Empat Metode Pembobotan Sistem Persamaan Linier Pada Variabel atau Komponen Wajah Pada Sistem Pengenalan Wajah

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Empat Metode Pembobotan Sistem Persamaan Linier Pada Variabel atau Komponen Wajah Pada Sistem Pengenalan Wajah"

Transkripsi

1 Empat Metode Pembobotan Sistem Persamaan Linier Pada Variabel atau Komponen Wajah Pada Sistem Pengenalan Wajah Emi Listika Zen Jurusan Teknik Informatika Universitas Gunadarma Jl. Margonda Raya 100 Pondok Cina, Depok ABSTRAK Pengenalan wajah adalah salah satu aplikasi dari teknologi biometrik yang memanfaatkan analisis dari pengolahan citra. Data yang dihasilkan dari pendeteksian wajah akan dikembangkan untuk membuktikan keunikan jarak fitur wajah. Untuk menguji dan membuktikan keunikan fitur wajah, maka digunakan metode matematis yaitu Sistem Persamaan Linier baik homogen, maupun non homogen, solusi persamaan simultan, akar eigen dan vektor eigen. Data yang dihasilkan dari penelitian sebelumnya terdiri dari 150 data dengan masing-masing memiliki 8 jarak yang diukur. Data inputan untuk penelitian ini berupa matriks 150x8. Hasil yang didapatkan dari hasil uji coba metode persamaan linier non homogen dengan menggunakan invers blok, menunjukan keunikan jarak untuk 150 sample yang masing masing terdiri dari 8 data. Keunikan juga dicapai dari metode persamaan linier non homogen (untuk matriks B memiliki sebuah nilai random). Metode simultan tidak menghasilkan solusi karena rank matriks inputan dan gabungan berbeda. Metode eigen juga menghasilkan keunikan jarak sama seperti metode persamaan linier homogen dan non homogen. Kata Kunci : Biometrik, Keunikan Wajah, Fitur Wajah, Metoda Matematis, Aljabar Linier, Sistem Persamaan Linier 1. PENDAHULUAN Pada dasarnya pada diri setiap manusia memiliki sesuatu yang unik yang hanya dimiliki oleh dirinya sendiri. Hal ini menimbulkan gagasan untuk menjadikan keunikan manusia itu sebagai identitas diri. Hal ini harus didukung oleh teknologi yang secara otomatis bisa mengidentifikasi seseorang dengan memanfaatkan teknologi semikonduktor yang semakin hari ukurannya bisa semakin kecil. Teknologi ini disebut sebagai biometrik. Teknologi biometrik adalah metode otomatis untuk mengidentifikasi seseorang berdasarkan beberapa karakteristik biologis dan kebiasaan [2]. Teknologi ini menggunakan bagian tubuh manusia yang unik dan tetap seperti sidik jari, mata dan wajah seseorang. Teknologi ini telah mendapat perhatian yang sangat penting dalam beberapa tahun terakhir ini. Teknologi biometrik dikembangkan karena dapat memenuhi dua fungsi yaitu identifikasi dan verifikasi, disamping itu biometrik memiliki karakteristik seperti, tidak dapat hilang, tidak dapat lupa dan tidak mudah dipalsukan karena keberadaannya melekat pada manusia, dimana satu dengan

2 yang lain tidak akan sama, maka keunikannya akan lebih terjamin. Metoda matematis khususnya Sistem Persamaan Linier sekarang banyak diimplementasikan dalam berbagai kasus di kehidupan sehari-hari. Pengujian dan pencarian variabel kasus yang dihadapi, biasanya menggunakan SPL sebagai metode matematis. Salah satu contohnya dalam pendeteksian wajah. Sistem pengenalan wajah merupakan salah satu jenis sistem pada teknologi biometrik. Penelitian sebelumnya yang dilakukan oleh Hendra (2006) yaitu aplikasi sistem pengenalan wajah yang melakukan deteksi bagian wajah sekaligus bisa mengekstraksi fitur fitur wajah yang diinginkan menghasilkan jarak antra fitur fitur wajah. Data pengujian keunikan terhadap 150 data sampel memberikan hasil bahwa untuk mendapatkan keunikan jarak fitur wajah dibutuhkan minimal lima jarak fitur wajah. 2. METODOLOGI Dari 150 sampel citra yang digunakan, kombinasi ke delapan jarak antara komponen wajah (J1 J8) yang memberikan tingkat keunikan untuk setiap fitur wajah [1]. Terlihat pada gambar 3.1. J1 = jarak mata kanan mata kiri J2 = jarak mata kanan - mulut J3 = jarak mata kiri - mulut J4 = jarak mata kanan ujung hidun J5 = jarak mata kiri ujung hidung J6 = jarak ujung hidung - mulut J7 = tinggi hidung J8 = lebar hidung Data ini kemudian digunakan Penulis dalam bentuk matriks dengan ordo 150 x 8 yang merupakan persamaan linier non homogen dan kemudian dibuktikan keunikannya dengan menggunakan beberapa metode transformasi linier, yaitu : persamaan linier non homogen AX = B dengan B 0, persamaan linier homogen AX = 0, akar dan vektor karakteristik (eigen value dan eigen vektor), dan persamaan simultan dengan menggunakan iterasi Gauss-Siedel. Dari metode metode tersebut akan dianalisis apakah menghasilkan jawaban yang unik atau tidak. 3. SIMULASI DAN ANALISA 3.1. Simulasi Aplikasi ini menggunakan matriks 150 x 8 yang disimpan dalam file fmata.txt. Matriks ini berasal dari 150 sampel citra yang digunakan, kombinasi ke delapan jarak antara komponen wajah (J1 J8) yang memberikan tingkat keunikan untuk setiap fitur wajah [1] yang didapat dari hasil penelitian sebelumnya. Gambar 3.1 Penetapan jarak antar komponen wajah

3 Tabel 2. Matriks X Gambar 4.1 File Matriks A Selain matriks A yang diperlukan dalam persamaan linier ini, juga diperlukan insisalisasi matriks B dengan men-generate secara random dengan range 1-10 sebanyak 150 baris. Dari ke 150 data untuk matriks B ini tidak memiliki nilai yang sama, jadi random data merupakan 150 data yang berbeda. Tabel 1. Matriks B Data A yang merupakan sebuah matriks berordo 150x8 ini dipartisi menjadi matriks 8x8 sebanyak 19 buah. Matriks X yang dihasilkan tiap bloknya, secara keseluruhan menghasilkan matriks 150x1. Matriks X juga menghasilkan 150 data yang berbeda Analisa Hasil Uji Coba Matriks X yang dihasilkan selanjutnya dijumlahkan per blok untuk mencari rata rata X. Tiap blok matriks memiliki data berupa matriks berukuran 8x1 kemudian dijumlahkan sehingga tetap menghasilkan matriks 8x1. Selanjutnya bagi tiap elemen jumlah matriks tersebut dengan banyaknya blok, dalam penelitian ini terdapat 19 blok sehingga tetap menghasilkan rata-rata matriks X berukuran 8x1. Tabel 3. Data Hasil Rata rata Matriks A per Blok Rata-rata Jumlah matrix matriks X per X per kolom kolom X X X X X X X X Pengujian terhadap matriks A dilakukan dengan mngalikan matriks A dengan rata rata matriks X. Matriks A yang berukuran 150x8 dikalikan dengan matriks rata-rata X perkolom menghasilkan matriks 150x1.

