SOAL- SOAL MATEMATIKA KELAS XII IPB. 26. Nilai dari 2 log log 12 2 log 6 =. 27. Nilai dari 3 log log 6 3 log 10 =.

Ukuran: px
Mulai penontonan dengan halaman:

Download "SOAL- SOAL MATEMATIKA KELAS XII IPB. 26. Nilai dari 2 log log 12 2 log 6 =. 27. Nilai dari 3 log log 6 3 log 10 =."

Transkripsi

1 A. LOGIKA MATEMATIKA. lngkaran dari pernyataan "Semua siswi SMA Tarakanita bertempat tinggal di Jakarta" adalah.... Negasi dari pernyataan Disa cantik tetapi sombong adalah... (kata lain dari tetapi adalah dan ). Ingkaran dari pernyataan Clerisa akan berlibur ke Singapura atau berlibur ke Lombok adalah.... Negasi dari pernyataan Jika kamu datang maka aku akan pergi adalah.... Ingkaran dari pernyataan p (~q r) 6. Pernyataan yang setara dengan (p q) ~r 9. Hasil dari ( 7 )( 7 ) =.. Bentuk sederhana dari =.... Bentuk sederhana dari. Bentuk sederhana dari 6. Bentuk sederhana dari. Bentuk sederhana dari D. LOGARITMA. Nilai dari log - log log = Pernyataan Jika semua siswa tidak makan di kelas maka lantai bersih ekuivalen dengan Pernyataan yang setara dari pernyataan Jika waktu istirahat tiba maka semua anak makan di kantin adalah Pernyataan yang ekuivalen dengan pernyataan Saya akan bekerja atau tidak lulus SMA adalah.... Diketahui premis-premis berikut: Premis : Jika Derila lulus ujian dan ranking satu maka ia melanjutkan sekolah. Premis : Derila tidak melanjutkan sekolah. Kesimpulan yang sah. Diketahui premis-premis: Premis : Jika saya tidak rajin belajar maka saya tidak lulus ujian. Premis : Saya tidak rajin belajar. Kesimpulan yang sah. Diketahui premis-premis: P : Jika hari hujan, maka sungai meluap. P : Sungai tidak meluap. Penarikan kesimpulan yang sah dari premis-premis tersebut adalah.... Diketahui premis-premis: Premis : Jika saya terlambat bangun maka saya terlambat masuk sekolah. Premis : Jika saya tidak mendapat sanksi maka saya tidak terlambat masuk sekolah. Kesimpulan yang sah B. BENTUK PANGKAT. Bentuk sederhana dari 6 a b 8a b. Bentuk sederhana dari 6. Nilai dari 6 7. Nilai dari 9 8 =. ( ) adalah... C. BENTUK AKAR 8. Bentuk sederhana dari 8 + = Nilai dari log + log log 6 =. 7. Nilai dari log + log 6 log =. 8. Nilai dari log -. log + log 9 - log ½ =. 9. Jika log 7 = a maka log 9 adalah.... Jika log = m maka 9 log 8 = a adalah... E. PERSAMAAN KUADRAT. Akar-akar persamaan kuadrat x + x = adalah.... Akar-akar persamaan kuadrat x - 6x + = adalah.... Jika diketahui penyelesaian persamaan kuadrat x + 7x - = adalah m dan n. Jika diketahui m>n, maka nilai m - n =.... Jika diketahui akar-akar persamaan kuadrat x - 9x + 8 = adalah p dan q. Jika p < q maka nilai p + q =.... Penyelesaian persamaan kuadrat x + x = adalah Akar-akar persamaan kuadrat x = adalah Jika persamaan kuadrat px - 6x + = mempunyai akarakar yang sama maka nilai p adalah Jika persamaan kuadrat x (m - 9) x + 8 = mempunyai akar-akar yang berlawanan tanda maka nilai m adalah Jika persamaan kuadrat (q + 8) x x - 9 = mempunyai akar-akar yang berkebalikan maka nilai q adalah.... Jika diketahui akar-akar persamaan kuadrat x - x + = adalah p dan q maka nilai a. (p+q). pq=... b. (p+q) - pq=.... Diketahui penyelesaian persamaan kuadrat x + 6x = adalah m dan n. Tentukan nilai: a. m + n b. m.n c. m + n d. e. m n n m m n f. (m - )(n - ) theresiaveni.wordpress.com

2 F. FUNGSI KUADRAT. Diketahui fungsi kuadrat f(x) = x + 6x + 8. a. Titik potong dengan sumbu (syarat y=) b. Titik potong dengan sumbu (syarat x=) c. Titik balik/titik puncak/titik ekstrim (x p, y p ) d. Persamaan sumbu simetri-nya (x = x p = e. Nilai baliknya (y p ). Diketahui fungsi kuadrat f(x) = x - 6x+. a. Titik potong dengan sumbu b. Titik potong dengan sumbu c. Titik balik/titik puncak/titik ekstrim d. Persamaan sumbu simetri-nya e. Nilai baliknya. Diketahui fungsi kuadrat f(x)=x + 8x +6. a. Titik potong dengan sumbu b. Titik potong dengan sumbu c. Titik balik/titik puncak/titik ekstrim d. Persamaan sumbu simetri-nya e. Nilai baliknya. Perhatikan gambar! Nilai maksimum f(x, y) = x + y pada daerah yang diarsir. Perhatikan gambar! Daerah yang diarsir pada gambar merupakan himpunan penyelesaian dari system pertidaksamaan (,) G. SPLDV. Jika (x o, y o ) merupakan penyelesaian system persamaan linear x y = dan x + y = 6, maka nilai x o y o = 6. Nilai y yang memenuhi sistem persamaan 7. Diketahui x dan y memenuhi system persamaan x y = dan x + y 8 =. Nilai dari x + y =. x x y y 6 H. PROGRAM LINEAR 8. Seorang pedagang buah mempunyai tempat yang cukup untuk menyimpan kg buah. Jeruk dibeli dengan harga Rp., per kg dan jambu dibeli dengan harga Rp., per kg. Pedagang tersebut mempunyai modal Rp., untuk membeli x kg jeruk dan y kg jambu. Model matematika dari masalah tersebut 9. Seorang pedagang kaki lima mempunyai modal sebesar Rp.., untuk membeli macam celana. Celana panjang seharga Rp., per potong dan celana pendek seharga Rp., per potong. Tas untuk menjajakan maksimal memuat potong celana. Jika banyaknya celana panjang dimisalkan x dan banyaknya celana pendek adalah y, maka system pertidaksamaan yang memenuhi. Nilai minimum fungsi f(x,y) = x + y yang memenuhi system pertidaksamaan x + y, x + y 8, x, dan y. Nilai maksimum fungsi f(x,y) = x + y yang memenuhi sistem pertidaksamaan linear x + y 8, x + y, x, dan y. Nilai maksimum fungsi obyektif f(x,y) = x + y untuk himpunan penyelesaian seperti pada grafik di bawah adalah.. Nilai minimum fungsi obyektif f(x,y) = x + y dari daerah yang diarsir pada gambar 6. Tempat parkir seluas 6m hanya mampu menampung 8 kendaraan jenis bus dan mobil. Tiap mobil membutuhkan tempat seluas 6m dan bus m. Biaya parkir tiap mobil Rp., dan bus Rp.,. Berapa hasil dari biaya parkir maksimum, jika tempat parkir penuh? 7. Pedagang makanan membeli tempe seharga Rp., per buah dijual dengan laba Rp, per buah, sedangkan tahu seharga Rp., per buah di jual dengan laba Rp.,. Pedagang tersebut mempunyai modal Rp.., dan kiosnya dapat menampung tempe dan tahu sebanyak buah, maka keuntungan maksimum pedagang tersebut I. MATRIKS 8. Jika x 6 q 9. Diketahui A= =... 6 T p, maka nilai p q =... adalah matriks singular. Nilai x 6. Determinan matriks adalah Invers matriks adalah... theresiaveni.wordpress.com

