BAB 2 TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 TINJAUAN PUSTAKA"

Transkripsi

1 BAB 2 TINJAUAN PUSTAKA 2.1 Dasar Persamaan Diferensial Parsial Suatu persamaan yang meliputi turunan fungsi dari satu atau lebih variabel terikat terhadap satu atau lebih variabel bebas disebut persamaan diferensial. Jika turunan fungsi itu hanya tergantung pada satu variable bebas maka disebut persamaan diferensial biasa (PDB) dan bila tergantung pada lebih dari satu variabel bebas disebut persamaan diferensial parsial (PDP). Pada PDP, variabel bebas dapat berupa waktu dan satu atau lebih koordinat ruang. Bentuk umum persamaan diferensial adalah: F (x,y, (2.1) Orde dari persamaan diferensial adalah orde tertinggi dari turunan dalam persamaan. Persamaan diferensial parsial menempati bagian utama fisika komputasi karena berbagai gejala penting dalam fisika dapat dinyatakan dalam bentuk PDP. Bentuk umum persamaan diferensial parsial yang sering ditemukan dalam problema fisika adalah PDP orde dua, yaitu: (2.2) di mana a 11, a 12, a 22 : koefisien u : variabel tak bebas x, y : variabel bebas berupa koordinat ruang dalam sistem koordinat Cartesian

2 Berdasarkan nilai koefisien-koefisiennya, bentuk umum ini dapat dibedakan atas beberapa bentuk khusus, yang kemudian dikenal sebagai bentuk PDP parabolik, hiperbolik, dan eliptik. Persamaan-persamaan ini banyak ditemui pada persamaan transport polutan. Pembagian persamaan diferensial menjadi tiga jenis di atas harus memenuhi syarat-syarat berikut: 1. Jika maka persamaan disebut PDP eliptik. Contohnya adalah persamaan Laplace: (2.3) Dengan V menyatakan potensial pada lokasi x dan waktu t. 2. Jika,, maka disebut PDP parabolik. Contohnya adalah persamaan difusi panas: (2.4) Dengan D menyatakan koefisien difusi dan Q menyatakan suhu pada lokasi x dan waktu t. 3. Jika, maka persamaan disebut PDP hiperbolik. Contohnya adalah persamaan gelombang: (2.5) Dengan A menyatakan amplitudo gelombang dan c adalah laju gelombang.

3 2.2 Persamaan Adveksi PDP hiperbolik dapat diformulasikan ke dalam hukum konservasi yang menyatakan bahwa kuantitas u dialirkan dalam ruang dan waktu, dan kemudian dikekalkan secara lokal. Hukum kontinuitas mengantarkan pada persamaan yang disebut persamaan konservatif (kekekalan) yang dinyatakan dengan: (2.6) dengan u(x,t) merupakan kerapatan besaran atau konsentrasi, F adalah rapat fluks, dan x adalah vector dari koordinat ruang. Dalam kebanyakan problema fisika, rapat fluks F sering tidak bergantung secara eksplisit terhadap x dan y, tetapi bergantung secara implisit melalui kerapatan u(x,t), misalnya F = F (u(x,t)). Bentuk awal dari persamaan di atas adalah: (2.7) Dengan S(U) adalah istilah umum untuk sumber yang mengindikasikan asal dan tujuan dari vektor U. Jika dimisalkan S(U) = 0, maka persamaan menjadi homogen. Sifat umum dari persamaan homogen adalah vektor U(x,t) yang diberikan pada titik x dan waktu t dapat menetukan laju aliran, atau fluks, dari setiap variabel pada keadaan (x,t). Hukum kekekalan yang diberikan persamaan (2.6) dapat pula dituliskan menjadi: (2.8) Dimana A(U) dan merupakan Jacobian dari F(U). Persamaan (2.8) identik dengan persamaan gelombang linear orde satu: (2.9)

4 Persamaan tersebut merupakan persamaan diferensial parsial linear orde satudimensi satu dalam koordinat Cartesian. Persamaan ini juga biasa disebut dengan persamaan adveksi yang umumnya diterapkan pada permasalahan transport polutan menggambarkan gradient konsentrasi. Persamaan adveksi menggambarkan mekanisme transportasi suatu substansi yang mengalir bersama fluida dalam arah tertentu dengan v menyatakan laju aliran fluida dan u adalah konsentrasi substansi yang dibawa bersama aliran fluida. Adveksi murni dipahami sebagai gerakan horizontal substansi tersebut tanpa terjadi proses pencampuran dan hanya dipengaruhi oleh kecepatan aliran sehingga bentuk gelombangnya diharapkan sama sepanjang daerah aliran. Secara matematis, gerakan fluida dinyatakan dalam medan vektor dan material yang diangkut merupakan besaran skalar. Berikut ini adalah contoh penerapan persamaan adveksi pada analisis pencemaran minyak di sungai Donan, Kabupaten Dati II Cilacap, Jawa Tengah yang dibuat oleh R. Soedradjat dari Laboratorium Ekologi Tanaman Fakultas Pertanian, Universitas Jember. Sungai Donan memiliki ciri yang khas yaitu merupakan lingkungan estuari dengan kadar salinitas antara 26,8 32,1, lebih banyak dipengaruhi oleh pasang surut daripada angin. Asumsi yang digunakan untuk membangun model transport yang disimulasi adalah sebagai berikut: 1. Termasuk perairan dangkal, panjang sungai yang ditinjau 6500 m, kedalaman konstan 9,23 m, lebar sungai konstan (150 m),dan debit sungai konstan pada 613,287 m 3 /detik. 2. Termasuk estuari yang pergerakannya dipengaruhi oleh pasang surut tanpa gesekan. 3. Variasi komponen aliran utamanya adalah komponen horizontal yang digerakkan oleh mekanisme adveksi sehingga suku persamaan transport yang ditinjau hanya suku adveksi. 4. Air sungai dianggap tidak mampat dan kemiringan sungai dianggap kecil.

5 5. Tekanan yang bekerja pada potongan melintang sungai adalah tekanan hidrostatis, artinya komponen gerak arah vertical tidak mempengaruhi distribusi tekanan. 6. Konsentrasi awal yang digunakan untuk simulasi adalah konsentrasi campuran. Untuk memperoleh penyelesaian numerik persamaan transport ditentukan syarat batas dan nilai awal, yaitu: 1. Syarat batas terbuka diberikan pada sisi hilir dan hulu sungai yaitu kecuali pada titik sumber, konsentrasi untuk minyak 4,2135 mg/l saat pasang dan 6,2539 mg/l saat surut. Konsentrasi fenol saat pasang 0,2258 mg/l dan 0,2710 mg/l saat surut. 2. Syarat batas tertutup diberikan yang menyatakan bahwa konsentrasi pencemar pada sel reflektif sama dengan konsentrasi pencemar di sebelah dalamnya. 3. Syarat awal diberikan dengan asumsi konsentrasi pencemar telah tersebar merata sedangkan konsentrasi pada semua grid selain grid sumber adalah nol (Soedradjat, 2003). Simulasi dilakukan dalam waktu 24 jam (82400 detik), langkah waktu 50 detik dan daerah model sepanjang 6500 dibagi ke dalam 13 grid. Debit sungai konstan sebesar 613,287 m 3 /detik, kecepatan aliran rerata saat surut menuju pasang 0,4430 m/detik dan ssat pasang menuju surut sebesar 0,5155 m/detik. Hasil simulasi sungai Donan saat surut menuju pasang adalah sebagai berikut:

6 Gambar 2.1 Simulasi konsentrasi minyak saat surut menuju pasang selama detik (dt=500 detik, i = 288, C awal = 4,2135 mg/l, kecepatan v = 0,5155 m/detik. Hasil simulasi sungai Donan saat pasang menuju surut, Gambar 2.2 Simulasi konsentrasi minyak saat pasang menuju surut selama detik (dt=500 detik, i = 288, C awal = 6,5239 mg/l, kecepatan v = 0,4430 m/detik Metode Analitik dan Numerik

7 Penyelesian analitis model matematika adalah penyelesian yang didapat dari manipulasi aljabar terhadap persamaan dasar sehingga didapat suatu penyelesaian yang berlaku untuk setiap titik dalam domain yang menjadi perhatian. Namun, tidak semua masalah fisis dalam model matematis dapat diselesaikan secara analistis. Untuk menyelesaikan permasalahan ini biasanya digunakan penyelesaian numeris, di mana persamaan dasar diubah menjadi persamaan yang hanya berlaku pada titik-titik tertentu di dalam domain penyelesaian. Pengubahan persamaan tersebut dapat menggunakan metode elemen hingga ataupun metode beda hingga. Untuk permasalahan satu dimensi, metode yang umum digunakan adalah metode beda hingga karena mudah digunakan dan lebih dahulu dikenal sehingga sifat-sifatnya sudah difahami (Luknanto, 2003). 2.4 Metode Beda Hingga Dasar Metode Metode beda hingga adalah metode numerik yang umum digunakan untuk menyelesaikan persoalan teknis dan problem matematis dari suatu gejala fisis. Secara umum metode beda hingga adalah metode yang mudah digunakan dalam penyelesaian problem fisis yang mempunyai bentuk geometri yang teratur, seperti interval dalam 1D (satu dimensi), domain kotak dalam dua dimensi, dan kubik dalam ruang tiga dimensi ( Li, 2010). Aplikasi penting dari metode beda hingga adalah dalam analisis numerik, khususnya pada persamaan diferensial biasa dan persamaan diferensial parsial. Prinsipnya adalah mengganti turunan yang ada pada persamaan diferensial dengan diskritisasi beda hingga berdasarkan deret Taylor. Secara fisis, deret Taylor dapat diartikan sebagai besaran tinjauan pada suatu ruang dan waktu (ruang dan waktu tinjauan) dapat dihitung dari besaran itu sendiri pada ruang dan waktu tertentu yang mempunyai perbedaan yang kecil dengan ruang dan waktu tinjauan (Anderson, 1984). Atau secara matematis dapat dituliskan sebagai:

8 ..(2.10) Dengan h adalah Δx, subskrip i merupakan titik grid, superskrip n menunjukkan time step dan adalah reminder atau biasa disebut truncation error yang merupakan suku selanjutnya dari deret tersebut yang dapat dinyatakan sebagai berikut,, dimana x o < < x o + Δx (2.11) Metode ini akan membuat pendekatan terhadap harga-harga yang tidak diketahui pada setiap titik secara diskrit. Dimulai dengan pemodelan dari suatu benda dengan membagi-bagi dalam grid atau kotak-kotak hitungan kecil yang secara keseluruhan masih memiliki sifat yang sama dengan benda utuh sebelum terbagi menjadi bagian-bagian yang kecil. Penerapan metode ini pada persamaan adveksi adalah memperkirakan persamaan differensial yang bersangkutan beserta syarat-syarat batasnya dengan seperangkat persamaan aljabar. Dengan mengganti daerah yang kontinu dengan suatu pola titik-titik tersebut. Sistem dibagi menjadi sejumlah subluas yang kecil dan memberi nomor acuan kepada setiap subluas. Metode beda hingga bersifat eksplisit, artinya keadaan suatu sistem atau solusi variabel pada suatu saat dapat digunakan untuk menentukan keadaan sistem pada waktu beriukutnya. Berbeda dengan metode implisit, yang mana penentuan solusi sistem harus dengan memecahkan sistem pada kedua keadaan, sekarang dan yang akan datang. Berdasarkan ekspansi Taylor di atas (persamaan 2.10), terdapat tiga skema beda hingga yang biasa digunakan dalam diskritisasi PDP, yaitu skema maju, skema mundur, dan skema tengah. 1. Skema maju (2.12)

9 Pada skema maju, informasi pada titik hitung i dihubungkan dengan titik hitung i+1 yang berada di depannya. Gambar 2.3 Skema maju ruang dengan h=x i+1 x i dan Δt = t n+1 t n. Dengan menggunakan kisi beda hingga, maka skema maju biasa ditulis sebagai berikut, Skema maju-ruang: atau (2.13) Skema maju-waktu: atau (2.14) 2. Skema mundur (2.15) Pada skema mundur, informasi pada titik hitung i dihubungkan dengan titik hitung (i- 1) yang berada di belakangnya.

10 Gambar 2.4 Kisi beda hingga skema mundur Dengan menggunakan kisi beda hingga, maka skema mundur biasa ditulis sebagai berikut, Skema mundur-ruang: atau (2.16) Skema mundur-waktu: atau (2.17) 3. Skema tengah Gambar 2.5 Kisi beda hingga skema tengah-ruang atau (2.18)

11 Beda hingga terhadap ruang derivasi kedua: (2.19) Untuk t n, (2.20) Dan untuk t n+1, (2.21) Sedangkan untuk beda hingga skema tengah terhadap waktu, (2.22a), (2.22b) (2.22c) Diskritisasi Benda atau struktur yang akan dianalsis dibagi atau dipotong menjadi bagian-bagian kecil (disebut grid). Inilah yang dinamakan sebagai diskritisasi. Banyaknya grid yang dibentuk bergantung pada bentuk benda yang akan dianalisis. Berikut ini contoh diskritisasi aliran sungai.

12 Gambar 2.6. Diskritisasi aliran sungai. Gambar 2.7 Kisi beda hingga ruang (x) dan waktu (t). Meskipun suatu benda dapat didiskritisasi ke dalam sistem, komponen atau grid yang lebih kecil, namun harus disadari bahwa sistem yang asli merupakan suatu keseluruhan. Daerah kompleks yang mendefinisikan kontinuitas didiskritisasi/dibagi menjadi sejumlah sub daerah/potongan-potongan geometrik sederhana yang tidak saling tumpang tindih. Terkait dengan persamaan dasar, diskritisasi variabel dilakukan dengan mengganti fungsi u(x,t) dengan nilai diskrit yang akan mendekati nilai u pada titik yang ditentukan,.

13 2.5 Metode FTCS Dalam analisis numerik, metode FTCS (Forward Time-Centered Space) adalah metode beda hingga yang umum digunakan pada pemecahan numerik persamaan panas dan persamaan differensial parsial yang sejenis. Metode ini menggunakan beda hingga maju dalam waktu dan beda hingga sentral dalam ruang. (2.23) (2.24) Persamaan 2.24 dikurangkan dengan persamaan 2.23 dan hasilnya dibagi dengan 2h menghasilkan persamaan 2.25 (2.25) n+1 n i-1 i i+1 Gambar 2.8 Skema FTCS Persamaan (2.25) dapat digunakan untuk membedahinggakan persamaan differensial melalui skema FTCS yang ditunjukkan pada gambar 2.8. dimana pendekatan orde pertama digunakan untuk turunan waktu dan persamaan orde duanya digunakan untuk turunan ruang. Dengan menggunakan notasi beda hingga yang telah dijelaskan pada subbab maka metode FTCS ini dapat diekspresikan melalui persamaan 2.26.