4 Dapat dilihat dari tabel bahwa dari ke 150 data tersebut memiliki nilai yang berbeda. Tabel 4. Pengujian dengan Mengalikan Matriks A dengan Rata rata Matriks X matriks A dan B, sehingga matriks gabungan berukuran 150x9 dengan rank 9. Jadi menurut aturan rank yang telah dibahas pada bab sebelumnya, maka persamaan ini tidak memiliki solusi karena rank matriks A tidak sama dengan rank matriks gabungan. Untuk matriks gabungan, dapat dilihat pada tabel 6. Tabel 6.Penggabungan Matriks A dan B Untuk uji coba menggunakan metode Persamaan Linier Homogen ini, rata rata matriks A per kolom per blok dikalikan dengan suatu nilai B. Uji coba dilakukan dua kali. Yang pertama menggunakan B = 68, yang didapat dari suatu nilai random. Dari hasil yang diperoleh, menujukkan 8 buah data yang memiliki nilai yang berbeda-beda. Sedangkan untuk B yang diberi nilai 0, didapat nilai untuk matriks X1..X8 = 0. Tabel 5. Hasil Uji Coba matriks A dengan Persamaan Linier Homogen matriks B random rata-rata matrik A per blok matrik X, B = B(random) mat X, B= Diuji matriks A berukuran 150x8 dengan matriks B berukuran 150x1. Rank matriks A adalah 8. Selanjutnya penggabungan antara

5 RankA = 8 RankAB = 9 RankABtr = 9 Tidak ada solusi

6 4. PENUTUP Aplikasi deteksi wajah yang dikembangkan pada penelitian kali ini adalah pembuktian keunikan jarak fitur wajah. Metode yang digunakan dalam penelitian ini adalah metode matematis. Aljabar linier merupakan salah satu metode matematis yang sering digunakan dalam mencari dan membuktikan suatu kasus. Pada aplikasi ini, pembobotan sistem persamaan linier dilakukan dengan menggunakan empat metode, yaitu metode sistem persamaan linier homogen menggunakan invers dengan partisi, metode sistem persamaan linier non homogen, metode akar eigen dan vektor eigen, dan metode solusi persamaan simultan dengan penentuan rank. Penelitian ini menggunakan matriks A berukuran 150x8 yang diperoleh dari pengukuran 8 jarak fitur wajah yaitu jarak mata kanan mata kiri, jarak mata kanan mulut, jarak mata kiri mulut, jarak mata kanan ujung hidung, jarak mata kiri ujung hidung, jarak ujung hidung mulut, tinggi hidung, dan lebar hidung dari 150 sampel. Selain matriks A yang diperlukan dalam persamaan linier ini, juga diperlukan inisialisasi matriks B berukuran 150x1 dengan men-generate secara random dengan range 1-10 sebanyak 150 baris. Data A yang merupakan sebuah matriks berordo 150x8 ini dipartisi menjadi matriks 8x8 sebanyak 19 buah. Matriks X yang dihasilkan tiap bloknya, secara keseluruhan menghasilkan matriks 150x1. Matriks X ini kemudian dijumlahkan per blok untuk mencari rata rata X. Pengujian terhadap matriks A dilakukan dengan mengalikan matriks A dengan rata rata matriks X. Dengan demikian dapat diambil kesimpulan bahwa dari hasil pengujian 150 sampel yang masing-masing memiliki 8 data dengan menggunakan metode invers blok untuk persamaan linier homogen menunjukan keunikan. Metode persamaan linier non homogen menunjukkan keunikan dari setiap elemen matriks X yang dihasilkan dari perkalian rata-rata matriks A per blok dengan suatu nilai matriks B random. Pengujian dengan menggunakan aturan rank tidak menghasilkan solusi karena syarat suatu matriks simultan memiliki solusi yaitu matriks A dengan matriks A gabungan B memiliki rank yang sama. DAFTAR PUSTAKA [1] Adang Suhendra Catatan Perkuliahan Pengolahan Citra. Universitas Gunadarma. Jakarta. [2] Anonim "Biometrics". Microsoft Encarta Reference Library Microsoft Corporation. [3] D. Suryadi H. S. Dan S. Harini Machmudi Teori dan Soal Pendahulan Aljabar Linier. Ghalia Indonesia. Jakarta. [4] Hendra Otomatisasi Ekstraksi Fitur Dan Segmentasi Pada Sistem Pengenalan Wajah Dengan MATLAB 6.5. Skripsi (S-1). Universitas Gunadrama. Depok. [5] J. Supranto Pengantar Matrix. Penerbit FE UI. Jakarta. [6] Jong Jek Siang Jaringan syaraf Tiruan dan Pemrogramannya Menggunakan Matlab. Penerbit Andi.Yogyakarta. [7] Moch. Agus Choiron MT Persamaan Aljabar Linier Serentak. Program Semi QUE IV Jurusan Teknik Mesin Unibraw. Surabaya. [8] Rademacher, D. December "Face Detection : Introduction to Computer Vision and Image Processing". Colorado School of Mines.

7 [9] Sigmon, K MATLAB Primer 3 rd Edition. Departement of Mathematics, University of Florida. Gainesville. [10] Wikaria Gazali Matriks Dan Transformasi Liniear. Penerbit Graha Ilmu. Yogyakarta. [11] Yuniar Supardi Pascal dan Flowchart Lewat Praktek. Dinastindo. Jakarta. [12] Zhao, W., et.al. December Face Recognition : A Literature Survey. ACM Computing Survey, Vol 35, No. 4,

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN GARIS-GARIS BESAR PROGRAM PEMBELAJARAN Mata Kuliah : Aljabar Linear Kode / SKS : TIF-5xxx / 3 SKS Dosen : - Deskripsi Singkat : Mata kuliah ini berisi Sistem persamaan Linier dan Matriks, Determinan, Vektor

Lebih terperinci

BAB III METODOLOGI PENELITIAN. manusia dengan menggunakan metode Gabor Filter dan Algoritma

BAB III METODOLOGI PENELITIAN. manusia dengan menggunakan metode Gabor Filter dan Algoritma BAB III METODOLOGI PENELITIAN 3.1 Desain Penelitian Berikut merupakan desain penelitian yang akan digunakan pada proses rancang bangun aplikasi sistem pengenalan pola fraktur tengkorak manusia dengan menggunakan

Lebih terperinci

Verifikasi Citra Wajah Menggunakan Metode Discrete Cosine Transform Untuk Aplikasi Login

Verifikasi Citra Wajah Menggunakan Metode Discrete Cosine Transform Untuk Aplikasi Login The 13 th Industrial Electronics Seminar 011 (IES 011) Electronic Engineering Polytechnic Institute of Surabaya (EEPIS), Indonesia, October 6, 011 Verifikasi Citra Wajah Menggunakan Metode Discrete Cosine

Lebih terperinci

PEMANFAATAAN BIOMETRIKA WAJAH PADA SISTEM PRESENSI MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK

PEMANFAATAAN BIOMETRIKA WAJAH PADA SISTEM PRESENSI MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK PEMANFAATAAN BIOMETRIKA WAJAH PADA SISTEM PRESENSI MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK Program Studi Matematika FMIPA Universitas Negeri Semarang Abstrak. Saat ini, banyak sekali alternatif dalam