3 6. Diketahui matriks A = Matriks BA =., dan B = 6 x Diketahui. x y Nilai y x = Diketahui matriks A = Matriks (A B) T dan B = 6 6. Jika diketahui matriks P =, determinan matriks PQ 66. Jika diketahui matriks A =.. dan Q = dan B =. Jika matriks C = A B, maka C = Matriks yang memenuhi. = 77. Suku kedua suatu deret aritmetika adalah 6 sedangkan suku ke sama dengan. Jumlah 8 suku pertama deret tersebut 78. Dari suatu barisan aritmetika diketahui suku ke adalah dan suku ke adalah 7. Beda barisan ini 79. Suku ke barisan geometri 8,,,, 8. Suku kedua barisan geometri = dan suku keenam adalah. Suku ketujuh barisan tersebut 8. Diketahui rumus suku ke n suatu barisan geometri adalah U n = n+. Rasio barisan itu 8. Diketahui suku ke dan ke deret geometri berturut turut dan 8. Jumlah suku pertamanya 8. Jumlah tak hingga deret geometri : adalah 8. Jumlah deret geometri tak hingga Diketahui deret geometri: Jumlah tak hingga deret geometri tersebut 86. Seorang pedagang mendapat keuntungan setiap bulan dengan pertambahan yang sama. Keuntungan bulan pertama Rp., dan keuntungan bulan ketiga Rp.,. Jumlah keuntungan dalam tahun Matriks yang memenuhi. = adalah. 69. Jika A = dan B = y 6 x 9, maka (A + B) Diketahui. Nilai x + y = 7. Persamaan matriks yang memenuhi system persamaan linear : x y 7 x y 7. Persamaan matriks yang memenuhi system persamaan linear : x y 8 x y 7 J. BARISAN DAN DERET 7. Jumlah n suku pertama deret aritmatika dinyatakan oleh Sn = n - 7. Beda deret tersebut sama dengan Jumlah n suku pertama deret aritmatika dinyatakan oleh Sn = n - n. Beda deret tersebut sama dengan Suku yang ke barisan aritmetika,,,, 76. Dari suatu barisan aritmetika diketahui suku ke dan suku ke berturut turut adalah dan. Suku ke 8 barisan tersebut 87. Suatu ruang pertunjukan memiiliki baris kursi. Terdapat kursi pada baris pertama, kursi pada baris kedua, 8 kursi di baris ketiga, kursi pada baris keempat dan seterusnya. Jumlah kursi yang ada dalam ruang pertunjukan 88. Seorang anak menabung untuk membeli sepeda idolanya. Jika pada bulan pertama menabung Rp.,, bulan ke menabung Rp.,, bulan ke menabung Rp.,, dan seterusnya setiap bulan dengan kenaikan Rp., dari bulan sebelumnya. Pada akhir tahun ke jumlah tabungan anak tersebut 89. Sebuah bola jatuh dari ketinggian m dan memantul kembali dengan ketinggian / kali dari sebelumnya, begitu seterusnya hingga bola berhenti. Jumlah seluruh lintasan bola adalah... K. KAIDAH PENCACAHAN 9. Dari angka-angka,,,,,6, dan 7 akan disusun suatu bilangan terdiri dari tiga angka. Banyak bilangan ganjil yang dapat tersusun dan tidak ada angka yang berulang 9. Pada pelaksanaan Ujian praktek Olah raga di sekolah A, setiap peserta diberi nomor yang terdiri dari tiga angka dengan angka pertama tidak nol. Banyaknya peserta ujian yang bernomor genap 9. Dari angka-angka,,,,6, dan 7 akan dibuat bilangan terdiri dari empat angka berlainan. Banyaknya bilangan kurang dari. yang dapat dibuat 9. Banyaknya bilangan antara. dan. yang dapat disusun dari angka-angka,,,,,6 dengan tidak ada angka yang sama theresiaveni.wordpress.com

4 9. Lima orang bermain bulu tangkis satu lawan satu secara bergantian. Banyaknya pertandingan adalah Suatu keluarga yang tinggal di Surabaya ingin liburan ke Eropa via Arab Saudi. Jika rute dari Surabaya ke Arab Saudi sebanyak rute penerbangan, sedangkan Arab Saudi ke Eropa ada 6 rute, maka banyaknya semua pilihan rute penerbangan dari Surabaya ke Eropa pergi pulang dengan tidak boleh melalui rute yang sama 96. Seorang anak mempunyai baju dan celana maka banyaknya komposisi pemakaian baju dan celana L. PELUANG. Dua dadu dilambungkan bersama-sama sebanyak 8 kali. Tentukan frekuensi harapan mata dadu yang muncul jumlahnya 6!. Sebuah dadu dilambungkan sebanyak 7 kali. Tentukan frekuensi harapan mata dadu yang muncul kurang dari!. Sebuah dadu dilempar sebanyak N kali. Dengan pelemparan tersebut diharapkan muncul mata dadu ganjil sebanyak 6 kali. Tentukan banyaknya pelemparan yang harus dilakukan agar harapan tersebut dipenuhi! 97. Dalam rangka memperingati HUT RI, Pak RT membentuk tim panitia HUT RI yang dibentuk dari 8 pemuda untuk dijadikan ketua panitia, sekretaris, dan bendahara masingmasing orang. Banyaknya cara pemilihan tim panitia yang dapat disusun 98. Dalam suatu rapat osis yang terdiri dari 6 orang dalam posisi yang melingkar. Banyaknya formasi duduk yang bisa dibentuk. 99. Dari 7 orang pelajar berprestasi di suatu sekolah akan dipilih orang pelajar berprestasi I, II, dan III. Banyaknya cara susunan pelajar yang mungkin terpilih sebagai pelajar berprestasi I, II, dan III. Dalam suatu rapat osis yang terdiri dari 6 orang dalam posisi yang melingkar. Jika ketua, wakil, dan sekretaris harus selalu duduk bersebelahan, ada berapa formasi duduk yang bisa dibentuk.. Susunan berbeda yang dapat dibentuk dari kata JANUARI. Susunan berbeda yang dapat dibentuk dari kata DESEMBER. Banyak kelompok yang terdiri atas siswa berbeda dapat dipilih dari siswa pandai untuk mewakili sekolahnya dalam kompetisi matematika. Banyak cara menyusun suatu regu cerdas cermat yang terdiri dari siswa dipilih dari siswa yang tersedia adalah. Dari orang siswa yang berkumpul, mereka saling berjabat tangan, maka banyaknya jabatan tangan yang terjadi 6. Pada suatu kotak berisi 7 kelereng putih dan kelereng biru. Dari kotak itu diambil kelereng sekaligus. Berapa banyak pilihan jika terdiri atas kelereng putih dan kelereng biru? 7. Sebuah kantong berisi kelereng putih, kelereng hitam dan kelereng hijau. Dari dalam kantong di ambil kelereng. Tentukan banyaknya cara untuk mengambil: a. kelereng putih dan kelereng hijau b. warna yang berbeda 8. Dalam ujian, seorang siswa disuruh menjawab 8 soal dari soal yang diajukan. Tentukan : a. Banyaknya pilihan yang dia punyai. b. Jika harus menjawab soal yang pertama, berapa banyak pilihan yang dia punyai 9. Sebanyak pria dan wanita orang akan mengikuti pertemuan disebuah hotel hanya orang yang diperbolehkan untuk mengikuti pertemuan itu. Tentukan banyak cara memilih orang tersebut jika paling sedikit satu orang diantaranya harus wanita!. Dalam sebuah kotak terdapat 6 bola hijau dan 8 bola merah. Jika diambil bola bersamaan, tentukan peluang memperoleh bola berwarna sama!. Dalam sebuah kotak terdapat bola hitam dan 6 bola merah. Dari kotak diambil bola sekaligus. Tentukan peluang terambil banyak bola hitam dan bola merah!. Dua kartu diambil sekaligus dari seperangkat kartu bridge. Tentukan peluang terambilnya dua kartu bernomor 9! 6. Sebuah kotak berisi bola hitam, bola hijau dan bola biru. Dari dalam kotak diambil bola sekaligus secara acak. Tentukan peluang terambil bola hitam dan bola biru! 7. Dua dadu dilambungkan bersama-sama sekali. Tentukan peluang muncul jumlah kedua mata dadu atau 6! 8. Kantong I berisi kelereng hijau dan kelereng kuning, sedangkan kantong II berisi kelereng hijau dan kelereng biru. Dari masing-masing kantong diambil sebuah kelereng, tentukan peluang terambilnya a. kedua kelereng berwarna sama b. kedua kelereng berbeda warna 9. Dua buah dadu dilempar secara bersamaan sebanyak kali. Tentukan peluang kejadian terambilnya kedua dadu berjumlah > 8 setelah kejadian terambilnya kedua dadu berjumlah <!. Dari seperangkat kartu bridge diambil secara acak satu lembar kartu. Tentukan peluang terambilnya kartu bukan bernomor 9!. Satu set kartu bridge dikocok, kemudian akan diambil sebuah kartu. Tentukan peluang terambilnya kartu AS atau kartu Jack!. Dari sebuah kantong yang berisi kelereng berwarna merah dan 6 kelereng berwarna putih diambil dua buah kelereng satu persatu tanpa pengembalian. Peluang terambilnya pertama berwarna merah dan kedua berwarna putih adalah. Sebuah kotak hadiah berisi 6 gelang dan cincin. Pada pengambilan dua kali berurutan tanpa pengembalian, tentukan peluang terambilnya gelang pada pengambilan pertama dan cincin pada pengambilan kedua!. Kantong Doraemon berisikan 7 kelereng putih dan kelereng coklat. Suneo mempunyai kesempatan mengambil buah kelereng yang diambil satu persatu dengan pengembalian. Tentukan peluang Suneo mengambil kelereng coklat pada pengambilan pertama dan kedua!. Satu set kartu bridge dikocok, kemudian akan diambil sebuah kartu. Tentukan peluang terambilnya kartu berwarna merah atau kartu Queen! theresiaveni.wordpress.com

