BAB 2 LANDASAN TEORI

Save this PDF as:

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 LANDASAN TEORI"

Transkripsi

1 BAB LANDASAN TEORI. Pegerta Perawata (Mateace) Meurut Assaur (999, p95) perawata merupaka kegata utuk memelhara atau mejaga fasltas da peralata pabrk, da megadaka perbaka, peyesuaa, atau peggata yag dperluka utuk medapatka suatu kods operas produks yag memuaska, sesua dega yag drecaaka. Dega adaya perawata dharapka semua fasltas da mes yag dmlk oleh perusahaa dapat doperaska sesua dega jadwal yag telah dtetuka. Perawata mempuya peraa yag sagat meetuka dalam kegata produks dar suatu perusahaa yag meyagkut kelacara atau kemaceta produks, kelambata da volume produks. Dega demka, perawata memlk fugs yag sama petgya dega fugs-fugs la dar suatu perusahaa. Karea petgya aktvtas perawata maka dperluka perecaaa yag matag utuk mejalakaya, sehgga terhetya proses produks akbat mes rusak dapat dkurag semmum mugk. Aktvtas perawata yag bear-bear bak dapat megurag baya utuk merawat mes.

2 3. Tujua Perawata Ada beberapa hal yag mejad tujua utama dlakukaya aktvtas perawata mes, yatu (Assaur, 999, p95): o Mejaga agar kualtas produk berada pada tgkat yag dharapka gua memeuh apa yag dbutuhka produk tu sedr da mejaga agar kegata produks tdak megalam gaggua. o Mempertahaka kemampua alat atau fasltas produks gua memeuh kebutuha yag sesua dega target serta recaa produks. o Megurag pemakaa da peympaga dluar batas da mejaga modal yag dvestaska dalam perusahaa selama jagka waktu yag dtetuka sesua dega kebjaksaaa perusahaa. o Memperhatka da meghdar kegata kegata operas mes serta peralata yag dapat membahayaka keselamata kerja. o Megadaka suatu kerjasama yag erat dega fugs fugs utama laya dar suatu perusahaa, dalam ragka utuk mecapa tujua utama perusahaa yatu tgkat keutuga atau retur vestmet yag sebak mugk da total baya seredah mugk.

3 4 o Mecapa tgkat baya seredah mugk, dega melaksaaka kegata mateace secara efektf da efse utuk keseluruhaya..3 Jes - Jes Perawata Aktvtas perawata (mateace) dapat dbedaka dalam dua jes yatu prevetve mateace (pecegaha) da correctve mateace (perbaka). (Assaur, 999, p99)..3. Prevetve Mateace Prevetve mateace adalah kegata perawata yag dlakuka utuk mecegah tmbulya kerusaka da meemuka kods yag dapat meyebabka fasltas atau mes produks megalam keruska pada waktu melakuka kegata produks. (Assaur, 999, p0). Semua fasltas atau mes yag medapat tdaka prevetve aka terjam kelacara kerjaya da selalu dalam keadaa optmal utuk melakuka kegata proses produks. Prevetve mateace dapat dbedaka atas route mateace da perodc mateace. (Assaur, 999, p0).

4 5 Route mateace adalah kegata perawata yag dlakuka secara rut. Cotohya yatu pelumasa, pegeceka s baha bakar. Perodc mateace adalah kegata perawata yag dlakuka secara perodc atau dalam jagka waktu tertetu..3. Correctve Mateace Correctve mateace merupaka kegata perawata yag dlakuka setelah mes atau fasltas megalam kerusaka atau gaggua. Dalam hal kegata correctve mateace bersfat perbaka yatu meuggu sampa kerusaka terjad terlebh dahulu, kemuda baru dperbak agar dapat beroperas kembal. (Assaur, 999, p04). Tdaka correctve dapat memaka baya perawata yag lebh murah dar pada tdaka prevetve. Hal tersebut dapat terjad apabla kerusaka terjd dsaat mes atau fasltas tdak melakuka proses produks. Namu saat kerusaka terjad selama proses produks berlagsug maka baya perawata aka megalam pegkata akbat terhetya proses produks. Dega demka dapat dsmpulka dahwa tdaka correctve memusatka permasalaha setelah permasalaha tu terjad, buka megaalsa masalah utuk mecegahya agar tdak terjad.

5 6.4 Keadala (Relablty) Yag dmaksud dega keadala (relablty) adalah probabltas sebuah kompoe atau sstem utuk adapat beroperas sesua dega fugs yag dgka utuk suatu perode waktu tertetu ketka dguaka dbawah kods yag telah dtetapka. (Ebelg, 997, p5) Empat eleme yag sgfka dega kosep relablty adalah probablty, performace, waktu da kods. Probablty (peluag) memlk art bahwa setap tem memlk umur berbeda atara satu dega yag laya. Hal memugkka utuk megdetfkas dstrbus dar kerusaka tem utuk megetahu umur paka dar tem tersebut. Performace (kerja) medfska bahwa kehadala merupaka suatu karakterstk performas sstem dmaa suatu sstem yag adal harus dapat meujukka performas yag memuaska jka doperaska. Waktu. Relablty dyataka dalam suatu perode waktu. Peluag suatu tem utuk dguaka selama setahu aka berbeda dega peluag tem utuk dguaka dalam sepuluh tahu. Kods mejelaska bahwa perlakua yag dterma oleh suatu system aka memberka pegaruh terhadap tgakat relablty.