Lebih terperinci

UJI KINERJA FACE RECOGNITION MENGGUNAKAN EIGENFACES

UJI KINERJA FACE RECOGNITION MENGGUNAKAN EIGENFACES 1 Uji Kinerja Face Recognition Menggunakan Eigenfaces UJI KINERJA FACE RECOGNITION MENGGUNAKAN EIGENFACES ABDUL AZIS ABDILLAH 1 1STKIP Surya, Tangerang, Banten, abdillah.azul@gmail.com Abstrak. Pada paper

Lebih terperinci

02-Pemecahan Persamaan Linier (1)

02-Pemecahan Persamaan Linier (1) -Pemecahan Persamaan Linier () Dosen: Anny Yuniarti, M.Comp.Sc Gasal - Anny Agenda Bagian : Vektor dan Persamaan Linier Bagian : Teori Dasar Eliminasi Bagian 3: Eliminasi Menggunakan Matriks Bagian 4:

Lebih terperinci

ENKRIPSI DATA HASIL ANALISIS KOMPONEN UTAMA (PCA) ATAS CITRA IRIS MATA MENGGUNAKAN ALGORITMA MD5

ENKRIPSI DATA HASIL ANALISIS KOMPONEN UTAMA (PCA) ATAS CITRA IRIS MATA MENGGUNAKAN ALGORITMA MD5 MAKALAH SEMINAR TUGAS AKHIR ENKRIPSI DATA HASIL ANALISIS KOMPONEN UTAMA (PCA) ATAS CITRA IRIS MATA MENGGUNAKAN ALGORITMA MD5 Sunaryo 1, Budi Setiyono 2, R. Rizal Isnanto 2 Abstrak - Biometrik merupakan

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : Matematika Diskrit 2 Kode / SKS : IT02 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi. Pendahuluan 2. Vektor.. Pengantar mata kuliah aljabar linier.

Lebih terperinci

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel.

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel. 1. Persamaan Linier 5. PERSAMAAN LINIER Persamaan linier adalah suatu persamaan yang variabel-variabelnya berpangkat satu. Disamping persamaan linier ada juga persamaan non linier. Contoh : a) 2x + 3y

Lebih terperinci

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : September 2014 A. Identitas 1. Nama Matakuliah : A11. 54303/ Matriks & Ruang Vektor 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer

Lebih terperinci

PENGENALAN WAJAH DENGAN METODE TEMPLATE MATCHING SEBAGAI SISTEM STARTER SEPEDA MOTOR BERBASIS MIKROKONTROLER ATMEGA 16 Oleh : Margito Hermawan

PENGENALAN WAJAH DENGAN METODE TEMPLATE MATCHING SEBAGAI SISTEM STARTER SEPEDA MOTOR BERBASIS MIKROKONTROLER ATMEGA 16 Oleh : Margito Hermawan PENGENALAN WAJAH DENGAN METODE TEMPLATE MATCHING SEBAGAI SISTEM STARTER SEPEDA MOTOR BERBASIS MIKROKONTROLER ATMEGA 16 Oleh : Margito Hermawan 6907040024 Fajar Indra 6907040026 ABSTRACT Face recognition

Lebih terperinci

IDENTIFIKASI BIOMETRIK FINGER KNUCKLE PRINT MENGGUNAKAN FITUR EKSTRAKSI PCA DAN GLCM

IDENTIFIKASI BIOMETRIK FINGER KNUCKLE PRINT MENGGUNAKAN FITUR EKSTRAKSI PCA DAN GLCM 1 IDENTIFIKASI BIOMETRIK FINGER KNUCKLE PRINT MENGGUNAKAN FITUR EKSTRAKSI DAN Ratna Dwi Jayanti A11.2011.05949 Program Studi Teknik Informatika S1 Fakultas Ilmu Komputer Universitas Dian Nuswantoro, Jl.

Lebih terperinci

PENCARIAN CITRA BERDASARKAN BENTUK DASAR TEPI OBJEK DAN KONTEN HISTOGRAM WARNA LOKAL

PENCARIAN CITRA BERDASARKAN BENTUK DASAR TEPI OBJEK DAN KONTEN HISTOGRAM WARNA LOKAL Makalah Nomor: KNSI-472 PENCARIAN CITRA BERDASARKAN BENTUK DASAR TEPI OBJEK DAN KONTEN HISTOGRAM WARNA LOKAL Barep Wicaksono 1, Suryarini Widodo 2 1,2 Teknik Informatika, Universitas Gunadarma 1,2 Jl.

Lebih terperinci

SISTEM PENDUKUNG KEPUTUSAN PENERIMAAN KARYAWAN MELALUI PENGENALAN CITRA WAJAH MENGGUNAKAN ALGORITMA EIGENFACE

SISTEM PENDUKUNG KEPUTUSAN PENERIMAAN KARYAWAN MELALUI PENGENALAN CITRA WAJAH MENGGUNAKAN ALGORITMA EIGENFACE Konferensi Nasional Ilmu Sosial & Teknologi (KNiST) Maret 2017, pp. 355~360 355 SISTEM PENDUKUNG KEPUTUSAN PENERIMAAN KARYAWAN MELALUI PENGENALAN CITRA WAJAH MENGGUNAKAN ALGORITMA EIGENFACE Abdul Hamid

Lebih terperinci

1. Pendahuluan. 1.1 Latar belakang

1. Pendahuluan. 1.1 Latar belakang 1. Pendahuluan 1.1 Latar belakang Keamanan data pribadi merupakan salah satu hal terpenting bagi setiap orang yang hidup di era dimana Teknologi Informasi (TI) berkembang dengan sangat pesat. Setiap orang

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM 3.1 Definisi Masalah Dalam beberapa tahun terakhir perkembangan Computer Vision terutama dalam bidang pengenalan wajah berkembang pesat, hal ini tidak terlepas dari pesatnya

Lebih terperinci

JURNAL PENGKLASIFIKASIAN GENDER DENGAN MENENTUKAN TITIK-TITIK PENTING PADA SISTEM PENGENALAN WAJAH MENGGUNAKAN MATLAB 6.5 DISUSUN OLEH: FARIDA

JURNAL PENGKLASIFIKASIAN GENDER DENGAN MENENTUKAN TITIK-TITIK PENTING PADA SISTEM PENGENALAN WAJAH MENGGUNAKAN MATLAB 6.5 DISUSUN OLEH: FARIDA JURNAL PENGKLASIFIKASIAN GENDER DENGAN MENENTUKAN TITIK-TITIK PENTING PADA SISTEM PENGENALAN WAJAH 1. ABSTRAKSI MENGGUNAKAN MATLAB 6.5 DISUSUN OLEH: FARIDA Pengenalan wajah manusia dengan menggunakan sistem

Lebih terperinci

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : Definisi, Notasi, dan Operasi Vektor 2.

