ROOTS OF NON LINIER EQUATIONS

Ukuran: px
Mulai penontonan dengan halaman:

Download "ROOTS OF NON LINIER EQUATIONS"

Transkripsi

1 ROOTS OF NON LINIER EQUATIONS Metode Bag da (Bsecton Method) Metode Regla Fals (False Poston Method) Metode Grak Iteras Ttk-Tetap (F Pont Iteraton) Metode Newton-Raphson Metode Secant

2 SOLUSI PERSAMAAN KUADRAT TINGKAT 2 ( ) a 2 b c 0 b 2 b 2a 4ac Persamaan d atas member akar-akar penelesaan ntk ngs aljabar() Yat nla-nla ang memberkan () = 0 Kala persaamaanna () = e - -?

3 OVERVIEW OF METHODS Bracketng methods Graphng method Bsecton method False poston Open methods One pont teraton Newton-Raphson Secant method

4 SPECIFIC STUDY OBJECTIVES Memaham konsep konvergens dan dvergens. Memaham bahwa metode terttp selal konvergen, sedangkan metode terbka kadang-kadang dvergen. Konvergens pada metode terbka basana ddapat jka ntal gess na dekat dengan akar sebenarna.

5 METODE TERTUTUP Graphcal Bsecton method False poston method

6 CARA GRAFIK Plotkan ngsna dan tentkan dmana memotong smb. Lacks precson ()=e Tral and error ()

7 CARA GRAFIK (LIMITED PRACTICAL VALUE) () Pembatas atas dan Bawah memlk tanda sama. Akar tdak ada ata banak akar () () () Tanda berbeda, jmlah akar-akar ganjl

8 BISECTION METHOD Memanaatkan beda tanda da nla batas ( l )( ) < 0 dmana l=lower (batas bawah) dan =pper (batas atas) Mnmal ada sat akar () () ()

9 ALGORITHM Plh dan l. Cek beda tanda nla ngs kedana ( l )( ) < 0 Perkrakan akar r = ( l + ) / 2 Tentkan nterval berkt ada d sbnterval atas ata sbnterval bawah ( l )( r ) < 0 then bar = r RETURN ( l )( r ) >0 then l bar = r RETURN ( l )( r ) =0 then root eqals r -COMPLETE

10 METODE BAGI DUA Asms: Fngs () kontn dalam nterval ( 0 a0) ( b ) 0 a 0,b 0 do n = 0,, m ( a ) / n bn 2 ( an ) ( m) 0, then an an, else a n m, end do b a n n b n b n or ( m) 0 b n et m

11 BISECTION METHOD

12 ERROR a perkraanakhr perkraan perkraan akhr awal 00

13 CONTOH Gnakan bsecton method ntk mencar akar-akar persamaan () = e l = - = ()

14 SOLUTION ()

15 SOLUTION 2 ()

16 FALSE POSITION METHOD Brte Force dar metode bag da krang esen Menghbngkan da nla batas dengan gars lrs Menggant krva menjad gars lrs memberkan alse poston Mempercepat perkraan

17 Based on smlar net estmate, r ( ) trangles l ( l ) r r l l r l l Nla (r) dcek tandana, kemdan tentkan dan l ang bar berdasarkan perbedaan tanda sepert pada metode bag da

18 REGULA FALSI Asms: Fngs () kontn dalam nterval ( 0 a0) ( b ) 0 a 0,b 0 do n = 0,, w [ ( bn ) an ( an) bn ]/[ ( bn ) ( an)] ( an) ( w) 0 then a a,, else a n w, end do b a n n b n b n n n or ( w) 0 b n et w

19 REGULA FALSI

20 CONTOH Tentkan akar persamaan dar persamaan berkt menggnakan alse poston method, mla dengan ntal estmate l =4.55 and =4.65 () = 3-98 ()

21 OPEN METHODS Smple one pont teraton Newton-Raphson method Secant method Pada metode terttp, akar terdapat d antara keda nterval ang dbatas batas atas dan bawah

22 OPEN METHODS Metode terbka dharapkan konvergen solton moves closer to the root as the comptaton progresses Metode terbka; sngle startng vale, ata two startng vales that do not necessarl bracket the root Ada kemngknan metode n dvergen solton moves arther rom the root as the comptaton progresses

23 () ( + ) The tangent gves net estmate. + ( )

24 () Solton can overshoot the root and potentall dverge 2 0

25 SIMPLE ONE POINT ITERATION METODE TITIK TETAP Merbah ormla ntk memperkrakan akar Re-arrange ngs () sehngga ada sat nla pada sebelah kr dar persamaan / Contoh, ntk () = = 0 Ubah menjad = ( 2 + 3) / 2

26 SIMPLE ONE POINT ITERATION Contoh lan, ntk () = sn = 0, menjad = sn + Htng nla = g() Perkraan nla berkt berdasar pada + = g( )

27 ITERASI TITIK TETAP

28 CONTOH Untk () = e - -3 Ubah menjad g() = e - / 3 Intal gess = 0 ()

29 Intal gess g() () a ()

30 METODE NEWTON RAPHSON ( ) tangent d tangent d ' rearrange ' 0 + '

31 METODE NEWTON-RAPHSON

32 NEWTON RAPHSON PITFALLS

33 CONTOH Gnakan metode Newton Raphson ntk mencar akarakar dar () = 2 - memaka ntal gess = 3 ()

34 NEWTON RHAPSON SECANT Inclde an pper lmt on the nmber o teratons Establsh a tolerance, s Check to see a s ncreasng Bagamana jka trnan ngsna slt dpecahkan? SECANT METHOD

35 SECANT METHOD Memperkrakan trnan menggnakan nte dvded derence ' APAKAH nte dvded derence? HINT: d / d = / Maskkan FDD pada rms ntk Newton Raphson

36 SECANT METHOD ' Maskkan perkraan dengan nte derence pada rms ntk Newton Raphson

37 METODE SECANT

38 SECANT METHOD Membthkan da nla perkraan awal () tdak hars berbeda tanda, membedakan dengan metode terttp, alse poston method.

39 () FALSE POSITION 2 SECANT METHOD () 2 new est. Perkraan bar dplh dar potongan gars dengan smb new est. Perkraan bar bsa dlar batas krva

40 SYSTEMS OF NON-LINEAR EQUATIONS Kta telah mengenal sstem persamaan lner () = a + a a n n -C = 0 dmana a, a 2... a n dan C adalah konstanta Maka, perhatkan sstem persamaan non-lner = = 3 Selesakan dan

41 SYSTEMS OF NON-LINEAR EQUATIONS Bat persamaan sama dengan nol = v = (,) = = 0 v(,) = = 0 Sols adalah nla-nla dan ang akan memberkan nla ngs dan v sama dengan nol.

