LIMIT DAN KEKONTINUAN

Ukuran: px
Mulai penontonan dengan halaman:

Download "LIMIT DAN KEKONTINUAN"

Transkripsi

1 BAB 4 LIMIT DAN KEKONTINUAN Everything should made as simple as possible, but no simpler. Albert EINSTEIN Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuhnya matematika yang dibangun dari berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan dan kekonvergenan barisan bilangan real. Sebagaimana diketahui bahwa barisan merupakan bentuk khusus fungsi, yaitu fungsi bernilai realdengandomainbilanganasli. Pada bab ini kita memperluas konsep limit kepada bentuk fungsi bernilai real secara umum. Karena konsep kekontinuan terkait erat dengan konsep limit maka kedua topik ini dibahas secara simultan pada bab ini. 4.1 Pengertian Limit Fungsi dan Fungsi Kontinu Biasanya, notasi lim f(x) =L x c dipahami secara intuitif dengan berbagai pernyataan berikut 1. Jika x mendekati c maka f(x) mendekati L, semakindekatx kepada c semakin dekat pula f(x) kepada L. 2. Nilai-nilai f(x) adalah dekat dengan L untuk x dekat dengan c. 163

2 164 BAB 4. LIMIT DAN KEKONTINUAN Pada pernyataan pertama, dekatnya f(x) terhadap L disebabkan oleh dekatnya x kepada c. Pada pernyataan ini, jika ada dua bilangan x 1 dan x 2 di mana x 1 lebih dekat dengan c daripada x 2 maka f(x 1 ) lebih dekat dengan L daripada f(x 2 ). Konsekuensinya, jika x = c maka f(x) =L. Pernyataan ini banyak diambil sebagai pengertian limit khususnya bagi mereka yang belum belajar analisis. Padahal pengertian limit secara formal tidak demikian. Sesungguhnya pernyataan kedua lebih sesuai untuk definisi limit. Pada pernyataan ini ada dua kriteria untuk ukuran dekat. Kriteria dekatnya f(x) terhadap L memberikan kriteria dekatnya x kepada c. Kemudian,setiapx yang dekat dengan c dalam kriteria ini mengakibatkan nilai f(x) dekat dengan L. Sebelum masuk ke definisi formal limit fungsi, diberikan terlebih dahulu pegertian titik limit (cluster point) suatuhimpunan. Pengertiantitiklimitsudahdiba- has pada bab sebelumnya. Namun untuk menyegarkan ingatan atau barangkali bab pengantar topologi tidak sempat dipelajari maka ada baiknya konsep ini diberikan terlebih dahulu sebelum masuk pengertian limit fungsi. Definisi 4.1. [Titik Limit] MisalkanA R. Sebuah titik c R dikatakan titik limit A jika setiap persekitaran V δ (c) := (c δ, c + δ) memuat paling sedikit satu anggota A selain c, atau (c δ, c + δ) A \{c}, δ >0. (4.1.1) Titik limit A boleh jadi anggota A atau bukan anggota A. Sebaliknya,suatu anggota A dapat menjadi titik limit atau bukan titik limit A. Sebelum diberikan contoh, diperhatikanteoremayangmenjaminadanya barisan di dalam A yang konvergen ke titik limit A. Teorema ini dapat dijadikan sebagai kriteria titik limit. Teorema 4.1. Sebuah bilangan real c A adalah titik limit A bila hanya bila terdapat barisan (a n ) dalam A dengan a n c untuk setiap n N dan lim(a n )=c. Bukti. ( )Misalkan c titik limit. Untuk setiap n N, bangunpersekitaran dengan radius δ := 1,yaituV n 1 (c) =(c 1,c+ 1 ). Berdasarkan definisi c n n n titik limit, selalu ada a n A V 1 dengan a n c (lihat 4.1.1). Karena berlaku n a n c < 1 maka disimpulkan lim(a n n)=c. ( )Sebaliknya, diketahui terdapat

3 4.1. PENGERTIAN LIMIT FUNGSI DAN FUNGSI KONTINU 165 barisan (a n ) dalam A, a n c dan lim(a n )=c, dibuktikanc seperti ini adalah titik limit A. Karena diketahui lim(a n )=cmaka berdasarkan definisi limit barisan, untuk sebarang δ>0 terdapat bilangan asli K sehingga a n c <δ untuk setiap n K. Ini berarti, khususnya a K A, a K c dan a K V δ yaitu A V δ \{c}. Terbuktic titik limit A. Contoh 4.1. Diberikan himpunan A yang didefinisikan sebagai A = { 1} {x R :0 x<1} {2}. Tentukan himpunan semua titik limit A. Penyelesaian. Diperhatikan bahwa setiap x [0, 1] dan setiap δ> 0 maka berlaku (x δ, x + δ) A \{x}. Jadisetiapx [0, 1] merupakan titik imit A. Diperhatikan x = 1 A. Kita dapat memilih δ 1 > 0 (misalnya δ 1 = 1) 2 sehingga ( 1 δ 1, 1+δ 1 ) A = { 1}. Akibatnya,( 1 δ 1, 1+δ 1 ) A \ { 1} =. Disimpulkan x = 1 bukan titik limit A. Argumen yang sama diterapkan untuk x =2.DiperolehhimpunantitiklmitAadalah [0, 1]. Gambar 4.1: Ilustrasi titik limit pada garis bilangan Diperhatikan pada contoh ini, 1 / A tetapi 1 titik limit A. Sebaliknya2 A tetapi 2 bukan titik limit A. Bilangandidalaminterval [0, 1) kesemuanya anggota A dan sekaligus titik limit A. Berikut diberikan beberapa fakta sederhana tentang titik limit: 1. Himpunan A yang banyak anggotanya berhingga tidak mempunyai titik limit. Kita dapat mengambil δ>0 lebih kecil dari jarak antara ketiga bilangan yang berdekatan. Untuk menunjukkan c A bukan titik limit, misalkan ketiga bilangan yang berdekatan tersebut adalah x 1,c dan x 2 dengan x 1 <c<x 2. Ambil δ := 1 2 min{ x 1 c, c x 2 }. Maka pasti berlaku (c δ, c + δ) A \{c} =.