6 7.5 Dstrbus Kerusaka Dstrbus yag dguaka utuk megetahu pola data yag terbetuk dbag dalam empat macam yatu: dstrbus Webull, Ekspoetal, Normal da Logormal..5. Dstrbus Webull Dstrbus Webull merupaka dstrbus yag palg bayak dguaka utuk waktu kerusaka karea dstrbus bak dguaka utuk laju kerusaka yag megkat maupu laju kerusaka yag meuru. Dua parameter yag dguaka dalam dstrbus adalah θ yag dsebut dega parameter skala (scale parameter) da β yag dsebut dega parameter betuk (shape parameter). Fugs relablty yag terdapat dalam dstrbus Webull yatu (Ebelg, 997, p59) : Relablty fucto : ( t θ ) β R ( t) e.(.) dmaa θ > 0, β > 0, da t > 0 Dalam dstrbus Webull yag meetuka tgkat kerusaka dar pola data yag terbetuk adalah parameter β. Nla-la β yag meujukka laju kerusaka terdapat dalam tabel berkut (Ebelg, hal 63) :

7 8 Tabel. Nla-Nla Parameter β Nla Laju Kerusaka 0 < β < Peguraga laju kerusaka (DFR) β Dstrbus Ekspoesal < β < Pegkata laju kerusaka (IFR), Kokaf β Dstrbus Raylegh β > Pegkata laju kerusaka (IFR), Koveks 3 β Pegkata laju kerusaka (IFR), medekat kurva ormal Jka parameter β mempegaruh laju kerusaka maka parameter θ mempegruh la tegah dar pola data..5. Dstrbus Ekspoetal Dstrbus Ekspoetal dguaka utuk meghtug keadala dar dstrbus kerusaka yag memlk laju kerusaka kosta. Dstrbus mempuya laju kerusaka yag tetap terhadap waktu, dega kata la probabltas terjadya kerusaka tdak tergatug pada umur alat. Dstrbus merupaka dstrbus yag palg mudah utuk daalsa. Parameter yag dguaka dalam dstrbus Ekspoetal adalah λ, yag meujukka rata rata kedatag kerusak yag terjad. Fugs relablty yag terdapat dalam dstrbus ekspoetal yatu (Ebelg, 997, p4) :

8 9 Relablty fucto : R λt ( t) e (.) dmaa t > 0, λ > Dstrbus Normal Dstrbus Normal cocok utuk dguaka dalam memodelka feomea keausa. Parameter yag dguaka adalah μ (la tegah) da σ (stadar devas). Karea hubugaya dega dstrbus Logormal, dstrbus dapat juga dguaka utuk megaalsa probabltas Logormal. Fugs relablty yag terdapat dalam dstrbus Normal yatu (Ebelg, 997, p69) : t μ Relablty fucto : R ( t) Φ (.3) σ dmaa μ > 0, σ > 0 da t > Dstrbus Logormal Dstrbus Logormal megguaka dua parameter yatu s yag merupaka parameter betuk (shape parameter) da t med sebaga parameter lokas (locato parameter) yag merupaka la tegah dar suatu dstrbus kerusaka. Dstrbus dapat memlk berbaga macam betuk, sehgga serg djumpa bahwa data yag sesua dega dstrbus Webull juga sesua

9 0 dega dstrbus Logormal. Fugs relablty yag terdapat pada dstrbus Logormal yatu (Ebelg, 997, p73) : Relablty fucto : t R( t) Φ l (.4) s t med dmaa s > 0, t med > 0 da t > 0.6 Idetfkas Dstrbus Idetfkas dstrbus dlakuka memlalu dua tahap yatu Least Square Curve da Goodess of Ft Test..6. Least Square Curve Fttg Metode dguaka utuk megtug la de of ft (r). Dstrbus dega la r yag terbesar aka dplh utuk duj dega megguaka Goodess of Ft Test. Rumus umum yag terdapat dalam metode Least Square Curve Fttg adalah: 0.3 F( t ) (.5) + 0.4

10 Dmaa : data waktu ke-t jumlah data kerusaka Ide of Ft (r) y y y y y y b utuk Webull, Normal, Logormal y b utuk Ekspoetal b y a Rumus yag dmlk masg masg dstrbus adalah: o Dstrbus Webull l t dmaa t adalah data waktu ke- y l ) ( l t F Parameter : β b da θ b a e

11 o Dstrbus Ekspoetal t dmaa t adalah data waktu ke- y l F( t ) Parameter : λ b o Dstrbus Normal t dmaa t adalah data waktu ke- y z Φ - [F(t )] Parameter : σ b da μ a b o Dstrbus Logormal l t dmaa t adalah data waktu ke- y z Φ - [F(t )] Parameter : s b da tmed e -sa.6. Goodess of Ft Test Tahap selajutya setelah perhtuga de of ft dlakuka maka dlakuka peguja Goodess of Ft utuk la de of ft yag terbesar. Uj dlakuka dega membadgka atara hpotesa ol (H 0 ) yag

12 3 meyataka bahwa data kerusaka megkut dstrbus plha da hpotess alteratve (H ) yag meyataka bahwa data kerusaka tdak megkut dstrbus plha. (Ebelg, (997, p06) Peguja yag dlakuka dalam Goodess of Ft ada tga macam yatu Ma s Test utuk dstrbus Webull, Bartlett s Test utuk dstrbus Ekspoetal da Kolmogorov-Smrov utuk dstrbus Normal da Logormal..6.. Ma s Test Meurut Ebelg, (997, p400) hpotesa utuk melakuka uj adalah: H 0 : Data kerusaka berdstrbus Webull H : Data kerusaka tdak berdstrbus Webull Uj statstkya adalah : Dmaa : ( l t l t ) r + k k+ M M (.6) k ( l t+ l t ) k M k r k r M Z + - Z