42 METODE TITIK TETAP Mla dengan nla awal 0 =.5 dan 0 =

43 METODE NEWTON RHAPSON v v v v v v v v Vers da persamaan ntk Newton-Raphson (,) dan v(,)

44 DETERMINAN JACOBIAN (TAMBAHAN SAJA) v v v v v v v v THE DENOMINATOR OF EACH OF THESE EQUATIONS IS FORMALLY REFERRED TO AS THE DETERMINANT OF THE JACOBIAN

45 JACOBIAN (TAMBAHAN JUGA) The general denton o the Jacoban or n nctons o n varables s the ollowng set o partal dervatves: n n n n n n n n ),...,, ( ),...,, (

46 JACOBIAN (INI JUGA TAMBAHAN) The Jacoban can be sed to calclate dervatves rom a ncton n one coordnate stem rom the dervatves o that same ncton n another coordnate sstem. Eqatons =(,), v=g(,), then and can be determned as nctons o and v (possessng rst partal dervatves) as ollows: Wth smlar nctons or v and v. The determnants n the denomnators are eamples o the se o Jacobans. g g g g g g g g g g g v / ; / );, ( / ; / );, (

47 CONTOH = v = Mla dengan nla awal 0 = 0.5 dan 0 =.5 v v 2 6 ; 2 ; 4 ;

ROOTS OF Non Linier Equations

ROOTS OF Non Linier Equations ROOTS OF Non Lner Eqatons Metode Bag da (Bsecton Method) Metode Regla Fals (False Poston Method) Metode Grak Iteras Ttk-Tetap (F Pont Iteraton) Metode Newton-Raphson Metode Secant Sols Persamaan Kadrat

Lebih terperinci

ROOTS OF NON LINIER EQUATIONS

ROOTS OF NON LINIER EQUATIONS ROOTS OF NON LINIER EQUATIONS ROOTS OF NON LINIER EQUATIONS Metode Bagi dua (Bisection Method) Metode Regula Falsi (False Position Method) Metode Grafik Iterasi Titik-Tetap (Fi Point Iteration) Metode

Lebih terperinci

Pertemuan ke-4 Analisa Terapan: Metode Numerik. 4 Oktober 2012

Pertemuan ke-4 Analisa Terapan: Metode Numerik. 4 Oktober 2012 Pertemuan ke-4 Analsa Terapan: Metode Numerk 4 Oktober Persamaan Non Non--Lner: Metode NewtonNewton-Raphson Dr.Eng. Agus S. Muntohar Metode Newton Newton--Raphson f( f( f( + [, f(] + = α + + f( f ( Gambar

Lebih terperinci

Menemukan Akar-akar Persamaan Non-Linear

Menemukan Akar-akar Persamaan Non-Linear Menemukan Akar-akar Persamaan Non-Linear Muhtadin, ST. MT. Agenda Metode Tertutup Biseksi Regula Falsi Metode Terbuka Newton Method 3 Solusi untuk Persamaan Non Linear Akar-akar dari persamaan (y = f())

Lebih terperinci

Misalkan S himpunan bilangan kompleks. Fungsi kompleks f pada S adalah aturan yang

Misalkan S himpunan bilangan kompleks. Fungsi kompleks f pada S adalah aturan yang Fngs Analtk FUNGSI ANALITIK Fngs sebt analtk ttk apabla aa sema ttk paa sat lngkngan Untk mengj keanaltkan sat ngs kompleks w = = + gnakan persamaan Cach Remann Sebelm mempelejar persamaan Cach-Remann

Lebih terperinci

METODE NUMERIK. Akar Persamaan (2) Pertemuan ke - 4. Rinci Kembang Hapsari, S.Si, M.Kom

METODE NUMERIK. Akar Persamaan (2) Pertemuan ke - 4. Rinci Kembang Hapsari, S.Si, M.Kom METODE NUMERIK Pertemuan ke - 4 Akar Persamaan (2) Metode Akar Persamaan Metode Grafik Metode Tabulasi Metode Setengah Interval Metode Regula Falsi Metode Newton Rephson Metode Iterasi bentuk = g() Metode

Lebih terperinci

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2.

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2. KOMPUTASI NUMERIS Teknik dan cara menyelesaikan masalah matematika dengan pengoperasian hitungan Mencakup sejumlah besar perhitungan aritmatika yang sangat banyak dan menjemukan Diperlukan komputer MOTIVASI

Lebih terperinci

Bab 2. Penyelesaian Persamaan Non Linier

Bab 2. Penyelesaian Persamaan Non Linier Bab 2. Penyelesaian Persamaan Non Linier 1 Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode Newton-Raphson Metode Secant. 2 Persamaan Non Linier penentuan

Lebih terperinci

Persamaan Non Linier

Persamaan Non Linier Persamaan Non Linier Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode Newton-Raphson Metode Secant. Persamaan Non Linier penentuan akar-akar persamaan

Lebih terperinci

Persamaan yang kompleks, solusinya susah dicari. Contoh :

Persamaan yang kompleks, solusinya susah dicari. Contoh : AKAR PERSAMAAN NON LINEAR Persamaan hingga derajat dua, masih mudah diselesaikan dengan cara analitik. Contoh : a + b + c = 0 Solusi : 1 = b ± b 4 ac a Persamaan yang kompleks, solusinya susah dicari.

