DASAR ALJABAR BOOLEAN
|
|
|
- Sudirman Susman
- 9 tahun lalu
- Tontonan:
Transkripsi
1 DASAR ALJABAR BOOLEAN Dalam mengembangkan sistem Aljabar Boolean Perlu memulainya dengan asumsi asumsi yakni Postulat Boolean dan Teorema Aljabar Boolean. Postulat Boolean :.. = 2.. = di turunkan dari fungsi AND 3.. = 4.. = 5. + = 6. + = di turunkan dari fungsi OR 7. + = 8. + = 9. = diturunkan dari fungsi NOT. = 2
2 TEOREMA ALJABAR BOOLEAN T. COMMUTATIVE LAW : a. A + B = B + A b. A. B = B. A T2. ASSOCIATIVE LAW : a. ( A + B ) + C = A + ( B + C ) b. ( A. B). C = A. ( B. C ) T3. DISTRIBUTIVE LAW : a. A. ( B + C ) = A. B + A. C b. A + ( B. C ) = ( A+B ). ( A+C )
3 T4. IDENTITY LAW: a. A + A = A b. A. A = A T5. NEGATION LAW: a.( A ) = A b. ( A ) = A T6. REDUNDANCE LAW : a. A + A. B = A b. A.( A + B) = A
4 T7. : T8. : a. + A = A b.. A = A c. + A = d.. A = a. A + A = b. A. A = T9. : a. A + A. B = A + B b. A.( A + B ) = A. B
5 . DE MORGAN S THEOREM: a. (A + B ) = A. B b. (A. B ) = A + B
6 PEMBUKTIAN TEOREMA T6(a) TABEL KEBENARAN UNTUK A + A. B = A A B A. B A + A.B
7 PEMBUKTIAN TEOREMA T9(a) TABEL KEBENARAN UNTUK A + A B = A+B A B A. B A + A B A + B
8 Aplikasi soal Aljabar Boole Dari Postulat dan Teorema Aljabar Boolean diatas tujuan utamanya adalah untuk penyederhanaan : - Ekspresi Logika - Persamaan Logika - Persamaan Boolean (Fungsi Boolean) yang inti-intinya adalah untuk mendapatkan Rangkaian Logika(Logic Diagram) yang paling sederhana. Contoh Sederhanakan A. (A. B + C) Penyelesaian A. (A. B + C) = A. A. B + A. C (T3a) = A. B + A. C (T4b) = A. (B + C) (T3a)
9 Contoh 2 Sederhanakan A. B + A. B + A. B Penyelesaian A. B + A. B + A. B = (A + A). B + A. B (T3a) =. B + A. B (T8a) = B + A. B (T7b) = B + A (T9a) Contoh 3 Sederhanakan A + A. B + A. B Penyelesaian A + A. B + A. B = (A + A. B ) + A. B = A + A. B (T6a) = A + B (T9a)
10 Contoh 2 Sederhanakan A. B + A. B + A. B Penyelesaian A. B + A. B + A. B = (A + A). B + A. B (T3a) =. B + A. B (T8a) = B + A. B (T7b) = B + A (T9a) Contoh 3 Sederhanakan A + A. B + A. B Penyelesaian A + A. B + A. B = (A + A. B ) + A. B = A + A. B (T6a) = A + B (T9a)
11 Soal Latihan I : Sederhanakan ekspresi logika dibawah dengan Aljabar Boolean :. AB + BC + C A 2. A (BC + AB + BA ) 3. ABC + AB +A 4. (A + AB ) (A B) 5. BC + AD + ABCD +ADC +A
12 Soal Latihan II : BUATLAH TABEL KEBENARAN DARI PERSAMAAN LOGIKA DIBAWAH: (a) X. Y + X. Y + X. Y = X + Y (b) A. B. C + A. C + B. C = A + B + C (c) ( X. Y + Y. X ) + X. Y = ( X. Y ) (d) A. B. D + A. B. D + A. B.D = A. ( B.D + B.D )
13 PENGGUNAAN GERBANG LOGIKA. Penyusunan Rangkaian dari Aljabar Boolean Aljabar Boole merupakan dasar dalam menyusun rangkaian logika. Sebagai contoh kita mempunyai ekspresi/aljabar Boole sbb: Y = A+ B + C Dari aljabar Boole ini kita dapat menyusunnya menjadi rangkaian logika dengan gerbang OR 3 masukan, karena jelas-jelas merupakan operasi penjumlahan. Sehingga rangkaian logikanya adalah sbb: A B C Y Untuk ekspresi Boole yang merupakan perpaduan antara operasi AND dan OR kita harus menyelesaikan satu persatu. Sebagai contoh, misal kita mempunyai aljabar Boole sbb: Y = A B + A B + B C Dari aljabar Boole tersebut jelas bahwa rangkaian terdiri dari 3 buah gerbang AND 2 masukan, 2 buah gerbang OR 2 masukan dan 2 buah gerbang NOT. Untuk menggambarkan rangkaian logikanya adalah sbb: A B A B A B Y C B C Dari rangkaian logika terlihat bahwa kita harus meng-and-kan setiap masukan, kemudian keluarannya barulah kita OR-kan. Latihan Buatlah rangkaian logika jika kita mempunyai aljabar Boolean sbb:. Y = A B + A B 2. Y = A C + A B C 2. Aljabar/Ekspresi Boolean Maksterm (Perkalian dari Penjumlahan / AND-OR) Ekspresi Boolean Maksterm merupakan perpaduan antara OR dan AND, yaitu merupakan operasi AND dari OR, Artinya: kita harus melakukan operasi-operasi OR terlebih dahulu kemudian dari hasil operasi OR tersebut kita AND-kan Sebagai contoh: Y = A + B + C A + B ( ) ( )
14 Untuk membuat rangkaian logika kita membutuhkan sebuah gerbang AND, 2 buah gerbang OR dan 2 buah gerbang NOT. Rangkaian logikanya adalah sbb: C B A A + B + C A + B Y 3. Ekspresi Boolean Minterm (Penjumlahan dari Perkalian / OR-AND) Untuk ekspresi Boolean minterm merupakan kebalikan dari operasi Maksterm, yaitu merupakan ekspresi OR-AND, Artinya: Kita harus melakukan operasi-operasi AND terlebih dahulu kemudian hasil operasi AND kita OR-kan. Latihan. Buatlah rangkaian logikanya dari aljabar Boolean Maksterm berikut ini: a. Y = ( A + B) ( A + B ) b. Y = ( A + B) C 2. Buatlah rangkaian logikanya dari aljabar Boolean Minterm berikut ini: a. Y = ( A + ( A B ) b. Y = ( A B) + C 4. Tabel Kebenaran dan Aljabar Boolean Untuk menggambarkan rangkaian logika selain menggunakan dasar aljabar Boole, kita juga dapat menggunakan dasar dari tabel kebenaran. Untuk dapat menggunakan tabel kebenaran sebagai dasar penggambaran rangkaian logika, terlebih dahulu dari tabel kebenaran diubah dahulu ke dalam bentuk aljabar Boole. Sebagai contoh: Masukan Keluaran A B C Y A B C = A B C = Jadi aljabar Boolenya adalah: Y = ( A B C) + ( A B C )
