SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT / 2 SKS

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT / 2 SKS"

Transkripsi

1 SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT / 2 SKS Deskripsi: - Mata kuliah ini mempelajari konsep aljabar linear sebagai dasar untuk membuat algoritma dalam permasalahan yang melibatkan persamaan linear, determinan, vektor dan matrikskonsep persamaan linear, konsep vektor dalam ruang, serta mampu memahami konsep dan aplikasi penggunaan deter minan dan matriks 1 Vektor - pengertian vektor, baik definisi, notasi maupun operasi yang berlaku didalamnya. - Susunan koordinat ruang R n. - Pengertian vektor dan koordinatnya di dalam ruang berdi - mensi 1, 2, 3, dan n Definisi, Notasi, dan Operasi Vektor 1.2. Susunan Koordinat Ruang R n 1.3. Vektor di dalam R n 1.4. Persamaan garis lurus dan bidang rata - menyebutkan definisi dari vektor - menuliskan notasi sebuah vektor - menyebutkan jenis operasi dan hasil operasi pada vektor. - menyebutkan dan memberikan contoh susunan koordinat ruang R n. - menuliskan vektor bentuk vektor di R n - menuliskan persamaan parameter dan persamaan vektor garis lurus dan persamaan bidang rata. Hal Hal [1] Hal. 67 Hal.7-22 Chap.1 SAP Matematika Lanjut I / SI Hal. 1 dari 10

2 2 Ruang Vektor (1) memahami pengertian/ konsep dari : - sebuah field, - ruang vektor diatas suatu field, - ruang vektor bagian, - vektor-vektor yang bebas linier dan bergantungan linier, - kombinasi linier dan artinya secara ilmu ukur, - Teorema-teorema tentang kombinasi linier, serta - Basis dan dimensi dari suatu ruang vektor Field 2.2. Ruang Vektor di atas suatu Field 2.3. Ruang Vektor Bagian 2.4. Vektor Bebas Linier dan Bergantungan Linier Mahasiswa dapat menuliskan definisi, sifat-sifat, dan contoh dari : - sebuah field. - ruang vektor diatas suatu field. - ruang vektor bagian. - vektor-vektor yg bebas linier dan bergantungan Mahasiswa dpt menentukan/menyelidiki/ membuktikan bahwa suatu himpunan vektor-vektor adalah : - bebas/bergantungan - pembentuk suatu ruang vektor - ruang vektor bagian atau bukan Hal Hal Bab 2. Hal Chap.4 3 Ruang Vektor (2) 2.5. Kombinasi Linier dan Arti Kombinasi Linier secara ilmu ukur Teorema-teorema mengenai Kombinasi Linier Dimensi dan Basis. Hal Hal.82- Bab 2. SAP Matematika Lanjut I / SI Hal. 2 dari 10

3 - menuliskan definisi dari kombinasi linier dan contoh bentuk kombinasi - menggambarkan arti kombinasi linier secara ilmu ukur. - menuliskan beberapa teorema tentang kombinasi - menuliskan definisi dan contoh dari dimensi dan basis suatu ruang vektor. - mencari/menentukan besarnya dimensi dan basis dari suatu ruang vector - menuliskan hubungan kombinasi linier, bebas linier dan basis 85 Hal Chap.4 4 Matriks. - definisi, notasi, operasi, dan transpose dari matriks. - Bentuk dan sifat dari beberapa matriks khusus Definisi dan Notasi Matriks 3.2. Operasi pada Matriks 3.3. Transpose dari suatu matriks 3.4. Beberapa Jenis Matriks khusus - menuliskan bentuk umum sebuah matriks - menyebutkan jenis-jenis operasi matriks - menentukan hasil operasi dari dua buah matriks atau lebih. - menuliskan hasil transpose suatu matriks - menuliskan bentuk-bentuk beberapa matriks khusus. [1] Hal Hal Hal [1] Hal Hal Hal Matriks 3.5. Transformasi Elementer pada Baris & Kolom [1] Hal.103- [1] SAP Matematika Lanjut I / SI Hal. 3 dari 10

4 - Bentuk transformasi elementer pada baris dan kolom. - yang disebut dengan matriks ekivalen - yang disebut dengan ruang baris dan ruang kolom dari suatu matriks. - apa yang disebut dgn rank matriks Matriks Ekivalen 3.7. Ruang Baris dan Ruang Kolom dari suatu matriks 3.8. Rank Matriks - menentukan hasil transformasi elementer pada baris dan kolom. - menentukan matriks ekivalen. - menentukan ruang baris dan ruang kolom dari suatu matriks. - menentukan besarnya rank suatu matriks. 109 Hal Hal Hal Hal Hal Determinan - pengertian determinan - definisi dan konsep permutasi genap dan permutasi ganjil. - sifat-sifat determinan - pengertian minor dan kofaktor Pendahuluan (Permutasi) 4.2. Sifat-sifat Determinan 4.3. Minor dan Kofaktor - Menentukan banyaknya inversi dari suatu permutasi genap dan ganjil - menuliskan sifat-sifat determinan dari suatu matriks. - menentukan nilai minor dan kofaktor dari setiap elemen matriks. [1] Hal.108 Hal Hal [1] Hal Hal Hal Determinan 4.4. Ekspansi secara Baris dan Kolom 4.5. Menghitung nilai Determinan dgn sifat-sifat Determinan [1] Hal.108 Hal.133- [1] Hal SAP Matematika Lanjut I / SI Hal. 4 dari 10