Lebih terperinci

PRAKTIKUM 6 Penyelesaian Persamaan Non Linier Metode Newton Raphson Dengan Modifikasi Tabel

PRAKTIKUM 6 Penyelesaian Persamaan Non Linier Metode Newton Raphson Dengan Modifikasi Tabel PRAKTIKUM 6 Penyelesaan Persamaan Non Lner Metode Newton Raphson Dengan Modfkas Tabel Tujuan : Mempelajar metode Newton Raphson dengan modfkas tabel untuk penyelesaan persamaan non lner Dasar Teor : Permasalahan

Lebih terperinci

METODE NUMERIK TKM4104. Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1

METODE NUMERIK TKM4104. Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1 METODE NUMERIK TKM4104 Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1 SOLUSI PERSAMAAN NONLINIER Metode pengurung (Bracketing Method) Metode Konvergen Mulai dengan terkaan awal yang mengurung atau memuat akar

Lebih terperinci

METODE NUMERIK TKM4104. KULIAH KE-3 SOLUSI PERSAMAAN NONLINIER 1

METODE NUMERIK TKM4104. KULIAH KE-3 SOLUSI PERSAMAAN NONLINIER 1 METODE NUMERIK TKM4104. KULIAH KE-3 SOLUSI PERSAMAAN NONLINIER 1 METODE NUMERIK TKM4104 Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1 SOLUSI PERSAMAAN NONLINIER Metode pengurung (Bracketing Method) Metode Konvergen

Lebih terperinci

Program Studi Pendidikan Matematika UNTIRTA. 17 Maret 2010

Program Studi Pendidikan Matematika UNTIRTA. 17 Maret 2010 Solusi Program Studi Pendidikan Matematika UNTIRTA 17 Maret 2010 (Program Studi Pendidikan Matematika Solusi UNTIRTA) 17 Maret 2010 1 / 12 Rumusan Masalah Tentukan solusi dengan f fungsi nonlinear. f (x)

Lebih terperinci

Bab 2 AKAR-AKAR PERSAMAAN

Bab 2 AKAR-AKAR PERSAMAAN Analsa Numerk Bahan Matrkulas Bab AKAR-AKAR PERSAMAAN Pada kulah n akan dpelajar beberapa metode untuk mencar akar-akar dar suatu persamaan yang kontnu. Untuk persamaan polnomal derajat, persamaannya dapat

Lebih terperinci

METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR

METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR Metode Biseksi Ide awal metode ini adalah metode table, dimana area dibagi menjadi N bagian. Hanya saja metode biseksi ini membagi range menjadi 2 bagian, dari

Lebih terperinci

Persamaan Non Linier

Persamaan Non Linier Persamaan Non Linier MK: METODE NUMERIK Oleh: Dr. I GL Bagus Eratodi FTI Undiknas University Denpasar Persamaan Non Linier Metode Tabulasi Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode

Lebih terperinci

Metode Numerik. Persamaan Non Linier

Metode Numerik. Persamaan Non Linier Metode Numerik Persamaan Non Linier Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode Newton-Raphson Metode Secant. Persamaan Non Linier penentuan akar-akar

Lebih terperinci

Penyelesaian Persa. amaan Non Linier. Metode Iterasi Sederhana Metode Newton Raphson. Metode Secant. Metode Numerik. Iterasi/NewtonRaphson/Secant

Penyelesaian Persa. amaan Non Linier. Metode Iterasi Sederhana Metode Newton Raphson. Metode Secant. Metode Numerik. Iterasi/NewtonRaphson/Secant Penyelesaian Persa amaan Non Linier Metode Iterasi Sederhana Metode Newton Raphson Permasalahan Titik Kritis pada Newton Raphson Metode Secant Iterasi/NewtonRaphson/Secant Metode Numerik - Metode Iter

Lebih terperinci

Persamaan Non Linier 1

Persamaan Non Linier 1 Persamaan Non Linier 1 Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode Newton-Raphson Metode Secant. 2 Persamaan Non Linier Penentuan akar-akar persamaan

Lebih terperinci

BAB IV. Pencarian Akar Persamaan Tak Linier. FTI-Universitas Yarsi

BAB IV. Pencarian Akar Persamaan Tak Linier. FTI-Universitas Yarsi BAB IV Pencarian Akar Persamaan Tak Linier i 1 Pendahuluan Salah satu masalah dalam matematika & teknik Akar dari f() adalah sehingga f() = 0. Secara geometris, ajar dari f() adalah nilai sehingga kurva

Lebih terperinci

Pendahuluan. 0 Dengan kata lain jika fungsi tersebut diplotkan, grafik yang dihasilkan akan mendekati pasanganpasangan

Pendahuluan. 0 Dengan kata lain jika fungsi tersebut diplotkan, grafik yang dihasilkan akan mendekati pasanganpasangan Pendahuluan 0 Data-data ang bersfat dskrt dapat dbuat contnuum melalu proses curve-fttng. 0 Curve-fttng merupakan proses data-smoothng, akn proses pendekatan terhadap kecenderungan data-data dalam bentuk

Lebih terperinci

Pertemuan I Mencari Akar dari Fungsi Transendental

Pertemuan I Mencari Akar dari Fungsi Transendental Pertemuan I Mencari Akar dari Fungsi Transendental Daftar Isi: 1.1 Tujuan Perkuliahan 1. Pendahuluan 1.3 Metoda Bisection 1.3.1 Definisi 1.3. Komputasi mencari akar 1.3.3 Ilustrasi 1.4 Metoda Newton-Raphson

Lebih terperinci

Integral Lipat Dua (Double Integral)

Integral Lipat Dua (Double Integral) Peteman- & 9 Integal Lpat Da Doble Integal Fngs: Menghtng s benda padat mbl bdang o o, pada poos. Penampang antaa benda dan o mempna las L bdang as Jka ada bdang dsampng maka las bdang: b a f d lm n Δ

Lebih terperinci

ANALISIS REGRESI REGRESI NONLINEAR REGRESI LINEAR REGRESI KUADRATIK REGRESI LINEAR SEDERHANA REGRESI LINEAR BERGANDA REGRESI KUBIK

ANALISIS REGRESI REGRESI NONLINEAR REGRESI LINEAR REGRESI KUADRATIK REGRESI LINEAR SEDERHANA REGRESI LINEAR BERGANDA REGRESI KUBIK REGRESI NON LINIER ANALISIS REGRESI REGRESI LINEAR REGRESI NONLINEAR REGRESI LINEAR SEDERHANA REGRESI LINEAR BERGANDA REGRESI KUADRATIK REGRESI KUBIK Membentuk gars lurus Membentuk Gars Lengkung Regres

Lebih terperinci

POKOK BAHASAN. Matematika Lanjut 2 Sistem Informasi

POKOK BAHASAN. Matematika Lanjut 2 Sistem Informasi Matematika Lanjut 2 Sistem Informasi POKOK BAHASAN Pendahuluan Metode Numerik Solusi Persamaan Non Linier o Metode Bisection o Metode False Position o Metode Newton Raphson o Metode Secant o Metode Fixed

