c d c d c d e f e f e f e f pohon pohon bukan pohon bukan pohon 2 Hutan (forest) adalah - kumpulan pohon

Lebih terperinci

SATUAN ACARA PERKULIAHAN (SAP) Mata Kuliah : Struktur Data Kode : TIS3213 Semester : III Waktu : 2 x 3 x 50 Menit Pertemuan : 10 & 11

SATUAN ACARA PERKULIAHAN (SAP) Mata Kuliah : Struktur Data Kode : TIS3213 Semester : III Waktu : 2 x 3 x 50 Menit Pertemuan : 10 & 11 . Kompetensi 1. Utama STUN R PERKULIHN (SP) Mata Kuliah : Struktur Data Kode : TIS3213 Semester : III Waktu : 2 x 3 x 50 Menit Pertemuan : 10 & 11 Mahasiswa dapat memahami tentang konsep pemrograman menggunakan

Lebih terperinci

Pohon. Bahan Kuliah IF2120 Matematika Diskrit. Program Studi Teknik Informatika ITB. Rinaldi M/IF2120 Matdis 1

Pohon. Bahan Kuliah IF2120 Matematika Diskrit. Program Studi Teknik Informatika ITB. Rinaldi M/IF2120 Matdis 1 Pohon Bahan Kuliah IF2120 Matematika Diskrit Program Studi Teknik Informatika ITB Rinaldi M/IF2120 Matdis 1 Definisi Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit a b a b a b a

Lebih terperinci

Definisi. Pohon adalah graf tak-berarah, terhubung, dan tidak mengandung sirkuit. pohon pohon bukan pohon bukan pohon (ada sikuit) (tdk terhubung)

Definisi. Pohon adalah graf tak-berarah, terhubung, dan tidak mengandung sirkuit. pohon pohon bukan pohon bukan pohon (ada sikuit) (tdk terhubung) POHON (TREE) Pohon Definisi Pohon adalah graf tak-berarah, terhubung, dan tidak mengandung sirkuit a b a b a b a b c d c d c d c d e f e f e f e f pohon pohon bukan pohon bukan pohon (ada sikuit) (tdk

Lebih terperinci

BAB VII POHON BINAR POHON

BAB VII POHON BINAR POHON BAB VII POHON BINAR POHON Pohon atau tree adalah salah satu bentuk graph terhubung yang tidak mengandung sirkuit. Karena merupakan graph terhubung, maka pada pohon selalu terdapat path atau jalur yang

Lebih terperinci

Pohon (TREE) Matematika Deskrit. Hasanuddin Sirait, MT 1

Pohon (TREE) Matematika Deskrit. Hasanuddin Sirait, MT 1 Pohon (TREE) Matematika Deskrit By @Ir. Hasanuddin Sirait, MT 1 Definisi Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit a b a b a b a b c d c d c d c d e f e f e f e f pohon pohon

Lebih terperinci

Matematika Diskret (Pohon) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

Matematika Diskret (Pohon) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Matematika Diskret (Pohon) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Definisi Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit a b a b a b a b c d c d c d c d e f e f e f e f pohon

Lebih terperinci

TUGAS MAKALAH INDIVIDUAL. Mata Kuliah : Matematika Diskrit / IF2153 Nama : Dwitiyo Abhirama NIM :

TUGAS MAKALAH INDIVIDUAL. Mata Kuliah : Matematika Diskrit / IF2153 Nama : Dwitiyo Abhirama NIM : TUGAS MAKALAH INDIVIDUAL Mata Kuliah : Matematika Diskrit / IF2153 Nama : Dwitiyo Abhirama NIM : 13505013 Institut Teknologi Bandung Desember 2006 Penggunaan Struktur Pohon dalam Informatika Dwitiyo Abhirama

Lebih terperinci

Termilogi Pada Pohon Berakar 10 Pohon Berakar Terurut

Termilogi Pada Pohon Berakar 10 Pohon Berakar Terurut KATA PENGANTAR Puji syukur penyusun panjatkan ke hadirat Allah Subhanahu wata?ala, karena berkat rahmat-nya kami bisa menyelesaikan makalah yang berjudul Catatan Seorang Kuli Panggul. Makalah ini diajukan

Lebih terperinci

DEFINISI. Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit. pohon pohon bukan pohon bukan pohon 2

DEFINISI. Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit. pohon pohon bukan pohon bukan pohon 2 1 POHON DEFINISI Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit a b a b a b a b c d c d c d c d e f e f e f e f pohon pohon bukan pohon bukan pohon 2 Hutan (forest) adalah - kumpulan

Lebih terperinci

Tree (Struktur Data) Nisa ul Hafidhoh, MT

Tree (Struktur Data) Nisa ul Hafidhoh, MT Tree (Struktur Data) Nisa ul Hafidhoh, MT Struktur Data Linier 1 5 8 9 2 ARRAY 0 1 2 3 n Head Tail QUEUE O U T 1 2 3 4 STACK 4 3 2 1 I N 10 8 14 LINKED LIST Struktur Tree Struktur Tree adalah struktur