13 4 Z 0.5 l l Jka la M < M crt maka H 0 dterma. Nla M crt dperoleh dar table dstrbus F dega v k da v k..6.. Bartlett s Test Meurut Ebelg, (997, p399) Hpotesa utuk melakuka uj adalah : H 0 : Data kerusaka berdstrbus Ekspoetal H : Data kerusaka tdak berdstrbus Ekspoetal Uj statstkya adalah : B r r l t R R ( r + ) + 6r r l t (.7) dmaa : t adalah data waktu kerusaka ke- r adalah jumlah kerusaka B adalah la uj statstc utuk uj Bartlett s Test H 0 dterma jka : X < α < B, r X α, r

14 Kolmogorov-Smrov Test Meurut Ebelg, (997, p40) Hpotesa utuk melakuka uj adalah : H 0 : Data kerusaka berdstrbus Normal atau Logormal H : Data kerusaka tdak berdstrbus Normal da Logormal Uj statstkya adalah : D ma{d,d } dmaa : Φ s t t D ma (.8) Φ s t t D ma (.9) t t ) ( t t s t adalah waktu kerusaka ke- s adalah stdar devas Jka D < D crt maka terma H 0. Nla D crt dperoleh dar table crtcal value for Kolmogorov-Smrov test for ormalty.

15 6.7 Mea Tme To Falure (MTTF) Mea tme to falure merupaka rata rata selag waktu kerusaka dar suatu dstrbus kerusaka. Perhtuga la MTTF utuk masg masg dstrbus adalah : o Dstrbus Webull MTTF θ. Γ + β o Dstrbus Ekspoetal MTTF λ o Dstrbus Normal MTTF μ o Dstrbus Logormal s e med MTTF t..8 Mea Tme To Repar (MTTR) Utuk dapat meghtug la rata rata perbaka, dstrbus data utuk waktu perbaka perlu dketahu terlebh dahulu. Peguja utuk meetuka dstrbus data dlakuka dega cara sepert yag telah djelaska. Rumus yag dguaka utuk masg masg dstrbus adalah :

16 7 o Dstrbus Webull MTTR θ. Γ + β o Dstrbus Ekspoetal MTTR λ o Dstrbus Normal da Logormal s e med MTTR t..9 Relablty dega Prevetve Mateace Pegkata keadala dapat dtempuh dega cara prevetve mateace. Dega prevetve mateace maka pegaruh wear out mes atau kompoe dapat dkurag. Model keadala berkut megasumska system kembal ke kods baru setelah mejala prevetve mateace. Keadala pada saat t dyataka sebaga berkut (Ebelg, 997, p04) : R m (t) R(t) R m (t) R(T).R(t-T) utuk 0 t < T utuk T t < T

17 8 Secara umum persamaaya adalah : R m (t) R(T).R(t-T) utuk T t < (+)T da,,3, dmaa : T adalah selag waktu prevetve mateace T adalah waktu operasoal mes jumlah perawata R m (t) adalah relablty dega prevetve mateace R(T) adalah probabltas kehadala hgga selag waktu perawata R(t-T) adalah probabltas kehadala utuk waktu t-t dar tdaka revetve yag terakhr..0 Perhtuga Baya Utuk meghtug total baya saat falure da prevetve rumus yag dguaka adalah : o Falure Cf Tc ( tf ) (.0) tf

18 9 dmaa : Cf merupaka baya falure Tf merupaka la MTTF o Prevetve Cp * R + Cf ( R) Tc( tp) (.) tp * R + tf ( R) Cp merupaka baya prevetve tp terval waktu prevetve Cf merupaka baya falure tp merupaka la MTTF R merupaka la relablty saat R(tp)

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 22 BAB II LANDASAN TEORI 2.1 Pedahulua 2.1.1 Pegerta Mateace Beberapa pegerta perawata (mateace) meurut ahl : 1. Meurut Corder (1988), perawata merupaka suatu kombas dar tdaka yag dlakuka utuk mejaga suatu

Lebih terperinci

BAB 3 METODOLOGI PEMECAHAN MASALAH

BAB 3 METODOLOGI PEMECAHAN MASALAH BAB 3 METODOLOGI PEMECAHAN MASALAH 3. Metode Pemecaha Masalah Metodolog peelta merupaka tahap-tahap dalam suatu peelta yag harus dtetapka atau dlakuka terlebh dahulu sebelum melakuka pecara solus masalah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 8 BAB LANDASAN TEORI. Prevetve Mateace.. Pegerta Perawata (Mateace) Meurut Assaur (999, p59) perawata merupaka kegata utuk memelhara atau mejaga fasltas da peralata pabrk, da megadaka perbaka, peesuaa

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2. Pegerta Pemelharaa da Perawata Pegerta Pemelharaa da Perawata ( Mateace ) meurut Assaur adalah suatu kegata utuk mejaga atau memelhara fasltas da peralata pabrk da megadaka perbaka

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pemelharaa (Mateace) 2.1.1 Pegerta Pemelharaa Defs pemelharaa (mateace) meurut Patrck (2001, p407) adalah suatu kegata utuk memelhara da mejaga fasltas yag ada serta memperbak,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 3 BAB LANDASAN TEORI. Defs Pemelharaa Pegerta Pemelharaa da Perawata ( Mateace ) meurut Assaur adalah suatu kegata utuk mejaga atau memelhara fasltas da peralata pabrk da megadaka perbaka atau peyesuaa/peggata

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 9 BAB LANDASAN TEORI. Defs Pemelharaa Agar suatu kegata produks dapat berlagsug dega lacar, meghaslka produk-produk yag bermutu tgg, maka perlu ddukug oleh mes-mes atau peralata yag hadal da sap bekerja