4 166 BAB 4. LIMIT DAN KEKONTINUAN 2. Himpunan bilangan asli N tidak mempunyai titik limit. 3. Himpunan bilangan rasional Q mempunyai titik limit semua bilangan real. Hal ini dikarenakan adanya sifat kepadatan bilangan rasional di dalam R. 4. Himpunan A = { 1 : n N} hanya mempunyai titik limit 0. n kasus ini tidak satupun anggota A menjadi titik limitnya. Dalam Selanjutnya definisi limit fungsi diberikan sebagai berikut. Definisi 4.2. [Limit Fungsi] MisalkanA R dan f : A R, c titik limit A. BilanganL dikatakan limit fungsi f di c, ditulis L = lim x c f(x) (4.1.2) adalah setiap diberikan ε>0 terdapat δ>0 sehingga berlaku 0 < x c <δ f(x) L <ε. (4.1.3) Pada definisi ini, nilai δ biasanya bergantung pada nilai ε yang diberikan sehingga kadang-kadang ditulis sebagai δ = δ(ε) untuk menunjukkan ketergantungan δ pada ε yang diberikan. Bila limit L ini ada maka fungsi f dikatakan juga konvergen ke L di c. Secara praktis, dapat dikatakan f(x) mendekati L bilamana x mendekati c. Ukuran dekat f(x) terhadap L diberikan oleh ε, dankedekatanx dengan c diukur oleh δ. Pada ekspresi (4.1.4) kita dapat membuat f(x) sedekat mungkin dengan L dengan memilih x yang dekat dengan c. Ilustrasi definisi limit fungsi diberikan pada Gambar 4.2. Pernyataan 0 < x c <δpada (4.1.4) menunjukkan bahwa untuk berlakunya f(x) L <ε tidak memperhitungkan x yang sama dengan c. Diperhatikan pada gambar tersebut x = c dibolongi. Artinya pada definisi limit, nilai f(c) tidak perlu ada. Ingat, titik limit himpunan domain A tidak harus di dalam A. Oleh karena itulah, ilustrasi grafik definisi limit menggunakan dot di titik x = c. Contoh 4.2. Prosedur menghitung limit berikut sering dilakukan pada pelajaran kalkulus atau sewaktu di SMA dulu. x 2 4 lim x 2 x 2 = lim (x 2)(x +2) x 2 (x 2) = lim x 2 (x +2)=2+2=4.

5 4.1. PENGERTIAN LIMIT FUNGSI DAN FUNGSI KONTINU 167 L+ diberikan V (L) L f(x)-l < L- terdapat V (c) c+ c c+ Gambar 4.2: Ilustrasi definisi limit fungsi Ada 2 hal kritis yang jarang dipedulikan oleh mahasiswa, yaitu Pada langkah kedua terjadi proses pencoretan atau kanselasi pembagian dua bilangan yang sama yaitu (x 2). Padahal secara teoritis pencoretan ini tidak berlaku untuk bilangan bernilai nol. Dalam kasus limit, hal ini tidak masalah karena notasi x 2 dipahami atau dibaca x mendekati 2 tidaklah berarti x =2. Hal ini ditegaskan pada definisi yang menyatakan 0 < x 2 <δ. Di sini f(x) = x2 4. Faktanya f(2) tidak ada karena terjadinya pembagian dengan nol. Tetapi limit f(x) untuk x 2 ada, yaitu 4. x 2 Jadi walaupun nilai fungsi di titik tersebut tidak ada, namun nilai limitnya dapat saja ada. Antara nilai fungsi dan nilai limit tidak mempunyai hubungan implikasi. Dalam kasus keduanya ada dan nilainya sama maka fungsi tersebut bersifat kontinu. Pengertian yang hampir sama untuk fungsi kontinu di x = c, sepertidiungkap- kan berikut ini. Definisi 4.3. [Fungsi Kontinu]MisalkanA R dan f : A R, c A. Fungsi f dikatakan kontinu di c, adalahbilamanadiberikanε>0 terdapat δ>0 sehingga berlaku x c <δ f(x) f(c) <ε. (4.1.4)

6 168 BAB 4. LIMIT DAN KEKONTINUAN f(c)+ diberikan V (f(c)) f(c) f(x)-f(c) < f(c)- terdapat V (c) c+ c c+ Gambar 4.3: Ilustrasi fungsi f kontinu di c Kontinu pada himpunan A berarti kontinu di setiap c A. Berdasarkan definisi ini, syarat perlu agar fungsi f kontinu di c adalah f(c) harus ada atau terdefinisi. Syarat ini tidak berlaku pada kasus limit, yakni nilai limit fungsi di c dapat saja ada walaupun nilai f(c) tidak ada. Ilustrasi fungsi kontinu di c diberikan pada Gambar 4.3. Perhatikan pada gambar ini x = c tidak dibolongi alias masuk dalam interval domain syarat. Dalam kasus c A dan c titik limit A maka kedua pengertian limit dan kekontinuan sangat terkait seperti diungkapkan pada teorema berikut. Teorema 4.2. Misalkan A R dan f : A R, c A. Bila c titik limit A maka kedua pernyataan berikut ekuivalen. 1. f kontinu di c 2. lim x c f(x) =f(c) Bukti. Untuk mudahnya kita bentuk dua himpunan berikut E 1 := {x A :0< x c <δ}, E 2 := {x A : x c <δ}. Jadi E 2 E 1. ( ) Diketahui f kontinu di c berarti x E 2 f(x) f(c) <ε. Misalkan x E 1 maka x E 2 atau x = c. Bila x E 2 maka (4.1.3) berlaku dengan L = f(c). Untukkemungkinanx = c berlaku f(x) f(c) = f(c)

