BAB II DASAR TEORI ...(2.1) Dimana: nn pp = Jumlah pompa

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II DASAR TEORI ...(2.1) Dimana: nn pp = Jumlah pompa"

Transkripsi

1 4 BAB II DASAR TEORI 2.1 Definisi Pompa Pompa merupakan alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan tersebut. Kenaikan tekanan cairan tersebut digunakan untuk mengatasi hambatan-hambatan pengaliran. Hambatan-hambatan pengaliran itu dapat berupa perbedaan tekanan, perbedaan ketinggian atau hambatan gesek (Setiawan, 2013). Pompa sentrifugal merupakan pompa yang paling banyak digunakan karena daerah operasinya yang luas, dari tekanan rendah sampai tekanan tinggi dan dari kapasitas rendah sampai kapasitas tinggi. Pengoperasian pompa sentrifugal terjadi kerugian yang disebabkan berbagai hal diantaranya karena instalasi atau sistem perpipaan dan konstruksi pompa (Bramantya, Sugiyono, & Doni, 2007) 2.2 Karakteristik Pompa Performansi pompa yang utama adalah kapasitas (discharge) atau laju aliran (Q), dan head total pompa (H). Kedua karakteristik itu harus diketahuui untuk memilih pompa disamping karakteristik lainnya seperti efisiensi, daya, putaran dan lain sebagainya Kapasitas (Q) kapasitas adalah jumlah fluida yang di alirkan oleh pompa dalam satu satuan waktu (m 3 /det atau m 3 /menit). Kapasitas dihitung berdasarkan kebutuhan air yang harus ditransmisikan untuk memenuhi kebutuhan penduduk, atau berdasarkan kapasaitas sumber air yang ada. Kapasitas pompa dapat dihitung dengan persamaan 2.1. QQ VV oooo tt oooo nn pp.....(2.1) Dimana: VV oooo = Kebutuhan air (mm 3 haaaaaa ) tt oooo = Lama operasi pompa ( jjjjjj haaaaaa ) nn pp = Jumlah pompa

2 Head (H) Head merupakan energi spesifik yang dihasilkan oleh pompa. Head pada umumnya dinyatakan dalam tinggi kolom air dam umumnya dalam satuan meter. Pressure gauge, vacuum gauge, atau compound gauge digunakan untuk mengukur tekanan pada pompa dalam operasinya. h Ld v d p d z d v o p o z s h Ls v s p s v i p i titik ref., z=0 Gambar 2.1 Head Pompa Persamaan energi per satuan berat fluida untuk sistem pompa seperti Gambar 2.1 adalah: Dimana: zz ss + PP ss + vv 2 ss γγ 2gg + HH PP = zz dd + PP dd + vv 2 dd γγ zz ss = head statis elevasi isap/suction pompa (m) 2gg + HH LL....(2.2) zz dd = head statis elevasi buang/discharge pompa (m) PP ss = head statis tekanan isap/suction pompa (N/m 2 ) PP dd = head statis tekanan buang/discharge pompa (N/m 2 ) vv ss = head dinamis kecepatan fluida pada ujung isap/suction pompa (m/dt) vv dd = head dinamis kecepatan fluida pada ujung buang/discharge pompa (m/dt) HH PP = head pompa (m) HH LL = head losses total instalasi perpipaan sistem pompa (m)

3 6 Oleh karena itu head total pompa adalah: HH PP = (zz dd zz ss ) + PP dd PP ss γγ + vv dd 2 vv2 ss + HH 2gg LL...(2.3) Head Losses Head Losses adalah kerugian yang terjadi pada instalasi pompa yang diakibatkan oleh gesekan di dalam pipa dan head kerugian di dalam aksesoris perpipaan seperti belokan, reducer/diffuser, katup-katup dan lain sebagainya. a. Major Losses Major losses adalah kerugian yang di akibatkan oleh adanya gesekan di dalam pipa. Menghitung kerugian gesek didalam pipa dapat di gunakan persamaan sebagai berikut: Dimana: HH MM = f LL.vv2 DD.2gg.....(2.4) HH MM = Head kerugian gesek dalam pipa (m) f gg LL DD = Koefisien kerugian gesek = Percepatan gravitasi = Panjang pipa (m) = Diameter dalam pipa (m) b. Minor Losses Kecepatan dalam aliran melalui jalur pipa, kerugian juga akan terjadi apabila ukuran pipa, bentuk penampang atau arah aliran berubah. Kerugian head di tempat-tempat transisi yang demikian itu dapat dinyatakan secara umum dengan persamaan, yaitu: HH MM = KK vv2...(2.5) 2gg Dimana: HH MM = Kerugian head dalam jalur pipa (mm) KK = Koefisien kerugian dalam jalur pipa vv = Kecepatan rata-rata di dalam pipa (mm/dddd) gg = Percepatan gravitasi (9.8 mm/dddd 2 )

4 7 2.3 Pembesaran dan Pengecilan Pipa Pembesaran dan pengecilan pipa ikut menyumbang losses dalam bentuk minor losses. Pembesaran ataupun pengecilan pipa dapat dibedakan menjadi dua yaitu pembesaran dan pengecilan secara tiba-tiba seperti pada gambar 2.2 atau seperti pada gambar 2.3 pembesaran atau pengecilan secara gradual (membentuk sudut). D 1 D 2 (a) D 1 D 2 (b) Gambar 2.2 Pengecilan pipa (a) dan pembesaran pipa (b) secara tiba tiba Sumber : (E. Shashi Menon, 2005) Tabel 2.1 Koefisien pembesaran pipa secara tiba-tiba A 1 /A 2 0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 Cc 0,585 0,624 0,632 0,643 0,695 0,681 0,712 0,755 0,813 0,892 1,000 Sumber : (Menon, E.S, 2005) Tabel 2.2 Koefisien pengecilan pipa secara tiba-tiba A 1 /A 2 0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 Cc 0,50 0,48 0,45 0,41 0,36 0,29 0,21 0,13 0,07 0,01 0 Sumber : (Sularso dan Haruo Tahara, 1983)

5 8 Pada pembesaran dan pengecilan pipa secara gradual dapat dilihat seperti pada gambar 2.3. D1 D2 (a) D1 D1 (b) Gambar 2.3 Pengecilan pipa (a) dan pembesaran pipa (b) secara gradual Untuk head loss dapat dicari dengan persamaan :....(2.6) Kerugian Energi pada Pintu Masuk dan Keluar Fluda Fluida yang akan memasuki atau keluar dari suatu benda (apakah itu pompa, storage tanks atau reservoir) akan mengalami kerugian energy. Besarnya kerugian dihitung berdasarkan koefisien K yang diberikan. Tabel 2.3 Koefisien pada bagian masuk dan keluar pipa Deskripsi Nilai koefisien K Pada bagian masuk pipa 0.5 Pada bagian keluar pipa 1.0 Sumber : (E. Shashi Menon, 2005)

6 9 2.4 Tekanan, Daya dan Efisiensi Pompa Tekanan Pada Pompa Besarnya tekanan yang terjadi pada sistem akibat mengalirnya fluida yang dipompakan, dapat diperoleh secara langsung melalui alat ukur seperti pressure gauge yang umumnya memiliki nilai baca minimal 1 bar. Apabila nilai dari tekanan berada dibawah nilai baca tersebut, kita dapat menggunakan alat ukur lainnya seperti sphygmanometer tekanan darah yang menggunakan skala milimeter merkuri (mmhg). Penggunaan pipa U dengan fluida ukur, tekanan yang bekerja pada sistem dapat dicari sebagai berikut: PP = ρρ. gg. h (2.7) PP = tekanan (PPPP) ρρ = massa jenis (kkkk mm 3 ) gg = percepatan gravitasi (mm dddd 2 ) h = perbedaan ketinggian Daya Listrik Daya listrik didefinisikan sebagai laju hantaran energi listrik dalam sirkuit listrik. Daya listrik satu fasa : WW = VV. II cos φφ (2.8) Daya listrik tiga fasa : WW = 3 VV. II cos φφ (2.9) WW = daya listrik (W) VV = tegangan (volt) II = arus listrik (ampere) ϕ = sudut faktor daya