Lebih terperinci

BAB 4 PENGUMPULAN, PENGOLAHAN DAN ANALISIS DATA

BAB 4 PENGUMPULAN, PENGOLAHAN DAN ANALISIS DATA 97 BAB 4 PENGUMPULAN, PENGOLAHAN DAN ANALISIS 4. Hasl da Pegumpula Data 4.. Peetua L Krts DATA Berdasarka hasl peelta da observas dlapaga secara lagsug pada lata produks PT. Fajar It Plasdo yag meghaslka

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu. BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 4 BAB LANDASAN TEORI. Prevetve Mateace.. Pegerta Perawata ( Mateace ) Meurut Assaur (999, p95) perawata merupaka kegata utuk memelhara atau mejaga fasltas da peralata pabrk, da megadaka perbaka, peyesuaa,

Lebih terperinci

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar

Lebih terperinci

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Metode Sychroous Servcg Secara umum hubuga mausa da mes dapat berbetuk salah satu dar tpe berkut (Wgjosoebroto,S., 000. Ergoom Stud Gerak da Waktu, halama 53): Sychroous servcg. Completely

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2. Perawata (Mateace) Perawata (mateace) adalah memperbak alat-alat mekak atau elektrk yag sedag rusak atau tergaggu (dkeal sebaga reparas, tdak terjadwal atau pemelharaa secara kebetula),

Lebih terperinci

UNIVERSITAS INDONESIA

UNIVERSITAS INDONESIA UNIVERSITAS INDONESIA OPTIMASI PREVENTIVE MAINTENANCE DAN PENJADWALAN PENGGANTIAN KOMPONEN MESIN KOMPRESSOR DENGAN MENGGUNAKAN MIXED INTEGER NON LINIER PROGRAMMING DARI KAMRAN TESIS PRIMA FITHRI 0906495886

Lebih terperinci

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton,

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton, BAB LANDASAN TEORI Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut varabel tak bebas (depedet

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Pegerta Pemelharaa (Mateace) Tujua pemelharaa adalah utuk memelhara kemampua sstem da megedalka baya sehgga system harus dracag da dpelhara utuk mecapa stadar mutu da kerja yag dharapka.

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4. Deskrps Peelta Berdasarka hasl peelta, d peroleh data megea kemempua sswa melakuka smash sebelum da sesudah latha power otot lega adalah sebaga berkut : Tabel.

Lebih terperinci

BAB 4 METODOLOGI PEMECAHAN MASALAH

BAB 4 METODOLOGI PEMECAHAN MASALAH BAB 4 METODOLOGI PEMECAHAN MASALAH Metodolog pemecaha masalah sagat berpera petg utuk meyelesaka masalah secara sstemats da memberka solus yag teratur da terarahka sesua dega tujua peulsa skrps sehgga

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Pegerta pemelharaa (mateace) Pemelharaa atau perawata merupaka kegata utuk mejaga atau memelhara fasltas atau perawata pabrk dega megadaka perbaka, peyesuaa atau pergata yag dperluka

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres

Lebih terperinci

NPV DAN IRR IR. ASEP TOTO KARTAMAN, MENG

NPV DAN IRR IR. ASEP TOTO KARTAMAN, MENG DAN IRR IR. ASEP TOTO KARTAMAN, MENG SEMESTER PENDEK SEMESTER TAHUN AKADEMIK 03-04 Prod Tekk Idustr Fakultas Tekk Uverstas Pasuda Badug 04 PERHITUNGAN KELAYAKAN INVESTASI. Net Preset Value () merupaka

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2. Perawata (Mateace) Perawata (mateace) adalah memperbak alat-alat mekak atau elektrk yag sedag rusak atau tergaggu (dkeal sebaga reparas, tdak terjadwal atau pemelharaa secara kebetula),

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling BAB LANDASAN TEORI Kosep Dasar Aalss Regres Aalss regres adalah suatu proses memperkraka secara sstemats tetag apa yag palg mugk terjad dmasa yag aka datag berdasarka formas yag sekarag dmlk agar memperkecl

Lebih terperinci

8. MENGANALISIS HASIL EVALUASI

8. MENGANALISIS HASIL EVALUASI 8. MENGANALISIS HASIL EVALUASI Tujua : Mampu megaalsa tgkat kesukara hasl evaluas utuk megkatka hasl proses pembelajara Kegata megaals hasl evaluas merupaka upaya utuk memperbak programprogram pembelajara

Lebih terperinci

UKURAN GEJALA PUSAT DAN UKURAN LETAK

UKURAN GEJALA PUSAT DAN UKURAN LETAK UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu

Lebih terperinci

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,

Lebih terperinci

ANALISIS KEANDALAN (RELIABILITY) MESIN PRODUKSI DENGAN FUNGSI DISTRIBUSI WEIBULL

ANALISIS KEANDALAN (RELIABILITY) MESIN PRODUKSI DENGAN FUNGSI DISTRIBUSI WEIBULL ANALISIS KEANDALAN (RELIABILITY) MESIN PRODUKSI DENGAN FUNGSI DISTRIBUSI WEIBULL Agus Fkr, ST., MM Muhammad Irva, ST.,MT. ABSTRACT I a producto system, all mache related to the creato of added value of

Lebih terperinci

BAB 2 LANDASAN TEORITIS. yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama.