14 (2.26) Atau, (2.27) dengan Dan untuk sistem dengan persamaan linear hiperbolik (2.28) 2.6 Metode Lax-Wendroff Lax-Wendroff diambil dari nama Peter Lax dan Burton Wendroff. Metode ini juga merupakan metode numerik untuk penyelesaian persamaan diferensial parsial hiperbolik berdasarkan beda hingga dengan akurasi orde dua bergantung ruang dan waktu. Berbeda dengan metode FTCS, metode ini memiliki dua langkah penyelesaian. Pada langkah pertama, nilai f(x,t) dihitung pada setengah time step t n+½ dan setengah grid poin, x i+½. (Rezzolla, 2010). Yang mendasari metode ini adalah mengekspansikan u(x,t) ke dalam deret Taylor untuk x tetap dan t berada pada orde dua menggunakan PDP untuk menggantikan turunan waktu dengan turunan ruang, dan menggunakan beda tengah untuk mengaproksimasikan turunan ruang pada orde dua. Persamaan beda hingga kemudian menghasilkan akurasi orde dua. Skema Lax-Wendroff merupakan kombinasi dari skema Lax-Friederichs dan Leapfrog (loncat katak) Skema Lax-Friederichs

15 Ide dasar skema Lax-Friederichs sangat sederhana dan didasarkan pada menggantikan pada persamaan 2.27 dengan, sehingga penyelesaian persamaan adveksi menjadi, (2.29) Untuk sistem persamaan hiperbolik linear: (2.30) Walaupun tidak nyata, skema Lax-Friedrichs memperkenalkan disipasi numerik. Agar lebih jelas, maka persamaan ini dapat ditulis kembali ke dalam bentuk persamaan adveksi awal. (2.31) Persamaan 2.29 merupakan bentuk eksak representasi beda hingga dari persamaan: (2.32) Dimana suku difusi ~ terdapat pada sisi kanan. Untuk membuktikannya, diperoleh dengan menjumlahkan kedua deret Taylor pada persamaan (2.23) dan (2.24), di sekitar x i untuk mengeliminasi turunan orde pertama dan didapatkan persamaan (2.33) berikut: (2.33)

16 Gambar 2.9 Skema Lax-Friedrichs Skema Leapfrog Skema FTCS dan Lax-Friedrichs adalah skema level satu dengan pendekatan orde-satu untuk waktu dan orde-dua untuk ruang. Pada keadaan ini, vδt harus diambil lebih kecil daripada Δx (untuk mencapai akurasi yang diinginkan). Gambar 2.10 Skema Leaprog (loncat katak) Akurasi orde-dua dapat diperoleh dengan memasukkan (2.34) ke dalam skema FTCS, untuk mendapatkan skema Leapfrog Faktor 2 pada h dihapuskan, ekuivalen faktor 2 pada Δt. (2.35)

17 2.6.3 Tahapan Skema Lax-Wendroff Secara partikuler, tahap pemecahan skema Lax-Wendroff adalah sebagai berikut: 1. Skema Lax-Friedrichs sebagai setengah tahap (2.36a) (2.36b) Δt/2h diperoleh dengan mengambil time step Δt/2. 2. Evaluasi fluks dari nilai. 3. Setengah tahap Leapfrog. (2.37) Gambar 2.11 Skema Lax-Wendroff

18 Nilai setengah tahap dapat dihitung lebih spesifik sebagai berikut: (2.38) Sehingga, solusi pada level waktu baru akan menjadi = (2.39) Persamaan ini diperoleh dengan mensubstitusi persamaan 2.37 ke dalam persamaan Konvergensi, Stabilitas dan Konsistensi Skema Beda Hingga Kesuksesan solusi numerik diukur berdasar kriteria konvergensi, konsistensi serta stabilitas. Konvergensi berhubungan dengan besarnya penyimpangan solusi pendekatan oleh metode numerik terhadap solusi eksak atau solusi analitik (closed form). Gambar 2.12 Hubungan Konseptual antara konvergensi, stabilitas, dan konsistensi Konvergensi Metode Beda Hingga Berdasarkan jenis PDP

19 dengan menjadi,, (2.40) adalah operator diferensial orde-dua quasi-linear. Operator diskritisasi (2.41) untuk mempersingkat, error dapat dituliskan menjadi (2.42) dengan C adalah koefisien kontan. Representasi beda hingga dikatakan konsisten jika (2.43) u(x,t) melambangkan solusi eksak PDP dan melambangkan solusi eksak dari persamaan beda hingga yang mengaproksimasikan PDP dengan truncation error Persamaan beda hingga dikatakan konvergen jika truncation error menuju 0 dengan pangkat p untuk dan pangkat q untuk. (2.44) Stabilitas Metode Beda Hingga Kriteria konvergen dipahami sebagai kriteria dimana solusi metode beda hingga (tanpa hadirnya round off error) merupakan solusi pendekatan PDP, jika h 0 dan t 0. Ada dua kriteria lain yang diasosiasikan dengan kriteria konvergen, yaitu: stabilitas dan konsistensi. Kriteria stabilitas merupakan kondisi perlu dan cukup agar diperoleh solusi konvergen, sedang kriteria konsistensi merupakan kondisi ideal dimana solusi metode beda hingga sesuai dengan solusi PDP yang diharapkan. Terminologi stabilitas menunjukkan karakteristik persamaan diferensial tertentu jika t 0 serta berhubungan dengan amplifikasi solusi selama proses komputasi. Jika

20 amplifikasi solusi semakin besar, maka proses komputasi akan divergen dan tidak memperoleh hasil (tidak konvergen). Bisa jadi solusi divergen ini dipengaruhi oleh amplifikasi yang terlalu besar selama komputasi. Di lain pihak, amplifikasi yang besar belum tentu tidak menghasilkan solusi konvergen. Amplifikasi yang sangat besar menunjukkan bahwa stabilitas komputasi sangat rendah Konsistensi Metode Beda Hingga Terminologi konsistensi menunjukkan, bahwa solusi dengan metode beda hingga merupakan pendekatan solusi PDP analitik seperti diharapkan, bukan solusi persamaan yang lain. Jika h 0 dan t 0, maka solusi dengan metode beda hingga sama dengan solusi analitik PDP. Pada umumnya solusi dengan metode beda hingga akan sesuai dengan solusi PDP, sehingga kriteria konsistensi dengan sendirinya terpenuhi (taken for granted). 2.8 Syarat Kestabilan von Neumann Dalam analisis numerik, analisis stabilitas von Neumann atau juga dikenal dengan analisis stabilitas Fourier adalah sebuah prosedur yang digunakan untuk memeriksa kestabilan skema beda hingga yang diaplikasikan pada persamaan diferensial parsial linear. Stabilitas numerik sangat erat kaitannya dengan error numerik. Sebuah skema beda hingga dikatakan stabil jika error yang terjadi pada satu perhitungan time step tidak menyebabkan peningkatan error pada komputasi selanjutnya. Sebaliknya, jika error tumbuh bergantung waktu maka solusi menyimpang dan tidak stabil. Stabilitas skema numerik dapat diselidiki dengan syarat kestabilan von Neumann. Syarat kestabilan von Neuman hanya berlaku untuk PDP linear, PDP harus memiliki koefisien konstan dengan syarat batas periodik dan hanya memiliki dua variabel tak bebas. Solusinya dapat dilihat sebagai jumlah eigenmode di setiap titik grid, yaitu:

21 (2.43) di mana adalah faktor penguatan gelombang, j merupakan vektor, k adalah angka gelombang, subskrip i menunjukkan posisi dan n menunjukkan waktu. Syarat perlu dan cukup kestabilan von Neumann adalah modulus dari faktor amplifikasi harus kurang dari atau sama dengan 1 atau

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Umum Perpindahan panas adalah perpindahan energi yang terjadi pada benda atau material yang bersuhu tinggi ke benda atau material yang bersuhu rendah, hingga tercapainya kesetimbangan

Lebih terperinci

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai. I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Dalam kehidupan, polusi yang ada di sungai disebabkan oleh limbah dari pabrikpabrik dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk

Lebih terperinci

Sidang Tugas Akhir - Juli 2013

Sidang Tugas Akhir - Juli 2013 Sidang Tugas Akhir - Juli 2013 STUDI PERBANDINGAN PERPINDAHAN PANAS MENGGUNAKAN METODE BEDA HINGGA DAN CRANK-NICHOLSON COMPARATIVE STUDY OF HEAT TRANSFER USING FINITE DIFFERENCE AND CRANK-NICHOLSON METHOD

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE)

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE) Bab 2 Landasan Teori Dalam bab ini akan dibahas mengenai Persamaan Air Dangkal dan dasar-dasar teori mengenai metode beda hingga untuk menghampiri solusi dari persamaan diferensial parsial. 2.1 Persamaan

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal Linier (Linier Shallow Water Equation)

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal Linier (Linier Shallow Water Equation) Bab 2 Landasan Teori Dalam bab ini akan dijelaskan mengenai Persamaan Air Dangkal linier (Linear Shallow Water Equation), metode beda hingga, metode ekspansi asimtotik biasa, dan metode ekspansi asimtotik

Lebih terperinci

ANALISIS STABILITAS METODE FORWARD TIME-CENTRE SPACE (FTCS) DAN LAX-WENDROFF PADA SIMULASI PENYELESAIAN PERSAMAAN ADVEKSI SKRIPSI

ANALISIS STABILITAS METODE FORWARD TIME-CENTRE SPACE (FTCS) DAN LAX-WENDROFF PADA SIMULASI PENYELESAIAN PERSAMAAN ADVEKSI SKRIPSI ANALISIS STABILITAS METODE FORWARD TIME-CENTRE SPACE (FTCS) DAN LAX-WENDROFF PADA SIMULASI PENYELESAIAN PERSAMAAN ADVEKSI SKRIPSI Diajukan untuk melengkapi tugas dan memenuhi syarat mencapai gelar Sarjana

Lebih terperinci

1.1 Latar Belakang dan Identifikasi Masalah

1.1 Latar Belakang dan Identifikasi Masalah BAB I PENDAHULUAN Seiring dengan pertumbuhan kebutuhan dan intensifikasi penggunaan air, masalah kualitas air menjadi faktor yang penting dalam pengembangan sumberdaya air di berbagai belahan bumi. Walaupun

Lebih terperinci

Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit

Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit Vol. 11, No. 2, 105-114, Januari 2015 Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit Rezki Setiawan Bachrun *,Khaeruddin **,Andi Galsan Mahie *** Abstrak

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Teori Atom Bohr Pada tahun 1913, Niels Bohr, fisikawan berkebangsaan Swedia, mengikuti jejak Einstein menerapkan teori kuantum untuk menerangkan hasil studinya mengenai spektrum

Lebih terperinci

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Parsial Persamaan yang mengandung satu atau lebih turunan parsial suatu fungsi (yang diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan diferensial

Lebih terperinci

BAB 4 ANALISIS DAN BAHASAN

BAB 4 ANALISIS DAN BAHASAN BAB 4 ANALISIS DAN BAHASAN 4.1 Model LWR Pada skripsi ini, model yang akan digunakan untuk memodelkan kepadatan lalu lintas secara makroskopik adalah model LWR yang dikembangkan oleh Lighthill dan William

Lebih terperinci

PDP linear orde 2 Agus Yodi Gunawan

PDP linear orde 2 Agus Yodi Gunawan PDP linear orde 2 Agus Yodi Gunawan Pada bagian ini akan dipelajari tiga jenis persamaan diferensial parsial (PDP) linear orde dua yang biasa dijumpai pada masalah-masalah dunia nyata, yaitu persamaan

Lebih terperinci

Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial

Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial Ikhsan Maulidi Jurusan Matematika,Universitas Syiah Kuala, ikhsanmaulidi@rocketmail.com Abstract Artikel ini membahas tentang salah satu

Lebih terperinci

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik BAB II LANDASAN TEORI Pada bab ini, akan dijelaskan landasan teori yang akan digunakan dalam bab selanjutnya sebagai bahan acuan yang mendukung dan memperkuat tujuan penelitian. Landasan teori yang dimaksud

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Transformasi Laplace Salah satu cara untuk menganalisis gejala peralihan (transien) adalah menggunakan transformasi Laplace, yaitu pengubahan suatu fungsi waktu f(t) menjadi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Banyak sekali masalah terapan dalam ilmu teknik, ilmu fisika, biologi, dan lain-lain yang telah dirumuskan dengan model matematika dalam bentuk pesamaan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam kehidupan sehari-hari banyak permasalahan yang muncul di lingkungan sekitar. Hal tersebut yang memicu kreatifitas berpikir manusia untuk menyelesaikan

Lebih terperinci

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi

Lebih terperinci

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang beberapa teori dasar yang digunakan sebagai landasan pembahasan pada bab III. Beberapa teori dasar yang dibahas, diantaranya teori umum tentang persamaan

Lebih terperinci

PENYELESAIAN NUMERIK PERSAMAAN GELOMBANG AIR DANGKAL LINIER 1D MENGGUNAKAN METODE VOLUME HINGGA SKRIPSI OLEH LIA IZZATUN NIKMAH NIM.

PENYELESAIAN NUMERIK PERSAMAAN GELOMBANG AIR DANGKAL LINIER 1D MENGGUNAKAN METODE VOLUME HINGGA SKRIPSI OLEH LIA IZZATUN NIKMAH NIM. PENYELESAIAN NUMERIK PERSAMAAN GELOMBANG AIR DANGKAL LINIER 1D MENGGUNAKAN METODE VOLUME HINGGA SKRIPSI OLEH LIA IZZATUN NIKMAH NIM. 11610009 JURUSAN MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS

Lebih terperinci

Penerapan Metode Beda Hingga pada Model Matematika Aliran Banjir dari Persamaan Saint Venant

Penerapan Metode Beda Hingga pada Model Matematika Aliran Banjir dari Persamaan Saint Venant Penerapan Metode Beda Hingga pada Model Matematika Aliran Banjir dari Persamaan Hasan 1*, Tony Yulianto 2, Rica Amalia 3, Faisol 4 1,2,3) Jurusan Matematika, Fakultas MIPA,Universitas Islam Madura Jl.