Lebih terperinci

8/29/2014. Kode MK/ Nama MK. Matematika Diskrit 2 8/29/2014

8/29/2014. Kode MK/ Nama MK. Matematika Diskrit 2 8/29/2014 Kode MK/ Nama MK Matematika Diskrit 1 8/29/2014 2 8/29/2014 1 Cakupan Himpunan, Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 3 8/29/2014 POHON DAN PEWARNAAN GRAF Tujuan Mahasiswa

Lebih terperinci

6. TREE / BINARY TREE

6. TREE / BINARY TREE 6. TREE / BINARY TREE TUJUAN PRAKTIKUM 1. Praktikan mengenal Struktur data Tree. 2. Praktikan mengenal jenis-jenis tree, seperti binary tree. 3. Praktikan mengenal istilah-istilah yang terdapat didalam

Lebih terperinci

Struktur dan Organisasi Data 2 POHON BINAR

Struktur dan Organisasi Data 2 POHON BINAR POHON BINR Pohon (Tree) adalah graf terhubung yang tidak mengandung sirkuit. Karena merupakan graf terhubung maka pada pohon selalu terdapat path atau jalur yang menghubungkan kedua simpul di dalam pohon.

Lebih terperinci

Ringkasan mengenai Tree (Dari beberapa referensi lain) Nina Valentika

Ringkasan mengenai Tree (Dari beberapa referensi lain) Nina Valentika Ringkasan mengenai Tree (Dari beberapa referensi lain) Nina Valentika December 31, 2015 0.1 Pendahuluan Figure 1: Contoh Tree. Tree/pohon merupakan struktur data yang tidak linear/non linear yang digunakan

Lebih terperinci

POHON BINAR 7.1 POHON. Gambar 7.1. Contoh pohon berakar

POHON BINAR 7.1 POHON. Gambar 7.1. Contoh pohon berakar POHON BINAR 7.1 POHON Pohon atau tree adalah salah satu bentuk graph terhubung yang tidak mengandung sirkuit. Karena merupakan graph terhubung, maka pada pohon selalu terdapat path atau jalur yang menghubungkan

Lebih terperinci

Politeknik Elektronika Negeri Surabaya

Politeknik Elektronika Negeri Surabaya PRAKTIKUM 25 TRAVERSAL BINARY TREE A. TUJUAN Mahasiswa diharapkan mampu : 1. Memahami konsep dari pembacaan Binary Tree dengan traversal Inorder, Preorder dan PostOrder 2. Mengimplementasikan pembacaan

Lebih terperinci

SOAL TUGAS STRUKTUR DATA

SOAL TUGAS STRUKTUR DATA SOAL TUGAS STRUKTUR DATA Catatan Tugas: - Terdiri dari 15 soal Pilihan berganda dan 3 soal essay yang dapat dipilih. - Tugas ini wajib di kerjakan untuk mahasiswa yang mengerjakan tugas Senarai Berantai

Lebih terperinci

POHON CARI BINER (Binary Search Tree)

POHON CARI BINER (Binary Search Tree) POHON CARI BINER (Binary Search Tree) 50 24 70 10 41 61 90 3 12 35 47 55 67 80 99 POHON CARI BINER (Binary Search Tree) Definisi : bila N adalah simpul dari pohon maka nilai semua simpul pada subpohon

Lebih terperinci

Pohon dan Pohon Biner

Pohon dan Pohon Biner Pertemuan 14 Pohon dan Pohon Biner P r a j a n t o W a h y u A d i prajanto@dsn.dinus.ac.id +6285 641 73 00 22 Rencana Kegiatan Perkuliahan Semester # Pokok Bahasan 1 Pengenalan Struktur Data 2 ADT Stack

Lebih terperinci

Mata Kuliah : Struktur Data Semester : Genap Kode Mata Kuliah : 307 Waktu : 180 Menit Bobot : 4 sks. Jurusan : MI

Mata Kuliah : Struktur Data Semester : Genap Kode Mata Kuliah : 307 Waktu : 180 Menit Bobot : 4 sks. Jurusan : MI 1 Memberi pengetahuan Diharapkan mahasiswa dapat Data & Struktur Data 1. Pengertian Struktur Data Buku 1 1. Ceramah 1. LCD Latihan Tentang konsep dasar membedakan jenis tipe data 2. Tipe data sederhana

Lebih terperinci

Silsilah keluarga Hasil pertandingan yang berbentuk turnamen Struktur organisasi dari sebuah perusahaan

Silsilah keluarga Hasil pertandingan yang berbentuk turnamen Struktur organisasi dari sebuah perusahaan Praktikum 16 Tree (Struktur Pohon). TUJUN PMLJRN Setelah melakukan praktikum dalam bab ini, mahasiswa diharapkan mampu: 1. Mampu membuat struktur pohon (tree) dengan menggunakan array. 2. Mampu membuat

Lebih terperinci

Data Structure TREE & BINARY TREE. Chapter 5b. Dahlia Widhyaestoeti, S.Kom

Data Structure TREE & BINARY TREE. Chapter 5b. Dahlia Widhyaestoeti, S.Kom Data Structure Chapter 5b TREE & INRY TREE Dahlia Widhyaestoeti, S.Kom genda Hari Ini Simpul ohon iner roses (Operasi) pada ohon iner enelusuran ohon iner 2 Simpul ohon iner? Sebuah pohon biner, salah