5 - konsep penghitungan penghitungan nilai determinan dari suatu matriks dgn berbagai cara. - Definisi matriks singular dan nonsingular. - menentukan nilai determinan dari suatu matriks dengan cara sarrus, sifat-sifat determinan, ekspansi matriks secara baris dan kolom, dan dengan minor/kofaktor. 136 Hal Hal Hal Matriks Invers - definisi dari matriks invers serta cara menentukan matriks invers Definisi matriks invers 5.2. Matriks Singular, Non-singular 5.3. Matriks Adjoint dan Invers 5.4. Mencari Matriks Invers dgn Transformasi Elementer dan Partisi 5.4. Invers pada matriks yang tidak bujur sangkar - menyebutkan definisi dari matriks invers, matriks singular dan non singular, serta matriks adjoint. - menentukan invers dari matriks yang bujur sangkar dengan beberapa cara. - menentukan invers dari matriks yang tidak bujur sangkar. Hal [1] Hal Hal Persamaan-persamaan Linier Persamaan Linier dan Susunan Persamaan Linier Susunan Persamaan Linier Homogen dan Penyelesaiannya Susunan Persamaan Linier Non-homogen dan Penyelesaiannya. Hal Hal Hal Hal SAP Matematika Lanjut I / SI Hal. 5 dari 10

6 - pengertian persamaan linier dan susunan persamaan - Pengertian Persamaan linier homogen dan non-homogen. - penyelesaian susunan persamaan linier homogen dan non-homogen. - menuliskan bentuk persamaan linier dan susunan persamaan - menyebutkan perbedaan susunan persamaan linier homogen dan non-homogen. - menentukan jawab dari susunan persamaan linier homogen dan non-homogen. SAP Matematika Lanjut I / SI Hal. 6 dari 10

7 10 Transformasi Linier memahami pengertian dari : - transformasi linier - basis. - matriks transisi - transformasi vektor - transformasi vektor - matriks representasi Pengertian Transformasi 7.2. Pergantian Basis 7.3. Transformasi Vektor Linier - menuliskan pengertian dari transformasi linier dan memberikan contoh sebuah transformasi - menuliskan pengertian dari basis dan dpt memberikan contoh basis. - menentukan matriks transisi dari suatu pergantian basis. - menentukan bentuk vektor baru akibat pergantian basis - menuliskan definisi dari transformasi vector - menentukan bentuk matriks representasi dari suatu transformasi 11 Transformasi Linier - pengertian dari ruang peta dan ruang nol - pengertian dari produk transformasi Ruang Peta dan Ruang Nol 7.5. Produk Transformasi - menuliskan pengertian dari ruang peta dan memberikan contoh sebuah ruang peta. - menuliskan pengertian dari ruang nol dan memberikan contoh sebuah ruang nol. - menentukan basis dan dimensi dari ruang peta SAP Matematika Lanjut I / SI Hal. 7 dari 10

8 dan ruang nol dari suatu transformasi. - menuliskan pengertian dari produk transformasi - menentukan bentuk produk transformasi dan matriks transformasi dari dua buah transformasi. 12 Transformasi Linier - pengertian/definisi dari transformasi invers pada suatu ruang vektor. - pengertian/definisi dari transformasi similaritas pada suatu ruang vektor 7.6. Transformasi Invers 7.7. Transformasi Similaritas - menuliskan pengertian dan contoh dari transformasi invers. - menuliskan pengertian dan contoh dari transformasi similaritas. - menentukan matriks transformasi invers dan hasil transformasi invers. - menentukan matriks transformasi similaritas dan hasil transformasi similaritas. 13 Transformasi Linier - definisi/pengertian dari eigenvalue dan eigenvector. - proses diagonalisasi - definisi/pengertian dari transformasi orthogonal Eigenvalue dan Eigenvector 7.9. Diagonalisasi Transformasi ortogonal - menuliskan definisi dari eigenvalue dan eigenvector. - menentukan/mencari eigenvalue dan eigenvector. - mereduksi suatu matriks ke bentuk diagonal. - menuliskan definisi dan memberikan contoh bentuk transformasi orthogonal. SAP Matematika Lanjut I / SI Hal. 8 dari 10

9 - menentukan/mencaari bentuk matriks transformasi orthogonal. 14 Transformasi Linier - pengertian/definisi dari transformasi rota-si dan transformasi simetris. - Proses transformasi rotasi dan transformasi simetris Rotasi Transformasi Simetris - menuliskan bentuk persamaan hasil transformasi rotasi. - menentukan/mencari bentuk matriks transformasi yang simetris. Referensi : [1]. Yusuf Yahya, D. Suryadi. H.S., Agus S., Matematika untuk Perguruan Tinggi, Ghalia-Indonesia, Jakarta, D. Suryadi H.S., S. Harini Machmudi, Teori dan Soal Pendahuluan ALJABAR LINIER, Ghalia-Indonesia, Jakarta, Seymour Lipschutz, Theory and problems of Linear Algebra, McGraw-Hill, SAP Matematika Lanjut I / SI Hal. 9 dari 10

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : Definisi, Notasi, dan Operasi Vektor 2.

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : Definisi, Notasi, dan Operasi Vektor 2. SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : 3 Minggu Ke Pokok Bahasan dan TIU Sub Pokok Bahasan Sasaran Belajar Cara Pengajaran Media Tugas Referens i 1

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : Matematika Diskrit 2 Kode / SKS : IT02 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi. Pendahuluan 2. Vektor.. Pengantar mata kuliah aljabar linier.

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN GARIS-GARIS BESAR PROGRAM PEMBELAJARAN Mata Kuliah : Aljabar Linear Kode / SKS : TIF-5xxx / 3 SKS Dosen : - Deskripsi Singkat : Mata kuliah ini berisi Sistem persamaan Linier dan Matriks, Determinan, Vektor

Lebih terperinci

MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI

MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI SAP (1) Buku : Suryadi H.S. 1991, Pengantar Aljabar dan Geometri analitik Vektor Definisi, Notasi, dan Operasi Vektor Susunan

Lebih terperinci

MATRIKS SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA TEKNIK 1

MATRIKS SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA TEKNIK 1 Mata : MATEMATIKA TEKNIK 1 Jurusan : TEKNIK ELEKTRO SKS : 2 Sks Kode Mata : KD-041205 MATRIKS SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA TEKNIK 1 Minggu Ke Pokok Bahasan dan TIU 1 Vektor tentang pengertian