7 Daya Air (Water Horse Power) Menurut Sularso dan Tahara (1987) energi yang secara aktif diterima oleh air dari pompa per satuan waktu disebut daya air, yang dapat ditulis sebagai berikut: WWWWWW = γ. QQ. HH.....(2.10) WWWWWW = daya air (kkkk) γγ = berat air per satuan volume (kkkk/mm 2 /dddd 2 ) QQ = kapasitas (mm 3 /dddd) HH = head pompa (mm) Daya Poros Daya poros yang diperlukan untuk menggerakkan sebuah pompa adalah sama dengan daya air ditambah kerugian daya pada poros pompa. Daya ini dapat dinyatakan sebagai berikut: SSSSSS = WW mmmmmmmmmm. ηη MM...(2.11) atau ηη oooo = SSSSSS WWWWWW WW mmmmmmmmmm ηη MM η oooo WHP...(2.12) W motor = daya poros sebuah pompa (kkkk) = daya air (WW) = daya listrik pada motor (W) = efisiensi motor pompa = efisiensi overall Efisiensi Pompa Merupakan rasio antara daya air pompa terhadap daya poros pompa, yang dirumuskan dengan : ηη pppppppppp = WWWWWW SSSSSS XX 100 %...(2.13)

8 11 WWWWWW = daya air (WW) SSSSSS = daya poros pompa (kkkk) 2.5 Sistem Perpipaan Pada Pompa Menurut (Flint Evans), sebagian besar masalah pompa terdapat pada pipa hisapnya. Terdapat enam aturan dasar untuk menjamin pemeliharaan yang sedikit dan biaya operasional pompa yang rendah, yaitu: 1. Menyediakan NPSH yang cukup. Sederhananya, memasang pompa tanpa tekanan inlet yang mencukupi akan mengakibatkan pompa beroperasi normal dan akan terjadi kavitasi. 2. Mengurangi kerugian gesekan. Pompa harus diletakan sedekat mungkin dari tangki ato pipa headernya. Pompa harus cukup jauh sehingga pipa hisap dapat mensuplai fluida dengan baik ke pompa, yaitu paling sedikit sepulih kali diameter pipanya (10D). 3. Tidak ada belokan (elbow) pada inlet hisap. Belokan pada inlet hisap mengakibatkan aliran yang tidak seragam masuk ke impeller pompa. Hal ini akan meyebabkan aliran turbulen dan udara masuk impeller yang mengakibatkan impeller rusak dan menimbulkangetaran. 4. Hindari udara atau uap masuk pipa hisap pompa. Udara atau uap yang masuk melalui kebocoran pipa hisap pompa akan mengakibatkan efek yang serupa dengan kavitasi. 5. Pipa dipasang lurus. Pipa dan aksesorisnya harus dipasang lurus dan disangga dengan baik sehingga tidak menimbulkan gaya tarik/tekan pada rumah pompa. 6. Perhatian tambahan. Perhatikan semua komponen sistem pompa dengan baik, dan lakukan pengecekan sebelum pompa dioperasikan. Desain sistem perpipaan memberikan efek yang penting pada operasi pompa sentrifugal. Pemilihan ukuran diameter pipa tekan (discharge) utamanya adalah permasalahan ekonomi (Kelair Pump, 2009). Biaya berbagai ukuran diameter pipa harus dibandingkan dengan ukuran pompa dan daya yang

9 12 dibutuhkan untuk mengatasi kehilangan energi yang terjadi. Desain sistem hisap pompa sangat penting. Beberapa permasalahan pompa sentrifugal disebabkan karena kondisi sistem pipa hisapnya yang tidak tepat. Fungsi pipa hisap adalah untuk mensuplai aliran fluida yang terdistribusi merata pada mulut hisap pompa, dengan tekanan yang cukup untuk menghindari terjadinya turbulensi pada impeller pompa. Diameter pipa hisap harus tidak pernah lebih kecil dari diameter mulut hisap pompa, dan pada umumnya harus satu tingkat ukuran lebih besar. Pipa hisap harus pendek dan selurus mungkin. Kecepatan aliran pada pipa hisap harus diantara 1,5 sampai dengan 2,5 meter/detik. Kecepatan yang lebih tinggi akan meningkatkan kerugian energi dan dapat menimbulkan gangguan udara atau separasi uap. Hal ini diperparah jika belokan atau tee diletakkan langsung di mulut hisap pompa. Idealnya pipa lurus dengan panjang lima kali diameternya (5D) harus dipasang sebelum aksesories pipa seperti katup atau belokan. Pipa hisap harus dipasang benar-benar datar, atau miring ke atas dari bak atau header ke pompa. Hindarkan adanya titik tertinggi dimana udara terperangkap yang dapat menimbulkan pompa kehilangan dayanya. Lebih tepat memasang pengecilan (reducer) eksentrik dari pada konsentrik pada pipa hisap pompa, dimana bagian datarnya menghadap ke atas. Kerugian gesekan pada pipa hisap pompa harus dikontrol dalam batas yang dijinkan. Ukuran minimum pipa hisap dapat ditentukan dengan membandingkan TDSL (total dynamic suction lift) dari pompa (dari kurve performansi pompa) dengan TDSL yang dihitung pada sistem hisap pompa (Gulik, 2008). Terdapat tiga kriteria lain yang dapat digunakan untuk menentukan ukuran pipa hisap pompa, yaitu: 1. Kecepatan aliran fluida pada pipa hisap pompa harus lebih rendah dari 7 ft/detik. 2. Ukuran pipa hisap harus minimal satu atau dua tingkat ukuran lebih besar dari ukuran mulut hisap pompa. 3. Dalam prakteknya, ukuran pipa hisap pompa harus cukup besar untuk meminimalkan kehilangan energi gesekan. Hal-hal berikut harus dipertimbangkan untuk mencegah udara masuk atau terperangkap di dalam sistem pipa hisap pompa, yaitu:

10 13 1. Seluruh sistem pipa hisap pompa harus miring sedikit ke atas ke arah pompa. Disarankan kemiringan minimum ¼ inchi per feet. 2. Semua sambungan flange dilengkapi dengan gasket dan kedap udara. 3. Ujung pipa hisap harus terbenam minimal empat kali diameter pipanya, dan sedikitnya satu kali diameter pipa dari dasar bak air. 4. Dalam situasi dimana pipa yang terbenam tidak memadai maka plat anti-vortex harus dipasang untuk mencegah udara kehisap dalam sistem pipa hisap pompa. 5. Pengecilan (reducer) eksentrik harus dipasang sebagai transisi antara pipa hisap dan mulut hisap pompa. 6. Katup kontrol jangan pernah dipasang pada sisi hisap pompa jika pompa dioperasikan pada negative suction. Sedangkan katup pada sisi tekan pompa dipasang untuk mengatur (throttling) operasi pompa. 7. Pipa lurus dengan panjang enam kali diameter pipa (6D) harus dipasang antara mulut hisap pompa dan belokan. 8. Strainer harus selalu dipasang pada sisi hisap pompa sentrifugal. Strainer harus mampu mencegah butiran benda yang lebih besar untuk melewati celah impeller pompa. Strainer harus memiliki luasan saringan tiga kali diameter pipanya. 9. Jika pompa mengisap air dari danau atau kolam ikan, kecepatan aliran maksimum melewati saringan harus dibatasi sampai 0,1 feet/detik. Sedangkan hal-hal berikut harus dipertimbangkan untuk mencegah udara masuk atau terperangkap di dalam sistem pipa hisap pompa, yaitu: 1. Kecepatan aliran maksimum di dalam pipa tekan pompa agar tidak melebihi 5 feet/detik. Hal ini akan membantu membatasi lonjakan tekanan yang mungkin terjadi akibat penghentiaan aliran tiba-tiba karena pompa mati atau penutupan katup. 2. Katup tekan harus jenis boll, globe, atau butterfly jika digunakan sebagai pengatur aliran atau tekanan. Katup jenis gate-valve dapat digunakan sebagai shut-off valve, yaitu terbuka penuh atau tertutup penuh. 3. Non-slam atau spring-loaded check valve harus digunakan untuk mencegah aliran balik ke dalam pompa.