5 6. Dalam suatu kotak terdapat 6 bola kuning dan bola biru. Dua bola diambil satu demi satu tanpa pengembalian bola pertama ke dalam kotak. Peluang terambilnya pertama bola kuning dan kedua bola biru M. STATISTIKA 7. Diagram lingkaran berikut data pekerjaan orang tua siswa kelas suatu SMA. Jika orang tua siswa sebanyak 8 orang, maka yang pekerjaannya sebagai buruh sebanyak.... Data hasil tes uji kompetensi matematika disajikan pada histogram berikut. Frekuensi 6 8. Data pada diagram menunjukkan siswa yang diterima di beberapa perguruan tinggi. Jika jumlah siswa seluruhnya sebanyak 8 orang, maka persentase banyak siswa yang diterima di UNPAD %. 6 n Pedagang % Buruh Petani % TNI % PNS % d. Kuartil bawah (Q ) e. Kuartil tengah (Q ) f. Kuartil atas (Q ). Perhatikan data pada histogram berikut: , 9, 9, 69, 79, 89, Frekuensi Data ITB UI UNPAD UNAIR UGM 9. Diagram lingkaran di bawah menunjukan pendataan 9 peternak di sebuah desa. Banyaknya peternak itik ada peternak.. Diketahui data sebagai berikut: Berat bersih (kg) Frekuensi 6 6 d. Kuartil atas (Q ) e. Kuartil tengah (Q ) f. Kuartil bawah (Q ). Di bawah ini daftar frekuensi dari data usia anak suatu perkampungan. Data Frekuensi f = d. Kuartil atas (Q ) e. Kuartil tengah (Q ) f. Kuartil bawah (Q ),, 7,,, 6, d. Kuartil bawah (Q ) e. Kuartil tengah (Q ) f. Kuartil atas (Q ) Nilai. Diketahui data,,6,6,,8,7,7,8,. a. Mean c. Kuartil atas d. Kuartil tengah e. Kuartil bawah f. Jangkauan antar kuartil (hamparan) g. Jangkauan semi antar kuartil/simpangan kuartil h. Simpangan Rata-rata i. Ragam/variansi j. Simpangan Baku. Diketahui data,,6,7,6,8,,8. a. Mean d. Kuartil atas e. Kuartil tengah f. Kuartil bawah g. Jangkauan antar kuartil (hamparan) h. Jangkauan semi antar kuartil/simpangan kuartil i. Simpangan Rata-rata j. Ragam/variansi k. Simpangan Baku 6. Simpangan rata rata dari data,,, 7, 8 7. Simpangan baku data 6,,, 6,, 7, 8, 7, theresiaveni.wordpress.com

KD 1. Menggunakan logika matematika dalam pemecahan masalah

KD 1. Menggunakan logika matematika dalam pemecahan masalah KD. Menggunakan logika matematika dalam pemecahan masalah A. LOGIKA MATEMATIKA. Menentukan ingkaran atau kesetaraan dari suatu pernyataan majemuk atau pernyataan berkuantor.. lngkaran dari pernyataan "Semua

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.97 Sukoharjo Telp. 07-90 7 TRY OUT UJIAN NASIONAL TAHAP TAHUN PELAJARAN 0/0 Mata Pelajaran :

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. 9 PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.97 Sukoharjo Telp. 07-90 7 TRY OUT UJIAN NASIONAL TAHAP TAHUN PELAJARAN 0/0 Mata Pelajaran

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. 0 PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.97 Sukoharjo Telp. 07-90 7 TRY OUT UJIAN NASIONAL TAHAP TAHUN PELAJARAN 0/0 Mata Pelajaran

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.97 Sukoharjo Telp. 07-90 7 TRY OUT UJIAN NASIONAL TAHAP TAHUN PELAJARAN 0/0 Mata Pelajaran :

Lebih terperinci

UN SMA IPS 2012 Matematika

UN SMA IPS 2012 Matematika UN SMA IPS 01 Matematika Kode Soal A Doc. Name: UNSMAIPS01MATA Doc. Version : 01-1 halaman 1 01. Ingkaran pernyataan Pada hari Senin siswa SMAN memakai sepatu hitam dan atribut lengkap adalah. Pada hari

Lebih terperinci

Ujian Nasional. Tahun Pelajaran 2010/2011 IPS MATEMATIKA (D10) UTAMA. SMA / MA Program Studi

Ujian Nasional. Tahun Pelajaran 2010/2011 IPS MATEMATIKA (D10) UTAMA. SMA / MA Program Studi Ujian Nasional Tahun Pelajaran 2010/2011 UTAMA SMA / MA Program Studi IPS MATEMATIKA (D10 c Fendi Alfi Fauzi alfysta@yahoo.com Ujian Nasional Tahun Pelajaran 2010/2011 (Pelajaran Matematika Tulisan ini

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN JL. ARIF RAHMAN HAKIM 2 GRESIK TRY OUT UJIAN NASIONAL Tahun Pelajaran 2010/2011

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN JL. ARIF RAHMAN HAKIM 2 GRESIK TRY OUT UJIAN NASIONAL Tahun Pelajaran 2010/2011 PEMERINTAH KAUPATEN GRESIK DINAS PENDIDIKAN JL. ARIF RAHMAN HAKIM GRESIK TRY OUT UJIAN NASIONAL Tahun Pelajaran 00/0 Mata Pelajaran : Matematika Satuan Pendidikan : SMA/MA Program : ahasa Hari/ Tanggal

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.9 Sukoharjo Telp. 0-590 55 TR OUT UJIAN NASIONAL TAHAP TAHUN PELAJARAN 0/0 Mata Pelajaran : MATEMATIKA

Lebih terperinci

PREDIKSI UN SMA IPS MATEMATIKA 2012

PREDIKSI UN SMA IPS MATEMATIKA 2012 Prediksi Matematika UN SMA IPS 01 PREDIKSI UN SMA IPS MATEMATIKA 01 1. Diketahui dua pernyataan p dan q p : bernilai besar q : bernilai salah Pernyataan majemuk di bawah ini bernilai benar, kecuali. A.