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER PROGRAM STUDI AGROTEKNOLOGI UNIVERSITAS GUNADARMA

RENCANA PEMBELAJARAN SEMESTER PROGRAM STUDI AGROTEKNOLOGI UNIVERSITAS GUNADARMA RENCANA PEMBELAJARAN SEMESTER PROGRAM STUDI AGROTEKNOLOGI UNIVERSITAS GUNADARMA Tanggal Penyusunan 29/01/2016 Tanggal revisi - Kode dan Nama MK KU064210 Matematika SKS dan Semester SKS 2 Semester I (PTA)

Lebih terperinci

Program Studi Teknik Mesin S1

Program Studi Teknik Mesin S1 SATUAN ACARA PERKULIAHAN MATA KULIAH : MATEMAA TEKNIK 1 KODE / SKS : IT042220 / 2 SKS Pokok Bahasan Pertemuan dan 1 Vektor : pengertian vektor, operasi aljabar vektor ruang, vektor cross product serta

Lebih terperinci

PROGRAM STUDI TEKNIK KOMPUTER

PROGRAM STUDI TEKNIK KOMPUTER 12-08-28 Pengesahan Nama Dokumen : SILABUS No Dokumen : FIK/TK-III/S-1 No Diajukan oleh ISO 90:2008/IWA 2 1dari 5 Ir. Hastha Sunardi, MT (Dosen Pengampu) Diperiksa oleh Ir. Dedy Hermanto, MT (GKM) Disetujui

Lebih terperinci

MATRIKS SATUAN ACARA PERKULIAHAN

MATRIKS SATUAN ACARA PERKULIAHAN MATRIKS SATUAN ACARA PERKULIAHAN Mata Kuliah Jurusan SKS Kode M. Kuliah : Kalkulus IA : Teknik Elektro : 2 SKS : KD-0420 Minggu ke Pokok Bahasan dan TIU Sub Pokok Bahasan dan Sasaran Belajar Cara Pengajaran

Lebih terperinci

Program Studi Sistem Informasi

Program Studi Sistem Informasi FIK / SI /S- 24-0-204 Pengesahan Nama Dokumen : SILABUS ALJABAR LINIER No Dokumen : FIK/SI/S- No Diajukan oleh ISO 900:2008/IWA 2 dari 5 Ir. Hastha Sunardi, MT (Dosen Pengampu) Diperiksa oleh Ir. Dedy

Lebih terperinci

S I L A B U S. Kode Mata Kuliah : SKS : 3. Dosen Pembimbing : M. Soenarto

S I L A B U S. Kode Mata Kuliah : SKS : 3. Dosen Pembimbing : M. Soenarto 081316373780 S I L A B U S Mata Kuliah : ALJABAR LINIER Kode Mata Kuliah : SKS : 3 Prasyarat : MATEMAA DASAR Dosen Pembimbing : M. Soenarto Prodi / Jenjang : MATEMAA / S1 Buku Sumber : Singapore : Mc-Graw-

Lebih terperinci

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : September 2014 A. Identitas 1. Nama Matakuliah : A11. 54303/ Matriks & Ruang Vektor 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang

Lebih terperinci

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS

Lebih terperinci

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: =

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: = BAB II LANDASAN TEORI 2.1 Matriks Definisi 2.1 (Lipschutz, 2006): Matriks adalah susunan segiempat dari skalarskalar yang biasanya dinyatakan dalam bentuk sebagai berikut: Setiap skalar yang terdapat dalam

Lebih terperinci

Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse

Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Matriks Tujuan Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Pengertian Matriks Adalah kumpulan bilangan yang disajikan secara teratur dalam

Lebih terperinci

Pertemuan 8 Aljabar Linear & Matriks

Pertemuan 8 Aljabar Linear & Matriks Pertemuan 8 Aljabar Linear & Matriks 1 Jika A adl matriks nxn yg invertible, untuk setiap matriks b dgn ukuran nx1, maka sistem persamaan linier Ax = b mempunyai tepat 1 penyelesaian, yaitu x = A -1 b

Lebih terperinci

SILABUS MATA KULIAH. Tanggal Berlaku : 4 September 2015

SILABUS MATA KULIAH. Tanggal Berlaku : 4 September 2015 SILABUS MATA KULIAH Tanggal Berlaku : 4 September 2015 A. Identitas 1. Nama Matakuliah : dan Ruang Vektor 2. Program Studi : Teknik Industri 3. Fakultas : Teknik 4. Bobot sks : 3 5. Elemen : MKK 6. Jenis

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMPUTER Semester : 2

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMPUTER Semester : 2 GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMPUTER Semester : 2 Berlaku mulai: Genap/2011 MATA KULIAH : MATRIK DAN TRANSFORMASI LINEAR NOMOR KODE / SKS : 410202051/ 3 SKS PRASYARAT

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer BAB I RUANG VEKTOR Pada kuliah Aljabar Matriks kita telah mendiskusikan struktur ruang R 2 dan R 3 beserta semua konsep yang terkait. Pada bab ini kita akan membicarakan struktur yang merupakan bentuk

Lebih terperinci

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode / Nama Mata Kuliah : A11. 54303/ Matriks & Ruang Vektor Revisi 2 Satuan Kredit Semester : 3 SKS Tgl revisi : Agustus 2014 Jml Jam kuliah dalam

Lebih terperinci

DETERMINAN. Determinan matriks hanya didefinisikan pada matriks bujursangkar (matriks kuadrat). Notasi determinan matriks A: Jika diketahui matriks A:

DETERMINAN. Determinan matriks hanya didefinisikan pada matriks bujursangkar (matriks kuadrat). Notasi determinan matriks A: Jika diketahui matriks A: DETERMINAN Definisi Determinan Matriks Determinan matriks adalah bilangan tunggal yang diperoleh dari semua permutasi elemen matriks bujur sangkar.jika subskrip permutasi elemen matriks adalah genap (inversi

Lebih terperinci

Definisi : det(a) Permutasi himpunan integer {1, 2, 3,, n}:

Definisi : det(a) Permutasi himpunan integer {1, 2, 3,, n}: Definisi : Determinan dari matrik bujursangkar A berorde n adalah jumlah semua permutasi n (n!) hasil kali bertanda dari elemen-elemen matrik. Dituliskan : det(a) atau A (jr j r...j n ).a jr a j r...am

Lebih terperinci

MENGHITUNG DETERMINAN MATRIKS MENGGUNAKAN METODE SALIHU

MENGHITUNG DETERMINAN MATRIKS MENGGUNAKAN METODE SALIHU MENGHITUNG DETERMINAN MATRIKS MENGGUNAKAN METODE SALIHU DENGAN Andi Bahota 1*, Aziskhan 2, Musraini M. 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen JurusanMatematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas BAB II KAJIAN PUSTAKA Pada bab ini akan diuraikan mengenai matriks (meliputi definisi matriks, operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas aljabar max-plus, dan penyelesaian

Lebih terperinci

MATRIKS Nuryanto, ST., MT.

MATRIKS Nuryanto, ST., MT. MateMatika ekonomi MATRIKS TUJUAN INSTRUKSIONAL KHUSUS Setelah mempelajari bab ini, anda diharapkan dapat : 1. Pengertian matriks 2. Operasi matriks 3. Jenis matriks 4. Determinan 5. Matriks invers 6.

Lebih terperinci

SILABUS MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT304. (1) (2) (3) (4) (5) (6) (7) (8) (9) 1 Matriks dan Operasinya. 1. Pengertian Matriks

SILABUS MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT304. (1) (2) (3) (4) (5) (6) (7) (8) (9) 1 Matriks dan Operasinya. 1. Pengertian Matriks JURUSAN PENDIDIKAN MATEMATIKA FPMIPA UNIVERSITAS PENDIDIKAN MATEMATIKA MINGGU KE SILABUS MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT304 POKOK & SUB POKOK TUJUAN INSTRUKSIONAL TUJUAN INSTRUKSIONAL KHUSUS

Lebih terperinci

MATRIKS. a A mxn = 21 a 22 a 2n a m1 a m2 a mn a ij disebut elemen dari A yang terletak pada baris i dan kolom j.

MATRIKS. a A mxn = 21 a 22 a 2n a m1 a m2 a mn a ij disebut elemen dari A yang terletak pada baris i dan kolom j. MATRIKS A. Definisi Matriks 1. Definisi Matriks dan Ordo Matriks Matriks adalah susunan bilangan (elemen) yang disusun menurut baris dan kolom dan dibatasi dengan tanda kurung. Jika suatu matriks tersusun

Lebih terperinci

Invers Tergeneralisasi Matriks atas Z p

Invers Tergeneralisasi Matriks atas Z p SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2016 Invers Tergeneralisasi Matriks atas Z p Evi Yuliza 1 1 Fakultas MIPA Universitas Sriwijaya evibc3@yahoocom PM A-1 - Abstrak Sebuah matriks

Lebih terperinci

Buku 1: RPKPS (Rencana Program dan Kegiatan Pembelajaran Semester) ALJABAR LINEAR ELEMENTER

Buku 1: RPKPS (Rencana Program dan Kegiatan Pembelajaran Semester) ALJABAR LINEAR ELEMENTER UNIVERSITAS GADJAH MADA FAKULTAS MIPA, JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara Yogyakarta Buku 1: RPKPS (Rencana Program dan Kegiatan Pembelajaran Semester) ALJABAR LINEAR ELEMENTER

Lebih terperinci

MATRIKS INVERS TERGENERALISIR

MATRIKS INVERS TERGENERALISIR MATRIKS INVERS TERGENERALISIR Tasari Program Studi Pendidikan Matematika, Universitas Widya Dharma Klaten ABSTRAK Tujuan penelitian ini adalah : () untuk mengetahui pengertian invers tergeneralisir dari

Lebih terperinci

Satuan Acara Perkuliahan

Satuan Acara Perkuliahan FM-UAD-PBM-08-05/R0 Satuan Acara Perkuliahan Kode / Nama Mata Kuliah : TC19153 /Matriks dan Ruang Vektor Revisi ke : 0 Satuan Kredit Semester : 3 sks Tanggal revisi : - Jumlah jam kuliah dalam seminggu

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN Determinan Matriks Determinan Matriks Sub Pokok Bahasan Permutasi dan Determinan Matriks Determinan dengan OBE Determinan dengan Ekspansi Kofaktor Beberapa Aplikasi

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA ATA KLAH : ATATKA A FAKLTAS : T. SPL & PCAAA JSA / JJA : TKK ASTKT - S KOD : KD-03223 SATA ACAA PKLAHA VSTAS ADAA POKOK AHASA S POKOK AHASA T K S HPA. Pengertian himpunan 2. Diagram Venn 3. Operasi antar

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dipaparkan mengenai konsep dasar tentang matriks meliputi definisi matriks, jenis-jenis matriks, operasi matriks, determinan, kofaktor, invers suatu matriks, serta

Lebih terperinci

Matriks Jawab:

Matriks Jawab: Matriks A. Operasi Matriks 1) Penjumlahan Matriks Jika A dan B adalah sembarang Matriks yang berordo sama, maka penjumlahan Matriks A dengan Matriks B adalah Matriks yang diperoleh dengan cara menjumlahkan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 5 BAB 2 TINJAUAN PUSTAKA 2.1 Matriks 2.1.1 Definisi Matriks Matriks adalah suatu kumpulan angka-angka yang juga sering disebut elemenelemen yang disusun secara teratur menurut baris dan kolom berbentuk

Lebih terperinci

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel)

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U November 2015 MZI (FIF Tel-U) Ruang Baris, Kolom,

Lebih terperinci

Part III DETERMINAN. Oleh: Yeni Susanti

Part III DETERMINAN. Oleh: Yeni Susanti Part III DETERMINAN Oleh: Yeni Susanti Perhatikan determinan matriks ukuran 2x2 berikut: Pada masing-masing jumlahan dan Terdapat wakil dari setiap baris dan setiap kolom. Bagaimana dengan tanda + (PLUS)