11 14 4. Pembesaran (increaser) harus dipasang jika merubah ukuran pipa. Pembesaran konsentrik sudah cukup untuk pipa tekan pompa. Menurut Dornaus dan Heald (2001) dalam pipa header hisap, kecepatan aliran fluida antara 0,6 ~ 0,9 meter/detik, dan cabang keluarannya lebih baik membentuk sudut 30 sampai 45 terhadap pipa utama header dari pada sudut 90, serta kecepatan alirannya maksimum pada pipa hisap adalah 1,5 meter/detik. Setiap percabangan pada pipa header harus diperkecil sampai ukuran tertentu sehingga kecepatannya konstan. 2.6 Aliran Fluida Dalam Pipa Dan Saluran Karakteristik struktur aliran internal (dalam pipa) sangat tergantung dari kecepatan rata- rata aliran dalam pipa, densitas, viskositas dan diameter pipa. Aliran fluida (cairan atau gas) dalam pipa mungkin merupakan aliran laminer atau turbulen. Pada aliran laminer, partikel - partikel fluida seolah- olah bergerak sepanjang lintasan yang halus dan lancar dengan kecepatan fluida rendah dan viskositasnya tinggi.sedangkan aliran turbulen, partikel - partikel fluida bergerak secara acak dan tidak stabil dengan kecepa tan fluida tinggi dan viskositasnya rendah. Hal tersebut ditunjukkan oleh percobaan Osborne Reynolds. Percobaan tersebut dilakukan menginjeksikan zat pewarna ke dalam pipa yang dialiri fluida dengan kecepatan rata- rata tertentu seperti Gambar 2.2. (Ardhelas, 2012) Gambar 2.4 Ilustrasi jenis aliran

12 15 Menurut hasil percobaan Reynold, untuk membedakan apakah aliran itu turbulen atau laminar dapat menggunakan bilangan tak berdimensi yang disebut dengan bilangan Reynold. Bilangan ini dihitung dengan persamaan berikut : RRRR = vv.dd νν...(2.14) RRRR = Bilangan Reynold (tak berdimensi ) vv = kecepatan rata- rata (ffff/ss aaaaaaaa mm/ss) DD = diameter pipa (ffff aaaaaaaa mm) νν = viskositas kinematik (mm 2 /ss) Pada Re < 2300, aliran bersifat laminer. Pada Re > 4000, aliran bersifat turbulen. Pada Re = terdapat daerah transisi, dimana aliran dapat bersifat laminer atau turbulen tergantung pada kondisi pipa dan aliran Kavitasi Kavitasi adalah gejala menguapnya zat cair yang sedang mengalir, karena tekanannya turun sampai dibawah tekanan uap jenuhnya. Ketika zat cair terhisap pada sisi isap pompa, tekanan pada permukaan zat cair akan turun.bila tekanannya turun sampai pada tekanan uap jenuhnya, maka cairan akan menguap dan membentuk gelembung uap. Selama bergerak sepanjang impeler, kenaikan tekanan akan menyebabkan gelembung uap pecah dan menumbuk permukaan pompa. Jika permukaan saluran/pipa terkena tumbukan gelembung uap tersebut secara terus menerus dalam jangka lama akan mengakibatkan terbentuknya lubang - lubang pada dinding saluran atau sering disebut erosi kavitasi. Pengaruh lain dari kavitasi adalah timbulnya suara berisik, getaran dan turunnya performansi pompa. 2.7 Hukum Kekekalan Energi Penjabarkan prinsip Hukum Kekekalan Energi yang diaplikasikan pada aliran fluida melalui pipa di setiap titik sepanjang jalur pipa, energi total dari fluida dihitung berdasarkan pertimbangan energi fluida terhadap tekanan,

13 16 kecepatan dan ketinggian yang dikombinasikan dengan semua energi masukan, energi keluar dan kerugian energi. Energi keseluruhan dari fluida yang terdapat pada jalur pipa pada setiap titik adalah konstan. Ini juga dikenal dengan prinsip Hukum Kekekalan Energi (Menon, 2005). Gambar 2.5 Aliran fluida dalam pipa Sehingga energi total 2 P v EE = ZZ + +.(2.15) γ 2g ZZ = energi potensial (mm) PP = tekanan (PPPP) γγ = berat spesifik (kkkk/mm 2 /dddd 2 ) = berat jenis (kkkk/mm 3 ) x percepatan gravitasi (mm/dddd 2 ) vv = kecepatan (mm/ss) gg = percepatan gravitasi (mm/ss 2 ) Berdasarkan Hukum Kekekalan Energi maka HH AA = HH BB P A v ZZ AA + + A γ 2g 2 = ZZ BB + P V + B 2g B γ 2... (2.16)

14 Hukum Kontinuitas Pada sistem perpipaan dikenal Hukum Kontinuitas, dimana hukum ini memaparkan bahwa besarnya fluida yang mengalir pada suatu bidang merupakan hasil kali dari kecepatan fluida dengan luas penampang bidang tersebut. QQ = vv. AA (2.17) QQ = kuantitas fluida (mm 3 /dddd) vv = kecepatan fluida (mm/dddd) AA = luas penampang bidang (mm 2 ) Hukum ini berhubungan langsung dengan persamaan Bernoulli dan perhitungan kerugian energi karena variabel kecepatan yang dimilikinya merupakan fungsi kuadrat pada kedua persamaan dan perhitungan tersebut. 2.9 Rangkaian Pompa Paralel Pada dasarnya pompa digunakan pada sistem perpipaan adalah untuk memberikan sejumlah energi (head) ke dalam sistem sehingga fluida kerja mampu mencapai tempat tujuan dengan jumlah yang diinginkan. Apabila sebuah pompa telah mampu memberikan head yang cukup, maka hal tersebut sangatlah bagus. Namun dalam kenyataannya, karena keterbatasan energi (head) ataupun laju aliran (flowrate) sebuah pompa, penggunaan dua atau lebih pompa pada suatu rumah pompa diperlukan untuk mencapai tekanan dan aliran kecepatan yang diperlukan sehingga dibuatkanlah rangkaian pompa tertentu yaitu rangkaian paralel. Dapat disebutkan dengan kata lain, untuk mencapai kapasitas yang lebih besar untuk dialirkan digunakanlah rangkaian paralel. Susunan paralel pada gambar 2.5 dapat digunakan bila diperlukan kapasitas yang besar yang tidak dapat digunakan oleh satu pompa saja, atau bila diperlukan pompa cadangan yang akan dipergunakan bila pompa utama rusak atau diperbaiki.

15 Gambar 2.6 Kurva performa rangkaian pompa paralel 18

BAB II DASAR TEORI QQ =... (2.1) Dimana: VV = kebutuhan air (mm 3 /hari) tt oooo = lama operasi pompa (jam/hari) nn pp = jumlah pompa

BAB II DASAR TEORI QQ =... (2.1) Dimana: VV = kebutuhan air (mm 3 /hari) tt oooo = lama operasi pompa (jam/hari) nn pp = jumlah pompa 4 BAB II DASAR TEORI 1.1 Definisi Pompa Pompa merupakan alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan tersebut. Kenaikan tekanan

Lebih terperinci

BAB IV PERHITUNGAN DAN ANALISA DATA

BAB IV PERHITUNGAN DAN ANALISA DATA BAB IV PERHITUNGAN DAN ANALISA DATA 4. 1. Perhitungan Pompa yang akan di pilih digunakan untuk memindahkan air bersih dari tangki utama ke reservoar. Dari data survei diketahui : 1. Kapasitas aliran (Q)

Lebih terperinci

Penentuan dimensi perpipaan sistem pompa paralel

Penentuan dimensi perpipaan sistem pompa paralel Jurnal Energi dan Manufaktur Vol. 9 No. 1, April 016 (84-90) http://ojs.unud.ac.id/index.php/jem ISSN: 30-555 (p) Penentuan dimensi perpipaan sistem pompa paralel Anak Agung Adhi Suryawan 1)*, Made Suarda

Lebih terperinci

BAB II DASAR TEORI. dari suatut empat ketempat lain dengan cara menaikkan tekanan cairan tersebut.