Lebih terperinci

BANK SOAL MATEMATIKA IPS

BANK SOAL MATEMATIKA IPS BANK SOAL MATEMATIKA IPS Tim Guru Matematika SMAN 1 Kendari KENDARI 2013 1. Bentuk sederhana dari adalah... A. B. E. Jawaban : E Bentuk sederhana dari : 2. Nilai x yang memenuhi persamaan adalah... A.

Lebih terperinci

SMA 74 JAKARTA LATIHAN SOAL UN MATEMATIKA JURUSAN IPS TAHUN 2012

SMA 74 JAKARTA LATIHAN SOAL UN MATEMATIKA JURUSAN IPS TAHUN 2012 SMA 74 JAKARTA LATIHAN SOAL UN MATEMATIKA JURUSAN IPS TAHUN 0. Negasi dari semua siswa rajin belajar untuk menghadapi UN, adalah... A. tidak semua siswa rajin belajar untuk menghadapi UN B. semua siswa

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN JL. ARIF RAHMAN HAKIM 2 GRESIK TRY OUT UJIAN NASIONAL Tahun Pelajaran 2010/2011

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN JL. ARIF RAHMAN HAKIM 2 GRESIK TRY OUT UJIAN NASIONAL Tahun Pelajaran 2010/2011 PMRINTAH KABUPATN GRSIK DINAS PNDIDIKAN JL. ARIF RAHMAN HAKIM GRSIK TRY OUT UJIAN NASIONAL Tahun Pelajaran / Mata Pelajaran : Matematika Satuan Pendidikan : SMA/MA Program : Bahasa Hari/ Tanggal : Selasa,

Lebih terperinci

UN SMA 2013 PRE Matematika IPS

UN SMA 2013 PRE Matematika IPS UN SMA 201 PRE Matematika IPS Kode Soal Doc. Name: UNSMA2014PREMATIPS999 Doc. Version : 2014-01 halaman 1 01. (1) Jika jalan basah maka hari hujan (2) Jika hari tidak hujan maka jalan tidak basah () Jika

Lebih terperinci

PREDIKSI UJIAN NASIONAL MATA PELAJARAN MATEMATIKA IPS TAHUN PELAJARAN

PREDIKSI UJIAN NASIONAL MATA PELAJARAN MATEMATIKA IPS TAHUN PELAJARAN PREDIKSI UJIAN NASIONAL MATA PELAJARAN MATEMATIKA IPS TAHUN PELAJARAN 0-0. Negasi dari pernyataan, Jika Harmelia lulus ujian maka ia akan melanjutkan kuliah di luar negeri adalah... Harmelia lulus ujian

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI SIDAYU Jl. Pahlawan No.0 Telp./Fax. 0-0 Sidayu Gresik UJIAN SEKOLAH TAHUN PELAJARAN 00/0 Mata Pelajaran : Matematika Satuan Pendidikan : SMA Program

Lebih terperinci

= 3 x maka (f g)(x) =.. Mata Pelajaran : MATEMATIKA. Petunjuk: A

= 3 x maka (f g)(x) =.. Mata Pelajaran : MATEMATIKA. Petunjuk: A Mata Pelajaran : MATEMATIKA Kelas/ Program : XII IPS Waktu : 0 menit Petunjuk: Pilih satu jawaban yang benar. Pernyataan yang senilai dengan Jika guru tidak datang maka semua siswa sedih. Adalah... Jika

Lebih terperinci

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA A TROUT UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA TAHUN PELAJARAN 0/05 MATEMATIKA IPS Hasil Kerja Sama dengan Mata Pelajaran : Matematika IPS Jenjang : SMA/MA MATA PELAJARAN Hari, tanggal : Selasa,

Lebih terperinci

UN SMA 2014 Matematika IPS

UN SMA 2014 Matematika IPS UN SMA 04 Matematika IPS Kode Soal Doc. Name: UNSMA04MATIPS999 Doc. Version : 0-0 halaman 0. Negasi dari pernyataan Semua bilangan rasional adalah bilangan real dan prima adalah... Tidak ada bilangan rasional

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik PEMERINTAH KAUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI SIDAYU Jl. Pahlawan No.0 Telp./Fax. 0-0 Sidayu Gresik UJIAN SEKOLAH TAHUN PELAJARAN 00/0 Mata Pelajaran : Matematika Satuan Pendidikan : SMA Program

Lebih terperinci

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA B TROUT UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA TAHUN PELAJARAN 04/05 MATEMATIKA IPS Hasil Kerja Sama dengan Mata Pelajaran : Matematika IPS Jenjang : SMA/MA MATA PELAJARAN Hari, tanggal : Selasa,

Lebih terperinci

1. Dari suatu barisan aritmetika diketahui suku ke-15 adalah 222 dan suku ke-12 adalah 57. Suku ke-15 barisan ini adalah. A. 62 B. 68 C. 72 D. 74 E.

1. Dari suatu barisan aritmetika diketahui suku ke-15 adalah 222 dan suku ke-12 adalah 57. Suku ke-15 barisan ini adalah. A. 62 B. 68 C. 72 D. 74 E. . Dari suatu barisan aritmetika diketahui suku ke-5 adalah dan suku ke- adalah 57. Suku ke-5 barisan ini adalah. A. 6 B. 68 7 D. 74 E. 76. Suku ketiga dan suku keenam barisan geometri berturut-turut adalah

Lebih terperinci

SMA / MA Bahasa Mata Pelajaran : Matematika

SMA / MA Bahasa Mata Pelajaran : Matematika Latihan Soal UN 0 Paket Sekolah Menengah Atas / Madrasah Aliyah SMA / MA Bahasa Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban Ujian

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN JL. ARIF RAHMAN HAKIM 2 GRESIK TRY OUT UJIAN NASIONAL Tahun Pelajaran 2010/2011

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN JL. ARIF RAHMAN HAKIM 2 GRESIK TRY OUT UJIAN NASIONAL Tahun Pelajaran 2010/2011 DOKUMEN NEGR PEMERINTH KBUPTEN GRESIK DINS PENDIDIKN JL. RIF RHMN HKIM GRESIK TRY OUT UJIN NSIONL Tahun Pelajaran 00/0 Mata Pelajaran : Matematika Satuan Pendidikan : SM/M Program : Bahasa Hari/Tanggal

Lebih terperinci

UN SMA IPS 2013 Matematika

UN SMA IPS 2013 Matematika UN SMA IPS 0 Matematika Kode Soal Doc. Name: UNSMAIPS0MAT999 Version: 0-07 halaman 0. Ingkaran dari pernyataan Semua peserta ujian mengharapkan nilai tinggi dan lulus (A) Ada peserta ujian mengharapkan

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2006/2007

UJIAN NASIONAL TAHUN PELAJARAN 2006/2007 UJIAN NASIONAL TAHUN PELAJARAN 006/007 PANDUAN MATERI MATEMATIKA Kelompok Seni, Pariwisata, dan Teknologi Kerumahtanggaan PUSAT PENILAIAN PENDIDIKAN BALITBANG DEPDIKNAS Hak Cipta pada Pusat Penilaian Pendidikan

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik PMRINTAH KABUPATN GRSIK DINAS PNDIDIKAN SMA NGRI SIDAYU Jl. Pahlawan No.0 Telp./Fax. 0-40 Sidayu Gresik UJIAN SKOLAH TAHUN PLAJARAN 00/0 Mata Pelajaran : Matematika Satuan Pendidikan : SMA Program : IPS

Lebih terperinci

UNIVERSITAS GUNADARMA

UNIVERSITAS GUNADARMA SMA/MA MATEMATIKA Program Studi IPA Kerjasama UNIVERSITAS GUNADARMA dengan Dinas Pendidikan Provinsi DKI Jakarta, Kota/Kabupaten BODETABEK, Tangerang Selatan, Karawang, Serang, Pandeglang, dan Cilegon

Lebih terperinci

UN SMA IPS 2009 Matematika

UN SMA IPS 2009 Matematika UN SMA IPS 009 Matematika Kode Soal P88 Doc. Name: UNSMAIPS009MATP88 Doc. Version : 011-06 halaman 1 01. Diberikan beberapa pernyataan: Premis 1: Jika Santi sakit maka ia pergi ke dokter Premis : Jika

Lebih terperinci

UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN adalah... adalah...

UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN adalah... adalah... UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN 0. Bentuk sederhana dari A. B. 6 a b 6 6 a b 6 a C. 8 D. b 6 a 9 b 6 a E. 8 b Solusi: [E] a b 0

Lebih terperinci

Pilihlah jawaban yang paling tepat. 1. Ingkaran dari pernyataan: (~ q r) adalah... A. ~ ~ (~ q r) B. ( q ~ r ) C. ( ~ q) ~ r D. ~ (~ q r) E.

Pilihlah jawaban yang paling tepat. 1. Ingkaran dari pernyataan: (~ q r) adalah... A. ~ ~ (~ q r) B. ( q ~ r ) C. ( ~ q) ~ r D. ~ (~ q r) E. Pilihlah jawaban yang paling tepat. Ingkaran dari pernyataan: (~ q r) adalah... A. ~ ~ (~ q r) B. ( q ~ r ) C. ( ~ q) ~ r D. ~ (~ q r) E. ( q ~ r) Jawaban : B Ingkaran p ( q r ) adalah (p ( q r )) p (q

Lebih terperinci

UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN adalah... adalah...

UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN adalah... adalah... UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN 0. Bentuk sederhana dari 6 A. a b B. 6 6 a b 6 a 8 b 6 9 a b 6 a E. b 8. Bentuk sederhana dari

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.9 Sukoharjo Telp. 0-906 TRY OUT UJIAN NASIONAL TAHAP TAHUN PELAJARAN 0/ Mata Pelajaran : MATEMATIKA

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.9 Sukoharjo Telp. 0-90 TRY OUT UJIAN NASIONAL TAHAP TAHUN PELAJARAN 0/0 Mata Pelajaran : MATEMATIKA

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.9 Sukoharjo Telp. 0-90 TRY OUT UJIAN NASIONAL TAHAP TAHUN PELAJARAN 0/0 Mata Pelajaran : MATEMATIKA

Lebih terperinci

Mata Pelajaran : MATEMATIKA

Mata Pelajaran : MATEMATIKA Mata Pelajaran : MATEMATIKA Kelas/ Program : XII IPS Waktu : 0 menit Petunjuk Pilihlah jawaban yang dianggap paling benar pada lembar jawaban yang tersedia (LJK)! Dilarang menggunakan kalkulator, kamus

Lebih terperinci

theresiaveni.wordpress.com NAMA : KELAS :

theresiaveni.wordpress.com NAMA : KELAS : NAMA : KELAS : RUMUS DAN LATIHAN BERDASARKAN SKL UN 0 XII IPB KOMPETENSI : Menggunakan logika matematika INDIKATOR:. Menentukan ingkaran atau keseteraan suatu pernyataan majemuk.. Menentukan kesimpulan

Lebih terperinci

UNIVERSITAS GUNADARMA

UNIVERSITAS GUNADARMA SMA/MA MATEMATIKA Program Studi IPA Kerjasama UNIVERSITAS GUNADARMA dengan Dinas Pendidikan Provinsi DKI Jakarta, Kota/Kabupaten BODETABEK, Tangerang Selatan, Karawang, Serang, Pandeglang, dan Cilegon

Lebih terperinci

SMA / MA Bahasa Mata Pelajaran : Matematika

SMA / MA Bahasa Mata Pelajaran : Matematika Latihan Soal UN Paket Sekolah Menengah Atas / Madrasah Aliyah SMA / MA Bahasa Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban Ujian

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik OKUMEN NEGARA PEMERINTAH KABUPATEN GRESIK INAS PENIIKAN SMA NEGERI SIAYU Jl. Pahlawan No. Telp./Fax. - Sidayu Gresik UJIAN SEKOLAH TAHUN PELAJARAN / Mata Pelajaran : Matematika Satuan Pendidikan : SMA

Lebih terperinci

TRY OUT UJIAN NASIONAL

TRY OUT UJIAN NASIONAL PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN MENENGAH DAN TINGGI SMA...JAKARTA LOGO SEKOLAH TRY OUT UJIAN NASIONAL LEMBAR SOAL A Mata Pelajaran : MATEMATIKA Kelas/Program Studi :

Lebih terperinci

B B S S B S S B S S B B S S S B B S B S S S S B B S B B

B B S S B S S B S S B B S S S B B S B S S S S B B S B B 1. Ingkaran pertanyaan: Petani panen beras atau harga beras murah. A. Petani panen beras dan harga beras mahal. B. Petani panen beras dan harga beras murah. C. Petani tidak panen beras dan harga beras

Lebih terperinci

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015 SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN PAKET Pilihan Ganda: Pilihlah satu jawaban yang paling tepat.. Ingkaran dari pernyataan Mathman tidak belajar atau dia dapat mengerjakan soal UN matematika

Lebih terperinci

TRY OUT UJIAN NASIONAL TAHAP 1 TAHUN PELAJARAN 2012/2013. Program Studi Hari/Tanggal : Rabu / 6 Februari 2013 : s/d 10.

TRY OUT UJIAN NASIONAL TAHAP 1 TAHUN PELAJARAN 2012/2013. Program Studi Hari/Tanggal : Rabu / 6 Februari 2013 : s/d 10. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. 071-9064 71 TRY OUT UJIAN NASIONAL TAHAP 1 TAHUN PELAJARAN 01/01 Mata Pelajaran

Lebih terperinci

7. Persamaan 3x² (2 + p) x + (p 5) = 0 mempunyai akar akar yang saling berkebalikan. Nilai p yang memenuhi adalah...

7. Persamaan 3x² (2 + p) x + (p 5) = 0 mempunyai akar akar yang saling berkebalikan. Nilai p yang memenuhi adalah... KERJAKAN DENGAN TELITI DAN CARA/LANGKAH PENGERJAAN! A. Persamaan dan Fungsi Kuadrat 1. Himpunan penyelesaian dari persamaan kuadrat 4x 2 3x 10 = 0 adalah. 2. Akar-akar persamaan kuadrat 5x 2 + 4x 12 =

Lebih terperinci

UN SMK AKP 2015 Matematika

UN SMK AKP 2015 Matematika UN SMK AKP 015 Matematika Soal Doc. Name: UNSMKAKP015MAT999 Doc. Version : 016-03 halaman 1 01. Seorang peternak yang memiliki 0 ekor kambing mempunyai persediaan pakan untuk 30 hari. Jika 5 kambing laku

Lebih terperinci

Soal dan Pembahasan UN Matematika Program IPS tahun 2008

Soal dan Pembahasan UN Matematika Program IPS tahun 2008 Soal dan Pembahasan UN Matematika Program IPS tahun 008. Negasi dari pernyataan Matematika tidak mengasyikan atau membosankan adalah A. Matematika mengasyikan atau membosankan. B. Matematika mengasyikan

Lebih terperinci

UNIVERSITAS GUNADARMA

UNIVERSITAS GUNADARMA SMA/MA MATEMATIKA Program Studi IPA Kerjasama UNIVERSITAS GUNADARMA dengan Dinas Pendidikan Provinsi DKI Jakarta, Kota/Kabupaten BODETABEK, Tangerang Selatan, Karawang, Serang, Pandeglang, dan Cilegon

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik DOKUMEN NEGR PEMERINTH KBUPTEN GRESIK DINS PENDIDIKN SM NEGERI SIDYU Jl. Pahlawan No. Telp./Fax. - Sidayu Gresik UJIN SEKOLH THUN PELJRN / Mata Pelajaran : Matematika Satuan Pendidikan : SM Program : IPS