Lebih terperinci

Bab 2 LANDASAN TEORI

Bab 2 LANDASAN TEORI 17 Bab 2 LANDASAN TEORI 2.1 Aljabar Matriks 2.1.1 Definisi Matriks Matriks adalah suatu kumpulan angka-angka yang juga sering disebut elemen-elemen yang disusun secara teratur menurut baris dan kolom sehingga

Lebih terperinci

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI 214 MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI Astri Fitria Nur ani Aljabar Linear 1 1/1/214 1 DAFTAR ISI DAFTAR ISI... i BAB I MATRIKS DAN SISTEM PERSAMAAN A. Pendahuluan... 1 B. Aljabar

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN 1 SATUAN ACARA PERKULIAHAN Mata Kuliah : Aljabar Linear Kode Mata Kuliah : Bobot Kuliah/Praktek : 3 SKS Semester : II (Dua) Tujuan Instruksional Umum : memahami konsep-konsep dan tranformasi linier, dan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan diuraikan mengenai landasan teori yang akan digunakan dalam bab selanjutnya. 2.1 Matriks Sebuah matriks, biasanya dinotasikan dengan huruf kapital tebal seperti A,

Lebih terperinci

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel.

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel. 1. Persamaan Linier 5. PERSAMAAN LINIER Persamaan linier adalah suatu persamaan yang variabel-variabelnya berpangkat satu. Disamping persamaan linier ada juga persamaan non linier. Contoh : a) 2x + 3y

Lebih terperinci

MODUL V EIGENVALUE DAN EIGENVEKTOR

MODUL V EIGENVALUE DAN EIGENVEKTOR MODUL V EIGENVALUE DAN EIGENVEKTOR 5.. Pendahuluan Biasanya jika suatu matriks A berukuran mm dan suatu vektor pada R m, tidak ada hubungan antara vektor dan vektor A. Tetapi seringkali kita menemukan

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 1

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 1 GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 1 Berlaku mulai: Gasal/2010 MATA KULIAH : MATRIK DAN TRANSFORMASI LINEAR KODE MATA KULIAH / SKS : 410102042 / 3 SKS MATA

Lebih terperinci

Operasi Pada Matriks a. Penjumlahan pada Matriks ( berlaku untuk matriks matriks yang berukuran sama ). Jika A = a ij. maka matriks A = ( a ij)

Operasi Pada Matriks a. Penjumlahan pada Matriks ( berlaku untuk matriks matriks yang berukuran sama ). Jika A = a ij. maka matriks A = ( a ij) MATRIKS a a a... a n a a a... an A a a a... a n............... am am am... a mn Matriks A dengan m baris dan n kolom (A m n). Notasi Matriks : a, dimana a adalah elemen pada baris ke i kolom ke j Kesamaan

Lebih terperinci

Minggu II Lanjutan Matriks

Minggu II Lanjutan Matriks Minggu II Lanjutan Matriks Pokok Bahasan Sub Pokok Bahasan Tujuan Instruksional Umum Tujuan Instruksional Khusus Jumlah Pertemuan : Matriks : A. Transformasi Elementer. Transformasi Elementer pada baris

Lebih terperinci

Aljabar Linier Elementer. Kuliah 7

Aljabar Linier Elementer. Kuliah 7 Aljabar Linier Elementer Kuliah 7 Materi Kuliah Ekspansi kofaktor Aturan Cramer 2 2.4 Espansi Kofaktor; Aturan Cramer Definisi: Jika A adalah matriks bujur sangkar, maka minor dari entri a ij dinyatakan

Lebih terperinci

Trihastuti Agustinah

Trihastuti Agustinah TE 467 Teknik Numerik Sistem Linear Trihastuti Agustinah Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E OBJEKTIF 2 3 CONTOH 4 SIMPULAN

Lebih terperinci

Materi Aljabar Linear Lanjut

Materi Aljabar Linear Lanjut Materi Aljabar Linear Lanjut TRANSFORMASI LINIER DARI R n KE R m ; GEOMETRI TRANSFORMASI LINIER DARI R 2 KE R 2 Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA

Lebih terperinci

TUGAS MANDIRI MATRIKS. Mata Kuliah : Matematika ekonomi

TUGAS MANDIRI MATRIKS. Mata Kuliah : Matematika ekonomi TUGAS MANDIRI MATRIKS Mata Kuliah : Matematika ekonomi NamaMahasiswa : Suriani NIM : 140610098 Kode Kelas Dosen : 141-MA112-M6 : NeniMarlinaPurbaS.Pd UNIVERSITAS PUTERA BATAM 2014 KATA PENGANTAR Puji syukur

Lebih terperinci

Sebelum pembahasan tentang invers matriks lebih lanjut, kita bahas dahulu beberapa pengertian-pengertian berikut ini.

Sebelum pembahasan tentang invers matriks lebih lanjut, kita bahas dahulu beberapa pengertian-pengertian berikut ini. . INVERS MTRIKS Sebelum pembahasan tentang invers matriks lebih lanjut, kita bahas dahulu beberapa pengertian-pengertian berikut ini. a. RNK MTRIKS Matriks tak nol dikatakan mempunyai rank r jika paling

Lebih terperinci

MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT 304

MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT 304 MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT 304 Deskripsi: Perkuliahan ini bertujuan mengembangkan kemampuan mahasiswa memahami konsep-konsep dasar Aljabar Matriks sebagai bekal untuk mengajar matematika

Lebih terperinci

KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS

KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 279 284. KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS Adrianus Sumitro, Nilamsari Kusumastuti, Shantika Martha

Lebih terperinci

Matematika Lanjut 1. Sistem Persamaan Linier Transformasi Linier. Matriks Invers. Ruang Vektor Matriks. Determinan. Vektor