15 Rangkaian logikanya adalah sbb: A B C Y Latihan Buatlah tabel kebenaran dan rangkaian logika untuk aljabar Boole berikut ini: a. Y = A C + A B C b. Y = A B C + A B C c. Y = A B C + A B C d. Y = A B C + Aˆ B C 5. Penyederhanaan Aljabar Boolean Penyederhanaan aljabar Boole bertujuan untuk menyederhanakan pemakaian gerbang-gerbang logika dalam pembuatan rangkaian logika Sebagai contoh, kita mempunyai aljabar Boole sbb: Y = A B + A B + A B Menurut aljabar Boole di atas jelas sekali bahwa untuk membuat rangkaian logikanya kita membutuhkan: 2 buah gerbang OR 3 masukan, 3 buah gerbang AND 2 masukan dan 2 buah pembalik (NOT). Coba Buatlah rangkaian Logikanya Tabel kebenaran untuk aljabar Boole di atas adalah: A B A B A B A B A B Y Dari tabel kebenaran terlihat bahwa keluaran (Y) tidak lain adalah merupakan oparasi OR antara kedua masukan (A dan B), sehingga aljabar Boole di atas dapat disederhanakan menjadi Y = A + B Dengan aljabar Boole yang sederhana ini dapat kita buat rangkaian logika yang paling sederhana, yaitu hanya membutuhkan sebuah gerbang OR 2 masukan saja. Coba Buatlah rangkaian Logika sederhananya
16 6. Map Karnaugh Map Karnaugh adalah suatu cara untuk menyederhanakan aljabar Boolean. Untuk melakukan penyederhanaan dengan Map Karnaugh ada beberapa tahapan, yaitu: a. Mulailah dengan aljabar Boolean Minterm (OR-AND) b. Tuliskan keluaran yang bernilai pada peta Karnaugh c. Kelompokkan / lingkari nilai yang berdekatan (bisa 2 bh, 4 bh atau 8 bh) d. Sederhanakan dengan menghilangkan unsur dari tersebut dengan komplemennya dalam kelompok/lingkaran e. Sisa dari penyederhanaan kemudian di-or-kan f. Tuliskan aljabar Boole yang sudah disederhanakan Sebagai contoh: Y = A B + A B + A B Nilai logika kita plot pada peta Karnaugh: A B Tabel kebenaran dari aljabar Boole tersebut adalah: A B Y Logika yang berdekatan kita kelompokkan: A B B dihilangkan Sehingga diperoleh: Y = A + B A dihilangkan 7. Map karnaugh untuk 3 masukan Seperti halnya pada peta Karnaugh 2 massukan, untuk 3 masukan kita tinggal menambahkan masukan lagi. Sebagai contoh: Y = A B C + A B C + A B C + A B C Dengan mengikuti langkah-langkah seperti yang telah disebutkan di atas, kita masukan nilai logika pada peta Karnaugh 3 masukan
17 Logika dimassukkan pada peta Karnaugh dan yang berdekatan dikelompokkan: AB C B dihilangkan Sehingga kita peroleh: Y = A B + A C Kita juga bisa mengembangkan lagi untuk 4 masukan, yaitu dengan menambahkan 2 baris lagi pada Map Karnaugh 3 masukan 8. Map Karnaugh dengan 5 masukan Untuk membuat Map Karnaugh dengan 5 masukan kita lakukan dengan membuat 2 buah Map Karnaugh 4 masukan, kemudian dari kedua Map Karnaugh 4 masukan tersebut ditimpakan atas-bawah. Sebagai contoh, misalkan kita mempunyai aljabar Boole sbb: Y = A B C D E + A B C D E + A BC D E + AB C D E + A BC D E + A B C DE + ABCDE + C dihilangkan A BCDE + ABCDE AB CD E sendiri E dihilangkan AB CD Diperoleh: Aljabar Boole yang paling sederhana Y = A B C D E + AD E B&C dihilangkan
DASAR ALJABAR BOOLEAN
DASAR ALJABAR BOOLEAN Dalam mengembangkan sistem Aljabar Boolean Perlu memulainya dengan asumsi asumsi yakni Postulat Boolean dan Teorema Aljabar Boolean. Postulat Boolean :. 0. 0 = 0 2. 0. = 0 di turunkan
Gerbang gerbang Logika -5-
Sistem Digital Gerbang gerbang Logika -5- Missa Lamsani Hal 1 Gerbang Logika 3 gerbang dasar adalah : AND OR NOT 4 gerbang turunan adalah : NAND NOR XOR XNOR Missa Lamsani Hal 2 Gerbang NAND (Not-AND)
O L E H : H I DAYAT J U R U SA N TEKNIK KO M P U TER U NIKO M 2012
O L E H : H I DAYAT J U R U SA N TEKNIK KO M P U TER U NIKO M 2012 Teorema oolean variabel tunggal Teorema oolean variabel tunggal Teorema oolean variabel banyak (multivariabel) Teorema oolean variabel
Rangkaian digital yang ekivalen dengan persamaan logika. Misalnya diketahui persamaan logika: x = A.B+C Rangkaiannya:
ALJABAR BOOLEAN Aljabar Boolean Aljabar Boolean adalah aljabar yang menangani persoalan-persoalan logika. Aljabar Boolean menggunakan beberapa hukum yang sama seperti aljabar biasa untuk fungsi OR (Y =
Bentuk Standar Fungsi Boole
PETA KARNAUGH Peta Karnaugh digunakan sebagai cara untuk menyederhanakan persamaan logika secara grafis, atau dapat pula dipandang sebagai metoda untuk mengubah suatu tabel kebenaran ke rangkaian logika
Ungkapan Boolean dan Aljabar Boolean. Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.