Lebih terperinci

Pertemuan ke 4. Non-Linier Equation

Pertemuan ke 4. Non-Linier Equation Pertemuan ke 4 Non-Linier Equation Non-Linier Equation Persamaan Kuadrat Persamaan Kubik Metode Biseksi Metode Newton-Rapshon Metode Secant 1 Persamaan Kuadrat Persamaan kuadrat adalah suatu persamaan

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN : 3 & 4

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN : 3 & 4 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN : 3 & 4 PENYELESAIAN PERSAMAAN NON LINIER METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar

Lebih terperinci

81 Bab 6 Ruang Hasilkali Dalam

81 Bab 6 Ruang Hasilkali Dalam 8 Bab Rang Haslkal Dalam Bab RUANG HASIL KALI DALAM Rang hasl kal dalam merpakan rang ektor yang dlengkap dengan operas hasl kal dalam. Sepert halnya rang ektor rang haslkal dalam bermanfaat dalam beberapa

Lebih terperinci

Dengan derajat bebas (pu-1) =(p-1)+(pu-p) (pu-1)=(p-1)+p(u-1) Sebagai contoh kita ambil p=4 dan u=6 maka tabulasi datanya sebagai berikut:

Dengan derajat bebas (pu-1) =(p-1)+(pu-p) (pu-1)=(p-1)+p(u-1) Sebagai contoh kita ambil p=4 dan u=6 maka tabulasi datanya sebagai berikut: X. ANALISIS RAGAM SEDERANA Jka erlakan yang ngn dj/dbandngkan lebh dar da(p>) dan ragam tdak dketah maka kta bsa melakkan j t dengan jalan mengj erlakan seasang dem seasang. Banyaknya asangan hotess yang

Lebih terperinci

Jurnal Matematika Integratif ISSN Volume 12 No 1, April 2016, pp 35 42

Jurnal Matematika Integratif ISSN Volume 12 No 1, April 2016, pp 35 42 Jurnal Matematika Integratif ISSN 1412-6184 Volume 12 No 1, April 2016, pp 35 42 Perbandingan Tingkat Kecepatan Konvergensi dari Newton Raphson dan Secant Setelah Mengaplikasikan Aiken s dalam Perhitungan

Lebih terperinci

1-x. dimana dan dihubungkan oleh teorema Pythagoras.

1-x. dimana dan dihubungkan oleh teorema Pythagoras. `2. Menyelesaikan persamaan dengan satu variabel Contoh: Berdasarkan Hukum Archimedes, suatu benda padat yang lebih ringan daripada air dimasukkan ke dalam air, maka benda tersebut akan mengapung. Berat

Lebih terperinci

Vektor Kendali Permainan Dinamis LQ Non-Kooperatif Waktu Tak Berhingga

Vektor Kendali Permainan Dinamis LQ Non-Kooperatif Waktu Tak Berhingga Semnar Nasonal eknolog Informas Komnkas dan Indstr (SNIKI) 8 ISSN : 85-99 Pekanbar 9 November 6 Vektor Kendal Permanan Dnams LQ Non-Kooperatf Wakt ak Berhngga Nlwan Andraja UIN Sltan Syarf Kasm Ra Pekanbar

Lebih terperinci

Deret Taylor & Diferensial Numerik. Matematika Industri II

Deret Taylor & Diferensial Numerik. Matematika Industri II Deret Taylor & Derensal Numerk Matematka Industr II Maclaurn Power Seres Deret Maclaurn adalah penaksran polnom derajat tak hngga 0 0! 0 n n 0 n! Notce: Deret nnte tak hngga menyatakan bahwa akhrnya deret

Lebih terperinci

Ilustrasi Persoalan Matematika

Ilustrasi Persoalan Matematika Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa (engineering), seperti

Lebih terperinci

Pengenalan Pola/ Pattern Recognition

Pengenalan Pola/ Pattern Recognition Pengenalan Pola/ Pattern Reognton Dasar Pengenalan Pola Imam Cholssodn S.S., M.Kom. Dasar Pengenalan Pola. The Desgn Cyle. Collet Data 3. Objet to Dataset 4. Featre Seleton Usng PCA Menghtng Egen Vale

Lebih terperinci

1 Penyelesaian Persamaan Nonlinear

1 Penyelesaian Persamaan Nonlinear 1 Penyelesaian Persamaan Nonlinear Diberikan fungsi kontinu f (x). Setiap bilangan c pada domain f yang memenuhi f (c) = 0 disebut akar persamaan f (x) = 0, atau disebut juga pembuat nol fungsi f. Dalam

Lebih terperinci

Studi Kasus Penyelesaian Pers.Non Linier. Studi Kasus Non Linier 1

Studi Kasus Penyelesaian Pers.Non Linier. Studi Kasus Non Linier 1 Studi Kasus Penyelesaian Pers.Non Linier Studi Kasus Non Linier 1 Contoh Kasus Penyelesaian persamaan non linier terkadang muncul sebagai permasalahan yang terpisah, tetapi terkadang pula muncul sebagai

Lebih terperinci

PERSAMAAN NON LINIER

PERSAMAAN NON LINIER PERSAMAAN NON LINIER Obyektif : 1. Mengerti penggunaan solusi persamaan non linier 2. Mengerti metode biseksi dan regulafalsi 3. Mampu menggunakan metode biseksi dan regula falsi untuk mencari solusi PENGANTAR

Lebih terperinci

BAB 4 PERHITUNGAN NUMERIK

BAB 4 PERHITUNGAN NUMERIK Mata kulah KOMPUTASI ELEKTRO BAB PERHITUNGAN NUMERIK. Kesalahan error Pada Penelesaan Numerk Penelesaan secara numers dar suatu persamaan matemats kadang-kadang hana memberkan nla perkraan ang mendekat

Lebih terperinci

Modul 8. METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL. A. Pendahuluan

Modul 8. METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL. A. Pendahuluan Modul 8 METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL A. Pendahuluan Pada modul 7 terdahulu, telah dijelaskan tentang keunggulan komparatif Metode Newton-Raphson dibanding metode-metode

Lebih terperinci

REGRESI DAN KORELASI LINEAR SEDERHANA. Regresi Linear

REGRESI DAN KORELASI LINEAR SEDERHANA. Regresi Linear REGRESI DAN KORELASI LINEAR SEDERHANA Regres Lnear Tujuan Pembelajaran Menjelaskan regres dan korelas Menghtung dar persamaan regres dan standard error dar estmas-estmas untuk analss regres lner sederhana

Lebih terperinci

BAB I PENDAHULUAN. Analisis regresi merupakan metode statistika yang digunakan untuk