Matematika Lanjut 1. Sistem Persamaan Linier Transformasi Linier. Matriks Invers. Ruang Vektor Matriks. Determinan. Vektor Matematika Lanjut 1 Vektor Ruang Vektor Matriks Determinan Matriks Invers Sistem Persamaan Linier Transformasi Linier 1 Dra. D. L. Crispina Pardede, DE. Referensi [1]. Yusuf Yahya, D. Suryadi. H.S., gus

Lebih terperinci

SILABUS MATA KULIAH. Pengalaman Pembelajaran. Dasar-dasar vektor dan vektor pada bidang datar (dimensi dua)

SILABUS MATA KULIAH. Pengalaman Pembelajaran. Dasar-dasar vektor dan vektor pada bidang datar (dimensi dua) SILABUS MATA KULIAH Program Studi : Teknik Industri Kode Mata Kuliah : TKI-206 Nama Mata Kuliah : Matriks dan Vektor Jumlah SKS : 2 Semester : III Mata Kuliah Pra Syarat : TKI-111 Matematika Industri II

Lebih terperinci

BAB II DETERMINAN DAN INVERS MATRIKS

BAB II DETERMINAN DAN INVERS MATRIKS BAB II DETERMINAN DAN INVERS MATRIKS A. OPERASI ELEMENTER TERHADAP BARIS DAN KOLOM SUATU MATRIKS Matriks A = berdimensi mxn dapat dibentuk matriks baru dengan menggandakan perubahan bentuk baris dan/atau

Lebih terperinci

ALJABAR LINIER DAN MATRIKS

ALJABAR LINIER DAN MATRIKS ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Macam Matriks Matriks Nol (0) Matriks yang semua entrinya nol. Ex: Matriks Identitas (I) Matriks persegi dengan entri pada diagonal utamanya

Lebih terperinci

6- Operasi Matriks. MEKANIKA REKAYASA III MK Unnar-Dody Brahmantyo 1

6- Operasi Matriks. MEKANIKA REKAYASA III MK Unnar-Dody Brahmantyo 1 6- Operasi Matriks Contoh 6-1 : Budi diminta tolong oleh ibunya untuk membeli 2 kg gula dan 1 kg kopi. Dengan uang Rp. 10.000,- Budi mendapatkan uang kembali Rp. 3.000,-. Dihari yang lain, Budi membeli

Lebih terperinci

Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut

Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut dinamakan entri dalam matriks atau disebut juga elemen

Lebih terperinci

MENENTUKAN NILPOTENT ORDE 4 PADA MATRIKS SINGULAR MENGGUNAKAN TEOREMA CAYLEY HAMILTON TUGAS AKHIR

MENENTUKAN NILPOTENT ORDE 4 PADA MATRIKS SINGULAR MENGGUNAKAN TEOREMA CAYLEY HAMILTON TUGAS AKHIR MENENTUKAN NILPOTENT ORDE 4 PADA MATRIKS SINGULAR MENGGUNAKAN TEOREMA CAYLEY HAMILTON TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh: IRMA

Lebih terperinci

SILABUS. Mengenal matriks persegi. Melakukan operasi aljabar atas dua matriks. Mengenal invers matriks persegi.

SILABUS. Mengenal matriks persegi. Melakukan operasi aljabar atas dua matriks. Mengenal invers matriks persegi. SILABUS Nama Sekolah Mata Pelajaran Kelas / Program Semester : SMA NEGERI 2 LAHAT : MATEMATIKA : XII / IPA : GANJIL STANDAR KOMPETENSI: 3. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan

Lebih terperinci

Kata Pengantar. Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan.

Kata Pengantar. Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan. i Kata Pengantar Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan. Modul ajar ini dimaksudkan untuk membantu penyelenggaraan kuliah jarak

Lebih terperinci

Contoh. C. Determinan dan Invers Matriks. C. 1. Determinan

Contoh. C. Determinan dan Invers Matriks. C. 1. Determinan C. Determinan dan Invers Matriks C.. Determinan Suatu matriks persegi selalu dapat dikaitkan dengan suatu bilangan yang disebut determinan. Determinan dari matriks persegi dinotasikan dengan. Untuk matriks

Lebih terperinci

SUMMARY ALJABAR LINEAR

SUMMARY ALJABAR LINEAR SUMMARY ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta

Lebih terperinci

II. TINJAUAN PUSTAKA. nyata (fenomena-fenomena alam) ke dalam bagian-bagian matematika yang. disebut dunia matematika (mathematical world).

II. TINJAUAN PUSTAKA. nyata (fenomena-fenomena alam) ke dalam bagian-bagian matematika yang. disebut dunia matematika (mathematical world). 5 II. TINJAUAN PUSTAKA 2.1. Pemodelan Matematika Definisi pemodelan matematika : Pemodelan matematika adalah suatu deskripsi dari beberapa perilaku dunia nyata (fenomena-fenomena alam) ke dalam bagian-bagian

Lebih terperinci

Vektor. Vektor. 1. Pengertian Vektor

Vektor. Vektor. 1. Pengertian Vektor Universitas Muhammadiyah Sukabumi Artikel Aljabar Vektor dan Matriks Oleh : Zie_Zie Vektor Vektor 1. Pengertian Vektor a. Definisi Vektor adalah suatu besaran yang mempunyai nilai (besar) dan arah. Contohnya

Lebih terperinci

Eigen value & Eigen vektor

Eigen value & Eigen vektor Eigen value & Eigen vektor Hubungan antara vektor x (bukan nol) dengan vektor Ax yang berada di R n pada proses transformasi dapat terjadi dua kemungkinan : 1) 2) Tidak mudah untuk dibayangkan hubungan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. tegak, perlu diketahui tentang materi-materi sebagai berikut.

