Empat Metode Pembobotan Sistem Persamaan Linier Pada Variabel atau Komponen Wajah Pada Sistem Pengenalan Wajah

Ukuran: px
Mulai penontonan dengan halaman:

Download "Empat Metode Pembobotan Sistem Persamaan Linier Pada Variabel atau Komponen Wajah Pada Sistem Pengenalan Wajah"

Transkripsi

1 Empat Metode Pembobotan Sistem Persamaan Linier Pada Variabel atau Komponen Wajah Pada Sistem Pengenalan Wajah Emi Listika Zen Jurusan Teknik Informatika Universitas Gunadarma Jl. Margonda Raya 100 Pondok Cina, Depok ABSTRAK Pengenalan wajah adalah salah satu aplikasi dari teknologi biometrik yang memanfaatkan analisis dari pengolahan citra. Data yang dihasilkan dari pendeteksian wajah akan dikembangkan untuk membuktikan keunikan jarak fitur wajah. Untuk menguji dan membuktikan keunikan fitur wajah, maka digunakan metode matematis yaitu Sistem Persamaan Linier baik homogen, maupun non homogen, solusi persamaan simultan, akar eigen dan vektor eigen. Data yang dihasilkan dari penelitian sebelumnya terdiri dari 150 data dengan masing-masing memiliki 8 jarak yang diukur. Data inputan untuk penelitian ini berupa matriks 150x8. Hasil yang didapatkan dari hasil uji coba metode persamaan linier non homogen dengan menggunakan invers blok, menunjukan keunikan jarak untuk 150 sample yang masing masing terdiri dari 8 data. Keunikan juga dicapai dari metode persamaan linier non homogen (untuk matriks B memiliki sebuah nilai random). Metode simultan tidak menghasilkan solusi karena rank matriks inputan dan gabungan berbeda. Metode eigen juga menghasilkan keunikan jarak sama seperti metode persamaan linier homogen dan non homogen. Kata Kunci : Biometrik, Keunikan Wajah, Fitur Wajah, Metoda Matematis, Aljabar Linier, Sistem Persamaan Linier 1. PENDAHULUAN Pada dasarnya pada diri setiap manusia memiliki sesuatu yang unik yang hanya dimiliki oleh dirinya sendiri. Hal ini menimbulkan gagasan untuk menjadikan keunikan manusia itu sebagai identitas diri. Hal ini harus didukung oleh teknologi yang secara otomatis bisa mengidentifikasi seseorang dengan memanfaatkan teknologi semikonduktor yang semakin hari ukurannya bisa semakin kecil. Teknologi ini disebut sebagai biometrik. Teknologi biometrik adalah metode otomatis untuk mengidentifikasi seseorang berdasarkan beberapa karakteristik biologis dan kebiasaan [2]. Teknologi ini menggunakan bagian tubuh manusia yang unik dan tetap seperti sidik jari, mata dan wajah seseorang. Teknologi ini telah mendapat perhatian yang sangat penting dalam beberapa tahun terakhir ini. Teknologi biometrik dikembangkan karena dapat memenuhi dua fungsi yaitu identifikasi dan verifikasi, disamping itu biometrik memiliki karakteristik seperti, tidak dapat hilang, tidak dapat lupa dan tidak mudah dipalsukan karena keberadaannya melekat pada manusia, dimana satu dengan

2 yang lain tidak akan sama, maka keunikannya akan lebih terjamin. Metoda matematis khususnya Sistem Persamaan Linier sekarang banyak diimplementasikan dalam berbagai kasus di kehidupan sehari-hari. Pengujian dan pencarian variabel kasus yang dihadapi, biasanya menggunakan SPL sebagai metode matematis. Salah satu contohnya dalam pendeteksian wajah. Sistem pengenalan wajah merupakan salah satu jenis sistem pada teknologi biometrik. Penelitian sebelumnya yang dilakukan oleh Hendra (2006) yaitu aplikasi sistem pengenalan wajah yang melakukan deteksi bagian wajah sekaligus bisa mengekstraksi fitur fitur wajah yang diinginkan menghasilkan jarak antra fitur fitur wajah. Data pengujian keunikan terhadap 150 data sampel memberikan hasil bahwa untuk mendapatkan keunikan jarak fitur wajah dibutuhkan minimal lima jarak fitur wajah. 2. METODOLOGI Dari 150 sampel citra yang digunakan, kombinasi ke delapan jarak antara komponen wajah (J1 J8) yang memberikan tingkat keunikan untuk setiap fitur wajah [1]. Terlihat pada gambar 3.1. J1 = jarak mata kanan mata kiri J2 = jarak mata kanan - mulut J3 = jarak mata kiri - mulut J4 = jarak mata kanan ujung hidun J5 = jarak mata kiri ujung hidung J6 = jarak ujung hidung - mulut J7 = tinggi hidung J8 = lebar hidung Data ini kemudian digunakan Penulis dalam bentuk matriks dengan ordo 150 x 8 yang merupakan persamaan linier non homogen dan kemudian dibuktikan keunikannya dengan menggunakan beberapa metode transformasi linier, yaitu : persamaan linier non homogen AX = B dengan B 0, persamaan linier homogen AX = 0, akar dan vektor karakteristik (eigen value dan eigen vektor), dan persamaan simultan dengan menggunakan iterasi Gauss-Siedel. Dari metode metode tersebut akan dianalisis apakah menghasilkan jawaban yang unik atau tidak. 3. SIMULASI DAN ANALISA 3.1. Simulasi Aplikasi ini menggunakan matriks 150 x 8 yang disimpan dalam file fmata.txt. Matriks ini berasal dari 150 sampel citra yang digunakan, kombinasi ke delapan jarak antara komponen wajah (J1 J8) yang memberikan tingkat keunikan untuk setiap fitur wajah [1] yang didapat dari hasil penelitian sebelumnya. Gambar 3.1 Penetapan jarak antar komponen wajah

3 Tabel 2. Matriks X Gambar 4.1 File Matriks A Selain matriks A yang diperlukan dalam persamaan linier ini, juga diperlukan insisalisasi matriks B dengan men-generate secara random dengan range 1-10 sebanyak 150 baris. Dari ke 150 data untuk matriks B ini tidak memiliki nilai yang sama, jadi random data merupakan 150 data yang berbeda. Tabel 1. Matriks B Data A yang merupakan sebuah matriks berordo 150x8 ini dipartisi menjadi matriks 8x8 sebanyak 19 buah. Matriks X yang dihasilkan tiap bloknya, secara keseluruhan menghasilkan matriks 150x1. Matriks X juga menghasilkan 150 data yang berbeda Analisa Hasil Uji Coba Matriks X yang dihasilkan selanjutnya dijumlahkan per blok untuk mencari rata rata X. Tiap blok matriks memiliki data berupa matriks berukuran 8x1 kemudian dijumlahkan sehingga tetap menghasilkan matriks 8x1. Selanjutnya bagi tiap elemen jumlah matriks tersebut dengan banyaknya blok, dalam penelitian ini terdapat 19 blok sehingga tetap menghasilkan rata-rata matriks X berukuran 8x1. Tabel 3. Data Hasil Rata rata Matriks A per Blok Rata-rata Jumlah matrix matriks X per X per kolom kolom X X X X X X X X Pengujian terhadap matriks A dilakukan dengan mngalikan matriks A dengan rata rata matriks X. Matriks A yang berukuran 150x8 dikalikan dengan matriks rata-rata X perkolom menghasilkan matriks 150x1.