BAB I PENDAHULUAN. Analisis regresi merupakan metode statistika yang digunakan untuk BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Analss regres merupakan metode statstka ang dgunakan untuk meramalkan sebuah varabel respon Y dar satu atau lebh varabel bebas X, selan tu juga dgunakan untuk

Lebih terperinci

BAB I PENDAHULUAN. pembangunan dalam sektor energi wajib dilaksanakan secara sebaik-baiknya. Jika

BAB I PENDAHULUAN. pembangunan dalam sektor energi wajib dilaksanakan secara sebaik-baiknya. Jika BAB I PENDAHULUAN 1.1.Latar Belakang Energ sangat berperan pentng bag masyarakat dalam menjalan kehdupan seharhar dan sangat berperan dalam proses pembangunan. Oleh sebab tu penngkatan serta pembangunan

Lebih terperinci

Contoh 5.1 Tentukan besar arus i pada rangkaian berikut menggunakan teorema superposisi.

Contoh 5.1 Tentukan besar arus i pada rangkaian berikut menggunakan teorema superposisi. BAB V TEOEMA-TEOEMA AGKAIA 5. Teorema Superposs Teorema superposs bagus dgunakan untuk menyelesakan permasalahan-permasalahan rangkaan yang mempunya lebh dar satu sumber tegangan atau sumber arus. Konsepnya

Lebih terperinci

PERBANDINGAN SOLUSI SISTEM PERSAMAAN NONLINEAR MENGGUNAKAN METODE NEWTON- RAPHSON DAN METODE JACOBIAN

PERBANDINGAN SOLUSI SISTEM PERSAMAAN NONLINEAR MENGGUNAKAN METODE NEWTON- RAPHSON DAN METODE JACOBIAN E-Jurnal Matematika Vol. 2, No.2, Mei 2013, 11-17 ISSN: 2303-1751 PERBANDINGAN SOLUSI SISTEM PERSAMAAN NONLINEAR MENGGUNAKAN METODE NEWTON- RAPHSON DAN METODE JACOBIAN NANDA NINGTYAS RAMADHANI UTAMI 1,

Lebih terperinci

PENGEMBANGAN ALGORITMA ITERATIF UNTUK MINIMISASI FUNGSI NONLINEAR

PENGEMBANGAN ALGORITMA ITERATIF UNTUK MINIMISASI FUNGSI NONLINEAR PENGEMBANGAN ALGORITMA ITERATIF UNTUK MINIMISASI FUNGSI NONLINEAR TESIS Oleh FADHILAH JULI YANTI HARAHAP 127021019/MT FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA UTARA MEDAN 2014

Lebih terperinci

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara BAB LANDASAN TEORI Unverstas Sumatera Utara . Pengertan Regres Istlah regres pertama kal dperkenalkan oleh Francs Galtom. Menurut Galtom, analss regres erkenaan dengan stud ketergantungan dar satu varael

Lebih terperinci

Analisis Regresi 1. Diagnosa Model Melalui Pemeriksaan Sisaan dan Identifikasi Pengamatan Berpengaruh. Pokok Bahasan :

Analisis Regresi 1. Diagnosa Model Melalui Pemeriksaan Sisaan dan Identifikasi Pengamatan Berpengaruh. Pokok Bahasan : Analss Regres Pokok Bahasan : Dagnosa Model Melalu Pemerksaan Ssaan dan Identfkas Pengamatan Berpengaruh Itasa & Y Angran Dep. Statstka FMIPA-IPB Ssaan Ssaan adalah menympangnya nla amatan y terhadap dugaan

Lebih terperinci

METODE NUMERIK. Akar Persamaan (1) Pertemuan ke - 3. Rinci Kembang Hapsari, S.Si, M.Kom

METODE NUMERIK. Akar Persamaan (1) Pertemuan ke - 3. Rinci Kembang Hapsari, S.Si, M.Kom METODE NUMERIK Pertemuan ke - 3 Akar Persamaan (1) Metode Akar Persamaan Metode Grafik Metode Tabulasi Metode Setengah Interval Metode Regula Falsi Metode Newton Rephson Metode Iterasi bentuk x = g(x)

Lebih terperinci

BAB II AKAR-AKAR PERSAMAAN

BAB II AKAR-AKAR PERSAMAAN BAB II AKAR-AKAR PERSAMAAN 2.1 PENDAHULUAN Salah satu masalah yang sering terjadi pada bidang ilmiah adalah masalah untuk mencari akar-akar persamaan berbentuk : = 0 Fungsi f di sini adalah fungsi atau

Lebih terperinci

PEMAHAMAN METODE NUMERIK MENGGUNAKAN PEMPROGRMAN MATLAB (Studi Kasus : Metode Secant)

PEMAHAMAN METODE NUMERIK MENGGUNAKAN PEMPROGRMAN MATLAB (Studi Kasus : Metode Secant) PEMAHAMAN METODE NUMERIK MENGGUNAKAN PEMPROGRMAN MATLAB (Stud Kasus : Metode Secant) Melda panjatan STMIK Bud Darma, Jln.SM.Raja No.338 Sp.Lmun, Medan Sumatera Utara Jurusan Teknk Informatka e-mal : meldapjt.78@gmal.com

Lebih terperinci

Regresi. Bahan Kuliah IF4058 Topik Khusus Informatika I. Oleh; Rinaldi Munir(IF-STEI ITB)

Regresi. Bahan Kuliah IF4058 Topik Khusus Informatika I. Oleh; Rinaldi Munir(IF-STEI ITB) Regres Bahan Kulah IF4058 Topk Khusus Informatka I Oleh; Rnald Munr(IF-STEI ITB) 1 Pendahuluan Regresadalahteknkpencocokankurvauntukdata ang berketeltanrendah. Contohdata ang berketeltanrendahdata haslpengamatan,

Lebih terperinci

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara BAB 2 LANDASAN TEORI 2.1 Pengertan Analsa Regres Dalam kehdupan sehar-har, serng kta jumpa hubungan antara satu varabel terhadap satu atau lebh varabel yang lan. Sebaga contoh, besarnya pendapatan seseorang

Lebih terperinci

Pertemuan 3: Penyelesaian Persamaan Transedental. Achmad Basuki Politeknik Elektronika Negeri Surabaya 2014