Lebih terperinci

TREE ALGORITMA & STRUKTUR DATA. Materi ASD Fakultas Teknik Elektro & Komputer UKSW (www.uksw.edu) Download Dari :

TREE ALGORITMA & STRUKTUR DATA. Materi ASD Fakultas Teknik Elektro & Komputer UKSW (www.uksw.edu) Download Dari : TREE ALGORITMA & STRUKTUR DATA Materi ASD Fakultas Teknik Elektro & Komputer UKSW (www.uksw.edu) Download Dari : http://ambonmemanggil.blogspot.com 1 TREE ISTILAH-ISTILAH DASAR: tree : kumpulan elemen

Lebih terperinci

Tenia Wahyuningrum, S.Kom. MT Sisilia Thya Safitri, S.T.,M.T.

Tenia Wahyuningrum, S.Kom. MT Sisilia Thya Safitri, S.T.,M.T. tree Tenia Wahyuningrum, S.Kom. MT Sisilia Thya Safitri, S.T.,M.T Tree Kumpulan node yang saling terhubung satu sama lain dalam suatu kesatuan yang membentuk layakya struktur sebuah pohon. Tree merepresentasikan

Lebih terperinci

Algoritma dan Struktur Data. Binary Tree & Binary Search Tree (BST)

Algoritma dan Struktur Data. Binary Tree & Binary Search Tree (BST) Algoritma dan Struktur Data Binary Tree & Binary Search Tree (BST) Teknik Informatika Universitas Muhammadiyah Malang 2016 Outline Tree Binary tree Istilah pada tree Operasi dasar binary tree BST Definisi

Lebih terperinci

Pertemuan 15 REVIEW & QUIS

Pertemuan 15 REVIEW & QUIS Pertemuan 15 REVIEW & QUIS 1. Simpul Khusus pada pohon yang memiliki derajat keluar >= 0, dan derajat masuk = 0, adalah. a. Node / simpul d. edge / ruas b. Root / akar e. level c. Leaf / daun 2. Jika suatu

Lebih terperinci

Pohon (Tree) Contoh :

Pohon (Tree) Contoh : POHON (TREE) Pohon (Tree) didefinisikan sebagai graph terhubung yang tidak mengandung sirkuit. Sedangkan Hutan (Forest) adalah graph yang tidak mengandung sirkuit. Jadi pohon adalah hutan yang terhubung.

Lebih terperinci

IT234 Algoritma dan Struktur Data. Tree

IT234 Algoritma dan Struktur Data. Tree IT234 Algoritma dan Struktur Data Tree Fakultas Teknologi Informasi Universitas Kristen Satya Wacana @2008 Tree Kumpulan node yang saling terhubung satu sama lain dalam suatu kesatuan yang membentuk layakya

Lebih terperinci

ALGORITMA DAN STRUKTUR DATA

ALGORITMA DAN STRUKTUR DATA Modul ke: 10 Fitrianingsih Fakultas FASILKOM ALGORITMA DAN STRUKTUR DATA JENIS-JENIS TREE SKom., MMSI Program Studi Sistem Informasi JENIS-JENIS TREE Pohon (Tree) adalah graf terhubung yang tidak mengandung

Lebih terperinci

TREE STRUCTURE (Struktur Pohon)

TREE STRUCTURE (Struktur Pohon) TREE STRUCTURE (Struktur Pohon) Dalam ilmu komputer, tree adalah sebuah struktur data yang secara bentuk menyerupai sebuah pohon, yang terdiri dari serangkaian node (simpul) yang saling berhubungan. Node-node

Lebih terperinci

Buku Ajar Struktur Data

Buku Ajar Struktur Data B a g i a n 5 Tujuan Instruksional Khusus Pokok Bahasan Mahasiswa mampu menjelaskan struktur data nonlinier Tree. Mahasiswa mampu memahami operasi pada struktur data Tree Struktur data Tree secara umum.

Lebih terperinci

BAB IX TREE (POHON) ISTILAH DASAR

BAB IX TREE (POHON) ISTILAH DASAR Modul 9 Struktur Data (rie) - 1 IX TREE (POHON) Struktur pada tree (pohon) tidak linear seperti pada struktur linked list, stack, dan queue. Setiap node pada tree mempunyai tingkatan, yaitu orang tua (parent)

Lebih terperinci

REKAYASA PERANGKAT LUNAK PEMBELAJARAN POHON EKSPRESI (EXPRESSION TREE)

REKAYASA PERANGKAT LUNAK PEMBELAJARAN POHON EKSPRESI (EXPRESSION TREE) Techno.OM, Vol. 10, No. 4, November 2011: 153-161 REKAYASA PERANGKAT UNAK PEMEAARAN POHON EKSPRESI (EXPRESSION TREE) Sumardi Program Studi Teknik Informatika, Fakultas Ilmu Komputer Universitas ian Nuswantoro

Lebih terperinci

BAB 7 POHON BINAR. Contoh : Pohon berakar T R S U

BAB 7 POHON BINAR. Contoh : Pohon berakar T R S U BB 7 POHON BINR Pohon (Tree) adalah graf terhubung yang tidak mengandung sirkuit. Karena merupakan graf terhubung maka pada pohon selalu terdapat path atau jalur yang menghubungkan kedua simpul di dalam