7 4.1. PENGERTIAN LIMIT FUNGSI DAN FUNGSI KONTINU 169 f(c) =0<εsehingga (4.1.3) juga dipenuhi. Terbukti lim x c f(x) =f(c). ( ) Sebaliknya, diketahui lim x c f(x) =f(c) yaitu x E 1 f(x) f(c) < ε. KarenaE 2 E 1 maka berlaku x E 2 f(x) f(c) <ε,yaituf kontinu di c. Berpijak dari teorema ini kita dapatkan syarat cukup dan perlu sebuah fungsi kontinu di x = c ada tiga syarat, yaitu f(c) ada lim x c f(x) ada nilai keduanya harus sama. Contoh 4.3. Misalkan f fungsi konstan pada R,katakanf(x) =b untuk setiap x R. Buktikan untuk sebarang c R, berlakulim x c b = b. Kemudian simpulkan bahwa f kontinu di c. Bukti. Diberikan ε >0 sebarang, ambil δ := 1 maka diperoleh 0 < x c <δ f(x) L = b b =0<ε. Jadi terbukti lim x c f(x) =f(c). Karena c R merupakan titik limit maka dengan teorema 4.2 disimpulkan f kontinu di c. Pengambilan δ pada pembuktian di atas dapat selain 1, bahkan berapa pun boleh. Pembuktian ini menggunakan pola p q di mana q sudah dipastikan benar maka pernyataan p q disimpulkan benar. Contoh 4.4. Buktikan untuk sebarang c R, lim x c αx = c. simpulkan bahwa f(x) := αx kontinu di c. Kemudian Bukti. Untuk setiap ε>0 yang diberikan, ambil δ := ε α.diperoleh 0 < x c <δ f(x) L = αx αc = α x c <αδ= ε. Karena itu terbukti lim x c x = c. Karena berlaku lim x c f(x) =f(c) dan c titik limit maka disimpulkan f kontinu di c. Contoh 4.5. Misalkan f(x) =x 2,x R. Buktikanf kontinu pada R.

8 170 BAB 4. LIMIT DAN KEKONTINUAN Bukti. Misalkan c R sebarang. Kita perhatikan dulu penjabaran berikut f(x) f(c) = x 2 c 2 = x + c x c. Karena sudah ada suku x c maka kita perlu melakukan estimasi pada suku x + c. Untukitudiasumsikandulu x c < 1, maka berlaku x c x c < 1 1 < x c 1 x c +1. }{{} Untuk asumsi ini diperoleh estimasi pada x + c, yaitu x + c x + c 2 c +1. Secara keseluruhan diperoleh estimasi f(x) f(c) = x + c x c < (2 c +1) x c. ( ) Agar kuantitas terakhir ini kurang dari ϵ maka haruslah x c < ε 2 c +1. ( ) Agar kedua x c < 1 dan x c < ε 2 c +1 { } ε δ = δ(ϵ) := min 1,. 2 c +1 dipenuhi maka diambil Jadi jika 0 < x c <δmaka (*) dan (**) berlaku sehingga disimpulkan f(x) f(c) <ε.jadi,lim x c f(x) =f(c), danterbuktif kontinu di c. Ada kalanya sebuah fungsi tidak kontinu di suatu titik c dikarenakan ia tidak terdefinisi di c, yaituf(c) tidak ada. Tetapi, asalkan limitnya di c ada maka fungsi tersebut masih dapat diperluas menjadi fungsi kontinu. Diperluas di sini berarti domainnya diperluas. Contoh 4.6. Diberikan fungsi f(x) = x2 1,x 0tidak kontinu di 1 karena x 1 f(1) tidak ada atau tidak didefinisikan. Namun, berlaku x 2 1 lim f(x) = lim x 1 x 1 x 1 = lim (x +1)=2. x 1

9 4.1. PENGERTIAN LIMIT FUNGSI DAN FUNGSI KONTINU 171 Jadi fungsi ini dapat diperluas menjadi fungsi kontinu pada R sebagai berikut f(x) = x 2 1 x 1 untuk x 0 2 untuk x =0. f dibaca f tilde merupakan perluasan kontinu fungsi f.

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun oleh berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan,

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun dari berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan,

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun oleh berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan,

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun oleh berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan, kekonvergenan

Lebih terperinci

BAB II TEOREMA NILAI RATA-RATA (TNR)

BAB II TEOREMA NILAI RATA-RATA (TNR) BAB II TEOREMA NILAI RATA-RATA (TNR) Teorema nilai rata-rata menghubungkan nilai suatu fungsi dengan nilai derivatifnya (turunannya), dimana TNR merupakan salah satu bagian penting dalam kuliah analisis

Lebih terperinci

4 DIFERENSIAL. 4.1 Pengertian derivatif

4 DIFERENSIAL. 4.1 Pengertian derivatif Diferensial merupakan topik yang cukup 'baru' dalam matematika. Dimulai sekitar tahun 1630 an oleh Fermat ketika menghadapi masalah menentukan garis singgung kurva, dan juga masalah menentukan maksimum

Lebih terperinci

BAB II DASAR TEORI. Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada

BAB II DASAR TEORI. Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada BAB II DASAR TEORI Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada pembahasan BAB III, mulai dari definisi sampai sifat-sifat yang merupakan konsep dasar untuk mempelajari Fungsi

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 3.2 Himpunan Buka dan Himpunan Tutup Titik limit dari suatu himpunan tidak harus merupakan anggota himpunan tersebut. Pada interval

Lebih terperinci

II. LANDASAN TEORI ( ) =

II. LANDASAN TEORI ( ) = II. LANDASAN TEORI 2.1 Fungsi Definisi 2.1.1 Fungsi Bernilai Real Fungsi bernilai real adalah fungsi yang domain dan rangenya adalah himpunan bagian dari real. Definisi 2.1.2 Limit Fungsi Jika adalah suatu