Lebih terperinci

BAB I PENDAHULUAN. terbagi dalam berberapa tingkatan, gelombang pada atmosfir yang berotasi

BAB I PENDAHULUAN. terbagi dalam berberapa tingkatan, gelombang pada atmosfir yang berotasi BAB I PENDAHULUAN 1.1. Latar Belakang. Fenomena gelombang Korteweg de Vries (KdV) merupakan suatu gejala yang penting untuk dipelajari, karena mempunyai pengaruh terhadap studi rekayasa yang terkait dengan

Lebih terperinci

Reflektor Gelombang 1 balok

Reflektor Gelombang 1 balok Bab 3 Reflektor Gelombang 1 balok Setelah diperoleh persamaan yang menggambarkan gerak gelombang air setiap saat yaitu SWE, maka pada bab ini akan dielaskan mengenai pengaruh 1 balok terendam sebagai reflektor

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

BAB I PENDAHULUAN. Akibatnya model matematika sistem dinamik mengandung derivative biasa

BAB I PENDAHULUAN. Akibatnya model matematika sistem dinamik mengandung derivative biasa 1 BAB I PENDAHULUAN 1.1 Latar Belakang Ilmu Pengetahuan memberikan landasan teori bagi perkembangan teknologi, salah satunya adalah matematika. Cabang matematika modern yang mempunyai cakupan wilayah penelitian

Lebih terperinci

I PENDAHULUAN 1.1 Latar Belakang dan Perumusan Masalah

I PENDAHULUAN 1.1 Latar Belakang dan Perumusan Masalah I PENDAHULUAN 1.1 Latar Belakang dan Perumusan Masalah Penelusuran tentang fenomena belalang merupakan bahasan yang baik untuk dipelajari karena belalang dikenal suka berkelompok dan berpindah. Dalam kelompok,

Lebih terperinci

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga JURNAL SAINS DAN SENI ITS Vol. 4, No.2, (2015) 2337-3520 (2301-928X Print) A-13 Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga Vimala Rachmawati dan Kamiran Jurusan

Lebih terperinci

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A PENGANTAR MATEMATIKA TEKNIK 1 By : Suthami A MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK Matematika sebagai ilmu dasar yang digunakan sebagai alat pemecahan masalah di bidang keteknikan

Lebih terperinci

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan BAB II KAJIAN TEORI Pada bab ini akan dibahas beberapa hal yang digunakan sebagai landasan pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN BAB 3 METODOLOGI PENELITIAN 3.1 Diagram Alir Penelitian Berikut adalah diagram alir penelitian konduksi pada arah radial dari pembangkit energy berbentuk silinder. Gambar 3.1 diagram alir penelitian konduksi

Lebih terperinci

II. TINJAUAN PUSTAKA. 2.1 Persamaan Diferensial (Bronson dan Costa, 2007) terhadap satu atau lebih dari variabel-variabel bebas (independent

II. TINJAUAN PUSTAKA. 2.1 Persamaan Diferensial (Bronson dan Costa, 2007) terhadap satu atau lebih dari variabel-variabel bebas (independent 4 II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial (Bronson dan Costa, 2007) Persamaan differensial adalah suatu persamaan yang memuat turunan terhadap satu atau lebih dari variabel-variabel bebas (independent

Lebih terperinci

II LANDASAN TEORI. dengan, 1,2,3,, menyatakan koefisien deret pangkat dan menyatakan titik pusatnya.

II LANDASAN TEORI. dengan, 1,2,3,, menyatakan koefisien deret pangkat dan menyatakan titik pusatnya. 2 II LANDASAN TEORI Pada bagian ini akan dibahas teoriteori yang mendukung karya tulis ini. Teoriteori tersebut meliputi persamaan diferensial penurunan persamaan KdV yang disarikan dari (Ihsanudin, 2008;

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan salah satu cabang ilmu pengetahuan yang memiliki banyak manfaat, diantaranya sebagai salah satu ilmu bantu yang sangat penting dalam kehidupan

Lebih terperinci

Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG

Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG Pada bab sebelumnya telah dibahas mengenai dasar laut sinusoidal sebagai reflektor gelombang. Persamaan yang digunakan untuk memodelkan masalah dasar

Lebih terperinci

1. PENDAHULUAN, PROBLEM HIDRAULIKA SEDERHANA UNTUK APLIKASI METODE ELEMEN HINGGA

1. PENDAHULUAN, PROBLEM HIDRAULIKA SEDERHANA UNTUK APLIKASI METODE ELEMEN HINGGA 1. PENDAHULUAN, PROBLEM HIDRAULIKA SEDERHANA UNTUK APLIKASI METODE ELEMEN HINGGA 1.1. Pengantar Problem sederhana yang dapat mengantarkan pembaca kepada pemahaman Metode Elemen Hingga untuk problem hidraulika

Lebih terperinci

Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb

Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Sesi XII Differensial e-mail : zacoeb@ub.ac.id www.zacoeb.lecture.ub.ac.id Hp. 081233978339 PENDAHULUAN Persamaan diferensial

Lebih terperinci

Bab 1. Pendahuluan. 1.1 Latar Belakang Masalah

Bab 1. Pendahuluan. 1.1 Latar Belakang Masalah Bab 1 Pendahuluan 1.1 Latar Belakang Masalah Gelombang air laut merupakan salah satu fenomena alam yang terjadi akibat adanya perbedaan tekanan. Panjang gelombang air laut dapat mencapai ratusan meter

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Konsep Dasar dan Pembentukan (Differential : Basic Concepts and Establishment ) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan

Lebih terperinci

Kuliah 07 Persamaan Diferensial Ordinari Problem Kondisi Batas (PDOPKB)

Kuliah 07 Persamaan Diferensial Ordinari Problem Kondisi Batas (PDOPKB) Kuliah 07 Persamaan Diferensial Ordinari Problem Kondisi Batas (PDOPKB) Persamaan diferensial satu variabel bebas (ordinari) orde dua disebut juga sebagai Problem Kondisi Batas. Hal ini disebabkan persamaan

Lebih terperinci

Pemodelan Matematika dan Metode Numerik

Pemodelan Matematika dan Metode Numerik Bab 3 Pemodelan Matematika dan Metode Numerik 3.1 Model Keadaan Tunak Model keadaan tunak hanya tergantung pada jarak saja. Oleh karena itu, distribusi temperatur gas sepanjang pipa sebagai fungsi dari

Lebih terperinci

1 BAB 4 ANALISIS DAN BAHASAN

1 BAB 4 ANALISIS DAN BAHASAN 1 BAB 4 ANALISIS DAN BAHASAN Pada bab ini akan dibahas pengaruh dasar laut tak rata terhadap perambatan gelombang permukaan secara analitik. Pengaruh dasar tak rata ini akan ditinjau melalui simpangan