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Rangkaian Logika Rangkaian logika terbentuk dari hubungan beberapa gerbang (gate) logika. Rangkaian logika bekerja secara digital. Output dari suatu rangkaian logika ditentukan

Lebih terperinci

KUM 6 IMPLEMENTASI BINARY TREE

KUM 6 IMPLEMENTASI BINARY TREE PRAKTIKUM KUM 6 IMPLEMENTASI BINARY TREE TUJUAN PEMBELAJARAN: 1. Mengimplementasikan struktur data Binary Tree menggunakan linked list. 2. Mampu mengimplementasikan beragam operasi pada struktur data binary

Lebih terperinci

Bab 1 Pengantar Struktur Data

Bab 1 Pengantar Struktur Data Bab 1 Pengantar Struktur Data 1.1 Struktur Data dan Algoritma 1.2 Gambaran Penggunaan Struktur Data 1.3 Mengenal Berbagai Struktur Data Secara Sekilas 1.4 Efisien? Bagaimana Mengukurnya? Bab 2 Instalasi

Lebih terperinci

FAKULTAS TEKNOLOGI KOMUNIKASI DAN INFORMATIKA UNIVERSITAS NASIONAL

FAKULTAS TEKNOLOGI KOMUNIKASI DAN INFORMATIKA UNIVERSITAS NASIONAL FAKULTAS TEKNOLOGI KOMUNIKASI DAN INFORMATIKA UNIVERSITAS NASIONAL RENCANA PEMBELAJARAN MATA KULIAH : Konsep Struktur Data dan Algoritma SEM: Genap KODE: 08030221 SKS: 2 JURUSAN : Teknik Informatika DOSEN:

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP)

GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP) Mata Kuliah : Algoritma II Bobot Mata Kuliah : 3 Sks GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP) Deskripsi Mata Kuliah : Struktur Stack (satu dan dua sisi), Queue (Linear Queu, Circular Queue, Double Ended

Lebih terperinci

BAB 7 POHON BINAR R S U

BAB 7 POHON BINAR R S U BAB 7 POHON BINAR Pohon (Tree) adalah graf terhubung yang tidak mengandung sirkuit. Karena merupakan graf terhubung maka pada pohon selalu terdapat path atau jalur yang menghubungkan kedua simpul di dalam

Lebih terperinci

APLIKASI MODUL PEMBELAJARAN POHON EKSPRESI MENGGUNAKAN VISUAL BASIC

APLIKASI MODUL PEMBELAJARAN POHON EKSPRESI MENGGUNAKAN VISUAL BASIC The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still

Lebih terperinci

Konsep Pohon (Tree) Binary Tree Penyajian Tree dengan Array Penyajian Tree dengan Linked List Metode Traversal (Kunjungan Node pada Tree)

Konsep Pohon (Tree) Binary Tree Penyajian Tree dengan Array Penyajian Tree dengan Linked List Metode Traversal (Kunjungan Node pada Tree) Praktikum 10 Pohon (Tree) POKOK AASAN: Konsep Pohon (Tree) inary Tree Penyajian Tree dengan Array Penyajian Tree dengan Linked List Metode Traversal (Kunjungan Node pada Tree) TUJUAN LAJAR: Setelah melakukan

Lebih terperinci

Pertemuan 9 STRUKTUR POHON (TREE) Sifat utama Pohon Berakar ISTILAH-ISTILAH DASAR

Pertemuan 9 STRUKTUR POHON (TREE) Sifat utama Pohon Berakar ISTILAH-ISTILAH DASAR ertemuan 9 STUKTU OHON (TEE) ISTILH-ISTILH DS ohon atau Tree adalah salah satu bentuk Graph terhubung yang tidak mengandung sirkuit. Karena merupakan Graph terhubung, maka pada ohon (Tree) selalu terdapat

Lebih terperinci

STRUKTUR DATA. By : Sri Rezeki Candra Nursari 2 SKS

STRUKTUR DATA. By : Sri Rezeki Candra Nursari 2 SKS STRUKTUR DATA By : Sri Rezeki Candra Nursari 2 SKS Literatur Sjukani Moh., (2007), Struktur Data (Algoritma & Struktur Data 2) dengan C, C++, Mitra Wacana Media Utami Ema. dkk, (2007), Struktur Data (Konsep

Lebih terperinci

Penggunaan Pohon Biner Sebagai Struktur Data untuk Pencarian

Penggunaan Pohon Biner Sebagai Struktur Data untuk Pencarian Penggunaan Pohon Biner Sebagai Struktur Data untuk Pencarian Rita Wijaya/13509098 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

Binary Tree kosong Gambar 1. Binary Tree dalam kondisi kosong

Binary Tree kosong Gambar 1. Binary Tree dalam kondisi kosong PRAKTIKUM 25-26 BINARY TREEDAN TRAVERSAL BINARY TREE A. TUJUAN Mahasiswa diharapkan mampu : 1. Memahami konsep dari BinaryTree dantraversalbinary Tree 2. Memahami proses traversal pada Binary Tree 3. Memahami