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : Definisi, Notasi, dan Operasi Vektor 2. SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : 3 Minggu Ke Pokok Bahasan dan TIU Sub Pokok Bahasan Sasaran Belajar Cara Pengajaran Media Tugas Referens i 1

Lebih terperinci

BAB I PENDAHULUAN. berbeda antara manusia satu dengan yang lain. Manusia mengenali

BAB I PENDAHULUAN. berbeda antara manusia satu dengan yang lain. Manusia mengenali BAB I PENDAHULUAN 1.1. Latar Belakang Dewasa ini teknologi pengenalan wajah semakin banyak diaplikasikan karena wajah merupakan suatu bagian tubuh manusia yang biasa digunakan sebagai pengenalan identitas,

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Setiap manusia diciptakan dengan bentuk fisik dan rupa yang berbeda sehingga manusia tersebut dapat dibedakan satu dengan yang lainnya. Pada teknologi informasi

Lebih terperinci

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : Maret 2014 A. Identitas 1. Nama Matakuliah : A11. 54812 / Metode Numerik 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer 4. Bobot sks

Lebih terperinci

1. PENDAHULUAN Bidang perindustrian merupakan salah satu bidang yang juga banyak menggunakan kecanggihan teknologi, walaupun pada beberapa bagian, mas

1. PENDAHULUAN Bidang perindustrian merupakan salah satu bidang yang juga banyak menggunakan kecanggihan teknologi, walaupun pada beberapa bagian, mas PENGKLASIFIKASIAN KUALITAS KERAMIK BERDASARKAN EKSTRAKSI FITUR TEKSTUR STATISTIK Yogi Febrianto yoefanto@gmail.com Jurusan Teknik Informatika Fakultas Teknologi Industri Universitas Gunadarma Jl. Margonda

Lebih terperinci

SIMULASI PENGENALAN TULISAN MENGGUNAKAN LVQ (LEARNING VECTOR QUANTIZATION )

SIMULASI PENGENALAN TULISAN MENGGUNAKAN LVQ (LEARNING VECTOR QUANTIZATION ) SIMULASI PENGENALAN TULISAN MENGGUNAKAN LVQ (LEARNING VECTOR QUANTIZATION ) Fachrul Kurniawan, Hani Nurhayati Jurusan Teknik Informatika, Sains dan Teknologi Universitas Islam Negeri (UIN) Maulana Malik

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 1

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 1 GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 1 Berlaku mulai: Gasal/2010 MATA KULIAH : MATRIK DAN TRANSFORMASI LINEAR KODE MATA KULIAH / SKS : 410102042 / 3 SKS MATA

Lebih terperinci

Pendahuluan. Praktikum Pengantar Pengolahan Citra Digital Departemen Ilmu Komputer Copyright 2008 All Rights Reserved

Pendahuluan. Praktikum Pengantar Pengolahan Citra Digital Departemen Ilmu Komputer Copyright 2008 All Rights Reserved 1 Pengenalan Matlab Pendahuluan Matlab adalah perangkat lunak yang dapat digunakan untuk analisis dan visualisasi data. Matlab didesain untuk mengolah data dengan menggunakan operasi matriks. Matlab juga

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Citra Berikut adalah beberapa definisi dari citra, antara lain: rupa; gambar; gambaran (Kamus Besar Bahasa Indonesia). Sebuah fungsi dua dimensi, f(x, y), di mana x dan y adalah

Lebih terperinci

Perbandingan Antara Metode Kohonen Neural Network dengan Metode Learning Vector Quantization Pada Pengenalan Pola Tandatangan

Perbandingan Antara Metode Kohonen Neural Network dengan Metode Learning Vector Quantization Pada Pengenalan Pola Tandatangan Jurnal Sains & Matematika (JSM) ISSN Kajian 0854-0675 Pustaka Volume14, Nomor 4, Oktober 2006 Kajian Pustaka: 147-153 Perbandingan Antara Metode Kohonen Neural Network dengan Metode Learning Vector Quantization

Lebih terperinci

BAB III METODE PENELITIAN. Tujuan tugas akhir ini akan membangun suatu model sistem yang

BAB III METODE PENELITIAN. Tujuan tugas akhir ini akan membangun suatu model sistem yang BAB III METODE PENELITIAN 3.1 Model Pengembangan Tujuan tugas akhir ini akan membangun suatu model sistem yang melakukan proses data mulai dari pengolahan citra otak hingga menghasilkan output analisa

Lebih terperinci

JURNAL TEODOLITA. VOL. 14 NO. 1, Juni 2013 ISSN DAFTAR ISI

JURNAL TEODOLITA. VOL. 14 NO. 1, Juni 2013 ISSN DAFTAR ISI JURNAL TEODOLITA VOL. 14 NO. 1, Juni 2013 ISSN 1411-1586 DAFTAR ISI Perpaduan Arsitektur Jawa dan Sunda Pada Permukiman Bonokeling Di Banyumas, Jawa Tengah...1-15 Wita Widyandini, Atik Suprapti, R. Siti

Lebih terperinci

SILABUS MATA KULIAH. Tanggal Berlaku : 4 September 2015

SILABUS MATA KULIAH. Tanggal Berlaku : 4 September 2015 SILABUS MATA KULIAH Tanggal Berlaku : 4 September 2015 A. Identitas 1. Nama Matakuliah : dan Ruang Vektor 2. Program Studi : Teknik Industri 3. Fakultas : Teknik 4. Bobot sks : 3 5. Elemen : MKK 6. Jenis

Lebih terperinci

PENGENALAN POLA SIDIK JARI BERBASIS TRANSFORMASI WAVELET DAN JARINGAN SYARAF TIRUAN BACKPROPAGATION

PENGENALAN POLA SIDIK JARI BERBASIS TRANSFORMASI WAVELET DAN JARINGAN SYARAF TIRUAN BACKPROPAGATION PENGENALAN POLA SIDIK JARI BERBASIS TRANSFORMASI WAVELET DAN JARINGAN SYARAF TIRUAN BACKPROPAGATION 1 Andrian Rakhmatsyah 2 Sayful Hakam 3 Adiwijaya 12 Departemen Teknik Informatika Sekolah Tinggi Teknologi

Lebih terperinci

APLIKASI METODE PANGKAT DALAM MENGAPROKSIMASI NILAI EIGEN KOMPLEKS PADA MATRIKS

APLIKASI METODE PANGKAT DALAM MENGAPROKSIMASI NILAI EIGEN KOMPLEKS PADA MATRIKS Jurnal UJMC, Volume, Nomor, Hal 36-40 pissn : 460-3333 eissn : 579-907X APLIKASI METODE PANGKAT DALAM MENGAPROKSIMASI NILAI EIGEN KOMPLEKS PADA MATRIKS Novita Eka Chandra dan Wiwin Kusniati Universitas

Lebih terperinci

PEMANFAATAN NEURAL NETWORK PERCEPTRON PADA PENGENALAN POLA KARAKTER

PEMANFAATAN NEURAL NETWORK PERCEPTRON PADA PENGENALAN POLA KARAKTER PEMANFAATAN NEURAL NETWORK PERCEPTRON PADA PENGENALAN POLA KARAKTER Fakultas Teknologi Informasi Universitas Merdeka Malang Abstract: Various methods on artificial neural network has been applied to identify

Lebih terperinci

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU Sistem persamaan linear orde/ tingkat satu memiliki bentuk standard : = = = = = = = = = + + + + + + + + + + Diasumsikan koefisien = dan fungsi adalah menerus

Lebih terperinci

PENGENALAN WAJAH DENGAN MENGGUNAKAN NLDA (NULL-SPACE LINEAR DISCRIMINANT ANALYSIS)

PENGENALAN WAJAH DENGAN MENGGUNAKAN NLDA (NULL-SPACE LINEAR DISCRIMINANT ANALYSIS) PENGENALAN WAJAH DENGAN MENGGUNAKAN NLDA (NULL-SPACE LINEAR DISCRIMINANT ANALYSIS) Disusun oleh : Yudi Setiawan (0722095) Jurusan Teknik Elektro, Fakultas Teknik, Jl. Prof. Drg. Suria Sumantri, MPH, No.

Lebih terperinci

BAB 1 PENDAHULUAN. keakuratan dari penglihatan mesin membuka bagian baru dari aplikasi komputer.