Ungkapan Boolean dan Aljabar Boolean Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Ungkapan Boolean Ungkapan Boolean terdiri dari Contoh Literal variabel dan komplemennya Operasi Logika F = A.B'.C + A'.B.C'
4.1 Menguraikan Rangkaian-Rangkaian Logika Secara Aljabar. Gambar 4.1 Rangkaian logika dengan ekspresi Booleannya
BAB IV ALJABAR BOOLEAN 4.1 Menguraikan Rangkaian-Rangkaian Logika Secara Aljabar Setiap rangkaian logika, bagaimanapun kompleksnya, dapat diuraikan secara lengkap dengan menggunakan operasi-operasi Boolean
Aljabar Boolean dan Peta Karnough
Aljabar Boolean dan Peta Karnough a. Logic Function minimization Pada rangkaian yang cukup rumit, kombinasi variable di logic function yang diperoleh dari hasil table kebenaran biasanya pun cukup banyak.
Gambar 28 : contoh ekspresi beberapa logika dasar Tabel 3 : tabel kebenaran rangkaian gambar 28 A B C B.C Y = (A+B.C )
5. RANGKAIAN KOMBINASIONAL Pada dasarnya rangkaian logika (digital) yang dibentuk dari beberapa gabungan komponen elektronik yang terdiri dari bermacam-macam Gate dan rangkaian-rangkaian lainnya, sehingga
BAB 2 PENYEDERHANAAN RANGKAIAN DENGAN PETA KARNAUGH SUM OF PRODUCT (SOP) DAN PRODUCT OF SUM (POS)
BAB 2 PENYEDERHANAAN RANGKAIAN DENGAN PETA KARNAUGH SUM OF PRODUCT (SOP) DAN PRODUCT OF SUM (POS) 2.1 TUJUAN - Membuat rangkaian logika Sum of Product dan Product of Sum yang berasar dari gerbang-gerbang
BAB III ALJABAR BOOLE (BOOLEAN ALGEBRA)
TEKNIK DIGITAL-ALJABAR Boole/HAL. 1 BAB III ALJABAR BOOLE (BOOLEAN ALGEBRA) PRINSIP DASAR ALJABAR BOOLE Aljabar boole adalah suatu teknik matematika yang dipakai untuk menyelesaikan masalah-masalah logika.
MODUL TEKNIK DIGITAL MODUL IV ALJABAR BOOLE DAN RANGKAIAN KOMBINASIONAL
MODUL TEKNIK DIGITAL MODUL IV ALJABAR BOOLE DAN RANGKAIAN KOMBINASIONAL YAYASAN SANDHYKARA PUTRA TELKOM SMK TELKOM SANDHY PUTRA MALANG 2008 RENCANA PELAKSANAAN PEMBELAJARAN MODUL IV ALJABAR BOOLE & RANGKAIAN
MATERI 2 COMBINATIONAL LOGIC
Pengantar : :. MATERI 2 COMBINATIONAL LOGIC Rangkaian digital adalah mrp komponen perangkat keras (hardware) yang memanipulasi informasi biner. Rangkaian diimplementasikan dengan menggunakan transistor-transistor
RANGKAIAN KOMBINASIONAL
RANGKAIAN KOMBINASIONAL LUH KESUMA WARDHANI JurusanTIF UIN SUSKA Riau LOGIKA KOMBINASI Merupakan jenis rangkaian logika yang keadaan outputnya hanya tergantung dari kombinasi input nya saja. Aljabar Boolean
ARSITEKTUR DAN ORGANISASI KOMPUTER Aljabar Boolean, Gerbang Logika, dan Penyederhanaannya
ARSITEKTUR DAN ORGANISASI KOMPUTER Aljabar Boolean, Gerbang Logika, dan Penyederhanaannya Disusun Oleh : Indra Gustiaji Wibowo (233) Kelas B Dosen Hidayatulah Himawan,ST.,M.M.,M.Eng JURUSAN TEKNIK INFORMATIKA
Bentuk Standar Ungkapan Boolean. Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.