Lebih terperinci

4 DIFERENSIAL. 4.1 Pengertian derivatif

4 DIFERENSIAL. 4.1 Pengertian derivatif Diferensial merupakan topik yang cukup 'baru' dalam matematika. Dimulai sekitar tahun 1630 an oleh Fermat ketika menghadapi masalah menentukan garis singgung kurva, dan juga masalah menentukan maksimum

Lebih terperinci

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Deret Tak Terhingga. Ayundyah. Barisan Tak Hingga. Deret Tak Terhingga

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Deret Tak Terhingga. Ayundyah. Barisan Tak Hingga. Deret Tak Terhingga Kesumawati Prodi Statistika FMIPA-UII April 29, 2015 Akar Barisan a 1, a 2, a 3, a 4,... adalah susunan bilangan-bilangan real yang teratur, satu untuk setiap bilangan bulat positif. adalah fungsi yang

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah menengah barisan diperkenalkan sebagai kumpulan bilangan yang disusun menurut "pola" tertentu, misalnya barisan aritmatika dan barisan geometri. Biasanya barisan dan

Lebih terperinci

BAB III FUNGSI TERUKUR LEBESGUE. Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada

BAB III FUNGSI TERUKUR LEBESGUE. Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada BAB III FUNGSI TERUKUR LEBESGUE Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada Bab II, selanjutnya pada bab ini akan dipelajari gagasan mengenai fungsi terukur Lebesgue. Gagasan mengenai

Lebih terperinci

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan

Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan 4 BARISAN TAK HINGGA DAN DERET TAK HINGGA JUMLAH PERTEMUAN : 5 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan kekonvergenan

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah menengah barisan diperkenalkan sebagai kumpulan bilangan yang disusun menurut "pola" tertentu, misalnya barisan aritmatika dan barisan geometri. Biasanya barisan dan

Lebih terperinci

asimtot.wordpress.com BAB I PENDAHULUAN

asimtot.wordpress.com BAB I PENDAHULUAN BAB I PENDAHULUAN. Latar Belakang Kalkulus Differensial dan Integral sangat luas penggunaannya dalam berbagai bidang seperti penentuan maksimum dan minimum. Suatu fungsi yang sering digunakan mahasiswa

Lebih terperinci

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun MA3231 Pengantar Analisis Real Semester II, Tahun 2016-2017 Hendra Gunawan, Ph.D. Bab 7 Limit dan Kekontinuan 2 Isaac Newton (1643-1727) Isaac Newton adalah seorang fisikawan & matematikawan Inggris yang

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 4. Fungsi Kontinu 4.1 Konsep Kekontinuan Fungsi kontinu Limit fungsi dan limit barisan Prapeta himpunan buka 4.2 Sifat-Sifat Fungsi

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 3. Topologi Garis Bilangan Real 3.1 Teori Limit Limit, supremum, dan infimum Titik limit 3.2 Himpunan Buka dan Himpunan Tutup 3.3

Lebih terperinci

KUANTOR KHUSUS (Minggu ke-8)

KUANTOR KHUSUS (Minggu ke-8) KUANTOR KHUSUS (Minggu ke-8) 1 4 Kuantor Jenis Lain Terdapatlah satu dan hanya satu x yang mempunyai sifat P. ( x)(p(x) ( y)(p(y) = y = x)) Terdapat x yang memenuhi sifat p dan untuk setiap y yang memenuhi

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN LIMIT DAN KEKONTINUAN Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 37 Topik Bahasan 1 Limit Fungsi 2 Hukum Limit 3 Kekontinuan Fungsi (Departemen

Lebih terperinci

Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 19 Agustus 2004 di PPPG Matematika

Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 19 Agustus 2004 di PPPG Matematika PENGANTAR KALKULUS Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 9 Agustus 004 di PPPG Matematika Oleh: Drs. SETIAWAN, M. Pd. Widyaiswara PPPG Matematika Yogyakarta

Lebih terperinci

BARISAN BILANGAN REAL

BARISAN BILANGAN REAL BAB 2 BARISAN BILANGAN REAL Di sekolah menengah barisan diperkenalkan sebagai kumpulan bilangan yang disusun menurut pola tertentu, misalnya barisan aritmatika dan barisan geometri. Biasanya barisan dan

Lebih terperinci

URAIAN POKOK-POKOK PERKULIAHAN

URAIAN POKOK-POKOK PERKULIAHAN Pertemuan ke-: 10, 11, dan 12 Penyusun : Kosim Rukmana Materi: Barisan Bilangan Real 7. Barisan dan Limit Barisan 6. Teorema Limit Barisan 7. Barisan Monoton URAIAN POKOK-POKOK PERKULIAHAN 7. Barisan dan

Lebih terperinci

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +

Lebih terperinci

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS)

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11.1 Definisi dan Limit Fungsi Monoton Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila untuk setiap x, y H dengan x < y berlaku

Lebih terperinci

ANALISIS REAL 2 SUMANANG MUHTAR GOZALI KBK ANALISIS

ANALISIS REAL 2 SUMANANG MUHTAR GOZALI KBK ANALISIS ANALISIS REAL 2 SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta salam

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 1, 2007 Diberikan sebuah fungsi yang terdefinisi pada interval (a, b) kecuali mungkin di

Lebih terperinci

Misal, dan diberikan sebarang, terdapat sehingga untuk setiap

Misal, dan diberikan sebarang, terdapat sehingga untuk setiap PROGRAM STUDI PENDIDIKAN MATEMATIKA FKIP UNMUH PONOROGO PENYELESAIAN SOAL UJIAN AKHIR SEMESTER GENAP TA 2012/2013 Mata Ujian : Analisis Real 1 Tipe Soal : Reguler Dosen : Dr. Julan HERNADI Waktu : 90 menit

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. October 3, Dosen FMIPA - ITB

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. October 3, Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. October 3, 2011 6.3 Limit Sepihak, Limit di Tak Hingga, dan Limit Tak Hingga Bila sebelumnya kita mempelajari limit barisan,

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. November 19, 2007 Secara geometris, f kontinu di suatu titik berarti bahwa grafiknya tidak terputus