Pertemuan 3: Penyelesaian Persamaan Transedental. Achmad Basuki Politeknik Elektronika Negeri Surabaya 2014 Pertemuan 3: Penyelesaian Persamaan Transedental Achmad Basuki Politeknik Elektronika Negeri Surabaya 2014 Persamaan Dalam Matematika Persamaan Linier Persamaan Kuadrat Persamaan Polynomial Persamaan Trigonometri

Lebih terperinci

BAB 2 LANDASAN TEORI. Teori Galton berkembang menjadi analisis regresi yang dapat digunakan sebagai alat

BAB 2 LANDASAN TEORI. Teori Galton berkembang menjadi analisis regresi yang dapat digunakan sebagai alat BAB LANDASAN TEORI. 1 Analsa Regres Regres pertama kal dpergunakan sebaga konsep statstk pada tahun 1877 oleh Sr Francs Galton. Galton melakukan stud tentang kecenderungan tngg badan anak. Teor Galton

Lebih terperinci

IV. UKURAN SIMPANGAN, DISPERSI & VARIASI

IV. UKURAN SIMPANGAN, DISPERSI & VARIASI IV. UKURAN SIMPANGAN, DISPERSI & VARIASI Pendahuluan o Ukuran dspers atau ukuran varas, yang menggambarkan derajat bagamana berpencarnya data kuanttatf, dntaranya: rentang, rentang antar kuartl, smpangan

Lebih terperinci

BAB VB PERSEPTRON & CONTOH

BAB VB PERSEPTRON & CONTOH BAB VB PERSEPTRON & CONTOH Model JST perseptron dtemukan oleh Rosenblatt (1962) dan Mnsky Papert (1969). Model n merupakan model yang memlk aplkas dan pelathan yang lebh bak pada era tersebut. 5B.1 Arstektur

Lebih terperinci

Pengantar Metode Numerik

Pengantar Metode Numerik Pengantar Metode Numerik Metode numerik adalah teknik dimana masalah matematika diformulasikan sedemikian rupa sehingga dapat diselesaikan oleh pengoperasian matematika. Metode numerik menggunakan perhitungan

Lebih terperinci

Silabus dan Satuan Acara Perkuliahan

Silabus dan Satuan Acara Perkuliahan Fakultas Teknik No. Dokumen : FT SSAP-S3-10 Program Studi Teknik Elektro No. Revisi : 02 Silabus dan Satuan Acara Perkuliahan Tgl.Revisi :13-07-2006 Tgl. Berlaku :13-07-2006 KOMPUTASI NUMERIK DAN SIMBOLIK

Lebih terperinci

ITERASI 1 TITIK SEDERHANA METODE NEWTON RAPHSON

ITERASI 1 TITIK SEDERHANA METODE NEWTON RAPHSON ITERASI TITIK SEDERHANA METODE NEWTON RAPHSON Metode iterasi sederhana adalah metode yang memisahkan dengan sebagian yang lain sehingga diperoleh : g(. dikenal juga sebagai metode g( Bentuk iterasi satu

Lebih terperinci

SOLUSI PERSAMAAN NON LINEAR

SOLUSI PERSAMAAN NON LINEAR SOLUSI PERSAMAAN NON LINEAR Pada bab n dbahas solus dar persamaan non lnear yang banyak djumpa dalam ormulas kasus -kasus ska, yatu pencaran akar persamaan ndng roots Dsajkan beberapa metode yang basa

Lebih terperinci

Pemilihan Lokasi Kontinyu (1)

Pemilihan Lokasi Kontinyu (1) Pemlhan Lokas Kontnu 1 - Model Dasar - 6 Oleh : Debrna Puspta Andran Teknk Industr, Unverstas Brawjaa e-mal : debrna@ub.ac.d www.debrna.lecture.ub.ac.d Medan method Gravt method Contour-Lne method Weszfeld

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB LANDASAN TEORI.1 Analsa Regres Analsa regres dnterpretaskan sebaga suatu analsa yang berkatan dengan stud ketergantungan (hubungan kausal) dar suatu varabel tak bebas (dependent varable) atu dsebut

Lebih terperinci

Studi Pencarian Akar Solusi Persamaan Nirlanjar Dengan Menggunakan Metode Brent

Studi Pencarian Akar Solusi Persamaan Nirlanjar Dengan Menggunakan Metode Brent Studi Pencarian Akar Solusi Persamaan Nirlanjar Dengan Menggunakan Metode Brent Tommy Gunardi / 13507109 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

PERSAMAAN NON LINIER. Pengantar dan permasalahan persamaan Non-Linier. Sumarni Adi S1 Teknik Informatika STMIK AmikomYogyakarta 2014

PERSAMAAN NON LINIER. Pengantar dan permasalahan persamaan Non-Linier. Sumarni Adi S1 Teknik Informatika STMIK AmikomYogyakarta 2014 PERSAMAAN NON LINIER Pengantar dan permasalahan persamaan Non-Linier Sumarni Adi S1 Teknik Informatika STMIK AmikomYogyakarta 2014 Pengantar 1. Persamaan linier sudah kita kenal sejak SMP. Contoh kasus

Lebih terperinci

2 Akar Persamaan NonLinear

2 Akar Persamaan NonLinear 2 Akar Persamaan NonLinear Beberapa metoda untuk mencari akar ang telah dikenal adalah dengan memfaktorkan atau dengan cara Horner Sebagai contoh, untuk mencari akar dari persamaan 2 6 = 0 ruas kiri difaktorkan

Lebih terperinci

Pendugaan Parameter Regresi. Itasia & Y Angraini, Dep Statistika FMIPA - IPB

Pendugaan Parameter Regresi. Itasia & Y Angraini, Dep Statistika FMIPA - IPB Pendugaan Parameter Regres Menduga gars regres Menduga gars regres lner sederhana = menduga parameter-parameter regres β 0 dan β 1 : Penduga parameter yang dhaslkan harus merupakan penduga yang bak Software

Lebih terperinci

BAB 3 PEMBAHASAN. 3.1 Prosedur Penyelesaian Masalah Program Linier Parametrik Prosedur Penyelesaian untuk perubahan kontinu parameter c

BAB 3 PEMBAHASAN. 3.1 Prosedur Penyelesaian Masalah Program Linier Parametrik Prosedur Penyelesaian untuk perubahan kontinu parameter c 6 A PEMAHASA Pada bab sebelumnya telah dbahas teor-teor yang akan dgunakan untuk menyelesakan masalah program lner parametrk. Pada bab n akan dperlhatkan suatu prosedur yang lengkap untuk menyelesakan