4 Dapat dilihat dari tabel bahwa dari ke 150 data tersebut memiliki nilai yang berbeda. Tabel 4. Pengujian dengan Mengalikan Matriks A dengan Rata rata Matriks X matriks A dan B, sehingga matriks gabungan berukuran 150x9 dengan rank 9. Jadi menurut aturan rank yang telah dibahas pada bab sebelumnya, maka persamaan ini tidak memiliki solusi karena rank matriks A tidak sama dengan rank matriks gabungan. Untuk matriks gabungan, dapat dilihat pada tabel 6. Tabel 6.Penggabungan Matriks A dan B Untuk uji coba menggunakan metode Persamaan Linier Homogen ini, rata rata matriks A per kolom per blok dikalikan dengan suatu nilai B. Uji coba dilakukan dua kali. Yang pertama menggunakan B = 68, yang didapat dari suatu nilai random. Dari hasil yang diperoleh, menujukkan 8 buah data yang memiliki nilai yang berbeda-beda. Sedangkan untuk B yang diberi nilai 0, didapat nilai untuk matriks X1..X8 = 0. Tabel 5. Hasil Uji Coba matriks A dengan Persamaan Linier Homogen matriks B random rata-rata matrik A per blok matrik X, B = B(random) mat X, B= Diuji matriks A berukuran 150x8 dengan matriks B berukuran 150x1. Rank matriks A adalah 8. Selanjutnya penggabungan antara

5 RankA = 8 RankAB = 9 RankABtr = 9 Tidak ada solusi

6 4. PENUTUP Aplikasi deteksi wajah yang dikembangkan pada penelitian kali ini adalah pembuktian keunikan jarak fitur wajah. Metode yang digunakan dalam penelitian ini adalah metode matematis. Aljabar linier merupakan salah satu metode matematis yang sering digunakan dalam mencari dan membuktikan suatu kasus. Pada aplikasi ini, pembobotan sistem persamaan linier dilakukan dengan menggunakan empat metode, yaitu metode sistem persamaan linier homogen menggunakan invers dengan partisi, metode sistem persamaan linier non homogen, metode akar eigen dan vektor eigen, dan metode solusi persamaan simultan dengan penentuan rank. Penelitian ini menggunakan matriks A berukuran 150x8 yang diperoleh dari pengukuran 8 jarak fitur wajah yaitu jarak mata kanan mata kiri, jarak mata kanan mulut, jarak mata kiri mulut, jarak mata kanan ujung hidung, jarak mata kiri ujung hidung, jarak ujung hidung mulut, tinggi hidung, dan lebar hidung dari 150 sampel. Selain matriks A yang diperlukan dalam persamaan linier ini, juga diperlukan inisialisasi matriks B berukuran 150x1 dengan men-generate secara random dengan range 1-10 sebanyak 150 baris. Data A yang merupakan sebuah matriks berordo 150x8 ini dipartisi menjadi matriks 8x8 sebanyak 19 buah. Matriks X yang dihasilkan tiap bloknya, secara keseluruhan menghasilkan matriks 150x1. Matriks X ini kemudian dijumlahkan per blok untuk mencari rata rata X. Pengujian terhadap matriks A dilakukan dengan mengalikan matriks A dengan rata rata matriks X. Dengan demikian dapat diambil kesimpulan bahwa dari hasil pengujian 150 sampel yang masing-masing memiliki 8 data dengan menggunakan metode invers blok untuk persamaan linier homogen menunjukan keunikan. Metode persamaan linier non homogen menunjukkan keunikan dari setiap elemen matriks X yang dihasilkan dari perkalian rata-rata matriks A per blok dengan suatu nilai matriks B random. Pengujian dengan menggunakan aturan rank tidak menghasilkan solusi karena syarat suatu matriks simultan memiliki solusi yaitu matriks A dengan matriks A gabungan B memiliki rank yang sama. DAFTAR PUSTAKA [1] Adang Suhendra Catatan Perkuliahan Pengolahan Citra. Universitas Gunadarma. Jakarta. [2] Anonim "Biometrics". Microsoft Encarta Reference Library Microsoft Corporation. [3] D. Suryadi H. S. Dan S. Harini Machmudi Teori dan Soal Pendahulan Aljabar Linier. Ghalia Indonesia. Jakarta. [4] Hendra Otomatisasi Ekstraksi Fitur Dan Segmentasi Pada Sistem Pengenalan Wajah Dengan MATLAB 6.5. Skripsi (S-1). Universitas Gunadrama. Depok. [5] J. Supranto Pengantar Matrix. Penerbit FE UI. Jakarta. [6] Jong Jek Siang Jaringan syaraf Tiruan dan Pemrogramannya Menggunakan Matlab. Penerbit Andi.Yogyakarta. [7] Moch. Agus Choiron MT Persamaan Aljabar Linier Serentak. Program Semi QUE IV Jurusan Teknik Mesin Unibraw. Surabaya. [8] Rademacher, D. December "Face Detection : Introduction to Computer Vision and Image Processing". Colorado School of Mines.

7 [9] Sigmon, K MATLAB Primer 3 rd Edition. Departement of Mathematics, University of Florida. Gainesville. [10] Wikaria Gazali Matriks Dan Transformasi Liniear. Penerbit Graha Ilmu. Yogyakarta. [11] Yuniar Supardi Pascal dan Flowchart Lewat Praktek. Dinastindo. Jakarta. [12] Zhao, W., et.al. December Face Recognition : A Literature Survey. ACM Computing Survey, Vol 35, No. 4,

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN GARIS-GARIS BESAR PROGRAM PEMBELAJARAN Mata Kuliah : Aljabar Linear Kode / SKS : TIF-5xxx / 3 SKS Dosen : - Deskripsi Singkat : Mata kuliah ini berisi Sistem persamaan Linier dan Matriks, Determinan, Vektor

Lebih terperinci

BAB III METODOLOGI PENELITIAN. manusia dengan menggunakan metode Gabor Filter dan Algoritma

BAB III METODOLOGI PENELITIAN. manusia dengan menggunakan metode Gabor Filter dan Algoritma BAB III METODOLOGI PENELITIAN 3.1 Desain Penelitian Berikut merupakan desain penelitian yang akan digunakan pada proses rancang bangun aplikasi sistem pengenalan pola fraktur tengkorak manusia dengan menggunakan

Lebih terperinci

Verifikasi Citra Wajah Menggunakan Metode Discrete Cosine Transform Untuk Aplikasi Login

Verifikasi Citra Wajah Menggunakan Metode Discrete Cosine Transform Untuk Aplikasi Login The 13 th Industrial Electronics Seminar 011 (IES 011) Electronic Engineering Polytechnic Institute of Surabaya (EEPIS), Indonesia, October 6, 011 Verifikasi Citra Wajah Menggunakan Metode Discrete Cosine

Lebih terperinci

UJI KINERJA FACE RECOGNITION MENGGUNAKAN EIGENFACES

UJI KINERJA FACE RECOGNITION MENGGUNAKAN EIGENFACES 1 Uji Kinerja Face Recognition Menggunakan Eigenfaces UJI KINERJA FACE RECOGNITION MENGGUNAKAN EIGENFACES ABDUL AZIS ABDILLAH 1 1STKIP Surya, Tangerang, Banten, abdillah.azul@gmail.com Abstrak. Pada paper

Lebih terperinci

02-Pemecahan Persamaan Linier (1)

02-Pemecahan Persamaan Linier (1) -Pemecahan Persamaan Linier () Dosen: Anny Yuniarti, M.Comp.Sc Gasal - Anny Agenda Bagian : Vektor dan Persamaan Linier Bagian : Teori Dasar Eliminasi Bagian 3: Eliminasi Menggunakan Matriks Bagian 4:

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : Matematika Diskrit 2 Kode / SKS : IT02 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi. Pendahuluan 2. Vektor.. Pengantar mata kuliah aljabar linier.