Lebih terperinci

BAB III INTEGRAL LEBESGUE. Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh

BAB III INTEGRAL LEBESGUE. Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh BAB III INTEGRAL LEBESGUE Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh fungsi-fungsi terukur dan memenuhi sifat yang berkaitan dengan integral Lebesgue. Kajian mengenai keterukuran suatu

Lebih terperinci

BAB III KEKONVERGENAN LEMAH

BAB III KEKONVERGENAN LEMAH BAB III KEKONVERGENAN LEMAH Bab ini membahas inti kajian tugas akhir. Di dalamnya akan dibahas mengenai kekonvergenan lemah beserta sifat-sifat yang terkait dengannya. Sifatsifat yang dikaji pada bab ini

Lebih terperinci

BAB II KAJIAN TEORI. memahami sifat-sifat dari barisan fungsi. Pada bab ini akan diuraikan materimateri

BAB II KAJIAN TEORI. memahami sifat-sifat dari barisan fungsi. Pada bab ini akan diuraikan materimateri BAB II KAJIAN TEORI Analisis kekonvergenan pada barisan fungsi, apakah barisan fungsi itu? Apakah berbeda dengan barisan pada umumnya? Tentunya sebelum membahas mengenai barisan fungsi, apa saja jenis

Lebih terperinci

-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ -LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ agustina.mipa@unej.ac.id Konsep Limit Fungsi mendasari pembentukan kalkulus dierensial dan integral. Konsep ini

Lebih terperinci

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Uji Deret Positif. Ayundyah. Uji Integral. Uji Komparasi. Uji Rasio.

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Uji Deret Positif. Ayundyah. Uji Integral. Uji Komparasi. Uji Rasio. Uji Uji Deret Kesumawati Prodi Statistika FMIPA-UII April 29, 2015 Uji Deret Uji Deret yang mempunyai suku-suku positif menjadi bahasan pada uji integral ini. Uji integral ini menggunakan ide dimana suatu

Lebih terperinci

BAB I LIMIT-LIMIT Limit-limit Fungsi

BAB I LIMIT-LIMIT Limit-limit Fungsi .. Limit-it Fungsi BAB I LIMIT-LIMIT... Definisi. Misalkan A R. Suatu titik c R adalah titik cluster dari A jika setiap lingkungan-δ dari c, V δ (c) = (c-δ,c+δ), memuat paling sedikit satu titik dari A

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

Analisis Riil II: Diferensiasi

Analisis Riil II: Diferensiasi Definisi Turunan Definisi dan Teorema Aturan Rantai Fungsi Invers Definisi (Turunan) Misalkan I R sebuah interval, f : I R, dan c I. Bilangan riil L dikatakan turunan dari f di c jika diberikan sebarang

Lebih terperinci

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c > 0, maka

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c > 0, maka Contoh 5 Buktikan jika c > 0 maka c c Analisis Pendahuluan Akan dicari bilangan δ > 0 sedemikian sehingga apabila c < ε untuk setiap ε > 0. 0 < c < δ berlaku Perhatikan: c ( c)( c) c c c c c c c Dapat

Lebih terperinci

FUNGSI DAN LIMIT FUNGSI

FUNGSI DAN LIMIT FUNGSI 2 FUNGSI DAN LIMIT FUNGSI 2.1 Fungsi dan Grafiknya Definisi Sebuah fungsi f dari himpunan A ke himpunan B adalah suatu aturan yang memasangkan setiap x anggota A dengan tepat satu y anggota B. A disebut

Lebih terperinci

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 11, 2007 Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila

Lebih terperinci

BAB VI LIMIT FUNGSI. 6.1 Definisi. A R. Titik c R adalah titik limit dari A, jika untuk setiap persekitaran-δ dari c,

BAB VI LIMIT FUNGSI. 6.1 Definisi. A R. Titik c R adalah titik limit dari A, jika untuk setiap persekitaran-δ dari c, BAB VI LIMIT FUNGSI Sesungguhnya yang dimaksud dengan fungsi f mempunyai limit L di c adalah nilai f mendekati L, untuk x mendekati c. Dengan demikian dapat diartikan bahwa f(x) terletak pada sembarang

Lebih terperinci

ANALISIS REAL 1 SUMANANG MUHTAR GOZALI KBK ANALISIS

ANALISIS REAL 1 SUMANANG MUHTAR GOZALI KBK ANALISIS ANALISIS REAL 1 SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta salam

Lebih terperinci

BAB I TEOREMA TEOREMA LIMIT BARISAN

BAB I TEOREMA TEOREMA LIMIT BARISAN BAB I TEOREMA TEOREMA LIMIT BARISAN Definisi : Barisan bilangan real X = (x n ) dikatakan terbatas jika ada bilangan real M > 0 sedemikian sehingga x n M untuk semua n N. Catatan : X = (x n ) terbatas

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 5.3 Kalkulus Turunan Pada bagian ini kita akan membahas sejumlah aturan untuk diferensial dan aturan untuk turunan, yg mempunyai kemiripan

Lebih terperinci

BAB I PENDAHULUAN. : k N} dan A(m) menyatakan banyaknya m suku pertama (x n ) yang menjadi suku (x nk ), maka A(m)

BAB I PENDAHULUAN. : k N} dan A(m) menyatakan banyaknya m suku pertama (x n ) yang menjadi suku (x nk ), maka A(m) BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Konvergensi barisan bilangan real mempunyai banyak peranan dan aplikasi yang cukup penting pada beberapa bidang matematika, antara lain pada teori optimisasi,

Lebih terperinci

16. BARISAN FUNGSI. 16.1 Barisan Fungsi dan Kekonvergenan Titik Demi Titik

16. BARISAN FUNGSI. 16.1 Barisan Fungsi dan Kekonvergenan Titik Demi Titik 16. BARISAN FUNGSI 16.1 Barisan Fungsi dan Kekonvergenan Titik Demi Titik Bila pada bab-bab sebelumnya kita membahas fungsi sebagai sebuah objek individual, maka pada bab ini dan selanjutnya kita akan