Lebih terperinci

MATERI. Akar-akar Persamaan Metode Akolade. Metode Terbuka. Metode Grafik Metode Bagi Dua Metode Posisi Salah

MATERI. Akar-akar Persamaan Metode Akolade. Metode Terbuka. Metode Grafik Metode Bagi Dua Metode Posisi Salah MATERI Akar-akar Persamaan Metode Akolade Metode Grafik Metode Bagi Dua Metode Posisi Salah Metode Terbuka Iterasi Satu Titik Sederhana Metode Newton-Raphson Metode Secant Akar Ganda Sistem Persamaan Aljabar

Lebih terperinci

METODE NUMERIK AKAR-AKAR PERSAMAAN. Eka Maulana Dept. of Electrcal Engineering University of Brawijaya

METODE NUMERIK AKAR-AKAR PERSAMAAN. Eka Maulana Dept. of Electrcal Engineering University of Brawijaya METODE NUMERIK AKAR-AKAR PERSAMAAN Eka Maulana Dept. of Electrcal Engineering University of Brawijaya Pendekatan Pencarian Akar-akar Persamaan Metode Pencarian Akar Persamaan > Metode Pengurung - metode

Lebih terperinci

Pendahuluan Metode Numerik Secara Umum

Pendahuluan Metode Numerik Secara Umum Pendahuluan Metode Numerik Secara Umum Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan (bidang fisika, kimia, Teknik Sipil, Teknik Mesin, Elektro

Lebih terperinci

PERSAMAAN DIFERENSIAL BIASA

PERSAMAAN DIFERENSIAL BIASA http://starto.sta.ugm.ac.d PERSAMAAN DIFERENSIAL BIASA Ordnar Derental Equatons ODE Persamaan Derensal Basa http://starto.sta.ugm.ac.d Acuan Chapra, S.C., Canale R.P., 990, Numercal Methods or Engneers,

Lebih terperinci

SOLUTION INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA

SOLUTION INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA ISTITUT TEKOLOGI BADUG FAKULTAS MATEMATIKA DA ILMU PEGETAHUA ALAM PROGRAM STUDI FISIKA FI-500 Mekanka Statstk SEMESTER/ Sem. - 06/07 PR#4 : Dstrbus bose Ensten dan nteraks kuat Kumpulkan d Selasa 9 Aprl

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertan Regres Regres pertama kal dpergunakan sebaga konsep statstka oleh Sr Francs Galton (1822 1911). Belau memperkenalkan model peramalan, penaksran, atau pendugaan, yang

Lebih terperinci

Pertemuan ke-4 Persamaan Non-Linier: Metode Secant

Pertemuan ke-4 Persamaan Non-Linier: Metode Secant Analisa Terapan: Metode Numerik Pertemuan ke- Persamaan Non-Linier: Metode Secant Oktober Department o Civil Engineering Metode Secant Dasar ( Dalam Metode Newton (i i i - ( + ( i [ ( i i, ( i ] Turunan

Lebih terperinci

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Persamaan Nonlinier Solusi persamaan

Lebih terperinci

Modul 5. METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL

Modul 5. METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL Modul 5 METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL A. Pendahuluan Persamaan Aljabar Non-Linier Tunggal atau PANLT merupakan sembarang fungsi atau persamaan aljabar

Lebih terperinci

Pendahuluan

Pendahuluan Pendahuluan Pendahuluan Numerik dengan Matlab KOMPUTASI NUMERIK dengan MATLAB Oleh : Ardi Pujiyanta Edisi Pertama Cetakan Pertama, 2007 Hak Cipta 2007 pada penulis, Hak Cipta dilindungi undang-undang.

Lebih terperinci

BAB IV MENGHITUNG AKAR-AKAR PERSAMAAN

BAB IV MENGHITUNG AKAR-AKAR PERSAMAAN 1 BAB IV MENGHITUNG AKAR-AKAR PERSAMAAN Dalam banyak usaha pemecahan permasalahan, seringkali harus diselesaikan dengan menggunakan persamaan-persamaan matematis, baik persamaan linier, persamaan kuadrat,

Lebih terperinci

Ensambel Statistik Distribusi Binomial Nilai Rata-rata Sistem Spin Distribusi Probabilitas Kontinu

Ensambel Statistik Distribusi Binomial Nilai Rata-rata Sistem Spin Distribusi Probabilitas Kontinu BAB 3 Penganta Metode Statstk Ensambel Statstk Dstbs Bnomal la Rata-ata Sstem Spn Dstbs Pobabltas Kontn Rvew Bab : Konsep pobabltas sangat pentng dgnakan ntk memaham sstem makoskopk Penggnaan Konsep Pobabltas:.

Lebih terperinci

Nama : Crishadi Juliantoro NPM :

Nama : Crishadi Juliantoro NPM : ANALISIS INVESTASI PADA PERUSAHAAN YANG MASUK DALAM PERHITUNGAN INDEX LQ-45 MENGGUNAKAN PORTOFOLIO DENGAN METODE SINGLE INDEX MODEL. Nama : Crshad Julantoro NPM : 110630 Latar Belakang Pemlhan saham yang

Lebih terperinci

BAB 1 PENDAHULUAN. Pertumbuhan dan kestabilan ekonomi, adalah dua syarat penting bagi kemakmuran

BAB 1 PENDAHULUAN. Pertumbuhan dan kestabilan ekonomi, adalah dua syarat penting bagi kemakmuran BAB 1 PENDAHULUAN 1.1. Latar Belakang Pertumbuhan dan kestablan ekonom, adalah dua syarat pentng bag kemakmuran dan kesejahteraan suatu bangsa. Dengan pertumbuhan yang cukup, negara dapat melanjutkan pembangunan

Lebih terperinci

METODE MODIFIKASI NEWTON DENGAN ORDE KONVERGENSI Lely Jusnita 1

METODE MODIFIKASI NEWTON DENGAN ORDE KONVERGENSI Lely Jusnita 1 METODE MODIFIKASI NEWTON DENGAN ORDE KONVERGENSI 1 + Lely Jusnita 1 1 Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dalam matematika ada beberapa persamaan yang dipelajari, diantaranya adalah persamaan polinomial tingkat tinggi, persamaan sinusioda, persamaan eksponensial atau persamaan

Lebih terperinci

CONTOH Dengan mengunakan Metode Regula Falsi, tentukanlah salah satu akar dari persamaan f(x) = x - 5x + 4. Jika diketahui nilai awal x = dan x = 5 se