BAB II TINJAUAN PUSTAKA. tegak, perlu diketahui tentang materi-materi sebagai berikut. BAB II TINJAUAN PUSTAKA Sebelum pembahasan mengenai irisan bidang datar dengan tabung lingkaran tegak, perlu diketahui tentang materi-materi sebagai berikut. A. Matriks Matriks adalah himpunan skalar (bilangan

Lebih terperinci

Aljabar Linier Elementer

Aljabar Linier Elementer Aljabar Linier Elementer Kuliah 15 dan 16 11/11/2014 1 Materi Kuliah Kebebasan Linier Basis dan Dimensi 11/11/2014 Yanita, Matematika Unand 2 5.3 Kebebasan Linier Definisi Jika S = v 1, v 2,, v r adalah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Sistem Persamaan Linier Sistem Persamaan dengan m persamaan dan n bilangan tak diketahui ditulis dengan : Dimana x 1, x 2, x n : bilangan tak diketahui a,b : konstanta Jika SPL

Lebih terperinci

DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN INTISARI

DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN INTISARI Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 3 (2013), hal. 183-190 DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN Fidiah Kinanti, Nilamsari Kusumastuti, Evi Noviani

Lebih terperinci

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg uiopasdfghjklzxcvbnmqwertyuiopasd Qwertyuiopasdfghjklzxcvbnmqwerty cvbnmqwertyuiopasdfghjklzxcvbnmq fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Aljabar Matriks 2.1.1 Definisi Matriks Matriks adalah suatu kumpulan angka-angka yang juga sering disebut elemen-elemen yang disusun secara teratur menurut baris dan kolom sehingga

Lebih terperinci

LEMBAR AKTIVITAS SISWA MATRIKS (WAJIB)

LEMBAR AKTIVITAS SISWA MATRIKS (WAJIB) LEMBAR AKTIVITAS SISWA MATRIKS (WAJIB) Nama Siswa Kelas : : Kompetensi Dasar (Kurikulum 2013): 3.1 Menganalisis konsep, nilai determinan dan sifat operasi matriks serta menerapkannya dalam menentukan invers

Lebih terperinci

MATRIKS UNITER, SIMILARITAS UNITER DAN MATRIKS NORMAL. Anis Fitri Lestari. Mahasiswa Universitas Muhammadiyah Ponorogo ABSTRAK

MATRIKS UNITER, SIMILARITAS UNITER DAN MATRIKS NORMAL. Anis Fitri Lestari. Mahasiswa Universitas Muhammadiyah Ponorogo ABSTRAK MATRIKS UNITER, SIMILARITAS UNITER DAN MATRIKS NORMAL Anis Fitri Lestari Mahasiswa Universitas Muhammadiyah Ponorogo ABSTRAK Matriks normal merupakan matriks persegi yang entri-entrinya bilangan kompleks

Lebih terperinci

SILABUS. 1 / Silabus Matematika XII-IA. : 1.Menggunakan konsep integral dalam pemecahan masalah. Nilai Karakter

SILABUS. 1 / Silabus Matematika XII-IA. : 1.Menggunakan konsep integral dalam pemecahan masalah. Nilai Karakter SILABUS Satuan Pendidikan Mata Pelajaran Kelas/semester Reference Standar Kompetensi : SMA Negeri 5 Surabaya : : XII/1 : BSNP / CIE : 1.Menggunakan konsep integral dalam pemecahan masalah Kompetensi Dasar

Lebih terperinci

SATUAN ACARA PERKULIAHAN PROGRAM STUDI ILMU KOMUNIKASI

SATUAN ACARA PERKULIAHAN PROGRAM STUDI ILMU KOMUNIKASI Kode Mata : IT 081303 Media : Kertas Kerja, Infocus, Mata : Matematika 1 Perangkat Siaran Jumlah SKS : 3 Evaluasi : Kehadiran, Penilaian terhadap tugas/praktek Proses Belajar Mengajar : Dosen : Menjelaskan,

Lebih terperinci

Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 5

Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 5 Aljabar Linear & Matriks Pert. 5 Evangs Mailoa Pengantar Determinan Menurut teorema 1.4.3, matriks 2 x 2 dapat dibalik jika ad bc 0. Pernyataan ad bc disebut sebagai determinan (determinant) dari matriks

Lebih terperinci

DIKTAT PERKULIAHAN. EDISI 1 Aljabar Linear dan Matriks

DIKTAT PERKULIAHAN. EDISI 1 Aljabar Linear dan Matriks DIKTAT PERKULIAHAN EDISI 1 Aljabar Linear dan Matriks Penulis : Ednawati Rainarli, M.Si. Kania Evita Dewi, M.Si. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS KOMPUTER INDONESIA BANDUNG 011 IF/011 1 DAFTAR ISI

Lebih terperinci

Aljabar Matriks. Aljabar Matriks

Aljabar Matriks. Aljabar Matriks Aljabar Matriks No No Unit Unit Kompetensi 1 Menerapkan keamanan web dinamis 2 Membuat halaman web dinamis dasar 3 Membuat halaman web dinamis lanjut 4 Menerapkan web hosting 5 Menerapkan konten web memenuhi

Lebih terperinci

Matriks. Modul 1 PENDAHULUAN

Matriks. Modul 1 PENDAHULUAN Modul Matriks Dra. Sri Haryatmi Kartiko, M.Sc. I PENDAHULUAN lmu pengetahuan dewasa ini menjadi semakin kuantitatif. Data numerik dengan skala besar, hasil pengukuran berupa angka sering dijumpai oleh

Lebih terperinci

SATUAN ACARA PERKULIAHAN (SAP)

SATUAN ACARA PERKULIAHAN (SAP) SATUAN ACARA PERKULIAHAN (SAP) Nama Mata : Kalkulus I Kode Mata : TI 001 Bobot Kredit : 3 SKS Semester Penempatan : II Kedudukan Mata : Mata Keilmuan dan Keterampilan Mata Prasyarat : - Penanggung Jawab

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Sebagai acuan penulisan penelitian ini diperlukan beberapa pengertian dan teori yang berkaitan dengan pembahasan. Dalam sub bab ini akan diberikan beberapa landasan teori berupa pengertian,

Lebih terperinci

Program Studi Teknik Mesin S1

Program Studi Teknik Mesin S1 SATUAN ACARA PERKULIAHAN MATA KULIAH : MATEMATIKA TEKNIK 2 KODE/SKS : IT042227 / 2 SKS Pertemuan Pokok Bahasan dan TIU 1 Pendahuluan Mahasiswa mengerti tentang mata kuliah Matematika Teknik 2 : bahan ajar,