BAB II DASAR TEORI. dari suatut empat ketempat lain dengan cara menaikkan tekanan cairan tersebut. BAB II DASAR TEORI 2.1. Dasar Teori Pompa 2.1.1. Definisi Pompa Pompa merupakan alat yang digunakan untuk memindahkan suatu cairan dari suatut empat ketempat lain dengan cara menaikkan tekanan cairan tersebut.

Lebih terperinci

TUGAS KHUSUS POMPA SENTRIFUGAL

TUGAS KHUSUS POMPA SENTRIFUGAL AUFA FAUZAN H. 03111003091 TUGAS KHUSUS POMPA SENTRIFUGAL Pompa adalah suatu alat atau mesin yang digunakan untuk memindahkan cairan dari suatu tempat ke tempat yang lain melalui suatu media perpipaan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Perpipaan Dalam pembuatan suatu sistem sirkulasi harus memiliki sistem perpipaan yang baik. Sistem perpipaan yang dipakai mulai dari sistem pipa tunggal yang sederhana

Lebih terperinci

BAB II DASAR TEORI. Kenaikan tekanan cairan tersebut digunakan untuk mengatasi hambatan-hambatan

BAB II DASAR TEORI. Kenaikan tekanan cairan tersebut digunakan untuk mengatasi hambatan-hambatan BAB II DASAR TEORI 2.1. DASAR TEORI POMPA 2.1.1. Definisi Pompa Pompa merupakan alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan

Lebih terperinci

BAB II DASAR TEORI. bagian yaitu pompa kerja positif (positive displacement pump) dan pompa. kerja dinamis (non positive displacement pump).

BAB II DASAR TEORI. bagian yaitu pompa kerja positif (positive displacement pump) dan pompa. kerja dinamis (non positive displacement pump). BAB II DASAR TEORI 2.1. Dasar Teori Pompa 2.1.1. Definisi Pompa Pompa merupakan alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi Fluida

BAB II DASAR TEORI. 2.1 Definisi Fluida BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antarmolekul

Lebih terperinci

BAB 3 POMPA SENTRIFUGAL

BAB 3 POMPA SENTRIFUGAL 3 BAB 3 POMPA SENTRIFUGAL 3.1.Kerja Pompa Sentrifugal Pompa digerakkan oleh motor, daya dari motor diberikan kepada poros pompa untuk memutar impeler yang dipasangkan pada poros tersebut. Zat cair yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu alat atau mesin yang digunakan untuk memindahkan cairan dari suatu tempat ke tempat yang lain melalui suatu media perpipaan

Lebih terperinci

(Indra Wibawa D.S. Teknik Kimia. Universitas Lampung) POMPA

(Indra Wibawa D.S. Teknik Kimia. Universitas Lampung) POMPA POMPA Kriteria pemilihan pompa (Pelatihan Pegawai PUSRI) Pompa reciprocating o Proses yang memerlukan head tinggi o Kapasitas fluida yang rendah o Liquid yang kental (viscous liquid) dan slurrie (lumpur)

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI II-1 BAB II LANDASAN TEORI 2.1 Pengairan Tanah Pertambakan Pada daerah perbukitan di Atmasnawi Kecamatan Gunung Sindur., terdapat banyak sekali tambak ikan air tawar yang tidak dapat memelihara ikan pada

Lebih terperinci

BAB III PERALATAN DAN PROSEDUR PENGUJIAN

BAB III PERALATAN DAN PROSEDUR PENGUJIAN BAB III PERALATAN DAN PROSEDUR PENGUJIAN 3.1 PERANCANGAN ALAT PENGUJIAN Desain yang digunakan pada penelitian ini berupa alat sederhana. Alat yang di desain untuk mensirkulasikan fluida dari tanki penampungan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Pompa Pompa adalah peralatan mekanis yang digunakan untuk menaikkan cairan dari dataran rendah ke dataran tinggi atau untuk mengalirkan cairan dari daerah bertekanan

Lebih terperinci

BAB III ANALISA DAN PERHITUNGAN

BAB III ANALISA DAN PERHITUNGAN BAB III ANALISA DAN PERHITUNGAN 3.1 Kapasitas Pompa 3.1.1 Kebutuhan air water cooled packaged (WCP) Kapasitas pompa di tentukan kebutuhan air seluruh unit water cooled packaged (WCP)/penyegar udara model

Lebih terperinci

BAB II TINJAUAN PUSTAKA. fluida yang dimaksud berupa cair, gas dan uap. yaitu mesin fluida yang berfungsi mengubah energi fluida (energi potensial

BAB II TINJAUAN PUSTAKA. fluida yang dimaksud berupa cair, gas dan uap. yaitu mesin fluida yang berfungsi mengubah energi fluida (energi potensial BAB II TINJAUAN PUSTAKA 2.1. Mesin-Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Peralatan 3.1.1 Instalasi Alat Uji Alat uji head statis pompa terdiri 1 buah pompa, tangki bertekanan, katup katup beserta alat ukur seperti skema pada gambar 3.1 : Gambar

Lebih terperinci

PENGARUH VARIASI VOLUME TABUNG TEKAN TERHADAP EFISIENSI PADA POMPA HIDRAM

PENGARUH VARIASI VOLUME TABUNG TEKAN TERHADAP EFISIENSI PADA POMPA HIDRAM NASKAH PUBLIKASI PENGARUH VARIASI VOLUME TABUNG TEKAN TERHADAP EFISIENSI PADA POMPA HIDRAM Naskah Publikasi ini disusun guna memenuhi Tugas Akhir pada Jurusan Teknik Mesin Fakultas Teknik Universitas Muhammadiyah

Lebih terperinci

PERANCANGAN SISTEM DISTRIBUSI AIR BERSIH DINGIN DARI TANGKI ATAS MENUJU HOTEL PADA THE ARYA DUTA HOTEL MEDAN

PERANCANGAN SISTEM DISTRIBUSI AIR BERSIH DINGIN DARI TANGKI ATAS MENUJU HOTEL PADA THE ARYA DUTA HOTEL MEDAN PERANCANGAN SISTEM DISTRIBUSI AIR BERSIH DINGIN DARI TANGKI ATAS MENUJU HOTEL PADA THE ARYA DUTA HOTEL MEDAN SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik HATOP

Lebih terperinci

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3 BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

PENGARUH REYNOLD NUMBER ( RE ) TERHADAP HEAD LOSSES PADA VARIASI JENIS BELOKAN PIPA ( BERJARI JARI DAN PATAH )

PENGARUH REYNOLD NUMBER ( RE ) TERHADAP HEAD LOSSES PADA VARIASI JENIS BELOKAN PIPA ( BERJARI JARI DAN PATAH ) PENGARUH REYNOLD NUMBER ( RE ) TERHADAP HEAD LOSSES PADA VARIASI JENIS BELOKAN PIPA ( BERJARI JARI DAN PATAH ) Mustakim 1), Abd. Syakura 2) Program Studi Teknik Pendingin dan Tata Udara, Politeknik Tanjungbalai.