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI 1 I PENDAHULUAN 1.1 Latar Belakang Dewasa ini pemodelan matematika telah berkembang seiring perkembangan matematika sebagai alat analisis berbagai masalah nyata. Dalam pengajaran mata kuliah pemodelan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Dalam bab ini dibahas tentang dasar-dasar teori yang digunakan untuk mengetahui kecepatan perambatan panas pada proses pasteurisasi pengalengan susu. Dasar-dasar teori tersebut meliputi

Lebih terperinci

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta BAB II LANDASAN TEORI Pada bab ini akan diuraikan beberapa teori-teori yang digunakan sebagai acuan dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta teorema-teorema

Lebih terperinci

BAB-4. METODE PENELITIAN

BAB-4. METODE PENELITIAN BAB-4. METODE PENELITIAN 4.1. Bahan Penelitian Untuk keperluan kalibrasi dan verifikasi model numerik yang dibuat, dibutuhkan data-data tentang pola penyebaran polutan dalam air. Ada beberapa peneliti

Lebih terperinci

METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT

METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT Agusman Sahari. 1 1 Jurusan Matematika FMIPA UNTAD Kampus Bumi Tadulako Tondo Palu Abstrak Dalam paper ini mendeskripsikan tentang solusi masalah transport polutan

Lebih terperinci

Simulasi Perambatan Tsunami menggunakan Persamaan Gelombang Air-Dangkal

Simulasi Perambatan Tsunami menggunakan Persamaan Gelombang Air-Dangkal Matematika LAPORAN AKHIR PENELITIAN PENGUATAN PROGRAM STUDI Simulasi Perambatan Tsunami menggunakan Persamaan Gelombang Air-Dangkal Oleh: Mohammad Jamhuri, M.Si NIP. 1981050 00501 1004 FAKULTAS SAINS DAN

Lebih terperinci

II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan

II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Differential Equation Fungsi mendeskripsikan bahwa nilai variabel y ditentukan oleh nilai variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi

Lebih terperinci

Hidraulika Komputasi

Hidraulika Komputasi Hidraulika Komputasi Pendahuluan-Model Ir. Djoko Luknanto, M.Sc., Ph.D. Jurusan Teknik Sipil Fakultas Teknik Universitas Gadjah Mada 08/03/005 Djoko Luknanto 1 Pemodelan Kondisi Alam Untuk keperluan analisis

Lebih terperinci

BAB II DASAR TEORI. 2.1 Persamaan Kontinuitas dan Persamaan Gerak

BAB II DASAR TEORI. 2.1 Persamaan Kontinuitas dan Persamaan Gerak BAB II DASAR TEORI Ada beberapa teori yang berkaitan dengan konsep-konsep umum mengenai aliran fluida. Beberapa akan dibahas pada bab ini. Diantaranya adalah hukum kekekalan massa dan hukum kekekalan momentum.

Lebih terperinci

APLIKASI METODE BEDA HINGGA SKEMA EKSPLISIT PADA PERSAMAAN KONDUKSI PANAS

APLIKASI METODE BEDA HINGGA SKEMA EKSPLISIT PADA PERSAMAAN KONDUKSI PANAS Sulistyono, Metode Beda Hingga Skema Eksplisit 4 APLIKASI METODE BEDA HINGGA SKEMA EKSPLISIT PADA PERSAMAAN KONDUKSI PANAS Bambang Agus Sulistyono Program Studi Pendidikan Matematika FKIP UNP Kediri bb7agus@gmail.com

Lebih terperinci

BAB I PENDAHULUAN. tesis ini. Selain itu, literatur-literatur yang mendasari tesis ini akan diuraikan

BAB I PENDAHULUAN. tesis ini. Selain itu, literatur-literatur yang mendasari tesis ini akan diuraikan 1 BAB I PENDAHULUAN Pada Bab I akan dibahas latar belakang dan permasalahan penulisan tesis ini. Berdasarkan latar belakang, akan disusun tujuan dan manfaat dari penulisan tesis ini. Selain itu, literatur-literatur

Lebih terperinci

DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG

DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG h Bab 3 DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG 3.1 Persamaan Gelombang untuk Dasar Sinusoidal Dasar laut berbentuk sinusoidal adalah salah satu bentuk dasar laut tak rata yang berupa fungsi sinus

Lebih terperinci

I. PENDAHULUAN. II. DASAR TEORI Materi yang digunakan dalam penelitian ini adalah sebagai berikut:

I. PENDAHULUAN. II. DASAR TEORI Materi yang digunakan dalam penelitian ini adalah sebagai berikut: 1 Pengaruh Laju Aliran Sungai Utama Dan Anak Sungai Terhadap Profil Sedimentasi Di Pertemuan Dua Sungai Model Sinusoidal Yuyun Indah Trisnawati dan Basuki Widodo Matematika, Fakultas Matematika dan Ilmu

Lebih terperinci

BAB 9 PERSAMAAN DIFERENSIAL PARSIIL

BAB 9 PERSAMAAN DIFERENSIAL PARSIIL BAB 9 PERSAMAAN DIFERENSIAL PARSIIL Kebanyakan permasalahan dalam ilmu pengetahuan dan teknologi dapat dipresentasikan dalam bentuk persamaan diferensial parsiil. Persamaan tersebut merupakan lau perubahan

Lebih terperinci

BAB II KAJIAN TEORI. homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah ini adalah

BAB II KAJIAN TEORI. homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah ini adalah BAB II KAJIAN TEORI Pada bab ini akan dibahas suatu jenis persamaan differensial parsial tak homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah

Lebih terperinci

BAB IV SIMULASI NUMERIK

BAB IV SIMULASI NUMERIK BAB IV SIMULASI NUMERIK Pada bab ini kita bandingkan perilaku solusi KdV yang telah dibahas dengan hasil numerik serta solusi numerik untuk persamaan fkdv. Solusi persamaan KdV yang disimulasikan pada

Lebih terperinci

PRISMA FISIKA, Vol. IV, No. 02 (2016), Hal ISSN :

PRISMA FISIKA, Vol. IV, No. 02 (2016), Hal ISSN : PRISMA FISIKA, Vol. IV, No. (1), Hal. 5 3 ISSN : 337- Aplikasi Metode Beda Hingga rank-nicholson Implisit untuk Menentukan Kasus Adveksi-Difusi D pada Sebaran Polutan Di Suatu Perairan Holand Sampera a,

Lebih terperinci

MODEL PERSEBARAN KONSENTRASI BIOLOGICAL OXYGEN DEMAND 1-D PADA SISTEM PENGOLAHAN AIR LIMBAH KOLAM STABILISASI BERDASARKAN MEKANISME ADVEKSI DIFUSI

MODEL PERSEBARAN KONSENTRASI BIOLOGICAL OXYGEN DEMAND 1-D PADA SISTEM PENGOLAHAN AIR LIMBAH KOLAM STABILISASI BERDASARKAN MEKANISME ADVEKSI DIFUSI MODEL PERSEBARAN KONSENTRASI BIOLOGICAL OXYGEN DEMAND 1-D PADA SISTEM PENGOLAHAN AIR LIMBAH KOLAM STABILISASI BERDASARKAN MEKANISME ADVEKSI DIFUSI Moh Anis Faozi 1, Sunarsih 2, Kartono 3 1,2,3 Jurusan

Lebih terperinci

BAB I PENDAHULUAN. digunakan untuk masalah-masalah dalam kehidupan sehari-hari, diantaranya