Lebih terperinci

Algoritma dan Struktur Data. Linear & Binary Search Tree

Algoritma dan Struktur Data. Linear & Binary Search Tree Algoritma dan Struktur Data Linear & Binary Search Tree Linear Search (1) (2) (3) (4) (5) (6) struct { int key; int data; } table[100]; int n; int search(int key) { int i; i=0; while (i < n){ if(table[i].key==key)

Lebih terperinci

Algoritma Pemrograman

Algoritma Pemrograman Algoritma Pemrograman Pertemuan Ke-4 (Nilai dan Urutan [Sequence]) :: Noor Ifada :: S1 Teknik Informatika-Unijoyo 1 Sub Pokok Bahasan Nilai Pengisian nilai ke dalam nama peubah Ekspresi Menuliskan Nilai

Lebih terperinci

ANALISIS ALGORITMA PEMBANGUN POHON EKSPRESI DARI NOTASI PREFIKS DAN POSTFIKS

ANALISIS ALGORITMA PEMBANGUN POHON EKSPRESI DARI NOTASI PREFIKS DAN POSTFIKS ANALISIS ALGORITMA PEMBANGUN POHON EKSPRESI DARI NOTASI PREFIKS DAN POSTFIKS R. Raka Angling Dipura NIM : 13505056 Sekolah Teknik Elektro dan Informatika, Institut Teknologi Bandung Jalan Ganesha 10, Bandung

Lebih terperinci

HEAP. Heap dan Operasinya. Oleh Andri Heryandi

HEAP. Heap dan Operasinya. Oleh Andri Heryandi HEAP Heap adalah sebuah binary tree dengan ketentuan sebagai berikut : Tree harus complete binary tree - Semua level tree mempunyai simpul maksimum kecuali pada level terakhir. - Pada level terakhir, node

Lebih terperinci

STRUKTUR POHON (TREE) Pohon atau Tree adalah salah satu bentuk Graph terhubung yang tidak mengandung sirkuit.

STRUKTUR POHON (TREE) Pohon atau Tree adalah salah satu bentuk Graph terhubung yang tidak mengandung sirkuit. Pertemuan 9 STRUKTUR POHON (TREE) ISTILAH-ISTILAH DASAR Pohon atau Tree adalah salah satu bentuk Graph terhubung yang tidak mengandung sirkuit. Karena merupakan Graph terhubung, maka pada Pohon (Tree)

Lebih terperinci

BAB III STACK ATAU TUMPUKAN

BAB III STACK ATAU TUMPUKAN III STCK TU TUMPUKN LIST LINIER List linier atau daftar linier adalah suatu struktur data umum yang terbentuk dari barisan hingga yang terurut) dari satuan data ataupun dari record. Istilah yang digunakan

Lebih terperinci

Soal Pendahuluan Modul 3

Soal Pendahuluan Modul 3 1. Apa yang dimaksud dengan tree? PENGERTIAN TREE Kumpulan node yang saling terhubung satu sama lain dalam suatu kesatuan yang membentuk layakya struktur sebuah pohon. Struktur pohon adalah suatu cara

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 8

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 8 POHON / TREE Dalam dunia informatika, pohon memegang peranan penting bagi seorang programmer untuk menggambarkan hasil karyanya. Bagi seorang user, setiap kali berhadapan dengan monitor untuk menjalankan

Lebih terperinci

Implementasi Skema Pohon Biner yang Persistent dalam Pemrograman Fungsional

Implementasi Skema Pohon Biner yang Persistent dalam Pemrograman Fungsional Implementasi Skema Pohon Biner yang Persistent dalam Pemrograman Fungsional Azby Khilfi M. NIM : 13506018 Sekolah Teknik Elektro dan Informatika, Institut Teknologi Bandung Jl. Ganesha 10, Bandung E-mail

Lebih terperinci

Kasus Penggunaan Stack: Komputasi Ekspresi Aritmatika

Kasus Penggunaan Stack: Komputasi Ekspresi Aritmatika Struktur Data dan Algoritma Kasus Penggunaan Stack: Komputasi Ekspresi Aritmatika Suryana Setiawan SUR Fasilkom UI - IKI20100/ IKI80110P 2010/2011 Ganjil Minggu 6 Definisi Problem Diberikan suatu ekspresi

Lebih terperinci

Pemrograman Algoritma Dan Struktur Data

Pemrograman Algoritma Dan Struktur Data MODUL PERKULIAHAN Modul ke: 14Fakultas Agus FASILKOM Pemrograman Algoritma Dan Struktur Data ADT BINARY TREE Hamdi.S.Kom,MMSI Program Studi Teknik Informatika ISTILAH-ISTILAH DASAR Pohon atau Tree adalah

Lebih terperinci

Pertemuan Ke-4 Urutan (sequence) Rahmady Liyantanto. liyantanto.wordpress.com. S1 Teknik Informatika-Unijoyo