BAB 1 PENDAHULUAN. keakuratan dari penglihatan mesin membuka bagian baru dari aplikasi komputer. 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Melihat perkembangan teknologi sekarang ini, penggunaan komputer sudah hampir menjadi sebuah bagian dari kehidupan harian kita. Semakin banyak muncul peralatan-peralatan

Lebih terperinci

IMPLEMENTASI APLIKASI PENGENALAN JENIS KELAMIN BERDASARKAN CITRA WAJAH DENGAN METODE SUPPORT VECTOR MACHINE SECARA REAL TIME

IMPLEMENTASI APLIKASI PENGENALAN JENIS KELAMIN BERDASARKAN CITRA WAJAH DENGAN METODE SUPPORT VECTOR MACHINE SECARA REAL TIME IMPLEMENTASI APLIKASI PENGENALAN JENIS KELAMIN BERDASARKAN CITRA WAJAH DENGAN METODE SUPPORT VECTOR MACHINE SECARA REAL TIME Implementation of Gender Recognition Applications Based on Face Image with Support

Lebih terperinci

PENGGUNAAN METODE HILL CIPHER UNTUK KRIPTOGRAFI PADA CITRA DIGITAL. Muhammad Rizal 1), Afdal 2)

PENGGUNAAN METODE HILL CIPHER UNTUK KRIPTOGRAFI PADA CITRA DIGITAL. Muhammad Rizal 1), Afdal 2) PENGGUNAAN METODE HILL CIPHER UNTUK KRIPTOGRAFI PADA CITRA DIGITAL Muhammad Rizal 1), Afdal 2) Program Studi Magister Teknik Informatika, Universitas Sumatera Utara Jl. dr. Mansur No. 9 Padang Bulan, Medan

Lebih terperinci

BAB I PENDAHULUAN. a. Universal (universality), dimana karakteristik yang dipilih harus dimiliki oleh setiap orang.

BAB I PENDAHULUAN. a. Universal (universality), dimana karakteristik yang dipilih harus dimiliki oleh setiap orang. BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Berdasar dari ciri atau tanda dari seseorang maka identitas seseorang itu dapat diketahui. Permasalahan yang menyangkut identitas seseorang tersebut dapat dikategorikan

Lebih terperinci

Satuan Acara Perkuliahan

Satuan Acara Perkuliahan FM-UAD-PBM-08-05/R0 Satuan Acara Perkuliahan Kode / Nama Mata Kuliah : TC19153 /Matriks dan Ruang Vektor Revisi ke : 0 Satuan Kredit Semester : 3 sks Tanggal revisi : - Jumlah jam kuliah dalam seminggu

Lebih terperinci

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel)

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U November 2015 MZI (FIF Tel-U) Ruang Baris, Kolom,

Lebih terperinci

ANALISIS DAN PERANCANGAN SISTEM

ANALISIS DAN PERANCANGAN SISTEM ANALISIS DAN PERANCANGAN SISTEM 3.1 Analisis Masalah Dalam mengetahui suatu bahan jenis kulit cukup sulit karena bahan jenis kulit memeliki banyak jenis. Setiap permukaan atau tekstur dari setiap jenisnya

Lebih terperinci

BAB III METODE PENELITIAN. dan bahan, agar mendapatkan hasil yang baik dan terstruktur. Processor Intel Core i3-350m.

BAB III METODE PENELITIAN. dan bahan, agar mendapatkan hasil yang baik dan terstruktur. Processor Intel Core i3-350m. BAB III METODE PENELITIAN 3.1 Alat dan Bahan Untuk menunjang penelitian yang akan dilakukan, maka diperlukan alat dan bahan, agar mendapatkan hasil yang baik dan terstruktur. 3.1.1 Alat Penelitian Adapun

Lebih terperinci

PERANCANGAN SISTEM PENGENAL DIGIT ANGKA METER AIR MENGGUNAKAN JARINGAN SYARAF TIRUAN KOHONEN

PERANCANGAN SISTEM PENGENAL DIGIT ANGKA METER AIR MENGGUNAKAN JARINGAN SYARAF TIRUAN KOHONEN PERANCANGAN SISTEM PENGENAL DIGIT ANGKA METER AIR MENGGUNAKAN JARINGAN SYARAF TIRUAN KOHONEN Teguh Triantoro, F. Rizal Batubara, Fahmi Konsentrasi Teknik Komputer, Departemen Teknik Elektro Fakultas Teknik

Lebih terperinci

APLIKASI MATRIKS DAN RUANG VEKTOR, oleh Dr. Adiwijaya Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta Telp: ;

APLIKASI MATRIKS DAN RUANG VEKTOR, oleh Dr. Adiwijaya Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta Telp: ; APLIKASI MATRIKS DAN RUANG VEKTOR, oleh Dr. Adiwijaya Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283 Telp: 0274-889398; Fax: 0274-889057; E-mail: info@grahailmu.co.id Hak Cipta

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang 1.2. Rumusan Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang 1.2. Rumusan Masalah BAB I Pendahuluan 1 BAB I PENDAHULUAN 1.1. Latar Belakang Pemalsuan identitas sering kali menjadi permasalahan utama dalam keamanan data, karena itulah muncul teknik-teknik pengamanan data seperti penggunaan

Lebih terperinci

Pengenalan Wajah dengan Metode Subspace LDA (Linear Discriminant Analysis)

Pengenalan Wajah dengan Metode Subspace LDA (Linear Discriminant Analysis) Pengenalan Wajah dengan Metode Subspace LDA (Linear Discriminant Analysis) Ratna Nur Azizah Jurusan Teknik Elektro FTI, Institut Teknologi Sepuluh Nopember Kampus ITS, Keputih-Sukolilo, Surabaya-60111

Lebih terperinci

MODUL 3 FAKTORISASI LU, PARTISI MATRIK DAN FAKTORISASI QR

MODUL 3 FAKTORISASI LU, PARTISI MATRIK DAN FAKTORISASI QR MODUL 3 FAKTORISASI LU, PARTISI MATRIK DAN FAKTORISASI QR KOMPETENSI: 1. Memahami penggunaan faktorisasi LU dalam penyelesaian persamaan linear.. Memahami penggunaan partisi matrik dalam penyelesaian persamaan

Lebih terperinci

MAKALAH ALJABAR LINIER

MAKALAH ALJABAR LINIER MAKALAH ALJABAR LINIER Transformasi Linier Makalah Ini Disusun Untuk Memenuhi Tugas Mata Kuliah Aljabar Linier Dosen Pengampu : Abdul Aziz Saefudin, S.Pd.I, M.Pd Disusun Oleh: III A4 Kelompok 12 1. Ria

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 1.1 Latar Belakang BAB I PENDAHULUAN Identitas sangat penting sebagai bukti bahwasanya manusia yang satu dengan yang lainnya adalah berbeda. Pada beberapa aplikasi yang membutuhkan pengidentifikasian seseorang

Lebih terperinci

BAB 1 PENDAHULUAN. berkaitan dengan pemprosesan sinyal suara. Berbeda dengan speech recognition

BAB 1 PENDAHULUAN. berkaitan dengan pemprosesan sinyal suara. Berbeda dengan speech recognition BAB 1 PENDAHULUAN 1.1 Latar Belakang Speaker recognition adalah salah satu bidang pengenalan pola yang berkaitan dengan pemprosesan sinyal suara. Berbeda dengan speech recognition yang mengenali kata atau