BAB I PENDAHULUAN. digunakan untuk masalah-masalah dalam kehidupan sehari-hari, diantaranya BAB I PENDAHULUAN A. Latar Belakang Masalah Persamaan Diferensial merupakan ilmu matematika yang dapat digunakan untuk masalah-masalah dalam kehidupan sehari-hari, diantaranya dalam ilmu kesehatan yaitu

Lebih terperinci

Pengantar Metode Perturbasi Bab 1. Pendahuluan

Pengantar Metode Perturbasi Bab 1. Pendahuluan Pengantar Metode Perturbasi Bab 1. Pendahuluan Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas PAM 454 KAPITA SELEKTA MATEMATIKA TERAPAN II Semester Ganjil 2016/2017 Review Teori Dasar Terkait

Lebih terperinci

BAB-2. TINJAUAN PUSTAKA Persamaan Dasar

BAB-2. TINJAUAN PUSTAKA Persamaan Dasar BAB-2. TINJAUAN PUSTAKA 2.1. Persamaan Dasar Persamaan yang menyatakan fenomena sebaran polutan diturunkan dengan berdasar pada persamaan umum angkutan massa pada fluida mengalir. Unsurunsur dinamika angkutan

Lebih terperinci

STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA

STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA Oleh : Farda Nur Pristiana 1208 100 059 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH

Lebih terperinci

PENYELESAIAN NUMERIK GELOMBANG AIR DANGKAL LINEAR ID DENGAN METODE LAX-FRIEDRICHS SKRIPSI OLEH ROWAIHUL JANNAH NIM

PENYELESAIAN NUMERIK GELOMBANG AIR DANGKAL LINEAR ID DENGAN METODE LAX-FRIEDRICHS SKRIPSI OLEH ROWAIHUL JANNAH NIM PENYELESAIAN NUMERIK GELOMBANG AIR DANGKAL LINEAR ID DENGAN METODE LAX-FRIEDRICHS SKRIPSI OLEH ROWAIHUL JANNAH NIM. 10610002 JURUSAN MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI MAULANA

Lebih terperinci

Persamaan Difusi. Penurunan, Solusi Analitik, Solusi Numerik (Beda Hingga, RBF) M. Jamhuri. April 7, UIN Malang. M. Jamhuri Persamaan Difusi

Persamaan Difusi. Penurunan, Solusi Analitik, Solusi Numerik (Beda Hingga, RBF) M. Jamhuri. April 7, UIN Malang. M. Jamhuri Persamaan Difusi Persamaan Difusi Penurunan, Solusi Analitik, Solusi Numerik (Beda Hingga, RBF) M Jamhuri UIN Malang April 7, 2013 Penurunan Persamaan Difusi Misalkan u(x, t) menyatakan konsentrasi dari zat pada posisi

Lebih terperinci

Usia massa air sering diperkirakan melalui metode perhitungan radio-usia dihitung dari mulai di distribusikannya radioaktif pelacak.

Usia massa air sering diperkirakan melalui metode perhitungan radio-usia dihitung dari mulai di distribusikannya radioaktif pelacak. Usia massa air sering diperkirakan melalui metode perhitungan radio-usia dihitung dari mulai di distribusikannya radioaktif pelacak. Deleersnijder et al. Dalam [J. Maret Syst. 28 (2001) 229.] telah menunjukan

Lebih terperinci

APLIKASI METODE CELLULAR AUTOMATA UNTUK MENENTUKAN DISTRIBUSI TEMPERATUR KONDISI TUNAK

APLIKASI METODE CELLULAR AUTOMATA UNTUK MENENTUKAN DISTRIBUSI TEMPERATUR KONDISI TUNAK APLIKASI METODE CELLULAR AUTOMATA UNTUK MENENTUKAN DISTRIBUSI TEMPERATUR KONDISI TUNAK APPLICATION OF CELLULAR AUTOMATA METHOD TO DETERMINATION OF STEADY STATE TEMPERATURE DISTRIBUTION Apriansyah 1* 1*

Lebih terperinci

BAB 4 BAB 3 HASIL DAN PEMBAHASAN METODE PENELITIAN. 3.2 Peralatan

BAB 4 BAB 3 HASIL DAN PEMBAHASAN METODE PENELITIAN. 3.2 Peralatan 4 3.2 Peralatan..(9) dimana,, dan.(10) substitusi persamaan (10) ke persamaan (9) maka diperoleh persamaan gelombang soliton DNA model PBD...(11) agar persamaan (11) dapat dipecahkan sehingga harus diterapkan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Solusi multivalued dapat muncul dalam masalah-masalah fisika. Masalahmasalah yang memerlukan perhitungan solusi multivalued antara lain masalah gelombang dispersi,

Lebih terperinci

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP)

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) Revisi ke: Tanggal: GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) SPMI-UNDIP/GBPP/xx.xx.xx/xxx Disetujui oleh Dekan Fak Mata Kuliah : Fisika Matematika I Kode/ Bobot : PAF 208/4 sks Deskripsi singkat : Mata

Lebih terperinci

Solusi Penyelesaian Persamaan Laplace dengan Menggunakan Metode Random Walk Gapar 1), Yudha Arman 1), Apriansyah 2)

Solusi Penyelesaian Persamaan Laplace dengan Menggunakan Metode Random Walk Gapar 1), Yudha Arman 1), Apriansyah 2) Solusi Penyelesaian Persamaan Laplace dengan Menggunakan Metode Random Walk Gapar 1), Yudha Arman 1), Apriansyah 2) 1) Program Studi Fisika Jurusan Fisika Universitas Tanjungpura 2)Program Studi Ilmu Kelautan

Lebih terperinci

Metode Elemen Batas (MEB) untuk Model Konduksi-Konveksi dalam Media Anisotropik

Metode Elemen Batas (MEB) untuk Model Konduksi-Konveksi dalam Media Anisotropik Metode Elemen Batas (MEB) untuk Model Konduksi-Konveksi dalam Media Anisotropik Moh. Ivan Azis September 13, 2011 Daftar Isi 1 Pendahuluan 1 2 Masalah nilai batas 1 3 Persamaan integral batas 2 4 Hasil

Lebih terperinci

BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari

BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari BAB III HASIL DAN PEMBAHASAN Pada bab ini akan dibahas penurunan model persamaan panas dimensi satu. Setelah itu akan ditentukan penyelesaian persamaan panas dimensi satu secara analitik dengan metode

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Tujuan Instruksional: Mampu memahami definisi Persamaan Diferensial Mampu memahami klasifikasi Persamaan Diferensial Mampu memahami bentuk bentuk solusi Persamaan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Aljabar Linear Definisi 2.1.1 Matriks Matriks A adalah susunan persegi panjang yang terdiri dari skalar-skalar yang biasanya dinyatakan dalam bentuk berikut: [ ] Definisi 2.1.2

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan

BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan BAB I PENDAHULUAN Pada Bab I akan dibahas latar belakang dan permasalahan penulisan tesis. Berdasarkan latar belakang, akan disusun tujuan dan manfaat dari penulisan tesis. Selain itu, literatur-literatur