BAB 2 LANDASAN TEORITIS. yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama. BAB 2 LANDASAN TEORITIS 2.1 Pegerta Peramala Peramala ( forecastg ) adalah kegata memperkraka atau mempredkska apa yag aka terjad pada masa yag aka datag dega waktu yag relatf lama. Sedagka ramala adalah

Lebih terperinci

BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI

BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI 9.1. Dstrbus Kotu Dstrbus memlk sfat kotu dmaa data yag damat berjala secara kesambuga da tdak terputus. Maksudya adalah bahwa data yag damat tersebut tergatug

Lebih terperinci

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 11-19, Aprl 004, ISSN : 1410-8518 TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM Sudaro Jurusa Matematka FMIPA UNDIP Abstrak Sstem yag dbetuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Pedahulua Sebelum membahas megea prosedur peguja hpotess, terlebh dahulu aka djelaska beberapa teor da metode yag meujag utuk mempermudah pembahasa. Adapu teor da metode tersebut

Lebih terperinci

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL 3. Pegerta Masalah regres vers dega betuk lear dapat djumpa dalam berbaga bdag kehdupa, dataraya dalam bdag ekoom, kesehata, fska, kma

Lebih terperinci

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl

Lebih terperinci

BAB 2 LANDASAN TEORI. Definisi pemeliharaan menurut O Connor (2001,p407) adalah suatu kegiatan

BAB 2 LANDASAN TEORI. Definisi pemeliharaan menurut O Connor (2001,p407) adalah suatu kegiatan BAB LANDASAN TEORI. Pemelharaa (Mateace) Defs pemelharaa meurut O Coor (00,p407) adalah suatu kegata utuk memelhara da mejaga fasltas yag ada serta meperbak. Melakuka peyesuaa atau pegata yag dperluka

Lebih terperinci

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP Msal dguaka kode ler C[, k, d] dega matrks pembagu G da matrks cek partas H. Sebuah blok formas x = x 1 x 2 x k, x = 0 atau 1, yag aka dkrm terlebh

Lebih terperinci

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri III. METODE PEELITIA A. Metodolog Peelta Metodolog peelta adalah cara yag dlakuka secara sstemats megkut atura-atura, recaaka oleh para peeltutuk memecahka permasalaha yag hdup da bergua bag masyarakat,

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Tgg tekaa [m] UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 11 Desember 017 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 50%] Sebuah PDAM melakuka pegukura

Lebih terperinci

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS C. Pembelajara 3 1. Slabus N o STANDA R KOMPE TENSI KOMPE TENSI DASAR INDIKATOR MATERI TUGAS BUKTI BELAJAR KON TEN INDIKA TOR WAK TU SUM BER BELA JAR Meerap ka atura kosep statstka dalam pemecah a masalah

Lebih terperinci

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua

Lebih terperinci

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas TEKNIK SAMPLING Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uverstas Adalas Defs Suatu cotoh gerombol adalah suatu cotoh acak sederhaa dmaa setap ut pearka cotoh adalah kelompok atau gerombol dar

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 19 Desember 016 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 40%] Hasl pegukura sampel d beberapa sekolah da

Lebih terperinci

BAB 2 LANDASAN TEORI. yang akan terjadi pada masa yang akan datang dengan waktu yang relative lama.

BAB 2 LANDASAN TEORI. yang akan terjadi pada masa yang akan datang dengan waktu yang relative lama. BAB 2 LANDASAN TEORI 2.1 Pegerta Peramala Peramala ( forecastg ) adalah kegata memperkraka atau mempredkska apa yag aka terjad pada masa yag aka datag dega waktu yag relatve lama. Sedagka ramala adalah

Lebih terperinci

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES * PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka

Lebih terperinci

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi.

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi. Mea utuk Data Tuggal Des. Jka suatu sampel berukura dega aggota x1, x, x3,, x, maka mea sampel ddesska : 1... N 1 Mea utuk Data Kelompok Des Mea dar data yag dkelompoka adalah : x x 1 1 1 dega : x = ttk

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Dalam pemodela program ler, semua parameter yag dguaka dalam model dasumska dapat dketahu secara past. Parameter-parameter terdr dar koefse batasa ( ) a, la kuattas batasa

Lebih terperinci

3.1 Biaya Investasi Pipa

3.1 Biaya Investasi Pipa BAB III Model Baya Pada model baya [8] d tugas akhr, baya tahua total utuk megoperaska jarga ppa terdr dar dua kompoe, yatu baya operasoal da baya vestas. Baya operasoal terdr dar baya operasoal ppa da

Lebih terperinci

FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani

FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani FMDAM (2) Chartas Fbra Techque for Order Preferece by Smlarty to Ideal Soluto () ddasarka pada kosep dmaa alteratf terplh yag terbak tdak haya memlk jarak terpedek dar solus deal postf, amu juga memlk

Lebih terperinci

WAKTU PERGANTIAN ALAT BERAT JENIS WHEEL LOADER DENGAN METODE LEAST COST

WAKTU PERGANTIAN ALAT BERAT JENIS WHEEL LOADER DENGAN METODE LEAST COST Koferes Nasoal Tekk Spl 3 (KoNTekS 3) Jakarta, 6 7 Me 009 WAKTU PERGANTIAN ALAT BERAT JENIS WHEEL LOADER DENGAN METODE LEAST COST Maksum Taubrata Program Stud Tekk Spl, Uverstas Krste Maraatha Badug Jl.