Bentuk Standar Ungkapan Boolean Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Bentuk Standar Ungkapan Boolean Sum-of-Product (SOP) Diturunkan dari tabel kebenaran untuk fungsi dengan mempertimbangkan baris
PETA KARNAUGH 3.1 Peta Karnaugh Untuk Dua Peubah
3 PETA KARNAUGH Telah ditunjukkan di bab sebelumnya bahwa penyederhanaan fungsi Boole secara aljabar cukup membosankan dan hasilnya dapat berbeda dari satu orang ke orang lain, tergantung dari kelincahan
Elektronika dan Instrumentasi: Elektronika Digital 2 Gerbang Logika, Aljabar Boolean. Yusron Sugiarto
Elektronika dan Instrumentasi: Elektronika Digital 2 Gerbang Logika, Aljabar Boolean Yusron Sugiarto Materi Kuliah Rangkaian Logika Ada beberapa operasi-operasi dasar pada suatu rangkaian logika dan untuk
LAPORAN AKHIR PRAKTIKUM SISTEM DIGITAL. Nama : ALI FAHRUDDIN NIM : DBC Kelas : K Modul : IV (Minimisasi Fungsi 3 Variabel)
LAPORAN AKHIR PRAKTIKUM SISTEM DIGITAL Nama : ALI FAHRUDDIN NIM : DBC 113 046 Kelas : K Modul : IV (Minimisasi Fungsi 3 Variabel) JURUSAN/PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS PALANGKA
Kuliah#3 TSK205 Sistem Digital - TA 2011/2012. Eko Didik Widianto
,, Kuliah#3 TSK205 Sistem Digital - TA 2011/2012 Eko Didik Teknik Sistem Komputer - Universitas Diponegoro , Sebelumnya dibahas tentang konsep rangkaian logika: Representasi biner dan saklar sebagai elemen
Outline. Operasi Logikal. Variabel Biner. Bagian 1: Logika Biner Gerbang Logika Dasar Aljabar Boolean, Manipulasi Aljabar
Pengantar Sistem Digital Odd semester 2012/2013 RANGKAIAN LOGIKA KOMBINASI BAGIAN 1 : RANGKAIAN GERBANG DAN PERSAMAAN BOOLEAN 2 Outline Bagian 1: Logika Biner Gerbang Logika Dasar Aljabar Boolean, Manipulasi
Aljabar Boolean dan Sintesis Fungsi. Logika
dan Sintesis Fungsi dan Sintesis Fungsi Kuliah#3 TKC205 Sistem Digital - TA 2013/2014 Eko Didik Sistem Komputer - Universitas Diponegoro http://didik.blog.undip.ac.id 1 Pengantar dan Sintesis Fungsi Dalam
PENYEDERHANAAN DENGAN KARNAUGH MAP
PENYEDERHANAAN DENGAN KARNAUGH MAP Karnaugh Map adalah pengganti persamaan aljabar boole. Maksud penulisan variable pada peta (map) ini, agar dalam peta hanya ada satu variable yang berubah dari bentuk
Definisi Aljabar Boolean
Aljabar Boolean Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan - dan adalah dua elemen yang berbeda
2. Gambarkan gerbang logika yang dinyatakan dengan ekspresi Boole di bawah, kemudian sederhanakan dan gambarkan bentuk sederhananya.
Tugas! (Materi Aljabar Boolean). Gambarkan jaringan switching yang dinyatakan dengan polinominal Boole di bawah, kemudian sederhanakan dan gambarkan bentuk sederhananya, kapan jaringan tsb on atau off.
18/09/2017. Fakultas Teknologi dan Desain Program Studi Teknik Informatika
8/09/207 Fakultas Teknologi dan Desain Program Studi Teknik Informatika 8/09/207 Capaian Pembelajaran Mahasiswa mampu menyederhanakan persamaan logika menggunakan Karnaugh Map (K-Map). Mahasiswa mampu
BAB IV PETA KARNAUGH (KARNAUGH MAPS)
TEKNIK DIGITAL-PETA KARNAUGH/HAL. 1 BAB IV PETA KARNAUGH (KARNAUGH MAPS) PETA KARNAUGH Selain dengan teorema boole, salah satu cara untuk memanipulasi dan menyederhanakan fungsi boole adalah dengan teknik
Definisi Aljabar Boolean
Aljabar Boolean 1 Definisi Aljabar Boolean Aljabar boolean merupakan aljabar yang berhubungan dengan variabel-variabel biner dan operasi-operasi logik. Variabel-variabel diperlihatkan dengan huruf-huruf
( A + B) C. Persamaan tersebut adalah persamaan rangkaian digital dengan 3 masukan sehingga mempunyai 8 kemungkinan keadaan masukan.
( A + B) C. Persamaan tersebut adalah persamaan rangkaian digital dengan 3 masukan sehingga mempunyai 8 kemungkinan keadaan masukan. Pada aljabar Boolean terdapat hukum-hukum aljabar Boolean yang memungkinkan
K-Map. Disusun oleh: Tim dosen SLD Diedit ulang oleh: Endro Ariyanto. Prodi S1 Teknik Informatika Fakultas Informatika Universitas Telkom
K-Map Disusun oleh: Tim dosen SLD Diedit ulang oleh: Endro Ariyanto Prodi S Teknik Informatika Fakultas Informatika Universitas Telkom September 205 Peta Karnaugh (K-Map) () Sistem dan Logika Digital/205
Aljabar Boolean. Matematika Diskrit
Aljabar Boolean Matematika Diskrit Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan - dan adalah dua
Aljabar Boolean dan Gerbang Logika Dasar
Modul 1 : Aljabar Boolean dan Gerbang Logika Dasar 1.1 Tujuan Setelah mengikuti praktek ini mahasiswa diharapkan dapat: 1. Memahami Aksioma dan Teorema Aljabar Boolean. 2. Memahami gerbang logika dasar
MODUL II DASAR DAN TERMINOLOGI SISTEM DIGITAL
MOUL II ASAR AN TERMINOLOGI SISTEM IGITAL. Aljabar Boolean Aljabar Boolean memuat aturan-aturan umum (postulat) yang menyatakan hubungan antara input-input suatu rangkaian logika dengan output-outputnya.