Lebih terperinci

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel.

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel. 1. Persamaan Linier 5. PERSAMAAN LINIER Persamaan linier adalah suatu persamaan yang variabel-variabelnya berpangkat satu. Disamping persamaan linier ada juga persamaan non linier. Contoh : a) 2x + 3y

Lebih terperinci

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : September 2014 A. Identitas 1. Nama Matakuliah : A11. 54303/ Matriks & Ruang Vektor 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer

Lebih terperinci

IDENTIFIKASI BIOMETRIK FINGER KNUCKLE PRINT MENGGUNAKAN FITUR EKSTRAKSI PCA DAN GLCM

IDENTIFIKASI BIOMETRIK FINGER KNUCKLE PRINT MENGGUNAKAN FITUR EKSTRAKSI PCA DAN GLCM 1 IDENTIFIKASI BIOMETRIK FINGER KNUCKLE PRINT MENGGUNAKAN FITUR EKSTRAKSI DAN Ratna Dwi Jayanti A11.2011.05949 Program Studi Teknik Informatika S1 Fakultas Ilmu Komputer Universitas Dian Nuswantoro, Jl.

Lebih terperinci

PENCARIAN CITRA BERDASARKAN BENTUK DASAR TEPI OBJEK DAN KONTEN HISTOGRAM WARNA LOKAL

PENCARIAN CITRA BERDASARKAN BENTUK DASAR TEPI OBJEK DAN KONTEN HISTOGRAM WARNA LOKAL Makalah Nomor: KNSI-472 PENCARIAN CITRA BERDASARKAN BENTUK DASAR TEPI OBJEK DAN KONTEN HISTOGRAM WARNA LOKAL Barep Wicaksono 1, Suryarini Widodo 2 1,2 Teknik Informatika, Universitas Gunadarma 1,2 Jl.

Lebih terperinci

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM 3.1 Definisi Masalah Dalam beberapa tahun terakhir perkembangan Computer Vision terutama dalam bidang pengenalan wajah berkembang pesat, hal ini tidak terlepas dari pesatnya

Lebih terperinci

JURNAL PENGKLASIFIKASIAN GENDER DENGAN MENENTUKAN TITIK-TITIK PENTING PADA SISTEM PENGENALAN WAJAH MENGGUNAKAN MATLAB 6.5 DISUSUN OLEH: FARIDA

JURNAL PENGKLASIFIKASIAN GENDER DENGAN MENENTUKAN TITIK-TITIK PENTING PADA SISTEM PENGENALAN WAJAH MENGGUNAKAN MATLAB 6.5 DISUSUN OLEH: FARIDA JURNAL PENGKLASIFIKASIAN GENDER DENGAN MENENTUKAN TITIK-TITIK PENTING PADA SISTEM PENGENALAN WAJAH 1. ABSTRAKSI MENGGUNAKAN MATLAB 6.5 DISUSUN OLEH: FARIDA Pengenalan wajah manusia dengan menggunakan sistem

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : Definisi, Notasi, dan Operasi Vektor 2.

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : Definisi, Notasi, dan Operasi Vektor 2. SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : 3 Minggu Ke Pokok Bahasan dan TIU Sub Pokok Bahasan Sasaran Belajar Cara Pengajaran Media Tugas Referens i 1

Lebih terperinci

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : Maret 2014 A. Identitas 1. Nama Matakuliah : A11. 54812 / Metode Numerik 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer 4. Bobot sks

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 1

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 1 GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 1 Berlaku mulai: Gasal/2010 MATA KULIAH : MATRIK DAN TRANSFORMASI LINEAR KODE MATA KULIAH / SKS : 410102042 / 3 SKS MATA

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Setiap manusia diciptakan dengan bentuk fisik dan rupa yang berbeda sehingga manusia tersebut dapat dibedakan satu dengan yang lainnya. Pada teknologi informasi

Lebih terperinci

1. PENDAHULUAN Bidang perindustrian merupakan salah satu bidang yang juga banyak menggunakan kecanggihan teknologi, walaupun pada beberapa bagian, mas

1. PENDAHULUAN Bidang perindustrian merupakan salah satu bidang yang juga banyak menggunakan kecanggihan teknologi, walaupun pada beberapa bagian, mas PENGKLASIFIKASIAN KUALITAS KERAMIK BERDASARKAN EKSTRAKSI FITUR TEKSTUR STATISTIK Yogi Febrianto yoefanto@gmail.com Jurusan Teknik Informatika Fakultas Teknologi Industri Universitas Gunadarma Jl. Margonda

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Citra Berikut adalah beberapa definisi dari citra, antara lain: rupa; gambar; gambaran (Kamus Besar Bahasa Indonesia). Sebuah fungsi dua dimensi, f(x, y), di mana x dan y adalah

Lebih terperinci

Pendahuluan. Praktikum Pengantar Pengolahan Citra Digital Departemen Ilmu Komputer Copyright 2008 All Rights Reserved

Pendahuluan. Praktikum Pengantar Pengolahan Citra Digital Departemen Ilmu Komputer Copyright 2008 All Rights Reserved 1 Pengenalan Matlab Pendahuluan Matlab adalah perangkat lunak yang dapat digunakan untuk analisis dan visualisasi data. Matlab didesain untuk mengolah data dengan menggunakan operasi matriks. Matlab juga

Lebih terperinci

Perbandingan Antara Metode Kohonen Neural Network dengan Metode Learning Vector Quantization Pada Pengenalan Pola Tandatangan

Perbandingan Antara Metode Kohonen Neural Network dengan Metode Learning Vector Quantization Pada Pengenalan Pola Tandatangan Jurnal Sains & Matematika (JSM) ISSN Kajian 0854-0675 Pustaka Volume14, Nomor 4, Oktober 2006 Kajian Pustaka: 147-153 Perbandingan Antara Metode Kohonen Neural Network dengan Metode Learning Vector Quantization

Lebih terperinci

BAB III METODE PENELITIAN. Tujuan tugas akhir ini akan membangun suatu model sistem yang

BAB III METODE PENELITIAN. Tujuan tugas akhir ini akan membangun suatu model sistem yang BAB III METODE PENELITIAN 3.1 Model Pengembangan Tujuan tugas akhir ini akan membangun suatu model sistem yang melakukan proses data mulai dari pengolahan citra otak hingga menghasilkan output analisa

Lebih terperinci

JURNAL TEODOLITA. VOL. 14 NO. 1, Juni 2013 ISSN DAFTAR ISI

JURNAL TEODOLITA. VOL. 14 NO. 1, Juni 2013 ISSN DAFTAR ISI JURNAL TEODOLITA VOL. 14 NO. 1, Juni 2013 ISSN 1411-1586 DAFTAR ISI Perpaduan Arsitektur Jawa dan Sunda Pada Permukiman Bonokeling Di Banyumas, Jawa Tengah...1-15 Wita Widyandini, Atik Suprapti, R. Siti

Lebih terperinci

SILABUS MATA KULIAH. Tanggal Berlaku : 4 September 2015

SILABUS MATA KULIAH. Tanggal Berlaku : 4 September 2015 SILABUS MATA KULIAH Tanggal Berlaku : 4 September 2015 A. Identitas 1. Nama Matakuliah : dan Ruang Vektor 2. Program Studi : Teknik Industri 3. Fakultas : Teknik 4. Bobot sks : 3 5. Elemen : MKK 6. Jenis