Lebih terperinci

BAB III PERSAMAAN PANAS DIMENSI SATU

BAB III PERSAMAAN PANAS DIMENSI SATU BAB III PERSAMAAN PANAS DIMENSI SAU Pada baga sebelumya, kta telah membahas peerapa metoda Ruge-Kutta orde 4 utuk meyelesaka masalah la awal dar persamaa dferesal basa orde. Pada bab, kta aka melakuka

Lebih terperinci

BAB II TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan,

BAB II TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan, BAB II TINJAUAN TEORITIS.1 Kosep Dasar Statstka Statstk merupaka cara cara tertetu yag dguaka dalam megumpulka, meyusu atau megatur, meyajka, megaalsa da member terpretas terhadap sekumpula data, sehgga

Lebih terperinci

BAB 4 HASIL DAN PEMBAHASAN

BAB 4 HASIL DAN PEMBAHASAN 56 BAB 4 HASIL DAN PEMBAHASAN 4. Ekstraks Hasl Pegumpula Data 4.. Data Kedataga Customer pada J.CO Douts ad Coffee Mal Tama Aggrek Data kedataga jumlah pelagga pada J.CO Douts ad Coffee Mal Tama Aggrek

Lebih terperinci

; θ ) dengan parameter θ,

; θ ) dengan parameter θ, Vol. 4. No. 3, 5-59, Desember 00, ISSN : 40-858 APLIKASI METODE BESARAN PIVOTAL DALAM PENENTUAN SELANG KEYAKINAN TAKSIRAN PARAMETER POPULASI. Agus Rusgyoo Jurusa Matematka FMIPA UNDIP Abstraks Dberka populas

Lebih terperinci

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran Kurkulum 013/006 matematka K e l a s XI STATISTIKA: UKURAN PEMUSATAN Tujua Pembelajara Setelah mempelajar mater, kamu dharapka memlk kemampua berkut. 1. Dapat meetuka rata-rata data tuggal da data berkelompok..

Lebih terperinci

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis STATISTIK Ukura Gejala Pusat Ukura Letak Ukura Smpaga, Dspers da Varas Mome, Kemrga, da Kurtoss Notas Varabel dyataka dega huruf besar Nla dar varabel dyataka dega huruf kecl basaya dtuls Tmes New Roma

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab aka mejelaska megea ladasa teor yag dpaka oleh peuls dalam peelta. Bab dbag mejad beberapa baga, yag masg masg aka mejelaska Prcpal Compoet Aalyss (PCA), Egeface, Klusterg K-Meas,

Lebih terperinci

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas:

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas: ANALISIS REGRESI Pedahulua Aalss regres berkata dega stud megea ketergatuga satu peubah (peubah terkat) terhadap satu atau lebh peubah laya (peubah pejelas). Jka Y dumpamaka sebaga peubah terkat da X1,X,...,X

Lebih terperinci

STUDI KELAYAKAN: ASPEK FINANSIAL. F.Hafiz Saragih SP, MSc

STUDI KELAYAKAN: ASPEK FINANSIAL. F.Hafiz Saragih SP, MSc STUDI KELAYAKAN: ASPEK FINANSIAL F.Hafz Saragh SP, MSc Pajak Baya bag perusahaa/ usahata, sehgga merupaka peguraga dar beeft Subsd FINANSIAL Peguraga baya bag perusahaa/ usahata, sehgga merupaka tambaha

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan,

BAB 2 TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan, BAB TINJAUAN TEORITIS 1 Kosep Dasar Statstka Statstk merupaka cara cara tertetu yag dguaka dalam megumpulka, meyusu atau megatur, meyajka, megaalsa da member terpretas terhadap sekumpula data, sehgga kumpula

Lebih terperinci

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN // REGRESI LINEAR SEDERHANA DAN KORELASI. Model Regres Lear. Peaksr Kuadrat Terkecl 3. Predks Nla Respos 4. Iferes Utuk Parameter-parameter Regres 5. Kecocoka Model Regres 6. Korelas Utrwe Mukhayar MA

Lebih terperinci

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal)

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal) LANGKAH-LANGKAH UJI HIPOTESIS DENGAN (Utuk Data Nomal). Merumuska hpotess (termasuk rumusa hpotess statstk). Data hasl peelta duat dalam etuk tael slag (tael frekues oservas) 3. Meetuka krtera uj atau

Lebih terperinci

4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data

4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data //203 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas Ukura

Lebih terperinci

Uji Statistika yangb digunakan dikaitan dengan jenis data

Uji Statistika yangb digunakan dikaitan dengan jenis data Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas

Lebih terperinci

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI BB 6 PRINSIP INKLUSI DN EKSKLUSI Pada baga aka ddskuska topk berkutya yatu eumeras yag damaka Prsp Iklus da Eksklus. Kosep dalam bab merupaka perluasa de dalam Dagram Ve beserta oepras rsa da gabuga, amu

Lebih terperinci

X a, TINJAUAN PUSTAKA

X a, TINJAUAN PUSTAKA PENELITIAN SEBELUMNYA Statstka Deskrptf TINJAUAN PUSTAKA TINJAUAN STATISTIKA Uj Idepedes Uj depedes dguak utuk megetahu adaya hubuga atara dua varabel (Agrest, 1990). H 0 : tdak ada hubuga atara varabel

Lebih terperinci

BAB III UKURAN PEMUSATAN DATA

BAB III UKURAN PEMUSATAN DATA BAB III UKURAN PEMUSATAN DATA A. Ukura Gejala Pusat Ukura pemusata adalah suatu ukura yag meujukka d maa suatu data memusat atau suatu kumpula pegamata memusat (megelompok). Ukura pemusata data adalah

Lebih terperinci

Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2

Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2 M 81 STTISTIK DSR SEMESTER II 11/1 KK STTISTIK, FMIP IT SOLUSI UJIN TENGH SEMESTER (UTS) Sabtu, 1 Me 1, Pukul 9. 1.4 WI (1 met) Kelas 1. Pegajar: Udjaa S. Pasarbu/Rr. Kura Novta Sar, Kelas. Pegajar: Utrwe

Lebih terperinci

BAB I PENDAHULUAN. Proyeksi pada dasarnya merupakan suatu pikiran atau taksiran mengenai. proyeksi bibit kelapa sawit untuk 5 tahun yang akan datang.

