Logaritma. maka tentukan nilai x yang memenuhi persamaan. log + = + 1 = x x. x Jawab : = b maka tentukan 12. Jawab : Jawab : Jawab :

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Logaritma. maka tentukan nilai x yang memenuhi persamaan. log + = + 1 = x x. x Jawab : = b maka tentukan 12. Jawab : Jawab : Jawab :"

Transkripsi

1 Logit Jik k tentukn Jik dn k tentukn Tentukn nili ng eenuhi pesn Jik dn, k tentukn nili ng eenuhi pesn tidk eenuhi Jik dn eenuhi pesn k tentukn p p c p Tentukn penelesin petksn < < < < < St : < < tu < < < tu

2 c c c c c c Jik [ ] k tentukn [ ] [ ] Jik, k tentukn,, - Jik, dn, k tentukn,, Jik k tentukn Jik dn n, dn k n n

3 Jik k Jik,,,, k

4 Jik k tentukn! Jik k tentukn Jik k dn Jik k dn Jik k dn ii i Dikethui,, dn Tentukn nili,,, Jik k

5 Jik dn k Jik dn k Sustitusi ke epuni penelesin p dn q Untuk p q k nili p q p q Jik dn k-k pesn k Jik dn k-k pesn k

6 Tentukn julh di penelesin pesn Tentukn penelesin Tentukn hsil kli seu nili ng eenuhi pesn Jik f k f f Jik [ ] k Jik k Jik dn k dn k dn

7 Tentukn nili ng eenuhi siste pesn : Sustitusi ke Jik dn eenuhi pesn k g Tentukn nili ng eenuhi pesn Jik dn eenuhi pesn k Tentukn penelesin pesn Jik dn k-k pesn k c

8 Tentukn penelesin pesn tidk eenuhi Tentukn penelesin pesn tidk eenuhi Jik k Tentukn penelesin petksn i ii St : < Tentukn penelesin petksn St : i < < < ii < tu < < tu < <

9 Tentukn penelesin petksn < < Ken st dn k Tentukn penelesin petksn < < Ken definit positif k : < Ken st k : < tu < tu < tu Tentukn penelesin petksn < < St : < < < Tentukn penelesin petksn St : < < < < < tu tu < <

Solusi Pengayaan Matematika Edisi 3 Januari Pekan Ke-3, 2008 Nomor Soal: 21-30

Solusi Pengayaan Matematika Edisi 3 Januari Pekan Ke-3, 2008 Nomor Soal: 21-30 Solusi Pengn Mtemtik Edisi Jnuri Pekn Ke-, 00 Nomor Sol: -0. Crilh himpunn penelesin dri sistem persmn log log. () log Misln 0 ( )( ) 0 tu, mk persmn () menjdi: log tu log log log log tu log log log log

Lebih terperinci

Soal Latihan dan Pembahasan Persamaan Lingkaran

Soal Latihan dan Pembahasan Persamaan Lingkaran Sol Ltihn dn Pebhsn Pesn Lingkn Di susun Oleh : Yuun Sonti http://bibingnbelj.net/ Di dukung oleh : Potl eduksi Gtis Indonesi Open Knowledge nd Eduction http://oke.o.id Tutoil ini dipebolehkn untuk di

Lebih terperinci

BENTUK PANGKAT, AKAR DAN LOGARITMA

BENTUK PANGKAT, AKAR DAN LOGARITMA BENTUK PANGKAT, AKAR DAN LOGARITMA Stndr Kompetensi Memhmi dn menggunkn turn dn sift sert mnipulsi Aljr dlm pemechn mslh ng erkitn dengn entuk pngkt, kr dn logritm. Kompetensi Dsr Menggunkn sift, turn

Lebih terperinci

8 adalah... A. 3 3 (kunci) C. 3 D. 3 E. 6 Pembahasan: Kedua ruas diakarkan: = = 8 = 3 3. adalah Jika 2 dan. , maka nilai. log w.