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi fluida

BAB II DASAR TEORI. 2.1 Definisi fluida BAB II DASAR TEORI 2.1 Definisi fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

Laporan Tugas Akhir Pembuatan Modul Praktikum Penentuan Karakterisasi Rangkaian Pompa BAB II LANDASAN TEORI

Laporan Tugas Akhir Pembuatan Modul Praktikum Penentuan Karakterisasi Rangkaian Pompa BAB II LANDASAN TEORI 3 BAB II LANDASAN TEORI II.1. Tinjauan Pustaka II.1.1.Fluida Fluida dipergunakan untuk menyebut zat yang mudah berubah bentuk tergantung pada wadah yang ditempati. Termasuk di dalam definisi ini adalah

Lebih terperinci

15 BAB III TINJAUAN PUSTAKA 3.1 Pengertian Pompa Pompa adalah mesin fluida yang berfungsi untuk memindahkan fluida cair dari suatu tempat ke tempat lain dengan cara memberikan energi mekanik pada pompa

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial fluida, atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

BAB II TINJAUAN PUSTAKA. zat cair melalui saluran tertutup. Atas dasar kenyataan tersebut maka pompa harus

BAB II TINJAUAN PUSTAKA. zat cair melalui saluran tertutup. Atas dasar kenyataan tersebut maka pompa harus 6 BAB II TINJAUAN PUSTAKA 2.1 Pompa Pompa merupakan pesawat angkut yang bertujuan untuk memindahkan zat cair melalui saluran tertutup. Atas dasar kenyataan tersebut maka pompa harus mampu membangkitkan

Lebih terperinci

PENGARUH DEBIT ALIRAN TERHADAP HEAD LOSSES PADA VARIASI JENIS BELOKAN PIPA

PENGARUH DEBIT ALIRAN TERHADAP HEAD LOSSES PADA VARIASI JENIS BELOKAN PIPA PENGARUH DEBIT ALIRAN TERHADAP HEAD LOSSES PADA VARIASI JENIS BELOKAN PIPA Syofyan Anwar Syahputra 1, Aspan Panjaitan 2 1 Program Studi Teknik Pendingin dan Tata Udara, Politeknik Tanjungbalai Sei Raja

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Prinsip Kerja Pompa Hidram Prinsip kerja hidram adalah pemanfaatan gravitasi dimana akan menciptakan energi dari hantaman air yang menabrak faksi air lainnya untuk mendorong ke

Lebih terperinci

BAB V KESIMPULAN DAN SARAN

BAB V KESIMPULAN DAN SARAN BAB V KESIMPULAN DAN SARAN 5.1 Kesimpulan Tabel 5.1 Hasil perhitungan data NO Penjelasan Nilai 1 Head kerugian mayor sisi isap 0,14 m 2 Head kerugian mayor sisi tekan 3,423 m 3 Head kerugian minor pada

Lebih terperinci

ANALISA PERHITUNGAN EFISIENSI CIRCULATING WATER PUMP 76LKSA-18 PEMBANGKIT LISTRIK TENAGA UAP MENGGUNAKAN METODE ANALITIK

ANALISA PERHITUNGAN EFISIENSI CIRCULATING WATER PUMP 76LKSA-18 PEMBANGKIT LISTRIK TENAGA UAP MENGGUNAKAN METODE ANALITIK Available online at Website http://ejournal.undip.ac.id/index.php/rotasi ANALISA EFISIENSI CIRCULATING WATER PUMP 76LKSA-18 PEMBANGKIT LISTRIK TENAGA UAP MENGGUNAKAN METODE ANALITIK *Eflita Yohana, Ari

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pompa adalah suatu alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan tersebut. Kenaikan tekanan cairan tersebut

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1. MESIN-MESIN FLUIDA Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

BAB III LANDASAN TEORI. 3.1 Sistem Kerja Pompa Torak Menggunakan Tenaga Angin. sebagai penggerak mekanik melalui unit transmisi mekanik.

BAB III LANDASAN TEORI. 3.1 Sistem Kerja Pompa Torak Menggunakan Tenaga Angin. sebagai penggerak mekanik melalui unit transmisi mekanik. BAB III LANDASAN TEORI 3.1 Sistem Kerja Pompa Torak Menggunakan Tenaga Angin Pompa air dengan menggunakan tenaga angin merupakan sistem konversi energi untuk mengubah energi angin menjadi putaran rotor

Lebih terperinci

PEMBIMBING : Dr. Sri Poernomo Sari, ST., MT

PEMBIMBING : Dr. Sri Poernomo Sari, ST., MT MEKANISME KERJA POMPA SENTRIFUGAL RANGKAIAN SERI NAMA : YUFIRMAN NPM : 20407924 PEMBIMBING : Dr. Sri Poernomo Sari, ST., MT JURUSAN TEK NIK MESIN UNIVERSITAS GUNADARMA 2014 LATAR BELAKANG Pompa adalah

Lebih terperinci

KEHILANGAN HEAD ALIRAN AKIBAT PERUBAHAN PENAMPANG PIPA PVC DIAMETER 12,7 MM (0,5 INCHI) DAN 19,05 MM (0,75 INCHI).

KEHILANGAN HEAD ALIRAN AKIBAT PERUBAHAN PENAMPANG PIPA PVC DIAMETER 12,7 MM (0,5 INCHI) DAN 19,05 MM (0,75 INCHI). KEHILANGAN HEAD ALIRAN AKIBAT PERUBAHAN PENAMPANG PIPA PVC DIAMETER 12,7 MM (0,5 INCHI) DAN 19,05 MM (0,75 INCHI). Tugas Akhir, Jurusan Teknik Mesin, Fakultas Teknologi Industri Universitas Gunadarma,,2013

Lebih terperinci

PERHITUNGAN HEAD DAN SPESIFIKASI POMPA UNTUK UNIT PRODUKSI JARINGAN AIR BERSIH

PERHITUNGAN HEAD DAN SPESIFIKASI POMPA UNTUK UNIT PRODUKSI JARINGAN AIR BERSIH PERHITUNGAN HEAD DAN SPESIFIKASI POMPA UNTUK UNIT PRODUKSI JARINGAN AIR BERSIH Direncanakan akan dibuat Instalasi Plumbing dan Penentuan Spesifikasi Pompa, dari sumber air k Jenis Pipa Galvanized Iron

Lebih terperinci

TUGAS AKHIR BIDANG KONVERSI ENERGI PERANCANGAN, PEMBUATAN DAN PENGUJIAN POMPA DENGAN PEMASANGAN TUNGGAL, SERI DAN PARALEL

TUGAS AKHIR BIDANG KONVERSI ENERGI PERANCANGAN, PEMBUATAN DAN PENGUJIAN POMPA DENGAN PEMASANGAN TUNGGAL, SERI DAN PARALEL TUGAS AKHIR BIDANG KONVERSI ENERGI PERANCANGAN, PEMBUATAN DAN PENGUJIAN POMPA DENGAN PEMASANGAN TUNGGAL, SERI DAN PARALEL Oleh: ANGGIA PRATAMA FADLY 07 171 051 JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

Panduan Praktikum 2012

Panduan Praktikum 2012 Percobaan 4 HEAD LOSS (KEHILANGAN ENERGI PADA PIPA LURUS) A. Tujuan Percobaan: 1. Mengukur kerugian tekanan (Pv). Mengukur Head Loss (hv) B. Alat-alat yang digunakan 1. Fluid Friction Demonstrator. Stopwatch

Lebih terperinci

BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER

BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER 4.1 Perhitungan Blower Untuk mengetahui jenis blower yang digunakan dapat dihitung pada penjelasan dibawah ini : Parameter yang diketahui : Q = Kapasitas

Lebih terperinci

BAB IV ANALISA SISTEM PEMIPAAN DAN PEMILIHAN POMPA

BAB IV ANALISA SISTEM PEMIPAAN DAN PEMILIHAN POMPA BAB IV ANALISA SISTEM PEMIPAAN DAN PEMILIHAN POMPA 4. 1. Perhitungan Kapasitas Aliran Air Bersih Berdasarkan acuan dari hasil pengkajian Puslitbang Permukiman Dep. Kimpraswil tahun 2010 dan Permen Kesehatan

Lebih terperinci

BAB III ANALISA IMPELER POMPA SCALE WELL

BAB III ANALISA IMPELER POMPA SCALE WELL BAB III ANALISA IMPELER POMPA SCALE WELL 3.1 Metode Perancangan Pada Analisa Impeller Didalam melakukan dibutuhkan metode perancangan yang digunakan untuk menentukan proses penelitian guna mendapatkan