BAB I PENDAHULUAN. Proyeksi pada dasarnya merupakan suatu pikiran atau taksiran mengenai. proyeksi bibit kelapa sawit untuk 5 tahun yang akan datang. BAB I PENDAHULUAN 1.1. Latar Belakag Proyeks pada dasarya merupaka suatu pkra atau taksra megea terjadya suatu kejada (la dar suatu varabel) utuk waktu yag aka datag sepert proyeks bbt kelapa sawt utuk

Lebih terperinci

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( )

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( ) Regres & Korelas Ler Sederhaa 1. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk yag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real.

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real. BAB 5 BARIAN DAN DERET KOMPLEK ecara eses, pembahasa tetag barsa da deret komlpeks sama dega barsa da deret real. 5. Barsa Barsa merupaka sebuah fugs dega doma berupa hmpua blaga asl N. ebuah barsa kompleks

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Pada Bab I sudah dijelaskan bahwa tujuan penelitian ini adalah untuk

BAB II TINJAUAN PUSTAKA. Pada Bab I sudah dijelaskan bahwa tujuan penelitian ini adalah untuk BAB II TINJAUAN PUSTAKA 2.1 Pedahulua Pada Bab I sudah djelaska bahwa tujua peelta adalah utuk memperoleh ekspektas bayakya kompoe lstrk motor yag aka medapatka peggata berdasarka kebjaka Reewg Free Replacemet

Lebih terperinci

BAB 5. ANALISIS REGRESI DAN KORELASI

BAB 5. ANALISIS REGRESI DAN KORELASI BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh

Lebih terperinci

UKURAN GEJALA PUSAT (UGP)

UKURAN GEJALA PUSAT (UGP) UKURAN GEJALA PUSAT (UGP) Pegerta: Rata-rata (average) alah suatu la yag mewakl suatu kelompok data. Nla dsebut juga ukura gejala pusat karea pada umumya mempuya kecederuga terletak d tegah-tegah da memusat

Lebih terperinci

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari teori gangguan bebas waktu yang mencakup:

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari teori gangguan bebas waktu yang mencakup: PENDAULUAN D dalam modul Ada aka mempelajar teor gaggua bebas waktu yag mecakup: teor gaggua tak degeeras bebas waktu, teor gaggua degeeras bebas waktu, da efek Stark. Oleh karea tu, sebelum mempelajar

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Defes Aalss Korelas da Regres a Aalss Korelas adalah metode statstka yag dguaka utuk meetuka kuatya atau derajat huuga lear atara dua varael atau leh. Semak yata huuga ler gars lurus,

Lebih terperinci

BAB III ISI. x 2. 2πσ

BAB III ISI. x 2. 2πσ BAB III ISI 4. Keadata Normal Multvarat da Sfat-sfatya Keadata ormal multvarat meruaka geeralsas dar keadata ormal uvarat utuk dmes. f ( x) [( x )/ ] / = e x π x = ( x )( ) ( x ). < < (-) (-) Betuk (-)

Lebih terperinci

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan Aalsa Numerk Baha Matrkulas PENDAHULUAN Metode umerk merupaka suatu tekk atau cara utuk megaalsa da meyelesaka masalah masalah d dalam bdag rekayasa tekk da sa dega megguaka operas perhtuga matematk Masalah-masalah

Lebih terperinci

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel BAB LANDASAN TEORI.1 Pegerta Regres Regres dalam statstka adalah salah satu metode utuk meetuka tgkat pegaruh suatu varabel terhadap varabel yag la. Varabel yag pertama dsebut dega bermacam-macam stlah:

Lebih terperinci

ALGORITMA MENENTUKAN HIMPUNAN TERBESAR DARI SUATU MATRIKS INTERVAL DALAM ALJABAR MAX-PLUS

ALGORITMA MENENTUKAN HIMPUNAN TERBESAR DARI SUATU MATRIKS INTERVAL DALAM ALJABAR MAX-PLUS LGORITM MENENTUKN HIMPUNN TERBESR DRI SUTU MTRIKS INTERVL DLM LJBR MX-PLUS Rata Novtasar Program Stud Matematka FMIP UNDIP JlProfSoedarto SH Semarag 575 bstract Ths research dscussed about how to obtaed

Lebih terperinci

PERBANDINGAN ESTIMASI CADANGAN KLAIM

PERBANDINGAN ESTIMASI CADANGAN KLAIM TUGAS AKHIR SS450 TUGAS AKHIR SS 450 PERBANDINGAN ESTIMASI CADANGAN KLAIM PENENTUAN MENGGUNAKAN WAKTU METODE OPTIMUM CHAIN PERBAIKAN LADDER DAN MESIN GENERALIZED KETEL MENGGUNAKAN LINEAR MODELS (GLMs)

Lebih terperinci

III. METODE PENELITIAN. Populasi dalam penelitian ini adalah seluruh siswa kelas VII semester ganjil SMP

III. METODE PENELITIAN. Populasi dalam penelitian ini adalah seluruh siswa kelas VII semester ganjil SMP III. METODE PENELITIAN A. Popula da Sampel Popula dalam peelta adalah eluruh wa kela VII emeter gajl SMP Ba Mulya Badar Lampug Tahu Pelajara 0/0 dega jumlah wa ebayak 03 wa yag terbag dalam 3 kela. Sampel

Lebih terperinci

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER TUGAS ATA KULIAH TEORI RING LANJUT ODUL NOETHER Da Aresta Yuwagsh (/364/PPA/03489) Sebelumya, telah dketahu bahwa sebaga rg dega eleme satua memeuh sfat rata ak utuk deal-deal d. Apabla dpadag sebaga modul,