TI 2013 IE-204 Elektronika Industri & Otomasi UKM
TI 23 IE-24 Elektronika Industri & Otomasi UKM Lampiran C Aljabar Boolean Tupel Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan ang didefinisikan pada operaror +,,
DEFINISI ALJABAR BOOLEAN
ALJABAR BOOLEAN DEFINISI ALJABAR BOOLEAN Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan - dan adalah dua elemen yang berbeda
Aljabar Boolean. Bahan Kuliah Matematika Diskrit
Aljabar Boolean Bahan Kuliah Matematika Diskrit Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan -
ALJABAR BOOLEAN. Misalkan terdapat. Definisi:
ALJABAR BOOLEAN Definisi: Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada opeartor +,, dan - dan adalah dua elemen yang berbeda dari B. Tupel
Aljabar Boolean. Rinaldi Munir/IF2151 Mat. Diskrit 1
Aljabar Boolean Rinaldi Munir/IF25 Mat. Diskrit Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan -
Logika Matematika Aljabar Boolean
Pertemuan ke-5 Logika Matematika Aljabar Boolean Oleh : Mellia Liyanthy 1 TEKNIK INFORMATIKA UNIVERSITAS PASUNDAN TAHUN AJARAN 2007/2008 Bentuk Kanonik dan Bentuk baku atau standar Fungsi boolean yang
Matematika informatika 1 ALJABAR BOOLEAN
Matematika informatika 1 ALJABAR BOOLEAN ALJABAR BOOLEAN Matematika yang digunakan untuk menganalisis dan menyederhanakan Gerbang Logika pada Rangkaian-rangkaian Digital Elektronika. Boolean pada dasarnya
ebook PRINSIP & PERANCANGAN LOGIKA Fakultas Teknologi Industri Universitas Gunadarma 2013
Penyusun :. Imam Purwanto, S.Kom, MMSI 2. Ega Hegarini, S.Kom., MM 3. Rifki Amalia, S.Kom., MMSI 4. Arie Kusumawati, S.Kom ebook PRINSIP & PERANCANGAN LOGIKA Fakultas Teknologi Industri Universitas Gunadarma
BAB 4. Aljabar Boolean
BAB 4 Aljabar Boolean 1. PENDAHULUAN Aljabar Boolean merupakan lanjutan dari matakuliah logika matematika. Definisi aljabar boolean adalah suatu jenis manipulasi nilai-nilai logika secara aljabar. Contoh
Penyederhanaan Fungsi Logika [Sistem Digital] Eka Maulana, ST, MT, MEng. Universitas Brawijaya
Penyederhanaan Fungsi Logika [Sistem Digital] Eka Maulana, ST, MT, MEng. Universitas Brawijaya Mengapa perlu Penyederhanaan? SEDERHANA Cheaper Smaller Faster Diperlukan MANIPULASI ALJABAR BOOLE Metode:
RANGKAIAN LOGIKA KOMBINASI BAGIAN 1 : RANGKAIAN GERBANG DAN PERSAMAAN BOOLEAN
Pengantar Sistem Digital RANGKAIAN LOGIKA KOMBINASI BAGIAN 1 : RANGKAIAN GERBANG DAN PERSAMAAN BOOLEAN Odd semester 2012/2013 2 Outline Bagian 1: Logika Biner Gerbang Logika Dasar Aljabar Boolean, Manipulasi
Pertemuan ke-4 ALJABAR BOOLEAN I
Pertemuan ke-4 ALJABAR BOOLEAN I Materi Perkuliahan a. Pengertian Aljabar Boolean b. Ekspresi Boolean c Prinsip Dualitas Kompetensi Umum Setelah mengikuti perkuliah ini, diharapkan Anda dapat memahami
Soal Latihan Bab Tentukanlah kompelemen 1 dan kompelemen 2 dari bilangan biner berikut:
1 Soal Latihan Bab 1 1. Nyatakanlah bilangan-bilangan desimal berikut dalam sistem bilangan: a. Biner, b. Oktal, c. Heksadesimal. 5 11 38 1075 35001 0.35 3.625 4.33 2. Tentukanlah kompelemen 1 dan kompelemen
Algoritma & Pemrograman 2C Halaman 1 dari 7 ALJABAR BOOLEAN
Algoritma & Pemrograman 2C Halaman 1 dari 7 ALJAAR OOLEAN Aljabar boolean merupakan aljabar yang berhubungan dengan variabel-variabel biner dan operasi-operasi logik. Variabel-variabel diperlihatkan dengan
KARNAUGH MAP (K-MAP) (I)
KARNAUGH MAP (K-MAP) (I) Pokok ahasan : K-map 2 variabel K-map 3 variabel K-map 4 variabel Tujuan Instruksional Khusus :. Mahasiswa dapat menerangkan dan memahami cara membuat k-map 2, 3, dan 4 bariabel
KARNAUGH MAP (K-MAP) (I)
KARNAUGH MAP (K-MAP) (I) Pokok ahasan : K-map K-map K-map 2 3 4 variabel variabel variabel Tujuan Instruksional Khusus :. Mahasiswa dapat menerangkan dan memahami cara membuat k-map 2, 3, dan 4 bariabel
FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA LAB SHEET TEKNIK DIGITAL LS 2 : Aljabar Boolean, Teori De Morgan I dan De Morgan II
No. LST/EKO/DEL 214/02 Revisi : 04 Tgl : 1 Februari 2012 Hal 1 dari 8 1. Kompetensi Memahami Product hukum aljabar Boolean termasuk hukum De Morgan, dan prinsip Sum of 2. Sub Kompetensi Memahami penerapan
GERBANG LOGIKA. Keadaan suatu sistem Logika Lampu Switch TTL CMOS NMOS Test 1 Tinggi Nyala ON 5V 5-15V 2-2,5V TRUE 0 Rendah Mati OFF 0V 0V 0V FALSE
GERBANG LOGIKA I. KISI-KISI. Gerbang Logika Dasar (AND, OR, NOT, NAND, NOR, EXOR, EXNOR). AStable Multi Vibrator (ASMV) dan MonoStable MultiVibrator (MSMV). BiStable Multi Vibrator (SR-FF, JK-FF, D-FF,