Lebih terperinci

BAB III PROSES PERANCANGAN, PERAKITAN, PENGUJIAN DAN PERHITUNGAN POMPA SENTRIFUGAL UNTUK AIR MANCUR

BAB III PROSES PERANCANGAN, PERAKITAN, PENGUJIAN DAN PERHITUNGAN POMPA SENTRIFUGAL UNTUK AIR MANCUR Jansen A.Sirait / 4130610019 BAB III PROSES PERANCANGAN, PERAKITAN, PENGUJIAN DAN PERHITUNGAN POMPA SENTRIFUGAL UNTUK AIR MANCUR 3.1. Bagian Yang Dirancang, Dirakit, Diuji dan Perhitungan Pompa Pada proses

Lebih terperinci

Analisa Pengaruh Variasi Volume Tabung Udara Dan Variasi Beban Katup Limbah Terhadap Performa Pompa Hidram

Analisa Pengaruh Variasi Volume Tabung Udara Dan Variasi Beban Katup Limbah Terhadap Performa Pompa Hidram Analisa Pengaruh Variasi Volume Tabung Udara Dan Variasi Beban Katup Limbah Terhadap Performa Pompa Hidram Andrea Sebastian Ginting 1, M. Syahril Gultom 2 1,2 Departemen Teknik Mesin, Fakultas Teknik,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pompa Pompa adalah peralatan mekanis untuk mengubah energi mekanik dari mesin penggerak pompa menjadi energi tekan fluida yang dapat membantu memindahkan fluida ke tempat yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1. Tekanan Atmosfer Tekanan atmosfer adalah tekanan yang ditimbulkan oleh bobot udara di atas suatu titik di permukaan bumi. Pada permukaan laut, atmosfer akan menyangga kolom air

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Definisi Fluida Aliran fluida atau zat cair (termasuk uap air dan gas) dibedakan dari benda padat karena kemampuannya untuk mengalir. Fluida lebih mudah mengalir karena ikatan molekul

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Prinsip Kerja Pompa Sentrifugal Pompa digerakkan oleh motor. Daya dari motor diberikan kepada poros pompa untuk memutar impeler yang terpasang pada poros tersebut. Zat cair

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian pompa Pompa adalah alat untuk memindahkan fluida dari tempat satu ketempat lainnya yang bekerja atas dasar mengkonversikan energi mekanik menjadi energi kinetik.

Lebih terperinci

Nama : Zainal Abidin NPM : Jurusan : Teknik Mesin Fakultas : Teknologi Industri Pembimbing : Dr. Sri Poernomo Sari, ST., MT.

Nama : Zainal Abidin NPM : Jurusan : Teknik Mesin Fakultas : Teknologi Industri Pembimbing : Dr. Sri Poernomo Sari, ST., MT. ANALISIS EFISIENSI POMPA DAN HEAD LOSS PADA MESIN COOLING WATER SISTEM FAN Nama : Zainal Abidin NPM : 27411717 Jurusan : Teknik Mesin Fakultas : Teknologi Industri Pembimbing : Dr. Sri Poernomo Sari, ST.,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Hidrodinamika 2.1.1 Definisi Hidrodinamika Hidrodinamika merupakan salah satu cabang ilmu yang berhubungan dengan gerak liquid atau lebih dikhususkan pada gerak air. Skala

Lebih terperinci

PERBANDINGAN KINERJA POMPA REKONDISI TIPE VERTIKAL API 610 OH-4 MODEL 3900L DI PT.Y DENGAN CAE

PERBANDINGAN KINERJA POMPA REKONDISI TIPE VERTIKAL API 610 OH-4 MODEL 3900L DI PT.Y DENGAN CAE Volume 1 No.1 Juli 2016 Website : www.journal.unsika.ac.id Email : barometer_ftusk@staff.unsika.ac.id PERBANDINGAN KINERJA POMPA REKONDISI TIPE VERTIKAL API 610 OH-4 MODEL 3900L DI PT.Y DENGAN CAE Fatkur

Lebih terperinci

BAB IV PERHITUNGAN SISTEM HIDRAULIK

BAB IV PERHITUNGAN SISTEM HIDRAULIK BAB IV PERHITUNGAN SISTEM HIDRAULIK 4.1 Perhitungan Beban Operasi System Gaya yang dibutuhkan untuk mengangkat movable bridge kapasitas 100 ton yang akan diangkat oleh dua buah silinder hidraulik kanan

Lebih terperinci

ANALISA KEBUTUHAN JENIS DAN SPESIFIKASI POMPA UNTUK SUPLAI AIR BERSIH DI GEDUNG KANTIN BERLANTAI 3 PT ASTRA DAIHATSU MOTOR

ANALISA KEBUTUHAN JENIS DAN SPESIFIKASI POMPA UNTUK SUPLAI AIR BERSIH DI GEDUNG KANTIN BERLANTAI 3 PT ASTRA DAIHATSU MOTOR 119 Jurnal Teknik Mesin (JTM): Vol. 05, No. 3, Oktober 2016 ANALISA KEBUTUHAN JENIS DAN SPESIFIKASI POMPA UNTUK SUPLAI AIR BERSIH DI GEDUNG KANTIN BERLANTAI 3 PT ASTRA DAIHATSU MOTOR Ubaedilah Program

Lebih terperinci

PERANCANGAN HIDRAN DAN GROUNDING TANGKI DI STASIUN PENGUMPUL 3 DISTRIK 2 PT.PERTAMINA EP REGION JAWA FIELD CEPU. Aditya Ayuningtyas

PERANCANGAN HIDRAN DAN GROUNDING TANGKI DI STASIUN PENGUMPUL 3 DISTRIK 2 PT.PERTAMINA EP REGION JAWA FIELD CEPU. Aditya Ayuningtyas PERANCANGAN HIDRAN DAN GROUNDING TANGKI DI STASIUN PENGUMPUL 3 DISTRIK 2 PT.PERTAMINA EP REGION JAWA FIELD CEPU Aditya Ayuningtyas Latar Belakang SP 3 Distrik 2 Nglobo Ledok PT.Pertamina EP Field Cepu

Lebih terperinci

BAB II PRINSIP-PRINSIP DASAR HIDRAULIK

BAB II PRINSIP-PRINSIP DASAR HIDRAULIK BAB II PRINSIP-PRINSIP DASAR HIDRAULIK Dalam ilmu hidraulik berlaku hukum-hukum dalam hidrostatik dan hidrodinamik, termasuk untuk sistem hidraulik. Dimana untuk kendaraan forklift ini hidraulik berperan

Lebih terperinci

LABORATORIUM SATUAN OPERASI

LABORATORIUM SATUAN OPERASI LABORATORIUM SATUAN OPERASI SEMESTER GENAP TAHUN AJARAN 2013-2014 MODUL : Pompa Sentrifugal PEMBIMBING : Ir. Unung Leoanggraini, MT Praktikum : 10 Maret 2014 Penyerahan : 17 Maret 2014 (Laporan) Oleh :

Lebih terperinci

JUDUL TUGAS AKHIR ANALISA KOEFISIEN GESEK PIPA ACRYLIC DIAMETER 0,5 INCHI, 1 INCHI, 1,5 INCHI

JUDUL TUGAS AKHIR  ANALISA KOEFISIEN GESEK PIPA ACRYLIC DIAMETER 0,5 INCHI, 1 INCHI, 1,5 INCHI JUDUL TUGAS AKHIR http://www.gunadarma.ac.id/ ANALISA KOEFISIEN GESEK PIPA ACRYLIC DIAMETER 0,5 INCHI, 1 INCHI, 1,5 INCHI ABSTRAKSI Alat uji kehilangan tekanan didalam sistem perpipaan dibuat dengan menggunakan

Lebih terperinci

PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM

PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM Franciscus Manuel Sitompul 1,Mulfi Hazwi 2 Email:manuel_fransiskus@yahoo.co.id 1,2, Departemen

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pompa adalah mesin yang mengkonversikan energi mekanik menjadi energi tekanan. Menurut beberapa literatur terdapat beberapa jenis pompa, namun yang akan dibahas dalam perancangan