Lebih terperinci

APLIKASI PENGENALAN KARAKTER ALFANUMERIK MENGGUNAKAN ALGORITMA HAMMING DISTANCE

APLIKASI PENGENALAN KARAKTER ALFANUMERIK MENGGUNAKAN ALGORITMA HAMMING DISTANCE APLIKASI PENGENALAN KARAKTER ALFANUMERIK MENGGUNAKAN ALGORITMA HAMMING DISTANCE Matheus Supriyanto Rumetna 1*, Marla Pieter, Monica Manurung 1 1 Fakultas Ilmu Komputer dan Manajemen, Universitas Sains

Lebih terperinci

Teknik Reduksi Dimensi Menggunakan Komponen Utama Data Partisi Pada Pengklasifikasian Data Berdimensi Tinggi dengan Ukuran Sampel Kecil

Teknik Reduksi Dimensi Menggunakan Komponen Utama Data Partisi Pada Pengklasifikasian Data Berdimensi Tinggi dengan Ukuran Sampel Kecil Teknik Reduksi Dimensi Menggunakan Komponen Utama Data Partisi Pada Pengklasifikasian Data Berdimensi Tinggi dengan Ukuran Sampel Kecil Ronny Susetyoko, Elly Purwantini Politeknik Elektronika Negeri Surabaya

Lebih terperinci

BAB I PENDAHULUAN. untuk meniru sistem visual manusia (human vision).

BAB I PENDAHULUAN. untuk meniru sistem visual manusia (human vision). BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi yang sangat cepat, terutama pada teknologi komputer sehingga membuat pekerjaan pengolahan data dapat ditangani dengan lebih cepat dan tepat.

Lebih terperinci

BAB 1 PENDAHULUAN. termasuk dalam bidang Computer Vision. Computer Vision membuat komputer

BAB 1 PENDAHULUAN. termasuk dalam bidang Computer Vision. Computer Vision membuat komputer BAB 1 PENDAHULUAN 1.1. Latar Belakang Perkembangan teknologi komputer pada dewasa ini telah mengalami kemajuan, termasuk dalam bidang Computer Vision. Computer Vision membuat komputer dapat melihat dan

Lebih terperinci

Algoritma Kohonen dalam Mengubah Citra Graylevel Menjadi Citra Biner

Algoritma Kohonen dalam Mengubah Citra Graylevel Menjadi Citra Biner Jurnal Ilmiah Teknologi dan Informasia ASIA (JITIKA) Vol.9, No.2, Agustus 2015 ISSN: 0852-730X Algoritma Kohonen dalam Mengubah Citra Graylevel Menjadi Citra Biner Nur Nafi'iyah Prodi Teknik Informatika

Lebih terperinci

IMPLEMENTASI SEGMENTASI CITRA DAN ALGORITMA LEARNING VECTOR QUANTIZATION (LVQ) DALAM PENGENALAN BENTUK BOTOL

IMPLEMENTASI SEGMENTASI CITRA DAN ALGORITMA LEARNING VECTOR QUANTIZATION (LVQ) DALAM PENGENALAN BENTUK BOTOL IMPLEMENTASI SEGMENTASI CITRA DAN ALGORITMA LEARNING VECTOR QUANTIZATION (LVQ) DALAM PENGENALAN BENTUK BOTOL Andri STMIK Mikroskil Jl. Thamrin No. 122, 124, 140 Medan 20212 andri@mikroskil.ac.id Abstrak

Lebih terperinci

BAB 1 PENDAHULUAN 1-1

BAB 1 PENDAHULUAN 1-1 BAB 1 PENDAHULUAN Bab ini menjelaskan mengenai Latar Belakang, Identifikasi Masalah, Tujuan Tugas Akhir, Lingkup Tugas Akhir, Metodologi Tugas Akhir dan Sistematika Penulisan Tugas Akhir. 1.1 Latar Belakang

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS)

RENCANA PEMBELAJARAN SEMESTER (RPS) RENCANA PEMBELAJARAN SEMESTER (RPS) CIG4E3 PENGOLAHAN CITRA DIGITAL Disusun oleh: Bedy Purnama PROGRAM STUDI S1 TEKNIK INFORMATIKA FAKULTAS INFORMATIKA TELKOM UNIVERSITY LEMBAR PENGESAHAN Rencana Pembelajaran

Lebih terperinci

ANALISA PENGUKURAN SIMILARITAS BERDASARKAN JARAK MINIMUM PADA PENGENALAN WAJAH 2D MENGGUNAKAN DIAGONAL PRINCIPAL COMPONENT ANALYSIS

ANALISA PENGUKURAN SIMILARITAS BERDASARKAN JARAK MINIMUM PADA PENGENALAN WAJAH 2D MENGGUNAKAN DIAGONAL PRINCIPAL COMPONENT ANALYSIS ANALISA PENGUKURAN SIMILARITAS BERDASARKAN JARAK MINIMUM PADA PENGENALAN WAJAH 2D MENGGUNAKAN DIAGONAL PRINCIPAL COMPONENT ANALYSIS Fetty Tri Anggraeny, Wahyu J.S Saputra Jurusan Teknik Informatika, Universitas

Lebih terperinci

PENGENALAN WAJAH DENGAN METODE ADJACENT PIXEL INTENSITY DIFFERENCE QUANTIZATION TERMODIFIKASI

PENGENALAN WAJAH DENGAN METODE ADJACENT PIXEL INTENSITY DIFFERENCE QUANTIZATION TERMODIFIKASI PENGENALAN WAJAH DENGAN METODE ADJACENT PIXEL INTENSITY DIFFERENCE QUANTIZATION TERMODIFIKASI Nama Mahasiswa : Yuliono NRP : 1206 100 720 Jurusan : Matematika Dosen Pembimbing : Drs. Soetrisno, M.IKomp

Lebih terperinci

UNIVERSITAS BINA NUSANTARA

UNIVERSITAS BINA NUSANTARA UNIVERSITAS BINA NUSANTARA Program Ganda Teknik Informatika Matematika Skripsi Sarjana Program Ganda Semester Ganjil 2006/2007 PERANCANGAN PROGRAM SIMULASI VERIFIKASI KEAMANAN MELALUI IRIS MATA DENGAN

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT / 2 SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT / 2 SKS SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT0143231 / 2 SKS Deskripsi: - Mata kuliah ini mempelajari konsep aljabar linear sebagai dasar untuk membuat algoritma dalam permasalahan

Lebih terperinci

SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON

SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON Jurnal Informatika Mulawarman Vol. 7 No. 3 Edisi September 2012 105 SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON Anindita Septiarini Program Studi Ilmu Komputer FMIPA,

Lebih terperinci

KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT

KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT Nama Mahasiswa : Aprilliantiwi NRP : 1207100064 Jurusan : Matematika Dosen Pembimbing : 1 Soleha, SSi, MSi 2 Dian Winda Setyawati,

Lebih terperinci

Identifikasi Tanda Tangan Menggunakan Transformasi Gabor Wavelet dan Jarak Minskowski

Identifikasi Tanda Tangan Menggunakan Transformasi Gabor Wavelet dan Jarak Minskowski Identifikasi Tanda Tangan Menggunakan Transformasi Gabor Wavelet dan Jarak Minskowski Junia Kurniati Computer Engineering Department Faculty of Computer Science Sriwijaya University South Sumatera Indonesia

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Pengenalan Pola Pengenalan pola adalah suatu ilmu untuk mengklasifikasikan atau menggambarkan sesuatu berdasarkan pengukuran kuantitatif fitur (ciri) atau sifat utama dari suatu

Lebih terperinci

BAB 3 PROSEDUR DAN METODOLOGI

BAB 3 PROSEDUR DAN METODOLOGI BAB 3 PROSEDUR DAN METODOLOGI 3.1 Analisa Masalah Kemajuan teknologi di bidang multimedia, menuntut kemampuan sistem yang lebih baik dan lebih maju dari sebelumnya, sesuai dengan perkembangan teknologi.