Lebih terperinci

TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh

TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh II. TINJAUAN PUSTAKA 2.1 Ruang Metrik Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh aksioma-aksioma tertentu. Ruang metrik merupakan hal yang fundamental dalam analisis fungsional,

Lebih terperinci

Catatan Kuliah MA1123 Kalkulus Elementer I

Catatan Kuliah MA1123 Kalkulus Elementer I Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):

Lebih terperinci

Nilai mutlak pada definisi tersebut di interpretasikan untuk mengukur jarak dua

Nilai mutlak pada definisi tersebut di interpretasikan untuk mengukur jarak dua II. LANDASAN TEORI 2.1 Limit Fungsi Definisi 2.1.1(Edwin J, 1987) Misalkan I interval terbuka pada R dan f: I R fungsi bernilai real. Secara matematis ditulis lim f(x) = l untuk suatu a I, yaitu nilai

Lebih terperinci

MATEMATIKA SMK TEKNIK LIMIT FUNGSI : Limit Fungsi Limit Fungsi Aljabar Limit Fungsi Trigonometri

MATEMATIKA SMK TEKNIK LIMIT FUNGSI : Limit Fungsi Limit Fungsi Aljabar Limit Fungsi Trigonometri MATEMATIKA SMK TEKNIK LIMIT FUNGSI : Limit Fungsi Limit Fungsi Aljabar Limit Fungsi Trigonometri MATEMATIKA LIMIT FUNGSI SMK NEGERI 1 SURABAYA Halaman 1 BAB LIMIT FUNGSI A. Limit Fungsi Aljabar PENGERTIAN

Lebih terperinci

SYARAT FRITZ JOHN PADA MASALAH OPTIMASI BERKENDALA KETAKSAMAAN. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak

SYARAT FRITZ JOHN PADA MASALAH OPTIMASI BERKENDALA KETAKSAMAAN. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak Syarat Fritz John... (Caturiyati) SYARAT FRITZ JOHN PADA MASALAH OPTIMASI BERKENDALA KETAKSAMAAN Caturiyati 1 Himmawati Puji Lestari 2 1,2 Jurusan Pendidikan Matematika FMIPA UNY 1 wcaturiyati@yahoo.com

Lebih terperinci

BAB II LANDASAN TEORI. Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan

BAB II LANDASAN TEORI. Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan BAB II LANDASAN TEORI Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan teorema-teorema yang akan menjadi landasan untuk pembahasan pada Bab III nanti, diantaranya: fungsi komposisi,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Aljabar Linear Definisi 2.1.1 Matriks Matriks A adalah susunan persegi panjang yang terdiri dari skalar-skalar yang biasanya dinyatakan dalam bentuk berikut: [ ] Definisi 2.1.2

Lebih terperinci

Definisi. Turunan (derivative) suatu fungsi f di sebarang titik x adalah. f merupakan fungsi baru yang disebut turunan dari f (derivative of f).

Definisi. Turunan (derivative) suatu fungsi f di sebarang titik x adalah. f merupakan fungsi baru yang disebut turunan dari f (derivative of f). Lecture 5. Derivatives C A. Turunan (derivatives) Sebagai Fungsi Definisi. Turunan (derivative) suatu fungsi f di sebarang titik x adalah f ()() (x) = lim. f merupakan fungsi baru yang disebut turunan

Lebih terperinci

BAGIAN KEDUA. Fungsi, Limit dan Kekontinuan, Turunan

BAGIAN KEDUA. Fungsi, Limit dan Kekontinuan, Turunan BAGIAN KEDUA Fungsi, Limit dan Kekontinuan, Turunan 51 52 Hendra Gunawan Pengantar Analisis Real 53 6. FUNGSI 6.1 Fungsi dan Grafiknya Konsep fungsi telah dipelajari oleh Gottfried Wilhelm von Leibniz

Lebih terperinci

Nilai Ekstrim. (Extreme Values)

Nilai Ekstrim. (Extreme Values) TKS 4003 Matematika II Nilai Ekstrim (Extreme Values) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan Jika terdapat suatu hasil pengukuran seperti pada Gambar 1, dimana pengukuran

Lebih terperinci

BAB I PENDAHULUAN. Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat

BAB I PENDAHULUAN. Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat 1 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat dan logos yang artinya ilmu merupakan cabang matematika yang bersangkutan dengan

Lebih terperinci

BAB III PEMBAHASAN. Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab

BAB III PEMBAHASAN. Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab BAB III PEMBAHASAN Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab C. Sub-bab A menjelaskan mengenai konsep dasar C[a, b] sebagai ruang vektor beserta contohnya. Sub-bab B

Lebih terperinci

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c 0, maka

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c 0, maka Contoh 5 Buktikan jika c 0 maka c c Analisis Pendahuluan Akan dicari bilangan 0 sedemikian sehingga apabila c untuk setiap 0. 0 c berlaku Perhatikan: c ( c)( c) c c c c Dapat dipilih c Bukti: c c c Ambil

Lebih terperinci

HUBUNGAN LIMIT FUNGSI DAN LIMIT BARISAN PADA TOPOLOGI REAL

HUBUNGAN LIMIT FUNGSI DAN LIMIT BARISAN PADA TOPOLOGI REAL HUBUNGAN LIMIT FUNGSI DAN LIMIT BARISAN PADA TOPOLOGI REAL Ukhti Raudhatul Jannah Program Studi Pendidikan Matematika, FKIP, Universitas Madura Alamat Jalan Raya Panglegur 3,5 KM Pamekasan Abstrak: Tulisan

Lebih terperinci

BAB III INDUKSI MATEMATIKA

BAB III INDUKSI MATEMATIKA 3.1 Pendahuluan BAB III INDUKSI MATEMATIKA Dalam bidang matematika tidak jarang ditemui pola-pola induktif yang melibatkan himpunan indeks berupa himpunan bilangan asli atau bulat seperti barisan atau