Lebih terperinci

PEMANFAATAN NEURAL NETWORK PERCEPTRON PADA PENGENALAN POLA KARAKTER

PEMANFAATAN NEURAL NETWORK PERCEPTRON PADA PENGENALAN POLA KARAKTER PEMANFAATAN NEURAL NETWORK PERCEPTRON PADA PENGENALAN POLA KARAKTER Fakultas Teknologi Informasi Universitas Merdeka Malang Abstract: Various methods on artificial neural network has been applied to identify

Lebih terperinci

APLIKASI METODE PANGKAT DALAM MENGAPROKSIMASI NILAI EIGEN KOMPLEKS PADA MATRIKS

APLIKASI METODE PANGKAT DALAM MENGAPROKSIMASI NILAI EIGEN KOMPLEKS PADA MATRIKS Jurnal UJMC, Volume, Nomor, Hal 36-40 pissn : 460-3333 eissn : 579-907X APLIKASI METODE PANGKAT DALAM MENGAPROKSIMASI NILAI EIGEN KOMPLEKS PADA MATRIKS Novita Eka Chandra dan Wiwin Kusniati Universitas

Lebih terperinci

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU Sistem persamaan linear orde/ tingkat satu memiliki bentuk standard : = = = = = = = = = + + + + + + + + + + Diasumsikan koefisien = dan fungsi adalah menerus

Lebih terperinci

Satuan Acara Perkuliahan

Satuan Acara Perkuliahan FM-UAD-PBM-08-05/R0 Satuan Acara Perkuliahan Kode / Nama Mata Kuliah : TC19153 /Matriks dan Ruang Vektor Revisi ke : 0 Satuan Kredit Semester : 3 sks Tanggal revisi : - Jumlah jam kuliah dalam seminggu

Lebih terperinci

IMPLEMENTASI APLIKASI PENGENALAN JENIS KELAMIN BERDASARKAN CITRA WAJAH DENGAN METODE SUPPORT VECTOR MACHINE SECARA REAL TIME

IMPLEMENTASI APLIKASI PENGENALAN JENIS KELAMIN BERDASARKAN CITRA WAJAH DENGAN METODE SUPPORT VECTOR MACHINE SECARA REAL TIME IMPLEMENTASI APLIKASI PENGENALAN JENIS KELAMIN BERDASARKAN CITRA WAJAH DENGAN METODE SUPPORT VECTOR MACHINE SECARA REAL TIME Implementation of Gender Recognition Applications Based on Face Image with Support

Lebih terperinci

PENGENALAN WAJAH DENGAN MENGGUNAKAN NLDA (NULL-SPACE LINEAR DISCRIMINANT ANALYSIS)

PENGENALAN WAJAH DENGAN MENGGUNAKAN NLDA (NULL-SPACE LINEAR DISCRIMINANT ANALYSIS) PENGENALAN WAJAH DENGAN MENGGUNAKAN NLDA (NULL-SPACE LINEAR DISCRIMINANT ANALYSIS) Disusun oleh : Yudi Setiawan (0722095) Jurusan Teknik Elektro, Fakultas Teknik, Jl. Prof. Drg. Suria Sumantri, MPH, No.

Lebih terperinci

PENGGUNAAN METODE HILL CIPHER UNTUK KRIPTOGRAFI PADA CITRA DIGITAL. Muhammad Rizal 1), Afdal 2)

PENGGUNAAN METODE HILL CIPHER UNTUK KRIPTOGRAFI PADA CITRA DIGITAL. Muhammad Rizal 1), Afdal 2) PENGGUNAAN METODE HILL CIPHER UNTUK KRIPTOGRAFI PADA CITRA DIGITAL Muhammad Rizal 1), Afdal 2) Program Studi Magister Teknik Informatika, Universitas Sumatera Utara Jl. dr. Mansur No. 9 Padang Bulan, Medan

Lebih terperinci

BAB III METODE PENELITIAN. dan bahan, agar mendapatkan hasil yang baik dan terstruktur. Processor Intel Core i3-350m.

BAB III METODE PENELITIAN. dan bahan, agar mendapatkan hasil yang baik dan terstruktur. Processor Intel Core i3-350m. BAB III METODE PENELITIAN 3.1 Alat dan Bahan Untuk menunjang penelitian yang akan dilakukan, maka diperlukan alat dan bahan, agar mendapatkan hasil yang baik dan terstruktur. 3.1.1 Alat Penelitian Adapun

Lebih terperinci

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel)

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U November 2015 MZI (FIF Tel-U) Ruang Baris, Kolom,

Lebih terperinci

APLIKASI MATRIKS DAN RUANG VEKTOR, oleh Dr. Adiwijaya Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta Telp: ;

APLIKASI MATRIKS DAN RUANG VEKTOR, oleh Dr. Adiwijaya Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta Telp: ; APLIKASI MATRIKS DAN RUANG VEKTOR, oleh Dr. Adiwijaya Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283 Telp: 0274-889398; Fax: 0274-889057; E-mail: info@grahailmu.co.id Hak Cipta

Lebih terperinci

ANALISIS DAN PERANCANGAN SISTEM

ANALISIS DAN PERANCANGAN SISTEM ANALISIS DAN PERANCANGAN SISTEM 3.1 Analisis Masalah Dalam mengetahui suatu bahan jenis kulit cukup sulit karena bahan jenis kulit memeliki banyak jenis. Setiap permukaan atau tekstur dari setiap jenisnya

Lebih terperinci

PERANCANGAN SISTEM PENGENAL DIGIT ANGKA METER AIR MENGGUNAKAN JARINGAN SYARAF TIRUAN KOHONEN

PERANCANGAN SISTEM PENGENAL DIGIT ANGKA METER AIR MENGGUNAKAN JARINGAN SYARAF TIRUAN KOHONEN PERANCANGAN SISTEM PENGENAL DIGIT ANGKA METER AIR MENGGUNAKAN JARINGAN SYARAF TIRUAN KOHONEN Teguh Triantoro, F. Rizal Batubara, Fahmi Konsentrasi Teknik Komputer, Departemen Teknik Elektro Fakultas Teknik

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang 1.2. Rumusan Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang 1.2. Rumusan Masalah BAB I Pendahuluan 1 BAB I PENDAHULUAN 1.1. Latar Belakang Pemalsuan identitas sering kali menjadi permasalahan utama dalam keamanan data, karena itulah muncul teknik-teknik pengamanan data seperti penggunaan

Lebih terperinci

MODUL 3 FAKTORISASI LU, PARTISI MATRIK DAN FAKTORISASI QR

MODUL 3 FAKTORISASI LU, PARTISI MATRIK DAN FAKTORISASI QR MODUL 3 FAKTORISASI LU, PARTISI MATRIK DAN FAKTORISASI QR KOMPETENSI: 1. Memahami penggunaan faktorisasi LU dalam penyelesaian persamaan linear.. Memahami penggunaan partisi matrik dalam penyelesaian persamaan

Lebih terperinci

Pengenalan Wajah dengan Metode Subspace LDA (Linear Discriminant Analysis)

Pengenalan Wajah dengan Metode Subspace LDA (Linear Discriminant Analysis) Pengenalan Wajah dengan Metode Subspace LDA (Linear Discriminant Analysis) Ratna Nur Azizah Jurusan Teknik Elektro FTI, Institut Teknologi Sepuluh Nopember Kampus ITS, Keputih-Sukolilo, Surabaya-60111

Lebih terperinci

Teknik Reduksi Dimensi Menggunakan Komponen Utama Data Partisi Pada Pengklasifikasian Data Berdimensi Tinggi dengan Ukuran Sampel Kecil

Teknik Reduksi Dimensi Menggunakan Komponen Utama Data Partisi Pada Pengklasifikasian Data Berdimensi Tinggi dengan Ukuran Sampel Kecil Teknik Reduksi Dimensi Menggunakan Komponen Utama Data Partisi Pada Pengklasifikasian Data Berdimensi Tinggi dengan Ukuran Sampel Kecil Ronny Susetyoko, Elly Purwantini Politeknik Elektronika Negeri Surabaya

Lebih terperinci

BAB I PENDAHULUAN. untuk meniru sistem visual manusia (human vision).