Lebih terperinci

(MS.3) SUBRUANG CONINVARIAN DARI MATRIKS KUADRAT KOMPLEKS

(MS.3) SUBRUANG CONINVARIAN DARI MATRIKS KUADRAT KOMPLEKS Seminar Nasional Statistika 2 November 20 Vol 2, November 20 (MS.3) SUBRUANG CONINVARIAN DARI MATRIKS KUADRAT KOMPLEKS Euis Hartini Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

UKDW BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

UKDW BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Plat nomor kendaraan bermotor merupakan ciri atau tanda pengenal suatu kendaraan yang diberikan oleh kepolisian. Setiap plat nomor kendaraan memiliki kombinasi

Lebih terperinci

Analisis Kinerja Pengenalan Telapak Tangan Menggunakan Ekstraksi Ciri Principal Component Analysis (PCA) dan Overlapping Block

Analisis Kinerja Pengenalan Telapak Tangan Menggunakan Ekstraksi Ciri Principal Component Analysis (PCA) dan Overlapping Block Scientific Journal of Informatics Vol. 2, No. 2, November 2015 p-issn 2407-7658 http://journal.unnes.ac.id/nju/index.php/sji e-issn 2460-0040 Analisis Kinerja Pengenalan Telapak Tangan Menggunakan Ekstraksi

Lebih terperinci

BAB I PENDAHULUAN. ke karakteristik tertentu pada manusia yang unik dan berbeda satu sama lain.

BAB I PENDAHULUAN. ke karakteristik tertentu pada manusia yang unik dan berbeda satu sama lain. BAB I PENDAHULUAN 1.1 Latar Belakang Masalah keamanan (security) merupakan salah satu isu yang sangat penting akhir-akhir ini. Salah satu teknik yang diunggulkan bisa diterapkan untuk permasalahan tersebut

Lebih terperinci

PERANCANGAN APLIKASI IDENTIFIKASI BIOMETRIKA TELAPAK TANGAN MENGGUNAKAN METODE FREEMAN CHAIN CODE

PERANCANGAN APLIKASI IDENTIFIKASI BIOMETRIKA TELAPAK TANGAN MENGGUNAKAN METODE FREEMAN CHAIN CODE PERANCANGAN APLIKASI IDENTIFIKASI BIOMETRIKA TELAPAK TANGAN MENGGUNAKAN METODE FREEMAN CHAIN CODE 1 Muzdalifah Ulfayani T, 2 Sayuti Rahman, 3 Yuyun Dwi Lestari 1,2,3 Program Studi Teknik Informatika Sekolah

Lebih terperinci

g(x, y) = F 1 { f (u, v) F (u, v) k} dimana F 1 (F (u, v)) diselesaikan dengan: f (x, y) = 1 MN M + vy )} M 1 N 1

g(x, y) = F 1 { f (u, v) F (u, v) k} dimana F 1 (F (u, v)) diselesaikan dengan: f (x, y) = 1 MN M + vy )} M 1 N 1 Fast Fourier Transform (FFT) Dalam rangka meningkatkan blok yang lebih spesifik menggunakan frekuensi dominan, akan dikalikan FFT dari blok jarak, dimana jarak asal adalah: FFT = abs (F (u, v)) = F (u,

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Pesatnya perkembangan teknologi saat ini menjadi umpan bagi para ahli untuk mencetuskan terobosan-terobosan baru berbasis teknologi canggih. Terobosan ini diciptakan

Lebih terperinci

Human Face Detection by using eigenface method for various pose of human face

Human Face Detection by using eigenface method for various pose of human face Human Face Detection by using eigenface method for various pose of human face Esty Vidyaningrum, Prihandoko Undergraduate program, Faculty of Industrial Technology, 2009 Gunadarma University http://www.gunadarma.ac.id

Lebih terperinci

KOMPRESI CITRA DIGITAL DENGAN MENGGUNAKAN HEBBIAN BASED PRINCIPAL COMPONENT ANALYSIS

KOMPRESI CITRA DIGITAL DENGAN MENGGUNAKAN HEBBIAN BASED PRINCIPAL COMPONENT ANALYSIS KOMPRESI CITRA DIGITAL DENGAN MENGGUNAKAN HEBBIAN BASED PRINCIPAL COMPONENT ANALYSIS 1 Sofyan Azhar Ramba 2 Adiwijaya 3 Andrian Rahmatsyah 12 Departemen Teknik Informatika Sekolah Tinggi Teknologi Telkom

Lebih terperinci

Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank

Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank khozin mu tamar 9 Oktober 2014 PERTEMUAN-4 : SISTEM KOORDINAT, DIMEN- SI RUANG VEKTOR DAN RANK 1. Sistem koordinat (a) Ketunggalan scalar

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Pada perkembangan teknologi informasi seperti saat ini, kebutuhan akan informasi dan sistem yang dapat membantu kebutuhan manusia dalam berbagai aspek sangatlah penting.

Lebih terperinci

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode / Nama Mata Kuliah : A11. 54303/ Matriks & Ruang Vektor Revisi 2 Satuan Kredit Semester : 3 SKS Tgl revisi : Agustus 2014 Jml Jam kuliah dalam

Lebih terperinci

SISTEM PENGENALAN WAJAH MENGGUNAAN METODE TEMPLATE MATCHING

SISTEM PENGENALAN WAJAH MENGGUNAAN METODE TEMPLATE MATCHING SISTEM PENGENALAN WAJAH MENGGUNAAN METODE TEMPLATE MATCHING 1 Yunifa Miftachul Arif, 2 Achmad Sabar 1 Jurusan Teknik Informatika, Fakultas Saintek, UIN Maulana Malik Ibrahim Malang 2 Jurusan Sistem Komputer,

Lebih terperinci

ANALISIS CITRA WAJAH DENGAN HIMPUNAN FUZZY EIGEN TERBESAR

ANALISIS CITRA WAJAH DENGAN HIMPUNAN FUZZY EIGEN TERBESAR ANALISIS CITRA WAJAH DENGAN HIMPUNAN FUZZY EIGEN TERBESAR Shinta Puspasari MDP Computer and Informatics Management Institute Jl. Rajawali 14, Palembang, 30113, Indonesia e-mail : shinta@stmik-mdp.net ABSTRAKSI

Lebih terperinci

Pengenalan Bahasa Isyarat Tangan Menggunakan Metode PCA dan Haar-Like Feature

Pengenalan Bahasa Isyarat Tangan Menggunakan Metode PCA dan Haar-Like Feature Pengenalan Bahasa Isyarat Tangan Menggunakan Metode PCA dan Haar-Like Feature Dosen Pembimbing : 1) Prof.Dr.Ir. Mauridhi Hery Purnomo M.Eng. 2) Dr. I Ketut Eddy Purnama ST., MT. Oleh : ATIK MARDIYANI (2207100529)

Lebih terperinci

PERANCANGAN APLIKASI IDENTIFIKASI BIOMETRIKA TELAPAK TANGAN MENGGUNAKAN METODE FREEMAN CHAIN CODE

PERANCANGAN APLIKASI IDENTIFIKASI BIOMETRIKA TELAPAK TANGAN MENGGUNAKAN METODE FREEMAN CHAIN CODE Page 64 PERANCANGAN APLIKASI IDENTIFIKASI BIOMETRIKA TELAPAK TANGAN MENGGUNAKAN METODE FREEMAN CHAIN CODE Sayuti Rahman 1, Muzdalifah Ulfayani T 2 Program Studi Teknik Informatika Sekolah Tinggi Teknik

Lebih terperinci

Rencana Perkuliahan. Kuliah Aljabar Linier Semester Ganjil MZI. Fakultas Informatika Telkom University. FIF Tel-U.