BAHAN AJAR SISTEM DIGITAL
BAHAN AJAR SISTEM DIGITAL JURUSAN TEKNOLOGI KIMIA INDUSTRI PENDIDIKAN TEKNOLOGI KIMIA INDUSTRI MEDAN Disusun oleh : Golfrid Gultom, ST Untuk kalangan sendiri 1 DASAR TEKNOLOGI DIGITAL Deskripsi Singkat
Aljabar Boolean. Rudi Susanto
Aljabar Boolean Rudi Susanto Tujuan Pembelajaran Bisa menghasilkan suatu realisasi rangkaian elektronika digital dari suatu persamaan logika matematika Persamaan logika matematika tersebut dimodifikasi
PRAKTIKUM RANGKAIAN DIGITAL
PRAKTIKUM RANGKAIAN DIGITAL RANGKAIAN LOGIKA TUJUAN 1. Memahami berbagai kombinasi logika AND, OR, NAND atau NOR untuk mendapatkan gerbang dasar yang lain. 2. Menyusun suatu rangkaian kombinasi logika
DCH1B3 Konfigurasi Perangkat Keras Komputer
/26/26 DCHB3 Konfigurasi Perangkat Keras Komputer Desain Rangkaian Logika Kombinasional /26/26 DCHB3 Konfigurasi Perangkat Keras Komputer /26/26 Inti pembelajaran Bisa merealisasikan persamaan Boolean
Perancangan Rangkaian Logika. Sintesis Rangkaian Logika
Sintesis Rangkaian Logika Eko Didik Widianto ([email protected]) 21 Maret 2011 Program Studi Sistem Komputer - Universitas Diponegoro Artikel ini menjelaskan secara khusus langkah-langkah sintesis untuk
O L E H : H I DAYAT J U R U SA N TEKNIK KO M P U TER U N I KO M 2012
O L E H : H I DAYAT J U R U SA N TEKNIK KO M P U TER U N I KO M 2012 Outline Penjelasan tiga operasi logika dasar dalam sistem digital. Penjelasan Operasi dan Tabel Kebenaran logika AND, OR, NAND, NOR
ALJABAR BOOLEAN R I R I I R A W A T I, M. K O M L O G I K A M A T E M A T I K A 3 S K S
ALJABAR BOOLEAN R I R I I R A W A T I, M. K O M L O G I K A M A T E M A T I K A 3 S K S AGENDA SISTEM BILANGAN DESIMAL, BINER, OCTAL, HEXADESIMAL DEFINISI ALJABAR BOOLEAN TABEL KEBENARAN ALJABAR BOOLEAN
Aljabar Boolean, Sintesis Ekspresi Logika
, Eko Didik Widianto ([email protected]) Sistem Komputer - Universitas Diponegoro @2011 eko didik widianto siskom-undip SK205 Sistem Digital 1 / 38 Review Kuliah Sebelumnya konsep rangkaian logika telah
BAB IV PENYEDERHANAAN RANGKAIAN LOGIKA
B IV PENYEDERHANAAN RANGKAIAN LOGIKA 4. Penyederhanaan Secara Aljabar Bentuk persamaan logika sum of minterm dan sum of maxterm yang diperoleh dari tabel kebenaran umumnya jika diimplementasikan ternyata
BAB II ALJABAR BOOLEAN DAN GERBANG LOGIKA
BAB II ALJABAR BOOLEAN DAN GERBANG LOGIKA Alokasi Waktu : 8 x 45 menit Tujuan Instruksional Khusus : 1. Mahasiswa dapat menjelaskan theorema dan sifat dasar dari aljabar Boolean. 2. Mahasiswa dapat menjelaskan
yang paling umum adalah dengan menspesifikasikan unsur unsur pembentuknya (Definisi 2.1 Menurut Lipschutz, Seymour & Marc Lars Lipson dalam
2.1 Definisi Aljabar Boolean Aljabar Boolean dapat didefinisikan secara abstrak dalam beberapa cara. Cara yang paling umum adalah dengan menspesifikasikan unsur unsur pembentuknya dan operasi operasi yang
Tabel kebenaran untuk dua masukan (input) Y = AB + AB A B Y
G.Gerbang X-OR dan Gerbang X-NOR 1. Gerbang X-OR dalah komponen logika yang keluarannya bernilai 1 bila terminal masukannya tidak sama, atau dengan persamaan ditulis : Y = + Simbol gerbang X-OR untuk dua
Persamaan SOP (Sum of Product)
Persamaan SOP (Sum of Product) 3 Variabel,, 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 Diktat Elektronika Digital Persamaan SOP dan Peta Karnaugh Perhatikan F=1 digunakan untuk membentuk
Bahan Kuliah. Priode UTS-UAS DADANG MULYANA. dadang mulyana 2012 ALJABAR BOOLEAN. dadang mulyana 2012
Bahan Kuliah LOGIKA Aljabar MATEMATIKA- Boolean Priode UTS-UAS DADANG MULYANA dadang mulana 22 ALJABAR BOOLEAN dadang mulana 22 Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan -
Aljabar Boolean, Sintesis Ekspresi Logika
, Eko Didik Widianto ([email protected]) Sistem Komputer - Universitas Diponegoro @2011 eko didik widianto (http://didik.blog.undip.ac.id) TSK205 Sistem Digital - Siskom Undip 1 / 39 Review Kuliah Sebelumnya
Aljabar Boolean. Adri Priadana
Aljabar Boolean Adri Priadana Pengantar Aljabar Boolean ditemukan oleh George Boole, pada tahun 854. Boole melihat bahwa himpunan dan logika proposisi mempunyai sifat-sifat yang serupa (kemiripan hukum-hukum
MAKALAH SISTEM DIGITAL
MAKALAH SISTEM DIGITAL Konsep Dasar Teorema Boole & De Morgan Disusun Oleh : Anin Rodahad (12131307) Abdurrahman Ar-Rohim (12131299) Bayu Ari Utomo () TEKNIK INFORMATIKA STMIK EL RAHMA YOGYAKARTA Jl. Sisingamangaraja