Pertemuan Ke-4 Urutan (sequence) Rahmady Liyantanto. liyantanto.wordpress.com. S1 Teknik Informatika-Unijoyo Algoritma Pemrograman Pertemuan Ke-4 Urutan (sequence) Rahmady Liyantanto liyantanto88@yahoo.com liyantanto.wordpress.com Sub Pokok Bahasan Nilai Pengisian nilai ke dalam nama peubah Ekspresi Menuliskan

Lebih terperinci

Penerapan BFS dan DFS pada Pencarian Solusi

Penerapan BFS dan DFS pada Pencarian Solusi Bahan Kuliah ke-8 IF5 Strategi Algoritmik Penerapan BFS dan DFS pada Pencarian Solusi Disusun oleh: Ir. Rinaldi Munir, M.T. Departemen Teknik Informatika Institut Teknologi Bandung 4 Struktur pencarian

Lebih terperinci

ANALISIS ALGORITMA BINARY SEARCH

ANALISIS ALGORITMA BINARY SEARCH ANALISIS ALGORITMA BINARY SEARCH Metode Binary search Binary search merupakan salah satu algoritma untuk melalukan pencarian pada array yang sudah terurut. Jika kita tidak mengetahui informasi bagaimana

Lebih terperinci

Algoritma Pemrograman

Algoritma Pemrograman Algoritma Pemrograman Pertemuan Ke-4 Nilai dan Urutan (sequence) :: Noor Ifada :: S1 Teknik Informatika-Unijoyo 1 Sub Pokok Bahasan Nilai Pengisian nilai ke dalam nama peubah Ekspresi Menuliskan Nilai

Lebih terperinci

BAB III METODE PENELITIAN / PERANCANGAN SISTEM. perancangan dan pembuatan program ini meliputi : dengan konversi notasi infix, prefix, dan postfix.

BAB III METODE PENELITIAN / PERANCANGAN SISTEM. perancangan dan pembuatan program ini meliputi : dengan konversi notasi infix, prefix, dan postfix. 21 BAB III METODE PENELITIAN / PERANCANGAN SISTEM 3.1. Metode Penelitian Metodologi penelitian yang digunakan untuk mendukung penyelesaian perancangan dan pembuatan program ini meliputi : 1. Studi literatur

Lebih terperinci

I. LAMPIRAN TUGAS. Mata kuliah : Matematika Diskrit Program Studi : Sistem Informasi PA-31 Dosen Pengasuh : Ir. Bahder Djohan, MSc

I. LAMPIRAN TUGAS. Mata kuliah : Matematika Diskrit Program Studi : Sistem Informasi PA-31 Dosen Pengasuh : Ir. Bahder Djohan, MSc I. LAMPIRAN TUGAS. Mata kuliah : Matematika Diskrit Program Studi : Sistem Informasi PA- Dosen Pengasuh : Ir. Bahder Djohan, MSc Tugas ke Pertemuan TIK Soal-soal Tugas. Mendefinisikan Proposisi Membedakan

Lebih terperinci

Update 2012 DESAIN DAN ANALISIS ALGORITMA SEARCHING

Update 2012 DESAIN DAN ANALISIS ALGORITMA SEARCHING SEARCHING MENDEFINISIKAN MASALAH SEBAGAI SUATU RUANG KEADAAN Secara umum, untuk mendeskripsikan suatu permasalahan dengan baik harus: 1 Mendefinisikan suatu ruang keadaan. 2 Menerapkan satu atau lebih

Lebih terperinci

Silsilah keluarga Hasil pertandingan yang berbentuk turnamen Struktur organisasi dari sebuah perusahaan. B.1 Pohon Biner (Binary Tree)

Silsilah keluarga Hasil pertandingan yang berbentuk turnamen Struktur organisasi dari sebuah perusahaan. B.1 Pohon Biner (Binary Tree) PRAKTIKUM 25 BINARY TREE A. TUJUAN Mahasiswa diharapkan mampu : 1. Memahami konsep dari BinaryTree 2. Memahami cara membangun Binary Tree secara manual 3. Memahami konsep dan implementasi dari menghitung

Lebih terperinci

Struktur Data Tree/Pohon dalam Bahasa Java

Struktur Data Tree/Pohon dalam Bahasa Java Struktur Data Tree/Pohon dalam Bahasa Java Jeffrey Hermanto Halimsetiawan shadowz_029@yahoo.com.sg tutorialpemrograman.wordpress.com 22 Maret 2009 tutorialpemrograman.wordpress.com - 2009 1 Tree merupakan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Ekspresi Aritmatika Sebuah ekspresi aritmatika terdiri dari operand dan operator. Operator dalam ekspresi aritmatika dapat dibagi menjadi 2 jenis (Rosa A.S :2010), yaitu : 1.

Lebih terperinci

1. E = a + 2b d + dh f g. Ubah ke dalam notasi postfix: a. Menggunakan Algoritma b. Secara manual c. Dari pohon biner menggunakan Stack

1. E = a + 2b d + dh f g. Ubah ke dalam notasi postfix: a. Menggunakan Algoritma b. Secara manual c. Dari pohon biner menggunakan Stack 1. E = a + 2b d + dh f g Ubah ke dalam notasi postfix: a. Menggunakan Algoritma b. Secara manual c. Dari pohon biner menggunakan Stack 2. Diketahui maksimum Circular Queue = 9 elemen dengan kondisi mula-mula

Lebih terperinci

STRUKTUR POHON (TREE) Pohon atau Tree adalah salah satu bentuk Graph terhubung yang tidak mengandung sirkuit.