Lebih terperinci

Prediksi 1 UN SMA IPS Matematika

Prediksi 1 UN SMA IPS Matematika Prediksi UN SMA IPS Matematika Kode Soal Doc. Version : 0-06 halaman 0. () Jika jalan basah maka hari hujan () Jika hari tidak hujan maka jalan tidak basah () Jika jalan tidak basah maka hari tidak hujan

Lebih terperinci

TRY OUT UJIAN NASIONAL SMA/MA MATEMATIKA IPS 02 MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA DINAS PENDIDIKAN DAN KEBUDAYAAN PEMERINTAH KOTA BATAM

TRY OUT UJIAN NASIONAL SMA/MA MATEMATIKA IPS 02 MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA DINAS PENDIDIKAN DAN KEBUDAYAAN PEMERINTAH KOTA BATAM TRY OUT UJIAN NASIONAL SMA/MA 01 MATEMATIKA IPS 0 MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA DINAS PENDIDIKAN DAN KEBUDAYAAN PEMERINTAH KOTA BATAM 01 hakcipta MGMP Matematika Kota Batam paket 0 MATA

Lebih terperinci

TRY OUT UJIAN NASIONAL

TRY OUT UJIAN NASIONAL PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN MUSYAWARAH KERJA KEPALA SEKOLAH SMA Sekretariat : SMA Negeri 70 Jakarta Jalan Bulungan No. 1C, Jakarta Selatan - Telepon (01) 7667, Fax

Lebih terperinci

SOAL PELUANG KELAS XI MATEMATIKANET.COM 1.! B. 4 2 C. 2 2 D. E. 2 2 A. 840 B. 504 C. 162 D. 84 E. 168

SOAL PELUANG KELAS XI MATEMATIKANET.COM 1.! B. 4 2 C. 2 2 D. E. 2 2 A. 840 B. 504 C. 162 D. 84 E. 168 SOAL PELUANG KELAS XI MATEMATIKANET.COM 1.!!. A. B. 4 2 C. 2 2 D. 2 2 2.!!!. A. 840 B. 504 C. 162 D. 84 168 3. Untuk menuju kota C dari Kota A harus melewati kota B. Dari kota A menuju kota B melewati

Lebih terperinci

Solusi: [Jawaban C] Solusi: [Jawaban ]

Solusi: [Jawaban C] Solusi: [Jawaban ] SOLUSI SMA/MA MATEMATIKA Program Studi IPA Kerjasama UNIVERSITAS GUNADARMA dengan Dinas Pendidikan Provinsi DKI Jakarta, Kota/Kabupaten BODETABEK, Tangerang Selatan, Karawang, Serang, Pandeglang, dan Cilegon

Lebih terperinci

TRY OUT UJIAN NASIONAL

TRY OUT UJIAN NASIONAL PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN MUSYAWARAH KERJA KEPALA SEKOLAH SMA Sekretariat : SMA Negeri 70 Jakarta Jalan Bulungan No. 1C, Jakarta Selatan - Telepon (01) 7667, Fax

Lebih terperinci

KISI-KISI PENULISAN TRY OUT UJIAN NASIONAL TAHUN PELAJARAN 2010/2011

KISI-KISI PENULISAN TRY OUT UJIAN NASIONAL TAHUN PELAJARAN 2010/2011 KISI-KISI PENULISAN TRY OUT UJIAN NASIONAL TAHUN PELAJARAN 2010/2011 Jenis Sekolah : SMA/MA Alokasi Waktu : 120 menit Program Studi : Bahasa Jumlah Soal : 40 item Mata pelajaran : Matematika Penyusun :

Lebih terperinci

UN SMA IPS 2010 Matematika

UN SMA IPS 2010 Matematika UN SMA IPS 00 Matematika Kode Soal Doc. Name: UNSMAIPS00MAT999 Doc. Version : 04-0 halaman 0. Nilai kebenaran yang tepat untuk pernyataan ( p q) ~ p, Pada table berikut adalah... p q (p q) ~ p B B... B

Lebih terperinci

4. Bentuk sederhada dari : 3 2 ... D. E. 5. Bentuk sederhana dari

4. Bentuk sederhada dari : 3 2 ... D. E. 5. Bentuk sederhana dari . Pernyataan yang senilai dengan kalimat Jika Fatah dan Ichwan datang maka semua siswa senang adalah. A. Jika Fatah dan Ichwan tidak datang maka semua siswa tidak senang B. Jika Fatah atau Ichwan tidak

Lebih terperinci

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPS

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPS PEMBAHASAN UN SMA TAHUN PELAJARAN 009/010 MATEMATIKA PROGRAM STUDI IPS PEMBAHAS : 1. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si. 3. Marfuah, M.T. 4. Rohmitawati, S.Si. EDITOR : Dra. Puji Iryanti, M.Sc.

Lebih terperinci

Pilihlah jawaban yang paling tepat!

Pilihlah jawaban yang paling tepat! Pilihlah jawaban yang paling tepat!. Terdapat 0 anggota klub bola voli. Akan dibentuk Tim Voli yang terdiri dari 6 orang. Banyaknya variasi Tim Bola Voli yang dapat di susun ada A. 0 B. 200 20 22 E. 20

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.19 Sukoharjo Telp. 01-90 1 TRY OUT UJIAN NASIONAL TAHAP 1 TAHUN PELAJARAN 01/01 Mata Pelajaran

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 PANDUAN MATERI SMA DAN MA M A T E M A T I K A PROGRAM STUDI BAHASA PUSAT PENILAIAN PENDIDIKAN BALITBANG DEPDIKNAS KATA PENGANTAR Dalam rangka sosialisasi kebijakan

Lebih terperinci

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =...

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =... 1 1. Diketahui: Premis 1 : Jika hari hujan maka tanah basah. Premis : Tanah tidak basah. Ingkaran dari penarikan kesimpulan yang sah dari premis-premis di atas adalah.... Agar F(x) = (p - ) x² - (p - 3)

Lebih terperinci

UN SMK AKP 2014 Matematika

UN SMK AKP 2014 Matematika UN SMK AKP 204 Matematika Soal Doc. Name: UNSMKAKP204MAT999 Doc. Version : 206-03 halaman 0. Seorang pedagang menjual salah satu jenis mesin cuci seharga Rp637.500,00. Jika harga beli mesin cuci itu Rp750.000,00,

Lebih terperinci

4 + 3 = 13 + = 4. , maka nilai 2x + y. 3. Jika x dan y adalah penyelesaian dari sistem persamaan A. 1 B. 3 C. 4 D. 5 E. 7

4 + 3 = 13 + = 4. , maka nilai 2x + y. 3. Jika x dan y adalah penyelesaian dari sistem persamaan A. 1 B. 3 C. 4 D. 5 E. 7 1. Sebuah laptop dengan harga Rp10.000.000,00 setelah dipakai selama 1 tahun dijual dengan harga Rp7.500.000,00, maka presentase kerugian dari penjualan laptop adalah A. 5% B. 10% C. 25% D. 50% E. 75%

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. 0 PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.9 Sukoharjo Telp. 0-90 TRY OUT UJIAN NASIONAL TAHAP TAHUN PELAJARAN 0/0 Mata Pelajaran : MATEMATIKA

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.9 Sukoharjo Telp. 0-90 TRY OUT UJIAN NASIONAL TAHAP TAHUN PELAJARAN 0/0 Mata Pelajaran : MATEMATIKA

Lebih terperinci

UJI COBA UJIAN NASIONAL SMK

UJI COBA UJIAN NASIONAL SMK UJI COBA UJIAN NASIONAL SMK Tahun Pelajaran 014 / 015 MATEMATIKA NON TEKNIK KELOMPOKPARIWISATA, SENI DAN KERAJINAN, PEKERJAAN SOSIAL TEKNOLOGI KERUMAHTANGGAAN, DAN ADMINISTRASI PERKANTORAN (UTAMA) 1 MATA