Rangkaian Logika Kombinasional Teknik Digital (TKE071207) Program Studi Teknik Elektro, Unsoed
Rangkaian Logika Kombinasional Teknik Digital (TKE071207) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2012/2013 Operasi logika dasar. Aljabar Boolean. (menggambarkan
BAB 10. DESAIN RANGKAIAN BERURUT
BAB 10. DESAIN RANGKAIAN BERURUT 2 DESAIN PENCACAH NILAI SPESIFIKASI : X=1 cacahan naik 2, z= 1 jika cacahan > 5 X=0 cacahan turun 1, z= 1 jika cacahan < 0 mesin Mealy 3 0 DESAIN PENCACAH NILAI 1/1 1/0
FPMIPA UPI ILMU KOMPUTER I. TEORI HIMPUNAN
I. TEORI HIMPUNAN 1. Definisi Himpunan hingga dan Tak hingga 2. Notasi himpuanan 3. Cara penulisan 4. Macam-macam Himpunan 5. Operasi Himpunan 6. Hukum pada Operasi Himpunan 7. Perkalian Himpunan (Product
ALJABAR BOLEAN. Hukum hukum ALjabar Boolean. 1. Hukum Komutatif
LJBR BOLEN Diktat Elektronika Digital ljabar Boolean Dalam matematika dan ilmu komputer, ljabar Boolean adalah struktur aljabar yang "mencakup intisari" operasi logika DN, TU dan TIDK dan juga teori himpunan
Review Sistem Digital : Logika Kombinasional
JURUSAN PENDIDIKAN TEKNIK ELEKTRONIKA FAKULTAS TEKNIK UNY Sem 5 9/ Review Sistem Digital : Logika Kombinasional S dan D3 Mata Kuliah : Elektronika Industri 2 5 Lembar Kerja 2. Jaringan Pensaklaran (Switching
Kuliah#4 TKC205 Sistem Digital - TA 2013/2014. Eko Didik Widianto
Logika Logika Kuliah#4 TKC205 Sistem Digital - TA 2013/2014 Eko Didik Sistem Komputer - Universitas Diponegoro http://didik.blog.undip.ac.id 1 Umpan Balik Sebelumnya dibahas tentang implementasi fungsi
Output b akan ada aliran arus dari a jika saklar x ditutup dan sebaliknya Output b tidak aliran arus dari a jika saklar x dibuka.
A. TUJUAN : FAKULTAS TEKNIK Semester 5 LOGIKA KOMBINASIONAL 2 4 5 No. LST/EKA/PTE23 Revisi : Tgl : 7-2-2 Hal dari 22 Setelah selesai pembelajaran diharapkan mahasiswa dapat. Menjelaskan kembali prinsip-prinsip
DIKTAT SISTEM DIGITAL
DIKTAT SISTEM DIGITAL Di Susun Oleh: Yulianingsih Fitriana Destiawati UNIVERSITAS INDRAPRASTA PGRI JAKARTA 2013 DAFTAR ISI BAB 1. SISTEM DIGITAL A. Teori Sistem Digital B. Teori Sistem Bilangan BAB 2.
BAB 6 ALJABAR BOOLE. 1. Definisi Dasar. Teorema 1 MATEMATIKA DISKRIT
BAB 6 ALJABAR BOOLE 1. Definisi Dasar Himpunan dan proposisi mempunyai sifat yang serupa yaitu memenuhi hukum identitas. Hukum ini digunakan untuk mendefinisikan struktur matematika abstrak yang disebut
Sistem Digital. Sistem Angka dan konversinya
Sistem Digital Sistem Angka dan konversinya Sistem angka yang biasa kita kenal adalah system decimal yaitu system bilangan berbasis 10, tetapi system yang dipakai dalam computer adalah biner. Sistem Biner
Kuliah#4 TSK205 Sistem Digital - TA 2011/2012. Eko Didik Widianto
Logika Logika Kuliah#4 TSK205 Sistem Digital - TA 2011/2012 Eko Didik Teknik Sistem Komputer - Universitas Diponegoro Umpan Balik Sebelumnya dibahas tentang implementasi fungsi logika menjadi suatu rangkaian
Aljabar Boolean. IF2120 Matematika Diskrit. Oleh: Rinaldi Munir Program Studi Informatika, STEI-ITB. Rinaldi Munir - IF2120 Matematika Diskrit
Aljabar Boolean IF22 Matematika Diskrit Oleh: Rinaldi Munir Program Studi Informatika, STEI-ITB Rinaldi Munir - IF22 Matematika Diskrit Pengantar Aljabar Boolean ditemukan oleh George Boole, pada tahun
Representasi Boolean
Aljabar Boolean Boolean Variable dan Tabel Kebenaran Gerbang Logika Aritmatika Boolean Identitas Aljabar Boolean Sifat-sifat Aljabar Boolean Aturan Penyederhanaan Boolean Fungsi Eksklusif OR Teorema De
REPRSENTASI FUNGSI BOOLE PADA GRAF KUBUS
Prosiding Seminar Nasional Matematika dan Terapannya 2016 p-issn : 2550-038; e-issn : 2550-0392 REPRSENTASI FUNGSI BOOLE PADA GRAF KUBUS Wulan Cahyani Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan
PRAKTIKUM TEKNIK DIGITAL
MODUL PRAKTIKUM TEKNIK DIGITAL PROGRAM STUDI S1 TEKNIK INFORMATIKA ST3 TELKOM PURWOKERTO 2015 A. Standar Kompetensi MODUL I ALJABAR BOOLE DAN RANGKAIAN KOMBINASIONAL Mata Kuliah Semester : Praktikum Teknik
Definisi Aljabar Boolean
1 UNTUK DOWNLOAD LEBIH BANYAK EBOOKS TENTANG KOMPUTER KUNJUNGI http://wirednotes.blogspot.com Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner: - B : himpunan
09/01/2018. Capaian Pembelajaran Mahasiswa dapat menjelaskan konsep diagram Venn, teorema Boolean dan membangun fungsi Boolean.