Rencana Perkuliahan. Kuliah Aljabar Linier Semester Ganjil MZI. Fakultas Informatika Telkom University. FIF Tel-U. Rencana Perkuliahan Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Agustus 2015 MZI (FIF Tel-U) Rencana Perkuliahan Agustus 2015 1 / 22 Acknowledgements

Lebih terperinci

Nilai Eigen dan Vektor Eigen Universal Matriks Interval Atas Aljabar Max-Plus

Nilai Eigen dan Vektor Eigen Universal Matriks Interval Atas Aljabar Max-Plus Nilai Eigen dan Vektor Eigen Universal Matriks Interval Atas Aljabar Max-Plus Fitri Aryani 1, Tri Novita Sari 2 Jurusan Matematika Fakultas Sains dan Teknologi UIN Suska Riau e-mail: khodijah_fitri@uin-suska.ac.id

Lebih terperinci

Implementasi Metode Hough Transform Pada Citra Skeletonisasi Dengan Menggunakan MATLAB 7.6. Intan Nur Lestari

Implementasi Metode Hough Transform Pada Citra Skeletonisasi Dengan Menggunakan MATLAB 7.6. Intan Nur Lestari Implementasi Metode Hough Transform Pada Citra Skeletonisasi Dengan Menggunakan MATLAB 7.6 Intan Nur Lestari Fakultas Teknologi Industri Universitas Gunadarma Jl. Margonda Raya, 100, Pondok Cina, Depok

Lebih terperinci

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: =

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: = BAB II LANDASAN TEORI 2.1 Matriks Definisi 2.1 (Lipschutz, 2006): Matriks adalah susunan segiempat dari skalarskalar yang biasanya dinyatakan dalam bentuk sebagai berikut: Setiap skalar yang terdapat dalam

Lebih terperinci

IMPLEMENTASI ALGORITMA FRACTAL NEIGHBOUR DISTANCE UNTUK FACE RECOGNITION

IMPLEMENTASI ALGORITMA FRACTAL NEIGHBOUR DISTANCE UNTUK FACE RECOGNITION IMPLEMENTASI ALGORITMA FRACTAL NEIGHBOUR DISTANCE UNTUK FACE RECOGNITION Garibaldy W Mukti 13506004 Teknik Informatika ITB alamat : Srigading 29, Bandung 40132 email: subghost1802000@yahoo.com ABSTRAK

Lebih terperinci

SUMMARY ALJABAR LINEAR

SUMMARY ALJABAR LINEAR SUMMARY ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN Tahap 1 : Identifikasi Permasalahan Mencari literatur-literatur yang berhubungan dengan bahan penelitian. Tahap 2 : Pengambilan Data Training : Testing 5 : 1 150 : 30 Dari 10 responden

Lebih terperinci

PERANGKAT LUNAK BANTU ANALISIS NUMERIK METODE DETERMINAN CRAMER, ELIMINASI GAUSS DAN LELARAN GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR

PERANGKAT LUNAK BANTU ANALISIS NUMERIK METODE DETERMINAN CRAMER, ELIMINASI GAUSS DAN LELARAN GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR PERANGKAT LUNAK BANTU ANALISIS NUMERIK METODE DETERMINAN CRAMER, ELIMINASI GAUSS DAN LELARAN GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR Tacbir Hendro Pudjiantoro A B S T R A K Salah satu

Lebih terperinci

Aljabar Linear Elementer MA SKS. 07/03/ :21 MA-1223 Aljabar Linear 1

Aljabar Linear Elementer MA SKS. 07/03/ :21 MA-1223 Aljabar Linear 1 Aljabar Linear Elementer MA SKS 7//7 : MA- Aljabar Linear Jadwal Kuliah Hari I Hari II jam jam Sistem Penilaian UTS 4% UAS 4% Quis % 7//7 : MA- Aljabar Linear Silabus : Bab I Matriks dan Operasinya Bab

Lebih terperinci

Solusi Sistem Persamaan Linear Ax = b

Solusi Sistem Persamaan Linear Ax = b Solusi Sistem Persamaan Linear Ax = b Kie Van Ivanky Saputra April 27, 2009 K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, 2009 1 / 9 Review 1 Substitusi mundur pada sistem

Lebih terperinci

Pengenalan Benda di Jalan Raya dengan Metode Kalman Filter. Roslyn Yuniar Amrullah

Pengenalan Benda di Jalan Raya dengan Metode Kalman Filter. Roslyn Yuniar Amrullah Pengenalan Benda di Jalan Raya dengan Metode Kalman Filter Roslyn Yuniar Amrullah 7406040026 Abstrak Computer Vision merupakan disiplin ilmu perpanjangan dari pengolahan citra digital dan kecerdasan buatan.

Lebih terperinci

MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI

MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI SAP (1) Buku : Suryadi H.S. 1991, Pengantar Aljabar dan Geometri analitik Vektor Definisi, Notasi, dan Operasi Vektor Susunan

Lebih terperinci

EKSTRAKSI CIRI GEOMETRIS UNTUK APLIKASI IDENTIFIKASI WAJAH. Oleh: Kholistianingsih

EKSTRAKSI CIRI GEOMETRIS UNTUK APLIKASI IDENTIFIKASI WAJAH. Oleh: Kholistianingsih EKSTRAKSI CIRI GEOMETRIS UNTUK APLIKASI IDENTIFIKASI WAJAH Oleh: Kholistianingsih Abstract Face recognition is a non-contact biometric identification that tries to verify individuals automatically based

Lebih terperinci

Pertemuan 14. persamaan linier NON HOMOGEN

Pertemuan 14. persamaan linier NON HOMOGEN Pertemuan 14 persamaan linier NON HOMOGEN 10 Metode GAUSS Aljabar Linier Hastha 2016 10.2.2 METODE ELIMINASI GAUSS Apabila [A][X]=[B] maka dengan menyusun matriks baru yaitu matriks [A.B] akan didapat

Lebih terperinci

APLIKASI PENGENALAN PLAT NOMOR KENDARAAN BERMOTOR MENGGUNAKAN METODE LEARNING VECTOR QUANTIZATION

APLIKASI PENGENALAN PLAT NOMOR KENDARAAN BERMOTOR MENGGUNAKAN METODE LEARNING VECTOR QUANTIZATION APLIKASI PENGENALAN PLAT NOMOR KENDARAAN BERMOTOR MENGGUNAKAN METODE LEARNING VECTOR QUANTIZATION Hamsina 1, Evanita V Manullang 1, Program Studi Teknik Informatika, Fakultas Ilmu Komputer dan Manajemen,

Lebih terperinci