STRUKTUR POHON (TREE) Pohon atau Tree adalah salah satu bentuk Graph terhubung yang tidak mengandung sirkuit. Pertemuan 9 STRUKTUR POHON (TREE) ISTILAH-ISTILAH DASAR Pohon atau Tree adalah salah satu bentuk Graph terhubung yang tidak mengandung sirkuit. Karena merupakan Graph terhubung, maka pada Pohon (Tree)

Lebih terperinci

BAB III ANALISA DAN PERANCANGAN

BAB III ANALISA DAN PERANCANGAN BAB III ANALISA DAN PERANCANGAN 3.1 Analisa Sistem Dalam merancang sebuah sistem yang akan dirancang secara umum, ada beberapa tahap awal yang harus dilakukan sebelum perancangan sistem yaitu menganalisa

Lebih terperinci

Pertemuan 10. Tumpukan (Stack) Dipersiapkan oleh : Boldson Herdianto. S., S.Kom., MMSI.

Pertemuan 10. Tumpukan (Stack) Dipersiapkan oleh : Boldson Herdianto. S., S.Kom., MMSI. Pertemuan 10 Tumpukan (Stack) Dipersiapkan oleh : Boldson Herdianto. S., S.Kom., MMSI. Definisi Tumpukan adalah kumpulan elemen-elemen data yang disimpan dalam satu lajur linier. Kumpulan elemen-elemen

Lebih terperinci

Organisasi Berkas Sekuensial Berindeks

Organisasi Berkas Sekuensial Berindeks Organisasi Berkas Sekuensial Berindeks Definisi Organisasi Berkas ini mirip dengan Organisasi Berkas Sekuensial dimana setiap rekaman disusun secara beruntun di dalam file, hanya saja ada tambahan indeks

Lebih terperinci

Algoritma Pemrograman

Algoritma Pemrograman Algoritma Pemrograman Pertemuan Ke-4 (Nilai dan Urutan [Sequence]) :: Noor Ifada :: S1 Teknik Informatika-Unijoyo 1 Sub Pokok Bahasan Nilai Pengisian nilai ke dalam nama peubah Ekspresi Menuliskan Nilai

Lebih terperinci

Pertemuan 9 STRUKTUR POHON & KUNJUNGAN POHON BINER

Pertemuan 9 STRUKTUR POHON & KUNJUNGAN POHON BINER Pertemuan 9 STRUKTUR POHON & KUNJUNGAN POHON BINER DEFINISI POHON (TREE) Pohon (Tree) termasuk struktur non linear yang didefinisikan sebagai data yang terorganisir dari suatu item informasi cabang yang

Lebih terperinci

Algoritma Prim dengan Algoritma Greedy dalam Pohon Merentang Minimum

Algoritma Prim dengan Algoritma Greedy dalam Pohon Merentang Minimum Algoritma Prim dengan Algoritma Greedy dalam Pohon Merentang Minimum Made Mahendra Adyatman 13505015 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung

Lebih terperinci

Koleksi Hirarkis Tree

Koleksi Hirarkis Tree Koleksi Hirarkis Tree Husni Didasarkan pada buku: Fundamentals of Python: From First Programs Through Data Structures Okyektif Menjelaskan perbedaan antara pohon dan tipe koleksi lain menggunakan terminologi

Lebih terperinci

LIST LINIER & STACK. Pertemuan 6 Yani sugiyani, M.Kom

LIST LINIER & STACK. Pertemuan 6 Yani sugiyani, M.Kom LIST LINIER & STACK Pertemuan 6 Yani sugiyani, M.Kom 1 LIST LINIER Yani Sugiyani, M.Kom 2 LIST LINIER List linier atau daftar linier adalah suatu struktur data umum yang terbentuk dari barisan hingga (yang

Lebih terperinci

Pemanfaatan Pohon Biner dalam Pencarian Nama Pengguna pada Situs Jejaring Sosial

Pemanfaatan Pohon Biner dalam Pencarian Nama Pengguna pada Situs Jejaring Sosial Pemanfaatan Pohon Biner dalam Pencarian Nama Pengguna pada Situs Jejaring Sosial Stephen (35225) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl.

Lebih terperinci

METODE AVL TREE UNTUK PENYEIMBANGAN TINGGI BINARY TREE

METODE AVL TREE UNTUK PENYEIMBANGAN TINGGI BINARY TREE METODE AVL TREE UNTUK PENYEIMBANGAN TINGGI BINARY TREE Suwanty 1 Octara Pribadi 2 Program Studi Teknik Informatika 1,2 STMIK TIME 1,2 Jalan Merbabu No. 32 AA-BB Medan 1,2 e-mail : dharma_suwanty@gmail.com

Lebih terperinci

STRUKTUR POHON & KUNJUNGAN POHON BINER

STRUKTUR POHON & KUNJUNGAN POHON BINER STRUKTUR POHON & KUNJUNGAN POHON BINER Pohon (Tree) termasuk struktur non linear yang didefinisikan sebagai data yang terorganisir dari suatu item informasi cabang yang saling terkait Istilah istilah Dalam