CONTOH Dengan mengunakan Metode Regula Falsi, tentukanlah salah satu akar dari persamaan f(x) = x - 5x + 4. Jika diketahui nilai awal x = dan x = 5 se METODE REGULA FALSI METODE REGULA FALSI Solusi Persamaan Non Linier Universitas Budi Luhur Metode regula falsi merupakan salah satu metode tertutup untuk menentukan solusi akar dari persamaan non linier,

Lebih terperinci

APLIKASI INTEGRAL TENTU

APLIKASI INTEGRAL TENTU APLIKASI INTEGRAL TENTU Aplkas Integral Tentu థ Luas dantara kurva థ Volume benda dalam bdang (dengan metode cakram dan cncn) థ Volume benda putar (dengan metode kult tabung) థ Luas permukaan benda putar

Lebih terperinci

Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar

Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar Bernardino Madaharsa Dito Adiwidya - 13507089 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan Non Linear Definisi 2.1 (Munir, 2006) : Sistem persamaan non linear adalah kumpulan dari dua atau lebih persamaan-persamaan non linear. Bentuk umum sistem persamaan

Lebih terperinci

Bab 1. Pendahuluan Metode Numerik Secara Umum

Bab 1. Pendahuluan Metode Numerik Secara Umum Bab 1. Pendahuluan Metode Numerik Secara Umum Yuliana Setiowati Politeknik Elektronika Negeri Surabaya 2007 1 Topik Pendahuluan Persoalan matematika Metode Analitik vs Metode Numerik Contoh Penyelesaian

Lebih terperinci

TINJAUAN PUSTAKA. Node. Edge. Gambar 1 Directed Acyclic Graph

TINJAUAN PUSTAKA. Node. Edge. Gambar 1 Directed Acyclic Graph TINJAUAN PUSTAKA Bayesan Networks BNs dapat memberkan nformas yang sederhana dan padat mengena nformas peluang. Berdasarkan komponennya BNs terdr dar Bayesan Structure (Bs) dan Bayesan Parameter (Bp) (Cooper

Lebih terperinci

BAB 3 PENYELESAIAN PERSAMAAN NON LINIER

BAB 3 PENYELESAIAN PERSAMAAN NON LINIER BAB 3 PENYELESAIAN PERSAMAAN NON LINIER 3.. Permasalahan Persamaan Non Linier Penyelesaian persamaan non linier adalah penentuan akar-akar persamaan non linier.dimana akar sebuah persamaan f(x =0 adalah

Lebih terperinci

BAB V TEOREMA RANGKAIAN

BAB V TEOREMA RANGKAIAN 9 angkaan strk TEOEM NGKIN Pada bab n akan dbahas penyelesaan persoalan yang muncul pada angkaan strk dengan menggunakan suatu teorema tertentu. Dengan pengertan bahwa suatu persoalan angkaan strk bukan

Lebih terperinci

BAB 2 LANDASAN TEORI. estimasi, uji keberartian regresi, analisa korelasi dan uji koefisien regresi.

BAB 2 LANDASAN TEORI. estimasi, uji keberartian regresi, analisa korelasi dan uji koefisien regresi. BAB LANDASAN TEORI Pada bab n akan durakan beberapa metode yang dgunakan dalam penyelesaan tugas akhr n. Selan tu penuls juga mengurakan tentang pengertan regres, analss regres berganda, membentuk persamaan

Lebih terperinci

BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE

BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE 6B.1 Pelathan ADALINE Model ADALINE (Adaptve Lnear Neuron) dtemukan oleh Wdrow & Hoff (1960) Arstekturnya mrp dengan perseptron Perbedaan

Lebih terperinci

UKURAN LOKASI, VARIASI & BENTUK KURVA

UKURAN LOKASI, VARIASI & BENTUK KURVA UKURAN LOKASI, VARIASI & BENTUK KURVA MARULAM MT SIMARMATA, MS STATISTIK TERAPAN FAK HUKUM USI @4 ARTI UKURAN LOKASI DAN VARIASI Suatu Kelompok DATA berupa kumpulan nla VARIABEL [ vaabel ] Ms banyaknya

Lebih terperinci

MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM

MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM Tut Susant, Mashad, Sukamto Mahasswa Program S Matematka Dosen Jurusan Matematka Fakultas Matematka dan Ilmu Pengetahuan Alam

Lebih terperinci

Langkah Penyelesaian Example 1) Tentukan nilai awal x 0 2) Hitung f(x 0 ) kemudian cek konvergensi f(x 0 ) 3) Tentukan fungsi f (x), kemudian hitung f

Langkah Penyelesaian Example 1) Tentukan nilai awal x 0 2) Hitung f(x 0 ) kemudian cek konvergensi f(x 0 ) 3) Tentukan fungsi f (x), kemudian hitung f METODE NEWTON RAPHSON (1) METODE NEWTON RAPHSON Solusi Persamaan Non Linier Oleh : Metode Newton-Raphson merupakan salah satu metode terbuka untuk menentukan solusi akar dari persamaan non linier, dengan

Lebih terperinci

BAB IX. STATISTIKA. CONTOH : HASIL ULANGAN MATEMATIKA 5 SISWA SBB: PENGERTIAN STATISTIKA DAN STATISTIK:

BAB IX. STATISTIKA. CONTOH : HASIL ULANGAN MATEMATIKA 5 SISWA SBB: PENGERTIAN STATISTIKA DAN STATISTIK: BAB IX. STATISTIKA. CONTOH : HASIL ULANGAN MATEMATIKA 5 SISWA SBB: PENGERTIAN STATISTIKA DAN STATISTIK: BAB IX. STATISTIKA Contoh : hasl ulangan Matematka 5 sswa sbb: 6 8 7 6 9 Pengertan Statstka dan

Lebih terperinci

Referensi: 1) Smith Van Ness Introduction to Chemical Engineering Thermodynamic, 6th ed. 2) Sandler Chemical, Biochemical adn

Referensi: 1) Smith Van Ness Introduction to Chemical Engineering Thermodynamic, 6th ed. 2) Sandler Chemical, Biochemical adn Referens: 1) Smth Van Ness. 2001. Introducton to Chemcal Engneerng Thermodynamc, 6th ed. 2) Sandler. 2006. Chemcal, Bochemcal adn Engneerng Thermodynamcs, 4th ed. 3) Prausntz. 1999. Molecular Thermodynamcs

Lebih terperinci