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 PANDUAN MATERI SMA DAN MA M A T E M A T I K A PROGRAM STUDI IPS PUSAT PENILAIAN PENDIDIKAN BALITBANG DEPDIKNAS KATA PENGANTAR Dalam rangka sosialisasi kebijakan

Lebih terperinci

UJI COBA UJIAN NASIONAL SMK. Tahun Pelajaran 2014 / 2015 PAKET 01 MATEMATIKA NON TEKNIK KELOMPOK AKUNTANSI DAN PENJUALAN (UTAMA)

UJI COBA UJIAN NASIONAL SMK. Tahun Pelajaran 2014 / 2015 PAKET 01 MATEMATIKA NON TEKNIK KELOMPOK AKUNTANSI DAN PENJUALAN (UTAMA) UJI COBA UJIAN NASIONAL SMK Tahun Pelajaran 04 / 0 PAKET 0 MATEMATIKA NON TEKNIK KELOMPOK AKUNTANSI DAN PENJUALAN (UTAMA) A Mata Pelajaran Kelompok : MATEMATIKA : Akuntansi dan Penjualan MATA PELAJARAN

Lebih terperinci

3. Diberikan sistem persamaan linier: . Nilai dari x 4y dari sistem. persamaan tersebut adalah... A. 6 B. 5 C. 2 D. -2 E adalah...

3. Diberikan sistem persamaan linier: . Nilai dari x 4y dari sistem. persamaan tersebut adalah... A. 6 B. 5 C. 2 D. -2 E adalah... . Sebuah perkebunan seluas 7 Ha memperkejakan 0 orang untuk memetik buah dalam waktu 8 jam. Jika pihak perkebunan ingin mempercepat pemetikan menjadi 7 jam, maka diperlukan tambahan tenaga sebanyak....

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.97 Sukoharjo Telp. 07-906 7 TRY OUT UJIAN NASIONAL TAHAP TAHUN PELAJARAN 0/0 Mata Pelajaran :

Lebih terperinci

PREDIKSI UJIAN NASIONAL SMK

PREDIKSI UJIAN NASIONAL SMK PREDIKSI UJIAN NASIONAL SMK TAHUN PELAJARAN / Mata Pelajaran Waktu : Matematika SMK TKP : menit PETUNJUK UMUM Isikan identitas Anda ke dalam Lembar Jawaban Ujian Nasional (LJUN) yang tersedia dengan menggunakan

Lebih terperinci

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPA Materi Logika Matematika Kemampuan yang diuji UN 009 UN 00 Menentukan negasi pernyataan yang diperoleh dari penarikan kesimpulan Menentukan negasi pernyataan

Lebih terperinci

SMA / MA IPS/KEAGAMAAN Mata Pelajaran : Matematika

SMA / MA IPS/KEAGAMAAN Mata Pelajaran : Matematika Latihan Soal UN 0 Paket Sekolah Menengah Atas / Madrasah Aliyah SMA / MA IPS/KEAGAMAAN Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban

Lebih terperinci

NAMA : NO PESERTA : 3. Bentuk sederhana dari Diketahui 2 log 5 = p dan 2 log 3 = q. Bentuk 3 log 20 dinyatakan dalam p dan q adalah...

NAMA : NO PESERTA : 3. Bentuk sederhana dari Diketahui 2 log 5 = p dan 2 log 3 = q. Bentuk 3 log 20 dinyatakan dalam p dan q adalah... NAMA : NO PESERTA : 1. Perhatikan premis-premis berikut. Premis 1 : Jika 10 bilangan genap maka 7 tidak habis dibagi Premis : Jika 7 tidak habis dibagi maka bilangan ganjil Premis : bukan bilangan ganjil

Lebih terperinci

SOLUSI DINAS PENDIDIKAN KOTA BOGOR KELOMPOK KERJA KEPALA SEKOLAH (SMA/MA SE KOTA BOGOR) TES UJI COBA UJIAN NASIONAL TAHUN PELAJARAN 2013/2014

SOLUSI DINAS PENDIDIKAN KOTA BOGOR KELOMPOK KERJA KEPALA SEKOLAH (SMA/MA SE KOTA BOGOR) TES UJI COBA UJIAN NASIONAL TAHUN PELAJARAN 2013/2014 SOLUSI DINAS PENDIDIKAN KOTA BOGOR KELOMPOK KERJA KEPALA SEKOLAH (SMA/MA SE KOTA BOGOR) TES UJI COBA UJIAN NASIONAL TAHUN PELAJARAN 0/0 TES UJI COBA UJIAN NASIONAL SMA/MA MATEMATIKA IPS 7 7.... SOAL B6

Lebih terperinci

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK BISNIS MANAGEMEN PAKET I A KOTA SURABAYA

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK BISNIS MANAGEMEN PAKET I A KOTA SURABAYA LATIHAN UJIAN NASIONAL TAHUN PELAJARAN 009-010 SMK NEGERI DAN SWASTA KOTA SURABAYA MATEMATIKA KELOMPOK BISNIS MANAGEMEN PAKET I A MGMP MATEMATIKA SMK NEGERI / SWASTA KOTA SURABAYA 1 M A T E M A T I K A

Lebih terperinci

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK BISNIS MANAGEMEN PAKET II B KOTA SURABAYA

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK BISNIS MANAGEMEN PAKET II B KOTA SURABAYA LATIHAN UJIAN NASIONAL TAHUN PELAJARAN 00900 SMK NEGERI DAN SWASTA KOTA SURABAYA MATEMATIKA KELOMPOK BISNIS MANAGEMEN PAKET II B MGMP MATEMATIKA SMK NEGERI / SWASTA KOTA SURABAYA M A T E M A T I K A S

Lebih terperinci

Pilihlah salah satu jawaban yang paling tepat, dengan tanda silang ( X ) pada huruf A, B, C, D atau E pada lembar jawaban yang tersedia!

Pilihlah salah satu jawaban yang paling tepat, dengan tanda silang ( X ) pada huruf A, B, C, D atau E pada lembar jawaban yang tersedia! - - Nama : No. Peserta : Pilihlah salah satu jawaban yang paling tepat, dengan tanda silang ( X ) pada huruf A, B, C, D atau E pada lembar jawaban yang tersedia!. Seorang mengendarai mobil dari Solo jam.0

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPS / KEAGAMAAN TAHUN PELAJARAN 2009/2010

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPS / KEAGAMAAN TAHUN PELAJARAN 2009/2010 OAL DAN PEMAHAAN UJIAN NAIONAL MA/MA IP / KEAGAMAAN TAHUN PELAJARAN 9/. Nilai kebenaran yang tepat untuk pernyataan ( p q ) ~ p, pada tabel di bawah adalah... p q ( p q ) ~ p A. C. E.. D. p q Konjungsi

Lebih terperinci

Indikator Menentukan Pernyataan yang diperoleh dari penarikan kesimpulan dari dua premis yang diberikan

Indikator Menentukan Pernyataan yang diperoleh dari penarikan kesimpulan dari dua premis yang diberikan Indikator Menentukan Pernyataan yang diperoleh dari penarikan kesimpulan dari dua premis yang diberikan. Diberikan premis-premis berikut : Premis : Saya tidak pergi atau hari ini turun hujan Premis : Saya

Lebih terperinci

KARTU SOAL UJIAN NASIONAL MADRASAH ALIYAH NEGERI PANGKALPINANG

KARTU SOAL UJIAN NASIONAL MADRASAH ALIYAH NEGERI PANGKALPINANG Jumlah 50 Bentuk Pilihan Ganda Standar Kompetensi : Menggunakan logika matematika dalam pemecahan masalah yang berkaitan dengan pernyataan majemuk dan pernyataan berkuantor Kompetensi Dasar : Menggunakan

Lebih terperinci

22. MATEMATIKA SMA/MA (PROGRAM IPA)

22. MATEMATIKA SMA/MA (PROGRAM IPA) 22. MATEMATIKA SMA/MA (PROGRAM IPA) NO. 1. Memahami pernyataan dalam matematika dan ingkarannya, menentukan nilai kebenaran pernyataan majemuk serta menggunakan prinsip logika matematika dalam pemecahan

Lebih terperinci

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK TEKNOLOGI PAKET II B KOTA SURABAYA

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK TEKNOLOGI PAKET II B KOTA SURABAYA LATIHAN UJIAN NASIONAL TAHUN PELAJARAN 00-0 SMK NEGERI DAN SWASTA KOTA SURABAYA MATEMATIKA KELOMPOK TEKNOLOGI PAKET II B MGMP MATEMATIKA SMK NEGERI / SWASTA KOTA SURABAYA M A T E M A T I K A S M K T E

Lebih terperinci

SOAL PENJAJAKAN UN MATEMATIKA 2012 PROVINSI DIY

SOAL PENJAJAKAN UN MATEMATIKA 2012 PROVINSI DIY SOAL PENJAJAKAN UN MATEMATIKA 0 PROVINSI DIY. Suatu proyek akan selesai dalam waktu 0 hari oleh 0 orang pekerja. Tambahan pekerja yang dibutuhkan agar proyek tersebut selesai dalam waktu 90 hari adalah.