Lebih terperinci

BAB IV PERHITUNGAN DAN ANALISA

BAB IV PERHITUNGAN DAN ANALISA BAB IV PERHITUNGAN DAN ANALISA 4.1 Perhitungan Therminol dari HM Tank (Heat-Medium) di pompakan oleh pompa nonseal kemudian dialirkan melalui pipa melewati dinding-dinding DVD (dowtherm Vacuum Dryer) kemudian

Lebih terperinci

BAB IV PENGUKURAN KEHILANGAN ENERGI AKIBAT BELOKAN DAN KATUP (MINOR LOSSES)

BAB IV PENGUKURAN KEHILANGAN ENERGI AKIBAT BELOKAN DAN KATUP (MINOR LOSSES) BAB IV PENGUKURAN KEHILANGAN ENERGI AKIBAT BELOKAN DAN KATUP (MINOR LOSSES) 4.1 Pendahuluan Kerugian tekan (headloss) adalah salah satu kerugian yang tidak dapat dihindari pada suatu aliran fluida yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontiniu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar

Lebih terperinci

BAB IV PERHITUNGAN INSTALASI POMPA HYDRANT. Massa jenis cairan : 1 kg/liter. Kapasitas : liter/menit = (1250 gpm) Kondisi kerja : Tidak kontinyu

BAB IV PERHITUNGAN INSTALASI POMPA HYDRANT. Massa jenis cairan : 1 kg/liter. Kapasitas : liter/menit = (1250 gpm) Kondisi kerja : Tidak kontinyu Tugas Akir BAB IV PERHITUNGAN INSTALASI POMPA HYDRANT 4.1 Data data Perencanaan Jenis cairan : Air Massa jenis cairan : 1 kg/liter Temperatur cairan : 5ºC Kapasitas : 4.731 liter/menit (150 gpm) Kondisi

Lebih terperinci

Gambar 3-15 Selang output Gambar 3-16 Skema penelitian dengan sudut pipa masuk Gambar 3-17 Skema penelitian dengan sudut pipa masuk

Gambar 3-15 Selang output Gambar 3-16 Skema penelitian dengan sudut pipa masuk Gambar 3-17 Skema penelitian dengan sudut pipa masuk DAFTAR ISI Halaman Judul... i Lembar Pengesahan Dosen Pembimbing... ii Lembar Pengesahan Dosen Penguji... iii Halaman Persembahan... iv Halaman Motto... v Kata Pengantar... vi Abstrak... ix Abstract...

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 PENDAHULUAN Energi adalah sesuatu yang bersifat abstrak yang sukar dibuktikan tetapi dapat dirasakan adanya. Energi adalah kemampuan untuk melakukan kerja (energy is the capability

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Kecepatan dan Kapasitas Aliran Fluida Setiap fluida yang mengalir dalam sebuah pipa harus memasuki pipa pada suatu lokasi. Daerah aliran di dekat lokasi fluida memasuki pipa tersebut

Lebih terperinci

Losses in Bends and Fittings (Kerugian energi pada belokan dan sambungan)

Losses in Bends and Fittings (Kerugian energi pada belokan dan sambungan) Panduan Praktikum Fenomena Dasar 010 A. Tujuan Percobaan: Percobaan 5 Losses in Bends and Fittings (Kerugian energi pada belokan dan sambungan) 1. Mengamati kerugian tekanan aliran melalui elbow dan sambungan.

Lebih terperinci

PERANCANGAN DAN ANALISA PERFORMANSI COLD STORAGE

PERANCANGAN DAN ANALISA PERFORMANSI COLD STORAGE PERANCANGAN DAN ANALISA PERFORMANSI COLD STORAGE PADA KAPAL PENANGKAP IKAN DENGAN CHILLER WATER REFRIGERASI ABSORPSI MENGGUNAKAN REFRIGERANT AMMONIA-WATER (NH 3 -H 2 O) Nama Mahasiswa : Radityo Dwi Atmojo

Lebih terperinci

REKAYASA INSTALASI POMPA UNTUK MENURUNKAN HEAD LOSS

REKAYASA INSTALASI POMPA UNTUK MENURUNKAN HEAD LOSS REKAYASA INSTALASI POMPA UNTUK MENURUNKAN HEAD LOSS Edi Widodo 1,*, Indah Sulistiyowati 2 1,2, Program Studi Teknik Mesin, Universitas Muhammadiyah Sidoarjo, Jl. Raya Gelam No. 250 Candi Sidoarjo Jawa

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010 PERANCANGAN SISTEM DISTRIBUSI ALIRAN AIR BERSIH PADA PERUMAHAN TELANAI INDAH KOTA JAMBI SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik HITLER MARULI SIDABUTAR NIM.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Dasar-dasar Pompa Sentrifugal Pada industri minyak bumi, sebagian besar pompa yang digunakan ialah pompa bertipe sentrifugal. Gaya sentrifugal ialah sebuah gaya yang timbul akibat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pengertian dan Prinsip Dasar Alat uji Bending 2.1.1. Definisi Alat Uji Bending Alat uji bending adalah alat yang digunakan untuk melakukan pengujian kekuatan lengkung (bending)

Lebih terperinci

BAB III DESKRIPSI ALAT UJI DAN PROSEDUR PENGUJIAN

BAB III DESKRIPSI ALAT UJI DAN PROSEDUR PENGUJIAN BAB III DESKRIPSI ALAT UJI DAN PROSEDUR PENGUJIAN 3.1. Rancangan Alat Uji Pada penelitian ini alat uji dirancang sendiri berdasarkan dasar teori dan pengalaman dari penulis. Alat uji ini dirancang sebagai

Lebih terperinci

BAB II DASAR TEORI Teknologi Concentrated Solar Power (CSP) tipe parabolic trough

BAB II DASAR TEORI Teknologi Concentrated Solar Power (CSP) tipe parabolic trough BAB II DASAR TEORI 2.1. Teknologi Concentrated Solar Power (CSP) tipe parabolic trough Teknologi ini merupakan aplikasi dari rancangan modul solar parabolic trough collector sebagai Solar Collector Assembly

Lebih terperinci

BAB III PEMBUATAN ALAT UJI DAN METODE PENGAMBILAN DATA

BAB III PEMBUATAN ALAT UJI DAN METODE PENGAMBILAN DATA BAB III PEMBUATAN ALAT UJI DAN METODE PENGAMBILAN DATA Untuk mendapatkan koefisien gesek pada saluran pipa berpenampang persegi, nilai penurunan tekanan (pressure loss), kekasaran pipa dan beberapa variabel

Lebih terperinci

MENINGKATKAN KAPASITAS DAN EFISIENSI POMPA CENTRIFUGAL DENGAN JET-PUMP

MENINGKATKAN KAPASITAS DAN EFISIENSI POMPA CENTRIFUGAL DENGAN JET-PUMP MENINGKATKAN KAPASITAS DAN EFISIENSI POMPA CENTRIFUGAL DENGAN JET-PUMP Suhariyanto, Joko Sarsetyanto, Budi L Sanjoto, Atria Pradityana Jurusan Teknik Mesin FTI-ITS Surabaya Email : - ABSTRACT - ABSTRAK

Lebih terperinci

ANALISA PERENCANAAN POMPA HYDRANT PEMADAM KEBAKARAN PADA BANGUNAN GEDUNG BERTINGKAT DELAPAN BELAS

ANALISA PERENCANAAN POMPA HYDRANT PEMADAM KEBAKARAN PADA BANGUNAN GEDUNG BERTINGKAT DELAPAN BELAS Tugas Akhir ANALISA PERENCANAAN POMPA HYDRANT PEMADAM KEBAKARAN PADA BANGUNAN GEDUNG BERTINGKAT DELAPAN BELAS Tugas Akhir ini Disusun Sebagai Salah Satu Persyaratan Meraih Gelar Sarjana Program Studi S1

Lebih terperinci

PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P

PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P ANGGAPAN YANG DIGUNAKAN ZAT CAIR ADALAH IDEAL ZAT CAIR ADALAH HOMOGEN DAN TIDAK TERMAMPATKAN ALIRAN KONTINYU DAN SEPANJANG GARIS ARUS GAYA YANG BEKERJA HANYA