Lebih terperinci

TRANSFORMASI LINIER PADA RUANG BANACH

TRANSFORMASI LINIER PADA RUANG BANACH TRANSFORMASI LINIER PADA RUANG BANACH Nur Aeni, S.Si., M.Pd Jurusan Matematika, Fakultas Sains dan Teknologi, UINAM nuraeniayatullah@gmail.com ABSTRAK Info: Jurnal MSA Vol. 2 No. 1 Edisi: Januari Juni

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. September 12, Dosen FMIPA - ITB

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. September 12, Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. September 12, 2011 Teorema 11 pada Bab 3 memberi kita cara untuk menyelidiki kekonvergenan sebuah barisan tanpa harus mengetahui

Lebih terperinci

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada,

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, Lecture 4. Limit B A. Continuity Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, (2) lim f(x) ada, (3) lim f(x) =

Lebih terperinci

BAB I DERIVATIF (TURUNAN)

BAB I DERIVATIF (TURUNAN) BAB I DERIVATIF (TURUNAN) Pada bab ini akan dipaparkan pengertian derivatif suatu fungsi, beberapa sifat aljabar derivatif, aturan rantai, dan derifativ fungsi invers. A. Pengertian Derivatif Pengertian

Lebih terperinci

LIMIT KED. Perhatikan fungsi di bawah ini:

LIMIT KED. Perhatikan fungsi di bawah ini: LIMIT Perhatikan fungsi di bawah ini: f x = x2 1 x 1 Perhatikan gambar di samping, untuk nilai x = 1 nilai f x tidak ada. Tetapi jikakita coba dekati nilai x = 1 dari sebelah kiri dan kanan maka dapat

Lebih terperinci

BAB III KUANTOR kuantor, 1. Kuantor Universal 3. Kuantor Eksistensial

BAB III KUANTOR kuantor, 1. Kuantor Universal 3. Kuantor Eksistensial BAB III KUANTOR Untuk mengubah kalimat tebuka menjadi kalimat deklaratif, selain dengan jalan mengganti variabel dengan konstanta, dapat juga dilakukan dengan menggunakan kuantor, yaitu dengan menggunakan

Lebih terperinci

BAB III SUB BARISAN DAN TEOREMA BOLZANO-WEIERSTRASS

BAB III SUB BARISAN DAN TEOREMA BOLZANO-WEIERSTRASS BAB III SUB BARISAN DAN TEOREMA BOLZANO-WEIERSTRASS Dalam bab ini akan kita bahas pengertian tentang sub barisan dari barisan bilangan real, yang lebih umum dibandingkan ekor suatu barisan, serta dapat

Lebih terperinci

Matematika I : Limit. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 79

Matematika I : Limit. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 79 Matematika I : Limit Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 79 Outline 1 limit Introduction to Limit Rigorous Study of Limits Limit Theorem Limit Involving Trigonometric

Lebih terperinci

PENGANTAR ANALISIS REAL

PENGANTAR ANALISIS REAL Seri Analisis dan Geometri No. 1 (2009), -15 158 (173 hlm.) PENGANTAR ANALISIS REAL Oleh Hendra Gunawan Edisi Pertama Bandung, Januari 2009 2000 Dewey Classification: 515-xx. Kata Kunci: Analisis matematika,

Lebih terperinci

DERET TAK HINGGA. Contoh deret tak hingga :,,, atau. Barisan jumlah parsial, dengan. Definisi Deret tak hingga,

DERET TAK HINGGA. Contoh deret tak hingga :,,, atau. Barisan jumlah parsial, dengan. Definisi Deret tak hingga, DERET TAK HINGGA Contoh deret tak hingga :,,, atau. Barisan jumlah parsial, dengan Definisi Deret tak hingga,, konvergen dan mempunyai jumlah S, apabila barisan jumlah jumlah parsial konvergen menuju S.

Lebih terperinci

Matematika

Matematika Fungsi dan Kekontinuan D3 Analis Kimia FMIPA Universitas Islam Indonesia Ilustrasi 1 Nol mutlak, yaitu temperatur T C di mana semua aktivitas molekular berhenti, dapat didekati namun tidak pernah dapat

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

KONSISTENSI ESTIMATOR

KONSISTENSI ESTIMATOR KONSISTENSI ESTIMATOR TUGAS STATISTIKA MATEMATIKA II Oleh 1. Wahyu Nikmatus S. (121810101010) 2. Vivie Aisyafi F. (121810101050) 3. Rere Figurani A. (121810101052) 4. Dwindah Setiari W. (121810101054)

Lebih terperinci

Fungsi Analitik (Bagian Kedua)

Fungsi Analitik (Bagian Kedua) Fungsi Analitik (Bagian Kedua) Supama Jurusan Matematika, FMIPA UGM Yogyakarta 5528, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemuan Minggu V) Outline Limit Menuju Tak Hingga 2 Fungsi Kontinu

Lebih terperinci

MAT 602 DASAR MATEMATIKA II

MAT 602 DASAR MATEMATIKA II MAT 60 DASAR MATEMATIKA II Disusun Oleh: Dr. St. Budi Waluya, M. Sc Jurusan Pendidikan Matematika Program Pascasarjana Unnes 1 HIMPUNAN 1. Notasi Himpunan. Relasi Himpunan 3. Operasi Himpunan A B : A B

Lebih terperinci

BAB I DERIVATIF (TURUNAN)

BAB I DERIVATIF (TURUNAN) BAB I DERIVATIF (TURUNAN) Pada bab ini akan dipaparkan pengertian derivatif suatu fungsi, beberapa sifat aljabar derivatif, aturan rantai, dan derifativ fungsi invers. A. Pengertian Derivatif Pengertian

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. October 10, Dosen FMIPA - ITB

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. October 10, Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. October 10, 2011 Pemahaman yang baik tentang fungsi kontinu merupakan hal yang penting dalam analisis. Dalam optimisasi,