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel BAB I PENDAHULUAN 1.1 Statstka Deskrptf da Statstka Iferesal Dewasa d berbaga bdag lmu da kehdupa utuk memaham/megetahu sesuatu dperluka dat Sebaga cotoh utuk megetahu berapa bayak rakyat Idoesa yag memerluka

Lebih terperinci

BAB 2 : BUNGA, PERTUMBUHAN DAN PELURUHAN

BAB 2 : BUNGA, PERTUMBUHAN DAN PELURUHAN Jl. Raya Wagu Kel. Sdagsar Kota Bogor Telp. 0251-8242411, emal: prohumas@smkwkrama.et, webste : www.smkwkrama.et BAB 2 : BUNGA, PERTUBUHAN DAN PELURUHAN PENGERTIAN BUNGA Buga adalah jasa dar smpaa atau

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,

Lebih terperinci

BAB 1 ERROR PERHITUNGAN NUMERIK

BAB 1 ERROR PERHITUNGAN NUMERIK BAB ERROR PERHITUNGAN NUMERIK A. Tujua a. Memaham galat da hampra b. Mampu meghtug galat da hampra c. Mampu membuat program utuk meelesaka perhtuga galat da hampra dega Matlab B. Peragkat da Mater a. Software

Lebih terperinci

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut 3/9/202 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas

Lebih terperinci

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah BAB III INEGRAL RIEMANN-SIELJES. Pedahulua Pada Bab, telah dsggug bahwa ukura meghtug merupaka salah satu pedekata utuk membetuk proses ttk. Berkata dega masalah perhtuga, ada hal meark yag perlu amat,

Lebih terperinci

ESTIMASI UKURAN SENSITIVITAS KEUNTUNGAN SAHAM DALAM PORTOFOLIO PADA SINGLE INDEX MODEL

ESTIMASI UKURAN SENSITIVITAS KEUNTUNGAN SAHAM DALAM PORTOFOLIO PADA SINGLE INDEX MODEL Bulet Ilmah Mat. Stat. da Terapaya (Bmaster) Volume 0, No. (03), hal. 57-6 ESTIMASI UKUAN SENSITIVITAS KEUNTUNGAN SAHAM DALAM POTOFOLIO PADA SINGLE INDEX MODEL Eka Kurawat, Helm, Neva Satyahadew INTISAI

Lebih terperinci

ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET

ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET Prosdg Semar Nasoal Peelta, Peddka da Peerapa MIPA Fakultas MIPA, Uverstas Neger Yogyakarta, 6 Me 9 ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET Sty Rachyay Pusat Pemafaata Sas Atarksa,

Lebih terperinci

BAB 4 PENGUMPULAN, PENGOLAHAN DAN ANALISIS DATA

BAB 4 PENGUMPULAN, PENGOLAHAN DAN ANALISIS DATA 08 BAB 4 PENGUMPULAN, PENGOLAHAN DAN ANALISIS DATA 4. Pegumpula Data Data yag peuls kumpulka adalah data yag berhubuga dega proses produks, lapora kerusaka mes, lapora reject dalam produks yag dtaga oleh

Lebih terperinci

3 Departemen Statistika FMIPA IPB

3 Departemen Statistika FMIPA IPB Supleme Respos Pertemua ANALISIS DATA KATEGORIK (STK51) Departeme Statstka FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referes Waktu U potess Tga Cotoh atau Lebh U Kruskal-Walls (aalss ragam satu-arah berdasarka

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. regresi berkenaan dengan studi ketergantungan antara dua atau lebih variabel yaitu

BAB 2 TINJAUAN TEORITIS. regresi berkenaan dengan studi ketergantungan antara dua atau lebih variabel yaitu BAB TINJAUAN TEORITIS. Pegerta Aalsa Regres Istlah regres pertama kal dperkealka oleh Fracs Galto. Meurutya, aalss regres berkeaa dega stud ketergatuga atara dua atau lebh varabel yatu varabel yag meeragka

Lebih terperinci

BAB V ANALISIS HIDROLOGI

BAB V ANALISIS HIDROLOGI ANALISIS HIDROLOGI 64 BAB V ANALISIS HIDROLOGI 5.. Tjaua Umum Utuk meetuka debt recaa, dapat dguaka beberapa metode atau cara. Metode yag dguaka sagat tergatug dar data yag terseda, data data tersebut

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN A. Jes Peelta Dalam pelta peelt megguaka racaga eksperme. Eksperme adalah observas dbawah kods buata (artfcal codto), dmaa kods tersebut dbuat da d atur oleh s peelt. Dega

Lebih terperinci

Penarikan Contoh Acak Sederhana (Simple Random Sampling)

Penarikan Contoh Acak Sederhana (Simple Random Sampling) Pearka Cotoh Acak Sederhaa (Smple Radom Samplg) Defs Jka sebuah cotoh berukura dambl dar suatu populas sedemka rupa sehgga setap cotoh berukura ag mugk memlk peluag sama utuk terambl, maka prosedur tu

Lebih terperinci

III. METODE PENELITIAN. komparatif. Dalam penelitian ini, desain yang digunakan adalah pre test-post

III. METODE PENELITIAN. komparatif. Dalam penelitian ini, desain yang digunakan adalah pre test-post III. METODE PENELITIAN A. Metode Peelta Metode yag dguaka dalam peelta adalah metode eksperme komparatf. Dalam peelta, desa yag dguaka adalah pre test-post test desg (desa tes awal-tes akhr) sepert tabel

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL Hesty ala, Arsma Ada, Bustam hestyfala@ymalcom Mahasswa Program S Matematka MIPA-UR Dose Matematka MIPA-UR

Lebih terperinci