BAB I PENDAHULUAN. untuk meniru sistem visual manusia (human vision). BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi yang sangat cepat, terutama pada teknologi komputer sehingga membuat pekerjaan pengolahan data dapat ditangani dengan lebih cepat dan tepat.

Lebih terperinci

IMPLEMENTASI SEGMENTASI CITRA DAN ALGORITMA LEARNING VECTOR QUANTIZATION (LVQ) DALAM PENGENALAN BENTUK BOTOL

IMPLEMENTASI SEGMENTASI CITRA DAN ALGORITMA LEARNING VECTOR QUANTIZATION (LVQ) DALAM PENGENALAN BENTUK BOTOL IMPLEMENTASI SEGMENTASI CITRA DAN ALGORITMA LEARNING VECTOR QUANTIZATION (LVQ) DALAM PENGENALAN BENTUK BOTOL Andri STMIK Mikroskil Jl. Thamrin No. 122, 124, 140 Medan 20212 andri@mikroskil.ac.id Abstrak

Lebih terperinci

BAB 1 PENDAHULUAN 1-1

BAB 1 PENDAHULUAN 1-1 BAB 1 PENDAHULUAN Bab ini menjelaskan mengenai Latar Belakang, Identifikasi Masalah, Tujuan Tugas Akhir, Lingkup Tugas Akhir, Metodologi Tugas Akhir dan Sistematika Penulisan Tugas Akhir. 1.1 Latar Belakang

Lebih terperinci

ANALISA PENGUKURAN SIMILARITAS BERDASARKAN JARAK MINIMUM PADA PENGENALAN WAJAH 2D MENGGUNAKAN DIAGONAL PRINCIPAL COMPONENT ANALYSIS

ANALISA PENGUKURAN SIMILARITAS BERDASARKAN JARAK MINIMUM PADA PENGENALAN WAJAH 2D MENGGUNAKAN DIAGONAL PRINCIPAL COMPONENT ANALYSIS ANALISA PENGUKURAN SIMILARITAS BERDASARKAN JARAK MINIMUM PADA PENGENALAN WAJAH 2D MENGGUNAKAN DIAGONAL PRINCIPAL COMPONENT ANALYSIS Fetty Tri Anggraeny, Wahyu J.S Saputra Jurusan Teknik Informatika, Universitas

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS)

RENCANA PEMBELAJARAN SEMESTER (RPS) RENCANA PEMBELAJARAN SEMESTER (RPS) CIG4E3 PENGOLAHAN CITRA DIGITAL Disusun oleh: Bedy Purnama PROGRAM STUDI S1 TEKNIK INFORMATIKA FAKULTAS INFORMATIKA TELKOM UNIVERSITY LEMBAR PENGESAHAN Rencana Pembelajaran

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT / 2 SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT / 2 SKS SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT0143231 / 2 SKS Deskripsi: - Mata kuliah ini mempelajari konsep aljabar linear sebagai dasar untuk membuat algoritma dalam permasalahan

Lebih terperinci

SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON

SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON Jurnal Informatika Mulawarman Vol. 7 No. 3 Edisi September 2012 105 SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON Anindita Septiarini Program Studi Ilmu Komputer FMIPA,

Lebih terperinci

(MS.3) SUBRUANG CONINVARIAN DARI MATRIKS KUADRAT KOMPLEKS

(MS.3) SUBRUANG CONINVARIAN DARI MATRIKS KUADRAT KOMPLEKS Seminar Nasional Statistika 2 November 20 Vol 2, November 20 (MS.3) SUBRUANG CONINVARIAN DARI MATRIKS KUADRAT KOMPLEKS Euis Hartini Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode / Nama Mata Kuliah : A11. 54303/ Matriks & Ruang Vektor Revisi 2 Satuan Kredit Semester : 3 SKS Tgl revisi : Agustus 2014 Jml Jam kuliah dalam

Lebih terperinci

ANALISIS CITRA WAJAH DENGAN HIMPUNAN FUZZY EIGEN TERBESAR

ANALISIS CITRA WAJAH DENGAN HIMPUNAN FUZZY EIGEN TERBESAR ANALISIS CITRA WAJAH DENGAN HIMPUNAN FUZZY EIGEN TERBESAR Shinta Puspasari MDP Computer and Informatics Management Institute Jl. Rajawali 14, Palembang, 30113, Indonesia e-mail : shinta@stmik-mdp.net ABSTRAKSI

Lebih terperinci

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: =

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: = BAB II LANDASAN TEORI 2.1 Matriks Definisi 2.1 (Lipschutz, 2006): Matriks adalah susunan segiempat dari skalarskalar yang biasanya dinyatakan dalam bentuk sebagai berikut: Setiap skalar yang terdapat dalam

Lebih terperinci

Implementasi Metode Hough Transform Pada Citra Skeletonisasi Dengan Menggunakan MATLAB 7.6. Intan Nur Lestari

Implementasi Metode Hough Transform Pada Citra Skeletonisasi Dengan Menggunakan MATLAB 7.6. Intan Nur Lestari Implementasi Metode Hough Transform Pada Citra Skeletonisasi Dengan Menggunakan MATLAB 7.6 Intan Nur Lestari Fakultas Teknologi Industri Universitas Gunadarma Jl. Margonda Raya, 100, Pondok Cina, Depok

Lebih terperinci

Jaringan Syaraf Tiruan Bidirectional Associative Memory (BAM) Sebagai Identifikasi Pola Sidik jari Manusia

Jaringan Syaraf Tiruan Bidirectional Associative Memory (BAM) Sebagai Identifikasi Pola Sidik jari Manusia Jurnal Informatika Mulawarman Vol 4 No. 1 Feb 2009 21 Jaringan Syaraf Tiruan Bidirectional Associative Memory (BAM) Sebagai Identifikasi Pola Sidik jari Manusia ZAINAL ARIFIN Program Studi Ilmu Komputer,

Lebih terperinci

Aljabar Linear Elementer MA SKS. 07/03/ :21 MA-1223 Aljabar Linear 1

Aljabar Linear Elementer MA SKS. 07/03/ :21 MA-1223 Aljabar Linear 1 Aljabar Linear Elementer MA SKS 7//7 : MA- Aljabar Linear Jadwal Kuliah Hari I Hari II jam jam Sistem Penilaian UTS 4% UAS 4% Quis % 7//7 : MA- Aljabar Linear Silabus : Bab I Matriks dan Operasinya Bab

Lebih terperinci

SUMMARY ALJABAR LINEAR

SUMMARY ALJABAR LINEAR SUMMARY ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta

Lebih terperinci

PERANGKAT LUNAK BANTU ANALISIS NUMERIK METODE DETERMINAN CRAMER, ELIMINASI GAUSS DAN LELARAN GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR

PERANGKAT LUNAK BANTU ANALISIS NUMERIK METODE DETERMINAN CRAMER, ELIMINASI GAUSS DAN LELARAN GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR PERANGKAT LUNAK BANTU ANALISIS NUMERIK METODE DETERMINAN CRAMER, ELIMINASI GAUSS DAN LELARAN GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR Tacbir Hendro Pudjiantoro A B S T R A K Salah satu

Lebih terperinci

MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI

MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI SAP (1) Buku : Suryadi H.S. 1991, Pengantar Aljabar dan Geometri analitik Vektor Definisi, Notasi, dan Operasi Vektor Susunan

Lebih terperinci

Solusi Sistem Persamaan Linear Ax = b

Solusi Sistem Persamaan Linear Ax = b Solusi Sistem Persamaan Linear Ax = b Kie Van Ivanky Saputra April 27, 2009 K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, 2009 1 / 9 Review 1 Substitusi mundur pada sistem

Lebih terperinci

Pengenalan Benda di Jalan Raya dengan Metode Kalman Filter. Roslyn Yuniar Amrullah

Pengenalan Benda di Jalan Raya dengan Metode Kalman Filter. Roslyn Yuniar Amrullah Pengenalan Benda di Jalan Raya dengan Metode Kalman Filter Roslyn Yuniar Amrullah 7406040026 Abstrak Computer Vision merupakan disiplin ilmu perpanjangan dari pengolahan citra digital dan kecerdasan buatan.

Lebih terperinci

EKSTRAKSI CIRI GEOMETRIS UNTUK APLIKASI IDENTIFIKASI WAJAH. Oleh: Kholistianingsih

EKSTRAKSI CIRI GEOMETRIS UNTUK APLIKASI IDENTIFIKASI WAJAH. Oleh: Kholistianingsih EKSTRAKSI CIRI GEOMETRIS UNTUK APLIKASI IDENTIFIKASI WAJAH Oleh: Kholistianingsih Abstract Face recognition is a non-contact biometric identification that tries to verify individuals automatically based

Lebih terperinci

PENENTUAN NILAI VEKTOR PEWAKIL AWAL PADA ARSITEKTUR JARINGAN SYARAF TIRUAN LVQ UNTUK PENGENALAN WAJAH

PENENTUAN NILAI VEKTOR PEWAKIL AWAL PADA ARSITEKTUR JARINGAN SYARAF TIRUAN LVQ UNTUK PENGENALAN WAJAH PENENTUAN NILAI VEKTOR PEWAKIL AWAL PADA ARSITEKTUR JARINGAN SYARAF TIRUAN LVQ UNTUK PENGENALAN WAJAH Devira Anggi Maharani 1, Mila Fauziyah 2, Denda Dewatama 3 1,2 Jurusan Elektro, Prodi Elektronika,

Lebih terperinci

Aplikasi Deteksi Wajah pada Foto Dijital dalam Sistem Pengenalan Wajah

Aplikasi Deteksi Wajah pada Foto Dijital dalam Sistem Pengenalan Wajah st Seminar on Application and Research in Industrial Technology, SMART 2006 Yogyakarta, 27 April 2006 Aplikasi Deteksi Wajah pada Foto Dital ) Karmilasari, 2) Dewi Agushinta R, dan 3) Syahrul Ramadhan

Lebih terperinci

MAKALAH BASIS RUANG SOLUSI

MAKALAH BASIS RUANG SOLUSI MAKALAH BASIS RUANG SOLUSI Untuk Memenuhi Tugas Mata Kuliah Aljabar Linier Dosen pengampu : Darmadi,S.Si,M.pd Di susun Oleh : Kelompok 6/ VF 1. Fitria Wahyuningsih ( 08411.135 ) 2. Pradipta Annurwanda

Lebih terperinci

Hasil Ekstraksi Algoritma Principal Component Analysis (PCA) untuk Pengenalan Wajah dengan Bahasa Pemograman Java Eclipse IDE

Hasil Ekstraksi Algoritma Principal Component Analysis (PCA) untuk Pengenalan Wajah dengan Bahasa Pemograman Java Eclipse IDE Hasil Ekstraksi Algoritma Principal Component Analysis (PCA) untuk Pengenalan dengan Bahasa Pemograman Java Eclipse IDE Fiqih Ismawan Dosen Program Studi Teknik Informatika, FMIPA Universitas Indraprasta

Lebih terperinci

UNJUK KERJA METODE KLASIFIKASI SUPPORT VECTOR MACHINE (SVM) DENGAN LEARNING VECTOR QUANTIZATION (LVQ) PADA APLIKASI PENGENALAN WAJAH

UNJUK KERJA METODE KLASIFIKASI SUPPORT VECTOR MACHINE (SVM) DENGAN LEARNING VECTOR QUANTIZATION (LVQ) PADA APLIKASI PENGENALAN WAJAH ISSN : 1693 1173 UNJUK KERJA METODE KLASIFIKASI SUPPORT VECTOR MACHINE (SVM) DENGAN LEARNING VECTOR QUANTIZATION (LVQ) PADA APLIKASI PENGENALAN WAJAH Yustina Retno Wahyu Utami 1), Teguh Susyanto 2). Abstract

Lebih terperinci

VERIFIKASI CITRA WAJAH MENGGUNAKAN METODE DISCRETE COSINE TRANSFORM UNTUK APLIKASI LOGIN

VERIFIKASI CITRA WAJAH MENGGUNAKAN METODE DISCRETE COSINE TRANSFORM UNTUK APLIKASI LOGIN VERIFIKASI CITRA WAJAH MENGGUNAKAN METODE DISCRETE COSINE TRANSFORM UNTUK APLIKASI LOGIN Dimas Achmad Akbar Kusuma (1), Fernando Ardilla (), Bima Sena Bayu Dewantara () (1) Mahasiswa Program Studi Teknik

Lebih terperinci

BAB II TINJAUAN PUSTAKA. menggunakan PCA, kemudian penelitian yang menggunakan algoritma Fuzzy C-

BAB II TINJAUAN PUSTAKA. menggunakan PCA, kemudian penelitian yang menggunakan algoritma Fuzzy C- 8 BAB II TINJAUAN PUSTAKA 2.1 Studi Pendahuluan Sebelumnya telah ada penelitian tentang sistem pengenalan wajah 2D menggunakan PCA, kemudian penelitian yang menggunakan algoritma Fuzzy C- Means dan jaringan

Lebih terperinci

APLIKASI ANALYTICAL HIERARCHY PROCESS (AHP) PADA PEMILIHAN SOFTWARE MANAJEMEN PROYEK

APLIKASI ANALYTICAL HIERARCHY PROCESS (AHP) PADA PEMILIHAN SOFTWARE MANAJEMEN PROYEK APLIKASI ANALYTICAL HIERARCHY PROCESS (AHP) PADA PEMILIHAN SOFTWARE MANAJEMEN PROYEK Siti Komsiyah Mathematics Department, School of Computer Science, Binus University Jl. K.H. Syahdan No. 9, Palmerah,

Lebih terperinci

BAB II DASAR DASAR TEORI

BAB II DASAR DASAR TEORI BAB II DASA DASA TEOI.. uang ruang Vektor.. uang Vektor Umum Defenisi dan sifat sifat sederhana Defenisi : Misalkan V adalah sebarang himpunan benda yang didefenisikan dua operasi, yakni penambahan perkalian