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pengetahuan Dasar Pompa Pompa adalah suatu peralatan mekanis yang digerakkan oleh tenaga mesin yang digunakan untuk memindahkan cairan (fluida) dari suatu tempat ke tempat

Lebih terperinci

UJI PERFORMANSI POMPA BILA DISERIKAN DENGAN KARAKTERISTIK POMPA YANG SAMA

UJI PERFORMANSI POMPA BILA DISERIKAN DENGAN KARAKTERISTIK POMPA YANG SAMA UJI PERFORMANSI POMPA BILA DISERIKAN DENGAN KARAKTERISTIK POMPA YANG SAMA SKRIPSI Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik HOT MARHUALA SARAGIH NIM. 080401147 DEPARTEMEN TEKNIK

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Pompa merupakan mesin fluida yang digunakan untuk memindahkan fluida cair dari suatu tempat ke tempat lainnya melalui sistem perpipaan. Pada prinsipnya, pompa mengubah

Lebih terperinci

BAB I PENDAHULUAN 1.1. LATAR BELAKANG

BAB I PENDAHULUAN 1.1. LATAR BELAKANG 1 BAB I PENDAHULUAN 1.1. LATAR BELAKANG Dalam sistem instalasi pemipaan fenomena kavitasi sering tidak diperhatikan, sedangkan kavitasi sendiri adalah salah satu kerugian di dalam sistem instalasi pemipaan.

Lebih terperinci

ANALISIS PENGARUH KEKENTALAN FLUIDA AIR DAN MINYAK KELAPA PADA PERFORMANSI POMPA SENTRIFUGAL

ANALISIS PENGARUH KEKENTALAN FLUIDA AIR DAN MINYAK KELAPA PADA PERFORMANSI POMPA SENTRIFUGAL ANALISIS PENGARUH KEKENTALAN FLUIDA AIR DAN MINYAK KELAPA PADA PERFORMANSI POMPA SENTRIFUGAL *Arijanto 1, Eflita Yohana 1, Franklin T.H. Sinaga 2 1 Dosen Jurusan Teknik Mesin, Fakultas Teknik, Universitas

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN Metode penelitian yang digunakan adalah metode eksperimental dengan mengacu pada Standar API 610 tentang pengujian pompa pada kondisi kavitasi dan tinjauan literatur penelitian-penelitian

Lebih terperinci

TINJAUAN ULANG PENGGUNAAN POMPA SENTRIFUGAL JENIS ISO C3AM UNTUK POMPA NIRA

TINJAUAN ULANG PENGGUNAAN POMPA SENTRIFUGAL JENIS ISO C3AM UNTUK POMPA NIRA TINJAUAN ULANG PENGGUNAAN POMPA SENTRIFUGAL JENIS ISO 50-32-160-C3AM UNTUK POMPA NIRA Oleh Nama : M. Mujianto Nrp : 6308030049 A. LATAR BELAKANG PENDAHULUAN Di PT. Pabrik gula pangkah menggunakan pompa

Lebih terperinci

FLUIDA DINAMIS. GARIS ALIR ( Fluida yang mengalir) ada 2

FLUIDA DINAMIS. GARIS ALIR ( Fluida yang mengalir) ada 2 DINAMIKA FLUIDA FLUIDA DINAMIS SIFAT UMUM GAS IDEAL Aliran fluida dapat merupakan aliran tunak (STEADY ) dan tak tunak (non STEADY) Aliran fluida dapat termanpatkan (compressibel) dan tak termanfatkan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Tinjauan Umum Turbin Tesla Turbin Tesla merupakan salah satu turbin yang memanfaatkan energi fluida dan viskositas fluida untuk menggerakkan turbin. Konsep turbin Tesla ditemukan

Lebih terperinci

BAB III PEMBUATAN ALAT UJI DAN METODE PENGAMBILAN DATA

BAB III PEMBUATAN ALAT UJI DAN METODE PENGAMBILAN DATA BAB III PEMBUATAN ALAT UJI DAN METODE PENGAMBILAN DATA Untuk mendapatkan koefisien gesek dari saluran pipa berpenampang persegi, nilai penurunan tekanan (pressure loss), kekasaran pipa dan beberapa variabel

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1 Tinjauan Pustaka Dengan kemajuan ilmu pengetahuan dan teknologi, manusia selalu berusaha untuk menciptakan sistem pompa dengan performansi yang maksimal. Salah

Lebih terperinci

BAB 1 PENDAHULUAN. beroperasi maksimal dan tahan dioperasikan dalam jangka waktu yang lama, hal ini tidak

BAB 1 PENDAHULUAN. beroperasi maksimal dan tahan dioperasikan dalam jangka waktu yang lama, hal ini tidak BAB 1 PENDAHULUAN 1.1. Latar Belakang Dunia industri sangat menginginkan suatu jenis pompa sentrifugal yang dapat beroperasi maksimal dan tahan dioperasikan dalam jangka waktu yang lama, hal ini tidak

Lebih terperinci

Tegangan Permukaan. Fenomena Permukaan FLUIDA 2 TEP-FTP UB. Beberapa topik tegangan permukaan

Tegangan Permukaan. Fenomena Permukaan FLUIDA 2 TEP-FTP UB. Beberapa topik tegangan permukaan Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas Beberapa topik tegangan permukaan Fenomena permukaan sangat mempengaruhi : Penetrasi melalui membran

Lebih terperinci

PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM

PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik FRANCISCUS

Lebih terperinci

REYNOLDS NUMBER K E L O M P O K 4

REYNOLDS NUMBER K E L O M P O K 4 REYNOLDS NUMBER K E L O M P O K 4 P A R A M I T A V E G A A. T R I S N A W A T I Y U L I N D R A E K A D E F I A N A M U F T I R I Z K A F A D I L L A H S I T I R U K A Y A H FAKULTAS PERIKANAN DAN ILMU

Lebih terperinci

BAB I PENGUJIAN TURBIN AIR FRANCIS

BAB I PENGUJIAN TURBIN AIR FRANCIS BAB I PENGUJIAN TURBIN AIR FRANCIS 1.1 Pendahuluan 1.1.1 Latar Belakang Seiring dengan perkembang teknologi yang semakin maju, banyak diciptakan peralatan peralatan yang inovatif serta tepat guna. Dalam

Lebih terperinci

MODUL POMPA AIR IRIGASI (Irrigation Pump)

MODUL POMPA AIR IRIGASI (Irrigation Pump) MODUL POMPA AIR IRIGASI (Irrigation Pump) Diklat Teknis Kedelai Bagi Penyuluh Dalam Rangka Upaya Khusus (UPSUS) Peningkatan Produksi Kedelai Pertanian dan BABINSA KEMENTERIAN PERTANIAN BADAN PENYULUHAN

Lebih terperinci

BAB II LANDASAN TEORI. dapat dilakukan berdasarkan persamaan kontinuitas yang mana prinsif dasarnya

BAB II LANDASAN TEORI. dapat dilakukan berdasarkan persamaan kontinuitas yang mana prinsif dasarnya BAB II LANDASAN TEORI 2.1 Pengukuran Laju Aliran Fluida dapat dilakukan berdasarkan persamaan kontinuitas yang mana prinsif dasarnya berasal dari hukum kekekalan massa seperti yang terlihat pada Gambar

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Teori Pompa Sentrifugal 2.1.1. Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan

Lebih terperinci

POMPA SENTRIFUGAL. Oleh Kelompok 2

POMPA SENTRIFUGAL. Oleh Kelompok 2 POMPA SENTRIFUGAL Oleh Kelompok 2 M. Salman A. (0810830064) Mariatul Kiptiyah (0810830066) Olyvia Febriyandini (0810830072) R. Rina Dwi S. (0810830075) Suwardi (0810830080) Yayah Soraya (0810830082) Yudha

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sifat Sifat Zat Air zat cair mempunyai atau menunjukan sifat-sifat atau karakteristik-karakteristik yang dapat ditunjukkan sebagai berikut. 2.1 Tabel Sifat-sifat air sebagai fungsi

Lebih terperinci