Prio Handoko, S. Kom., M.T.I. Capaian Pembelajaran Mahasiswa dapat menjelaskan konsep diagram Venn, teorema Boolean dan membangun fungsi Boolean. George Boole (ahli matematika asal Inggris) Aljabar yang
Review Sistem Digital : Aljabar Boole
JURUSAN PENDIDIKAN TEKNIK ELEKTRONIKA FAKULTAS TEKNIK UNY Sem 5 9/ Review Sistem Digital : Aljabar Boole S dan D3 Mata Kuliah : Elektronika Industri 2 x 5 Lembar Kerja Dalam Aljabar Boole, Misalkan terdapat
Mata Kuliah Arsitektur Komputer Program Studi Sistem Informasi 2013/2014 STMIK Dumai -- Materi 08 --
Mata Kuliah Arsitektur Komputer Program Studi Sistem Informasi 23/24 STMIK Dumai -- Materi 8 -- Digital Principles and Applications, Leach-Malvino, McGraw-Hill Adhi Yuniarto L.Y. Boolean Algebra. Fasilkom
Konversi Tabel Kebenaran Ke Ekspresi Boolean (1) Disain sistem digital diawali dengan:
Peta Karnaugh Konversi Tabel Kebenaran Ke Ekspresi Boolean (1) Disain sistem digital diawali dengan: Tabel kebenaran yang menggambarkan bagaimana sebuah sistem digital harus bekarja Perancangan sistem
BAB I PENDAHULUAN. Fungsi Boolean seringkali mengandung operasi operasi yang tidak perlu, literal
BAB I PENDAHULUAN 1.1 Latar Belakang Fungsi Boolean seringkali mengandung operasi operasi yang tidak perlu, literal atau suku suku yang berlebihan. Oleh karena itu fungsi Boolean dapat disederhanakan lebih
BAB 6 ALJABAR BOOLE. 1. Definisi Dasar MATEMATIKA DISKRIT
BAB 6 ALJABAR BOOLE 1. Definisi Dasar Himpunan dan proposisi mempunyai sifat yang serupa yaitu memenuhi hukum identitas. Hukum ini digunakan untuk mendefinisikan struktur matematika abstrak yang disebut
Gerbang dan Rangkaian Logika
Gerbang dan Rangkaian Logika Teknik Digital (TKE 071207) Iwan Setiawan stwn at unsoed.ac.id Pemutakhiran terakhir: 24/04/11 20:51 rangkaian digital beroperasi dalam mode biner. (masukan tegangan bernilai
Organisasi & Arsitektur Komputer
Organisasi & Arsitektur Komputer 1 Logika Digital Eko Budi Setiawan, S.Kom., M.T. Eko Budi Setiawan [email protected] www.ekobudisetiawan.com Teknik Informatika - UNIKOM 2013 Pendahuluan Gerbang
BAB 2 GERBANG LOGIKA & ALJABAR BOOLE
SISTEM DIGITL 16 2 GERNG LOGIK & LJR OOLE Gerbang Logika (Logical Gates) atau gerbang digital merupakan komponen dasar elektronika digital. erbeda dengan komponen elektronika analog yang mempunyai tegangan
Pertemuan 8. Aplikasi dan penyederhanaan Aljabar Boolean
Pertemuan 8 Aplikasi dan penyederhanaan Aljabar Boolean Dosen Ir. Hasanuddin Sirait, MT www.hsirait.wordpress.com STMIK Parna Raya Manado HP : 8356633766 Aplikasi Aljabar Boolean Aljabar Boolean mempunyai
Kuliah#4 TKC205 Sistem Digital. Eko Didik Widianto
& & Kuliah#4 TKC205 Sistem Digital Eko Didik Departemen Teknik Sistem Komputer, Universitas Diponegoro http://didik.blog.undip.ac.id/buku/sistem-digital/ 1 Umpan Balik Sebelumnya dibahas tentang implementasi
Mata Kuliah TKE 113. Ir. Pernantin Tarigan, M.Sc Fahmi, S.T, M.Sc Departemen Teknik Elektro Universitas Sumatera Utara USU
Mata Kuliah Dasar Teknik Digital TKE 113 10. DESAIN RANGKAIAN BERURUT Ir. Pernantin Tarigan, M.Sc Departemen Teknik Elektro Universitas Sumatera Utara USU 2006 Desain Pencacah Nilai, spesifikasi: i X=1
Matematika Logika Aljabar Boolean
Pertemuan ke-3 Matematika Logika Aljabar Boolean Oleh : Mellia Liyanthy TEKNIK INFORMATIKA UNIVERSITAS PASUNDAN TAHUN AJARAN 2011/2012 Definisi Aljabar Boolean merupakan aljabar yang terdiri atas : suatu
Karnaugh MAP (Bagian 1)
Tahun kademik 2015/2016 Semester I DIG13 Konfigurasi Perangkat Keras Komputer Karnaugh MP (agian 1) Mohamad Dani (MHM) E-mail: [email protected] Hanya dipergunakan untuk kepentingan pengajaran di
Penyederhanaan Fungsi Boolean
Penyederhanaan Fungsi Boolean Contoh. f(x, y) = x y + xy + y disederhanakan menjadi f(x, y) = x + y Penyederhanaan fungsi Boolean dapat dilakukan dengan 3 cara:. Secara aljabar 2. Menggunakan Peta Karnaugh
BAB III GERBANG LOGIKA DAN ALJABAR BOOLEAN
A III GERANG LOGIKA DAN ALJAAR OOLEAN 3. Pendahuluan Komputer, kalkulator, dan peralatan digital lainnya kadang-kadang dianggap oleh orang awam sebagai sesuatu yang ajaib. Sebenarnya peralatan elektronika