Lebih terperinci

Aljabar Linier Elementer. Kuliah 7

Aljabar Linier Elementer. Kuliah 7 Aljabar Linier Elementer Kuliah 7 Materi Kuliah Ekspansi kofaktor Aturan Cramer 2 2.4 Espansi Kofaktor; Aturan Cramer Definisi: Jika A adalah matriks bujur sangkar, maka minor dari entri a ij dinyatakan

Lebih terperinci

: Algoritma dan Pemrograman I Modul Praktikum ke : 08

: Algoritma dan Pemrograman I Modul Praktikum ke : 08 Praktikum : Algoritma dan Pemrograman I Modul Praktikum ke : 08 Judul Materi : Array II Tujuan / Sasaran : Mahasiswa dapat membuat pseudocode dan mempraktekkan perintah Array 2 dimensi Waktu (lama) : 3

Lebih terperinci

BAB III METODE PENELITIAN. Pemotong an Suara. Convert. .mp3 to.wav Audacity. Audacity. Gambar 3.1 Blok Diagram Penelitian

BAB III METODE PENELITIAN. Pemotong an Suara. Convert. .mp3 to.wav Audacity. Audacity. Gambar 3.1 Blok Diagram Penelitian BAB III METODE PENELITIAN 3.1 Model Penelitian Penelitian yang dilakukan dapat dijelaskan melalui blok diagram seperti yang terlihat pada Gambar 3.1. Suara Burung Burung Kacer Burung Kenari Pengambil an

Lebih terperinci

Pendahuluan 9/7/2011. Overview. Deskripsi

Pendahuluan 9/7/2011. Overview. Deskripsi Pertemuan : I Dosen Pembina : Sriyani Violina Danang Junaedi Pendahuluan Overview Deskripsi Tujuan Instruksional Kaitan Materi Urutan Bahasan Penilaian Grade Referensi 2 Deskripsi Tujuan Instruksional

Lebih terperinci

BAB III PEMROGRAMAN MATLAB 2 Copyright by

BAB III PEMROGRAMAN MATLAB 2 Copyright by BAB III PEMROGRAMAN MATLAB 2 1 M-File M-file merupakan sederetan perintah matlab yang dituliskan secara berurutan sebagai sebuah file. Nama file yang digunakan berekstensi m yang menandakan bahwa file

Lebih terperinci

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode / Nama Mata Kuliah : A11. 54812 / Metode Numerik Revisi - Satuan Kredit Semester : 3 SKS Tgl revisi : - Jml Jam kuliah dalam seminggu : 3 x 50

Lebih terperinci

PENERAPAN METODE NUMERIK PADA PERAMALAN UNTUK MENGHITUNG KOOEFISIEN-KOEFISIEN PADA GARIS REGRESI LINIER BERGANDA

PENERAPAN METODE NUMERIK PADA PERAMALAN UNTUK MENGHITUNG KOOEFISIEN-KOEFISIEN PADA GARIS REGRESI LINIER BERGANDA PENERAPAN METODE NUMERIK PADA PERAMALAN UNTUK MENGHITUNG KOOEFISIEN-KOEFISIEN PADA GARIS REGRESI LINIER BERGANDA Yuniarsi Rahayu, S.Si, M.Kom Program Studi Teknik Informatika, Fakultas Ilmu Komputer Universitas

Lebih terperinci

Program Aplikasi Komputer Pengenalan Angka Dengan Pose Jari Tangan Sebagai Media Pembelajaran Interaktif Anak Usia Dini

Program Aplikasi Komputer Pengenalan Angka Dengan Pose Jari Tangan Sebagai Media Pembelajaran Interaktif Anak Usia Dini Program Aplikasi Komputer Pengenalan Angka Dengan Pose Jari Tangan Sebagai Media Pembelajaran Interaktif Anak Usia Dini Wawan Kurniawan Jurusan PMIPA, FKIP Universitas Jambi wwnkurnia79@gmail.com Abstrak

Lebih terperinci

Muhammad Nasir. Jurusan Teknik Elektro Politeknik Negeri Lhokseumawe Jl. Banda Aceh Medan Km Lhokseumawe

Muhammad Nasir. Jurusan Teknik Elektro Politeknik Negeri Lhokseumawe Jl. Banda Aceh Medan Km Lhokseumawe KLASIFIKASI DAN PNGNALAN SIDIK JAI TTUMPUK BBASIS MTOD LANING VCTO QUANTIZATION Muhammad Nasir Jurusan Teknik lektro Politeknik Negeri Lhokseumawe Jl. Banda Aceh Medan Km. 280. Lhokseumawe 21 mail : masnasir_poli@yahoo.com

Lebih terperinci

: Algoritma dan Pemrograman I Modul Praktikum ke : 08

: Algoritma dan Pemrograman I Modul Praktikum ke : 08 Praktikum : Algoritma dan Pemrograman I Modul Praktikum ke : 08 Judul Materi : Array II Tujuan / Sasaran : Mahasiswa dapat membuat pseudocode dan mempraktekkan perintah Array 2 dimensi Waktu (lama) : 3

Lebih terperinci

BAB 1 PENDAHULUAN. pemograman juga mengalami peningkatan kerumitan dan fungsi. Salah satu bidang

BAB 1 PENDAHULUAN. pemograman juga mengalami peningkatan kerumitan dan fungsi. Salah satu bidang BAB 1 PENDAHULUAN 1.1 Latar Belakang Seiring dengan perkembangan teknologi informasi, kemajuan dibidang pemograman juga mengalami peningkatan kerumitan dan fungsi. Salah satu bidang yang sedang berkembang

Lebih terperinci

PENGGUNAAN MATLAB DALAM PENYELESAIAN SISTEM PERSAMAAN LINEAR MENGGUNAKAN JARINGAN HOPFIELD LINEAR ABSTRAK

PENGGUNAAN MATLAB DALAM PENYELESAIAN SISTEM PERSAMAAN LINEAR MENGGUNAKAN JARINGAN HOPFIELD LINEAR ABSTRAK PENGGUNAAN MATLAB DALAM PENYELESAIAN SISTEM PERSAMAAN LINEAR MENGGUNAKAN JARINGAN HOPFIELD LINEAR Rosihan Ari Yuana Program Studi Pendidikan Matematika Universitas Sebelas Maret ABSTRAK Aplikasi jaringan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Aljabar Matriks 2.1.1 Definisi Matriks Matriks adalah suatu kumpulan angka-angka yang juga sering disebut elemen-elemen yang disusun secara teratur menurut baris dan kolom sehingga

Lebih terperinci

BAB 4 ANALISIS DAN SIMULASI

BAB 4 ANALISIS DAN SIMULASI BAB 4 ANALISIS DAN SIMULASI Pada bab empat ini akan menjelaskan mengenai hasil rancangan dari program aplikasi pengujian struktur aljabar, yaitu implementasi sistem dari rancangan program yang telah dibuat

Lebih terperinci

PERTEMUAN 8 MATRIX. Introduction Definition How is matrix stored in memory Declaration Processing

PERTEMUAN 8 MATRIX. Introduction Definition How is matrix stored in memory Declaration Processing PERTEMUAN 8 MATRIX Introduction Definition How is matrix stored in memory Declaration Processing INTRODUCTION Sebuah larik yang setiap elemennya adalah larik lagi disebut matriks Contoh matriks identitas:

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN BAB 3 METODOLOGI PENELITIAN 3.1. Penentuan Masalah Penelitian Masalah masalah yang dihadapi oleh penggunaan identifikasi sidik jari berbasis komputer, yaitu sebagai berikut : 1. Salah satu masalah dalam