Lebih terperinci

UJIAN NASIONAL SMA/MA

UJIAN NASIONAL SMA/MA UN Matematika Jurusan IP 0 UJIAN NAIONAL MA/MA Tahun Pelajaran 00/0 Mata Pelajaran Program tudi : MATEMATIKA (D) : IP / KEAGAMAAN MATA PELAJARAN Hari/Tanggal : elasa, 9 April 0 Jam : 08.00 0.00 WAKTU PELAKANAAN

Lebih terperinci

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010 PREDIKSI UN 00 SMA IPA BAG. (Berdasar buku terbitan Istiyanto: Bank Soal Matematika-Gagas Media) Logika Matematika Soal UN 009 Materi KISI UN 00 Prediksi UN 00 Menentukan negasi pernyataan yang diperoleh

Lebih terperinci

Matematika Ebtanas IPS Tahun 1997

Matematika Ebtanas IPS Tahun 1997 Matematika Ebtanas IPS Tahun 99 EBTANAS-IPS-9-0 Bentuk sederhana dari 86 6 + 8 6 9 6 0 6 6 6 EBTANAS-IPS-9-0 Bentuk sederhana dari 8 + 6 + + 6 6 + + EBTANAS-IPS-9-0 x+ Nilai x yang memenuhi persamaan =

Lebih terperinci

TRY OUT UJIAN NASIONAL

TRY OUT UJIAN NASIONAL PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN MUSYAWARAH KERJA KEPALA SEKOLAH SMA Sekretariat : SMA Negeri 70 Jakarta Jalan Bulungan No. C, Jakarta Selatan Telepon (0) 7667, Fax (0)

Lebih terperinci

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPS

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPS PEMBAHASAN UN SMA TAHUN PELAJARAN 009/010 MATEMATIKA PROGRAM STUDI IPS PEMBAHAS : 1. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si.. Marfuah, M.T. 4. Rohmitawati, S.Si. EDITOR : Dra. Puji Iryanti, M.Sc.

Lebih terperinci

B. 6 4 C. 2 4 D. 6 4 E B. { x x 3 atau x 3 7, x R } C. { x x 3 atau x 3 7, x R } D. { x 3 x 3 7, x R } E. { x 3 7 x 3, x R }

B. 6 4 C. 2 4 D. 6 4 E B. { x x 3 atau x 3 7, x R } C. { x x 3 atau x 3 7, x R } D. { x 3 x 3 7, x R } E. { x 3 7 x 3, x R } EBTANAS-SMK-TEK-- Jika a = dan b =, maka nilai dari a b A. B. EBTANAS-SMK-TEK-- Nilai dari log + log log = A. B. EBTANAS-SMK-TEK-- Jumlah siswa SMK A ada. orang, terdiri dari jurusan Bangunan, Listik,

Lebih terperinci

SOAL PREDIKSI XV. I. Pilihlah jawaban yang paling benar!

SOAL PREDIKSI XV. I. Pilihlah jawaban yang paling benar! SOAL PREDIKSI XV I. Pilihlah jawaban yang paling benar! 1. Kiki melakukan perjalanan Surabaya Solo mengendarai sepeda motor dengan kecepatan rata-rata 70 km/jam dalam waktu 2 jam. Jika kecepatannya menjadi

Lebih terperinci

SMK Non Teknik Mata Pelajaran : Matematika

SMK Non Teknik Mata Pelajaran : Matematika Latihan Soal UN 0 Paket Sekolah Menengah Kejuruan SMK Non Teknik Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban Ujian Nasional (LJUN)

Lebih terperinci

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK BISNIS MANAGEMEN PAKET II A KOTA SURABAYA

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK BISNIS MANAGEMEN PAKET II A KOTA SURABAYA LATIHAN UJIAN NASIONAL TAHUN PELAJARAN 009-00 SMK NEGERI DAN SWASTA KOTA SURABAYA MATEMATIKA KELOMPOK BISNIS MANAGEMEN PAKET II A MGMP MATEMATIKA SMK NEGERI / SWASTA KOTA SURABAYA M A T E M A T I K A S

Lebih terperinci

Peluang Aturan Perkalian, Permutasi, dan Kombinasi dalam Pemecahan Masalah Ruang Sampel Suatu Percobaan Peluang Suatu Kejadian dan Penafsirannya

Peluang Aturan Perkalian, Permutasi, dan Kombinasi dalam Pemecahan Masalah Ruang Sampel Suatu Percobaan Peluang Suatu Kejadian dan Penafsirannya 2 Aturan Perkalian, Permutasi, dan Kombinasi dalam ; Pemecahan Masalah Ruang Sampel Suatu Percobaan ; Suatu Kejadian dan Penafsirannya ; Pada era demokrasi saat ini untuk menduduki suatu jabatan tertentu

Lebih terperinci

C n r. h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m. P n. P ( n, n ) = n P n = P n n!

C n r. h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m. P n. P ( n, n ) = n P n = P n n! Ringkasan Materi : Kaidah Pencacahan. Aturan Perkalian Jika sesuatu objek dapat diselesaikan dalam n cara berbeda, dan sesuatu objek yang lain dapat diselesaikan dalam n cara berbeda, maka kedua objek

Lebih terperinci

PR ONLINE MATA UJIAN: MATEMATIKA IPS (KODE S09)

PR ONLINE MATA UJIAN: MATEMATIKA IPS (KODE S09) PR ONLINE MATA UJIAN: MATEMATIKA IPS (KODE S09) 1. Luas daerah yang dibatasi oleh kurva y = x + x + 5, sumbu x, dan 0 x 1... satuan luas (A) (C) (E) 5 (B) 0 (D) 5 1. Diketahui segitiga ABC, siku-siku di

Lebih terperinci

SOAL PREDIKSI XIV. I. Pilihlah jawaban yang paling benar!

SOAL PREDIKSI XIV. I. Pilihlah jawaban yang paling benar! SOAL PREDIKSI XIV I. Pilihlah jawaban yang paling benar! 1. Kiki melakukan perjalanan Surabaya Solo mengendarai sepeda motor dengan kecepatan rata-rata 85 km/jam dalam waktu 7 jam. Jika Dika menempuh jarak

Lebih terperinci

Pilihlah jawaban yang paling tepat! 1. Ordo dari matriks A = adalah. A. 2 x 3 B. 2 x 2 C. 3 x 1 D. 3 x 2 E. 3 x 3

Pilihlah jawaban yang paling tepat! 1. Ordo dari matriks A = adalah. A. 2 x 3 B. 2 x 2 C. 3 x 1 D. 3 x 2 E. 3 x 3 Pilihlah jawaban yang paling tepat!. Ordo dari matriks A = 7 A. x B. x C. x D. x x adalah.. Berikut ini yang termasuk Matriks identitas adalah... A. 7 B. 7 C. D. a b. Diketahui A = dan B = b A. B. C. D..

Lebih terperinci