Lebih terperinci

RENCANA PEMBELAJARAN

RENCANA PEMBELAJARAN Di Susun Oleh Diperiksa Oleh Disetujui Oleh Tanggal Berlaku Tim Ahmad Haidar Mirza, S.T., M.Kom. M. Izman Herdiansyah, S.T., M.M., Ph.D. Mata Kuliah : Struktur Data Semester : 2 Kode : 142I2404 Sks : 4

Lebih terperinci

MODUL PRAKTIKUM STRUKTUR DATA

MODUL PRAKTIKUM STRUKTUR DATA MODUL PRAKTIKUM STRUKTUR DATA TREE (POHON) Oleh : SUPRAPTO, S.Kom PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS PGRI RONGGOLAWE (UNIROW) TUBAN 2012/2013 MODUL V TREE (POHON) 5.1. TREE (POHON)

Lebih terperinci

Penerapan BFS dan DFS pada Pencarian Solusi

Penerapan BFS dan DFS pada Pencarian Solusi Penerapan BFS dan DFS pada Pencarian Solusi Bahan Kuliah IF2151 Strategi Algoritmik Oleh: Rinaldi Munir 1 Pengorganisasian Solusi Kemungkinan2 solusi dari persoalan membentuk ruang solusi (solution space)

Lebih terperinci

BAB IV IMPLEMENTASI DAN EVALUASI

BAB IV IMPLEMENTASI DAN EVALUASI 45 BAB IV IMPLEMENTASI DAN EVALUASI 4.1. Implementasi Dalam mengimplementasikan tugas akhir ini digunakan PC dengan spesifikasi sebagai berikut : 4.1.1. Spesifikasi Kebutuhan Perangkat keras yang digunakan

Lebih terperinci

Pohon Biner (Bagian 1)

Pohon Biner (Bagian 1) Pohon Biner (Bagian 1) Tim Pengajar IF2110R Semester I 2016/2017 1 Tujuan Mahasiswa memahami definisi pohon dan pohon biner Berdasarkan pemahaman tersebut, mampu membuat fungsi sederhana yang memanipulasi

Lebih terperinci

Algoritma dan Struktur Data. Tree

Algoritma dan Struktur Data. Tree Algoritma dan Struktur Data Tree Outline 1. Apakah Tree Structure itu? 2. Binary Tree & implementasinya 3. Tree Traversal 4. Implementasi tree (selain binary tree) Apakah Tree Structure itu? Struktur data

Lebih terperinci

Kompleksitas Algoritma dari Algoritma Pembentukan pohon Huffman Code Sederhana

Kompleksitas Algoritma dari Algoritma Pembentukan pohon Huffman Code Sederhana Kompleksitas Algoritma dari Algoritma Pembentukan pohon Huffman Code Sederhana Muhammad Fiqri Muthohar NIM : 13506084 1) 1) Jurusan Teknik Informatika ITB, Bandung, email: fiqri@arc.itb.ac.id Abstrak makalah

Lebih terperinci

BINARY SEARCH TREE. TUJUAN UMUM Mahasiswa memahami binary search Tree

BINARY SEARCH TREE. TUJUAN UMUM Mahasiswa memahami binary search Tree BINARY SEARCH TREE TUJUAN UMUM Mahasiswa memahami binary search Tree Tujuan Khusus Bentuk Khusus Binary Tree Rekursive pada Binary Tree Tree Traversal Operasi pada Binary Tree Implementasi Binary Tree

Lebih terperinci

STACK (TUMPUKAN) Tumpukan uang koin Tumpukan kotak Tumpukan Buku. Gambar 1. Macam-macam tumpukan

STACK (TUMPUKAN) Tumpukan uang koin Tumpukan kotak Tumpukan Buku. Gambar 1. Macam-macam tumpukan STACK (TUMPUKAN) Stack adalah suatu urutan elemen yang elemennya dapat diambil dan ditambah hanya pada posisi akhir (top) saja. Contoh dalam kehidupan sehari-hari adalah tumpukan piring di sebuah restoran

Lebih terperinci

PENGETAHUAN DASAR TEORI GRAF

PENGETAHUAN DASAR TEORI GRAF PENGETAHUAN DASAR TEORI GRAF 1 Sejarah Singkat dan Beberapa Pengertian Dasar Teori Graf Teori graf lahir pada tahun 1736 melalui makalah tulisan Leonard Euler seorang ahli matematika dari Swiss. Euler

Lebih terperinci

Sebuah pewarnaan dari graph G adalah sebuah pemetaan warna-warna ke simpulsimpul dari G sedemikian hingga simpul relasinya mempunyai warna warna yang

Sebuah pewarnaan dari graph G adalah sebuah pemetaan warna-warna ke simpulsimpul dari G sedemikian hingga simpul relasinya mempunyai warna warna yang Sebuah pewarnaan dari graph G adalah sebuah pemetaan warna-warna ke simpulsimpul dari G sedemikian hingga simpul relasinya mempunyai warna warna yang berbeda. Bilangan kromatik dari G adalah jumlah warna

Lebih terperinci