Lebih terperinci

BAB 4 LOGICAL VALIDATION MELALUI PEMBANDINGAN DAN ANALISA HASIL SIMULASI

BAB 4 LOGICAL VALIDATION MELALUI PEMBANDINGAN DAN ANALISA HASIL SIMULASI BAB 4 LOGICAL VALIDATION MELALUI PEMBANDINGAN DAN ANALISA HASIL SIMULASI 4.1 TINJAUAN UMUM Tahapan simulasi pada pengembangan solusi numerik dari model adveksidispersi dilakukan untuk tujuan mempelajari

Lebih terperinci

PENDAHULUAN METODE NUMERIK

PENDAHULUAN METODE NUMERIK PENDAHULUAN METODE NUMERIK TATA TERTIB KULIAH 1. Bobot Kuliah 3 SKS 2. Keterlambatan masuk kuliah maksimal 30 menit dari jam masuk kuliah 3. Selama kuliah tertib dan taat aturan 4. Dilarang makan dan minum

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN SATUAN ACARA PERKULIAHAN Nama/Kode Mata Kuliah : Matematika Fisika II/FI-431 Tujuan Matakuliah : Jumlah SKS/Semester : 3/ 2(3) mahasiswa diharapkan memiliki pengetahuan dan pemahaman yang baik tentang

Lebih terperinci

III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan

III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan 6, 1 (2.52) Berdasarkan persamaan (2.52), maka untuk 0 1 masing-masing memberikan persamaan berikut:, 0,0, 0, 1,1, 1. Sehingga menurut persamaan (2.51) persamaan (2.52) diperoleh bahwa fungsi, 0, 1 masing-masing

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA.1 Model Aliran Dua-Fase Nonekulibrium pada Media Berpori Penelitian ini merupakan kajian ulang terhadap penelitian yang telah dilakukan oleh Juanes (008), dalam tulisannya yang berjudul

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Asap atau polutan yang dibuang melalui cerobong asap pabrik akan menyebar atau berdispersi di udara, kemudian bergerak terbawa angin sampai mengenai pemukiman penduduk yang berada

Lebih terperinci

Persamaan Diferensial Parsial Umum Orde Pertama

Persamaan Diferensial Parsial Umum Orde Pertama Persamaan Diferensial Parsial Umum Orde Pertama Persamaan diferensial parsial umum orde pertama untuk fungsi memiliki bentuk: di mana dan. Dalam hal ini dipandang sebagai fungsi dari lima argumen. Di sini

Lebih terperinci

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL Pendahuluan Persamaan diferensial adalah persamaan yang memuat diferensial Kita akan membahas tentang Persamaan Diferensial Biasa yaitu

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Hal ini karena, matematika banyak diterapkan

Lebih terperinci

Triyana Muliawati, S.Si., M.Si.

Triyana Muliawati, S.Si., M.Si. SI 2201 - METODE NUMERIK Triyana Muliawati, S.Si., M.Si. Prodi Matematika Institut Teknologi Sumatera Lampung Selatan 35365 Hp. +6282260066546, Email. triyana.muliawati@ma.itera.ac.id 1. Pengenalan Metode

Lebih terperinci

PROPOSAL TUGAS AKHIR PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN OLEH : IRMA ISLAMIYAH

PROPOSAL TUGAS AKHIR PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN OLEH : IRMA ISLAMIYAH PROPOSAL TUGAS AKHIR PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN OLEH : IRMA ISLAMIYAH 1105 100 056 JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT

Lebih terperinci

II LANDASAN TEORI. Misalkan adalah suatu fungsi skalar, maka turunan vektor kecepatan dapat dituliskan sebagai berikut :

II LANDASAN TEORI. Misalkan adalah suatu fungsi skalar, maka turunan vektor kecepatan dapat dituliskan sebagai berikut : 2 II LANDASAN TEORI Pada bagian ini akan dibahas teori-teori yang digunakan dalam menyusun karya ilmiah ini. Teori-teori tersebut meliputi sistem koordinat silinder, aliran fluida pada pipa lurus, persamaan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial adalah suatu persamaan diantara derivatif-derivatif yang dispesifikasikan pada suatu fungsi yang tidak diketahui nilainya dan diketahui jumlah

Lebih terperinci

BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut.

BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut. BAB III PEMBAHASAN Pada bab ini akan dibahas tentang penurunan model persamaan gelombang satu dimensi. Setelah itu akan ditentukan persamaan gelombang satu dimensi dengan menggunakan penyelesaian analitik

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Teknologi perangkat mikro berkembang sangat pesat seiring meningkatnya teknologi mikrofabrikasi. Aplikasi perangkat mikro diantaranya ialah pada microelectro-mechanical

Lebih terperinci

Reflektor Gelombang Berupa Serangkaian Balok

Reflektor Gelombang Berupa Serangkaian Balok Bab 4 Reflektor Gelombang Berupa Serangkaian Balok Setelah kita mengetahui bagaimana pengaruh dan dimensi optimum dari 1 balok terendam sebagai reflektor gelombang maka pada bab ini akan dibahas bagaimana

Lebih terperinci

Solusi Persamaan Laplace Menggunakan Metode Crank-Nicholson. (The Solution of Laplace Equation Using Crank-Nicholson Method)

Solusi Persamaan Laplace Menggunakan Metode Crank-Nicholson. (The Solution of Laplace Equation Using Crank-Nicholson Method) Prosiding Seminar Nasional Matematika, Universitas Jember, 19 November 2014 320 Persamaan Laplace Menggunakan Metode Crank-Nicholson (The Solution of Laplace Equation Using Crank-Nicholson Method) Titis

Lebih terperinci

PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV

PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 415-422 PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV Iyut Riani, Nilamsari

Lebih terperinci

SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON

SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON Viska Noviantri Mathematics & Statistics Department, School of Computer Science, Binus University Jl. K.H. Syahdan No. 9,

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema BAB II LANDASAN TEORI Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema yang akan menjadi landasan untuk pembahasan pada bab III nanti, di antaranya model matematika penyebaran penyakit,

Lebih terperinci

PENYELESAIAN PERSAMAAN POISSON 2D DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN CONJUGATE GRADIENT

PENYELESAIAN PERSAMAAN POISSON 2D DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN CONJUGATE GRADIENT Teknikom : Vol. No. (27) E-ISSN : 2598-2958 PENYELESAIAN PERSAMAAN POISSON 2D DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN CONJUGATE GRADIENT Dewi Erla Mahmudah, Muhammad Zidny Naf an 2 STMIK Widya Utama,

Lebih terperinci

Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient

Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient Teknikom : Vol. No. (27) ISSN : 2598-2958 (online) Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient Dewi Erla Mahmudah, Muhammad Zidny Naf an 2 STMIK Widya

Lebih terperinci

Persamaan Diferensial Parsial CNH3C3

Persamaan Diferensial Parsial CNH3C3 Persamaan Diferensial Parsial CNH3C3 Week 3: Pengantar, konsep dasar dan klasikasi PDP Tim Ilmu Komputasi Coordinator contact: Dr. Putu Harry Gunawan phgunawan@telkomuniversity.ac.id 1 Kontrak kuliah 2

Lebih terperinci

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh:

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh: 5 II LANDASAN TEORI 2.1 Keterkontrolan Untuk mengetahui persoalan sistem kontrol mungkin tidak ada, jika sistem yang ditinjau tidak terkontrol. Walaupun sebagian besar sistem terkontrol ada, akan tetapi

Lebih terperinci