Lebih terperinci

SATUAN ACARA PERKULIAHAN (SAP)

SATUAN ACARA PERKULIAHAN (SAP) SATUAN ACARA PERKULIAHAN (SAP) Nama matakuliah : Aljabar Linier Kode matakuliah : MKK 315 Dosen Pengampu : Ega Gradini, M.Sc Diberikan pada : Semester 3 Jumlah sks : 2 SKS Jenis sks Alokasi Waktu Prasyarat

Lebih terperinci

RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 526 Nama Mata Kuliah : Analisis Fungsional

RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 526 Nama Mata Kuliah : Analisis Fungsional Ming gu ke RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 56 Nama Mata Kuliah : Analisis Fungsional T o p i k S u b T o p i k 1. Ruang Banach - Ruang metrik - Ruang vektor bernorm - Barisan di ruang

Lebih terperinci

KS KALKULUS DAN ALJABAR LINEAR Eigen Value Eigen Vector TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Eigen Value Eigen Vector TIM KALIN KS091206 KALKULUS DAN ALJABAR LINEAR Eigen Value Eigen Vector TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat menghitung eigen value dan eigen vector

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH KALKULUS LANJUT A (S1 / TEKNIK INFORMATIKA ) KODE / SKS KD

SATUAN ACARA PERKULIAHAN MATA KULIAH KALKULUS LANJUT A (S1 / TEKNIK INFORMATIKA ) KODE / SKS KD SATUAN ACARA PERKULIAHAN MATA KULIAH KALKULUS LANJUT A (S1 / TEKNIK INFORMATIKA ) KODE / SKS KD-045315 Mingg u Ke Pokok Bahasan dan TIU Sub-pokok Bahasan dan Sasaran Belajar Cara Pengajaran Media Tugas

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Pembahasan mendasar mengenai matriks terutama yang berkaitan dengan matriks yang dapat didiagonalisasi telah jelas disajikan dalam referensi yang biasanya digunakan

Lebih terperinci

BAB 2 : DETERMINAN. 2. Tentukan banyaknya permutasi dari himpunan bilangan bulat {1, 2, 3, 4}

BAB 2 : DETERMINAN. 2. Tentukan banyaknya permutasi dari himpunan bilangan bulat {1, 2, 3, 4} BAB 2 : DETERMINAN PERMUTASI Kita sudah cukup mengenal fungsi-fungsi sinus, fungsi kuadrat, juga fungsi konstant yang memetakan suatu bilangan riil ke bilangan riil. Pada bagian ini akan dipelajari mengenai

Lebih terperinci

3 Langkah Determinan Matriks 3x3 Metode OBE

3 Langkah Determinan Matriks 3x3 Metode OBE 3 Langkah Determinan Matriks 3x3 Metode OBE Ogin Sugianto sugiantoogin@yahoo.co.id penma2b.wordpress.com Majalengka, 10 Oktober 2016 Selain metode Sarrus dan Minor-Kofaktor, ada satu metode lain yang dapat

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN 1.1 Latar Belakang Matriks merupakan istilah yang digunakan untuk menunjukkan jajaran persegi panjang dari bilangan-bilangan dan setiap matriks akan mempunyai baris dan kolom. Salah satu

Lebih terperinci

ALJABAR LINEAR BASIS RUANG BARIS DAN BASIS RUANG KOLOM SEBUAH MATRIKS. Dosen Pengampu: DARMADI, S.Si, M.Pd. Oleh: Kelompok III

ALJABAR LINEAR BASIS RUANG BARIS DAN BASIS RUANG KOLOM SEBUAH MATRIKS. Dosen Pengampu: DARMADI, S.Si, M.Pd. Oleh: Kelompok III ALJABAR LINEAR BASIS RUANG BARIS DAN BASIS RUANG KOLOM SEBUAH MATRIKS Dosen Pengampu: DARMADI, SSi, MPd Oleh: Kelompok III 1 Andik Dwi S (06411008) 2 Indah Kurniawati (06411090) 3 Mahfuat M (06411104)

Lebih terperinci

TRANSFORMASI MATRIKS. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

TRANSFORMASI MATRIKS. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ TRANSFORMAS MATRKS Agustina Pradjaningsih, M.Si. Jurusan Matematika FMPA UNEJ agustina.fmipa@unej.ac.id Definisi : BEBAS LNER Suatu himpunan vektor-vektor v, v, v k dikatakan bebas linier jika persamaan

Lebih terperinci

KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT

KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT Nama Mahasiswa : Aprilliantiwi NRP : 1207100064 Jurusan : Matematika Dosen Pembimbing : 1 Soleha, SSi, MSi 2 Dian Winda Setyawati,

Lebih terperinci

GENERALIZED INVERSE. Musafir Kumar 1)

GENERALIZED INVERSE. Musafir Kumar 1) GENERALIZED INVERSE Musafir Kumar 1) 1) Dosen Pendidikan Matematika FKIP Unsyiah Abstrak Tulisan ini bertujuan untuk menhgetahui pengertian dari generalized inverse. Teorema-teorema dan sifat-sifat yang

Lebih terperinci

Matematika Teknik DETERMINAN

Matematika Teknik DETERMINAN DETERMINN da satu cara lagi dalam menentukan solusi SPL dengan bekerja pada matriks koefisiennya. Cara berikut hanya akan berlaku untuk matriks koefiien berupa matriks bujursangkar atau SPL mempunyai banyak

Lebih terperinci

Pertemuan 2 Matriks, part 2

Pertemuan 2 Matriks, part 2 Pertemuan 2 Matriks, part 2 Beberapa Jenis Matriks Khusus 1. Matriks Bujur Sangkar Suatu matriks dengan banyak baris = banyak kolom = n disebut matriks bujur sangkar berukuran n (berordo n). Barisan elemen

Lebih terperinci