Lebih terperinci

BAB III INDUKSI MATEMATIKA

BAB III INDUKSI MATEMATIKA BAB III INDUKSI MATEMATIKA BAB III INDUKSI MATEMATIKA 3.1 Pendahuluan Dalam bidang matematika tidak jarang ditemui pola-pola induktif yang melibatkan himpunan indeks berupa himpunan bilangan asli atau

Lebih terperinci

2 BILANGAN PRIMA. 2.1 Teorema Fundamental Aritmatika

2 BILANGAN PRIMA. 2.1 Teorema Fundamental Aritmatika Bilangan prima telah dikenal sejak sekolah dasar, yaitu bilangan yang tidak mempunyai faktor selain dari 1 dan dirinya sendiri. Bilangan prima memegang peranan penting karena pada dasarnya konsep apapun

Lebih terperinci

CNH2B4 / KOMPUTASI NUMERIK

CNH2B4 / KOMPUTASI NUMERIK CNH2B4 / KOMPUTASI NUMERIK TIM DOSEN KK MODELING AND COMPUTATIONAL EXPERIMENT 1 REVIEW KALKULUS & KONSEP ERROR Fungsi Misalkan A adalah himpunan bilangan. Fungsi f dengan domain A adalah sebuah aturan

Lebih terperinci

MODUL RESPONSI MAM 4222 KALKULUS IV

MODUL RESPONSI MAM 4222 KALKULUS IV MODUL RESPONSI MAM 4222 KALKULUS IV Mata Kuliah Wajib 2 sks untuk mahasiswa Program Studi Matematika Oleh Dr. WURYANSARI MUHARINI KUSUMAWINAHYU, M.Si. PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS

Lebih terperinci

RUMUS-RUMUS TAUTOLOGI. (Minggu ke-5 dan 6)

RUMUS-RUMUS TAUTOLOGI. (Minggu ke-5 dan 6) RUMUS-RUMUS TAUTOLOGI (Minggu ke-5 dan 6) 1 1 Rumus-rumus tautologi Rumus 1.1 (Komutatif) 1. p q q p 2. p q q p Bukti: p q p q q p T T T T T F F F F T F F F F F F 2 Rumus 1.2 (Distributif) 1. p (q r) (p

Lebih terperinci

EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH

EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH Nur Aeni Prodi Matematika, Fakultas Sains dan Teknologi, UINAM nuraeniayatullah@gmailcom Info: Jurnal MSA Vol 3 No 1 Edisi: Januari

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. August 18, Dosen FMIPA - ITB

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. August 18, Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 18, 2011 Kita telah mencatat sebelumnya bahwa supremum dan infimum suatu himpunan tidak harus merupakan anggota himpunan

Lebih terperinci

Bagian 2 Matriks dan Determinan

Bagian 2 Matriks dan Determinan Bagian Matriks dan Determinan Materi mengenai fungsi, limit, dan kontinuitas akan kita pelajari dalam Bagian Fungsi dan Limit. Pada bagian Fungsi akan mempelajari tentang jenis-jenis fungsi dalam matematika

Lebih terperinci

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK 3. Perumusan Penduga Misalkan N adalah proses Poisson non-homogen pada interval 0, dengan fungsi intensitas yang tidak diketahui. Fungsi intensitas

Lebih terperinci

BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN

BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN 2.1 Pendahuluan Pada bab ini akan dibicarakan rumus-rumus tautologi dan prinsip-prinsip pembuktian yang tidak saja digunakan di bidang matematika, tetapi

Lebih terperinci

10. TEOREMA NILAI RATA-RATA

10. TEOREMA NILAI RATA-RATA 10. TEOREMA NILAI RATA-RATA 10.1 Maksimum dan Minimum Lokal Misalkan f terdefinisi pada suatu interval terbuka (a, b) dan c (a, b). Kita katakan bahwa f mencapai nilai maksimum lokal di c apabila f(x)

Lebih terperinci

Bab 2 Fungsi Analitik

Bab 2 Fungsi Analitik Bab 2 Fungsi Analitik Bab 2 ini direncanakan akan disampaikan dalam 4 kali pertemuan, dengan perincian sebagai berikut: () Pertemuan I: Fungsi Kompleks dan Pemetaan. (2) Pertemuan II: Limit Fungsi, Kekontiuan,

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 3.3 Himpunan Kompak Himpunan tak terhingga lebih sulit ditangani daripada himpunan terhingga. Namun ada himpunan tak terhingga yang

Lebih terperinci

SISTEM BILANGAN REAL

SISTEM BILANGAN REAL DAFTAR ISI SISTEM BILANGAN REAL. Sifat Aljabar Bilangan Real......................2 Sifat Urutan Bilangan Real..................... 6.3 Nilai Mutlak dan Jarak Pada Bilangan Real.............4 Supremum

Lebih terperinci

Hendra Gunawan. 13 September 2013

Hendra Gunawan. 13 September 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 13 September 2013 Latihan (Kuliah yang Lalu) sin t 1. Menggunakan fakta bahwa lim 1, t0 hitunglah: t 2 sin( 2 ) a. limsin t.cot 2t b. lim t 0 0

Lebih terperinci

MODUL PEMBELAJARAN ANALISIS VARIABEL KOMPLEKS 2/22/2012 IKIP BUDI UTOMO MALANG ALFIANI ATHMA PUTRI ROSYADI

MODUL PEMBELAJARAN ANALISIS VARIABEL KOMPLEKS 2/22/2012 IKIP BUDI UTOMO MALANG ALFIANI ATHMA PUTRI ROSYADI MODUL PEMBELAJARAN ANALISIS VARIABEL KOMPLEKS 2/22/2012 IKIP BUDI UTOMO MALANG ALFIANI ATHMA PUTRI ROSYADI IDENTITAS MAHASISWA NAMA NPM KELOMPOK : : : DAFTAR ISI Kata Pengantar Daftar Isi BAB I Bilangan

Lebih terperinci