Lebih terperinci

SEGMENTASI CITRA CT SCAN TUMOR OTAK MENGGUNAKAN MATEMATIKA MORFOLOGI (WATERSHED) DENGAN FLOOD MINIMUM OPTIMAL

SEGMENTASI CITRA CT SCAN TUMOR OTAK MENGGUNAKAN MATEMATIKA MORFOLOGI (WATERSHED) DENGAN FLOOD MINIMUM OPTIMAL SEGMENTASI CITRA CT SCAN TUMOR OTAK MENGGUNAKAN MATEMATIKA MORFOLOGI (WATERSHED) DENGAN FLOOD MINIMUM OPTIMAL Andi Hendra 1 1 Jurusan Matematika MIPA Universitas Tadulako ABSTRAK Penelitian pengolahan

Lebih terperinci

Part II SPL Homogen Matriks

Part II SPL Homogen Matriks Part II SPL Homogen Matriks SPL Homogen Bentuk Umum SPL homogen dalam m persamaan dan n variabel x 1, x 2,, x n : a 11 x 1 + a 12 x 2 + + a 1n x n = 0 a 21 x 1 + a 22 x 2 + + a 2n x n = 0 a m1 x 1 + a

Lebih terperinci

BAB I PENDAHULUAN. tangan dijadikan alat untuk menganalisis kepribadian pemiliknya. Sebuah

BAB I PENDAHULUAN. tangan dijadikan alat untuk menganalisis kepribadian pemiliknya. Sebuah BAB I PENDAHULUAN 1.1 Latar Belakang Tulisan tangan merupakan salah satu hal unik yang dapat dihasilkan oleh manusia selain tanda tangan. Seperti halnya tanda tangan, tulisan tangan juga dapat digunakan

Lebih terperinci

PEMANFAATAN SOFTWARE MATLAB DALAM PEMBELAJARAN METODE NUMERIK POKOK BAHASAN SISTEM PERSAMAAN LINEAR SIMULTAN

PEMANFAATAN SOFTWARE MATLAB DALAM PEMBELAJARAN METODE NUMERIK POKOK BAHASAN SISTEM PERSAMAAN LINEAR SIMULTAN PEMANFAATAN SOFTWARE MATLAB DALAM PEMBELAJARAN METODE NUMERIK POKOK BAHASAN SISTEM PERSAMAAN LINEAR SIMULTAN Any Muanalifah Dosen Jurusan Tadris Matematika FITK IAIN Walisongo Abstrak Persoalan yang melibatkan

Lebih terperinci

: Algoritma dan Pemrograman I Modul Praktikum ke : 09

: Algoritma dan Pemrograman I Modul Praktikum ke : 09 Praktikum : Algoritma dan Pemrograman I Modul Praktikum ke : 09 Judul Materi : Array III Tujuan / Sasaran : Mahasiswa dapat membuat pseudecode dan mempraktekkan perintah Array tiga dimensi dan multidimensi

Lebih terperinci

Operasi Baris Elementer (OBE) dan Eliminasi Gauss-Jordan (EGJ)

Operasi Baris Elementer (OBE) dan Eliminasi Gauss-Jordan (EGJ) Operasi Baris Elementer (OBE) dan Eliminasi Gauss-Jordan (EGJ) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Agustus 2015 MZI (FIF Tel-U) OBE dan

Lebih terperinci

BAB I PENDAHULUAN. identitas individu baik secara fisiologis, sehingga dapat dijadikan alat atau

BAB I PENDAHULUAN. identitas individu baik secara fisiologis, sehingga dapat dijadikan alat atau BAB I PENDAHULUAN 1.1 Latar Belakang Teknologi biometrik merupakan teknologi yang memanfaatkan identitas individu baik secara fisiologis, sehingga dapat dijadikan alat atau kunci dalam kontrol akses ke

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Bab ini menjelaskan landasan teori dari metode yang digunakan dalam proses pengenalan wajah, yaitu terdiri atas: metode Eigenface, dan metode Jarak Euclidean. Metode Eigenface digunakan

Lebih terperinci

Aplikasi Pengenalan Citra Chord Gitar Menggunakan Learning Vector Quantization (LVQ)

Aplikasi Pengenalan Citra Chord Gitar Menggunakan Learning Vector Quantization (LVQ) 95 Aplikasi Pengenalan Citra Chord Gitar Menggunakan Learning Vector Quantization (LVQ) Imam Suderajad *), Tamam Asrori **), Mohammad ***), Dwi Prananto ****) Teknik Elektro, Universitas Panca Marga Email:

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. 4.1 Pengembangan Sistem Pengenalan Wajah 2D

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. 4.1 Pengembangan Sistem Pengenalan Wajah 2D 30 BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1 Pengembangan Sistem Pengenalan Wajah 2D Penelitian ini mengembangkan model sistem pengenalan wajah dua dimensi pada citra wajah yang telah disiapkan dalam

Lebih terperinci

Aplikasi Aljabar Vektor dalam Algoritma Page Rank

Aplikasi Aljabar Vektor dalam Algoritma Page Rank Aplikasi Aljabar Vektor dalam Algoritma Page Rank Albertus Kelvin / 13514100 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER PROGRAM STUDI AGROTEKNOLOGI UNIVERSITAS GUNADARMA

RENCANA PEMBELAJARAN SEMESTER PROGRAM STUDI AGROTEKNOLOGI UNIVERSITAS GUNADARMA RENCANA PEMBELAJARAN SEMESTER PROGRAM STUDI AGROTEKNOLOGI UNIVERSITAS GUNADARMA Tanggal Penyusunan 29/01/2016 Tanggal revisi - Kode dan Nama MK KU064210 Matematika SKS dan Semester SKS 2 Semester I (PTA)

Lebih terperinci

BAB 1 PENDAHULUAN. 1. Sistem pengawasan atau surveillance system

BAB 1 PENDAHULUAN. 1. Sistem pengawasan atau surveillance system BAB 1 PENDAHULUAN Bab ini menjelaskan latar belakang, permasalahan, tujuan, dan ruang lingkup dari tugas akhir. Setelah itu dilanjutkan dengan sistematika penulisan laporan. 1.1. Latar Belakang Saat ini

Lebih terperinci

ANALISA PERBANDINGAN VISUAL METHOD DAN LIQUID PENETRANT METHOD DALAM PERBAIKAN CITRA FILM RADIOGRAFI

ANALISA PERBANDINGAN VISUAL METHOD DAN LIQUID PENETRANT METHOD DALAM PERBAIKAN CITRA FILM RADIOGRAFI ANALISA PERBANDINGAN VISUAL METHOD DAN LIQUID PENETRANT METHOD DALAM PERBAIKAN CITRA FILM RADIOGRAFI Hanafi (12110244) Mahasiswa Program Studi Teknik Informatika, Stmik Budidarma Medan Jl. Sisimangaraja

Lebih terperinci

PENCOCOKAN OBYEK WAJAH MENGGUNAKAN METODE SIFT (SCALE INVARIANT FEATURE TRANSFORM)

PENCOCOKAN OBYEK WAJAH MENGGUNAKAN METODE SIFT (SCALE INVARIANT FEATURE TRANSFORM) Jurnal Ilmiah NERO Vol. 1 No. 1 2014 PENCOCOKAN OBYEK WAJAH MENGGUNAKAN METODE SIFT (SCALE INVARIANT FEATURE TRANSFORM) Meidya Koeshardianto, S. Si., M. T. Program Studi D3Manajemen Informatika, Universitas

Lebih terperinci