8 adalah... A. 3 3 (kunci) C. 3 D. 3 E. 6 Pembahasan: Kedua ruas diakarkan: = = 8 = 3 3. adalah Jika 2 dan. , maka nilai. log w. http://www.syiknybeljr.wordpress.co PEMBAHASAN SOAL SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI (SBMPTN) TAHUN 0. Jik, k nili A. (kunci) B. C. D. E... ( ) ( ) Kedu rus dikrkn: 8 = ( ) = = ( ) ( ) 8 =

Lebih terperinci

IV V a b c d. a b c d. b c d. bukan fungsi linier y = x = x y 5xy + y = B.2 Konsep Fungsi Linier

IV V a b c d. a b c d. b c d. bukan fungsi linier y = x = x y 5xy + y = B.2 Konsep Fungsi Linier 8. Dri fungsi-fungsi ng disjikn dengn digrm pnh erikut ini mnkh ng merupkn fungsi onto, injektif tu ijektif, jik relsi dri A ke B? A c d IV B A c d V B A c d VI B B. Konsep Fungsi Linier. Tujun Setelh

Lebih terperinci

Persamaan Garis Singgung Lingkaran Melalui Titik di Luar Lingkaran

Persamaan Garis Singgung Lingkaran Melalui Titik di Luar Lingkaran Mtei Pesn Gis Singgung Lingkn Mellui Titik di Lu Lingkn Oleh: Anng Wibowo, S.Pd Apil MtikZone s Seies Eil : tikzone@gil.co Blog : www.tikzone.wodpess.co HP : 8 87 87 Hk Cipt Dilindungi Undng-undng. Dilng

Lebih terperinci

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA Persmn dlh klimt mtemtik teruk ng memut huungn sm dengn. Sedngkn klimt mtemtik tertutup ng memut huungn sm dengn diseut kesmn. Klimt mtemtik :. Klimt mtemtik

Lebih terperinci

Soal Latihan dan Pembahasan Fungsi kuadrat

Soal Latihan dan Pembahasan Fungsi kuadrat Sol Ltihn dn Pemhsn Fungsi kudrt Di susun Oleh : uun Somntri htt://imingneljr.net/ Di dukung oleh : Portl eduksi Grtis Indonesi Oen Knowledge nd Edution htt://oke.or.id Tutoril ini dierolehkn untuk di

Lebih terperinci

3 PANGKAT, AKAR, DAN LOGARITMA

3 PANGKAT, AKAR, DAN LOGARITMA PANGKAT, AKAR, DAN LOGARITMA.. Pngkt Pngkt dri seuh ilngn dlh sutu indeks ng menunjukkn nkn perklin ilngn ng sm secr eruntun. Notsi n errti hw hrus diklikn degn itu sendiri senk n kli. Notsi ilngn erpngkt

Lebih terperinci

TUGAS MATAKULIAH ALJABAR LINIER DAN MATRIK

TUGAS MATAKULIAH ALJABAR LINIER DAN MATRIK TUGAS MATAKULIAH ALJABAR LINIER DAN MATRIK Disusun Oleh :. NIM.. NAMA. NIM.. NAMA. NIM.. NAMA PROGRAM STUDI TEKNIK INFORMATIKA S- FAKULTAS ILMU KOMPUTER UNIVERSITAS DIAN NUSWANTORO SEMARANG OKTOBER, .

Lebih terperinci

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: PERSAMAAN GARIS SINGGUNG PADA ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (,

Lebih terperinci

FUNGSI KUADRAT. . a 0, a, b, c bil real. ymax. ymin. , maka harga m= A. 0 B. 1 C. 2 D. 3 E. 4 Jawab : m mempunyai nilai minimum 1 5.

FUNGSI KUADRAT. . a 0, a, b, c bil real. ymax. ymin. , maka harga m= A. 0 B. 1 C. 2 D. 3 E. 4 Jawab : m mempunyai nilai minimum 1 5. FUNGSI KUADRAT Bb Bentuk Umum : x bx c. 0,, b, c bil rel b b c A. Titik Punck =, b Dengn sumbu simetri : x b c mx jik 0 Nili ekstrim : min jik 0 Jik fungsi x x m memuni nili minimum 8, mk hrg m= A. 0 B.

Lebih terperinci

UJIAN BERSAMA SMA KABUPATEN TANAH DATAR SEMESTER 1 TAHUN PELAJARAN 2008/2009. Mata Pelajaran : MATEMATIKA Kelas/jurusan : XII/IPS Hari/Tanggal :

UJIAN BERSAMA SMA KABUPATEN TANAH DATAR SEMESTER 1 TAHUN PELAJARAN 2008/2009. Mata Pelajaran : MATEMATIKA Kelas/jurusan : XII/IPS Hari/Tanggal : UJIN ERSM SM KUPTEN TNH DTR SEMESTER THUN PELJRN / Mt Peljrn : MTEMTIK Kels/jurusn : XII/IPS Hri/Tnggl : Wktu : menit Pilihlh slh stu jwn ng dinggp pling enr dn tept!. d c c c c. Jik F '( ) dn F () mk

Lebih terperinci

PRA ULANGAN UMUM SEMESTER GENAP KELAS X RPL SMK NEGERI 2 MAGELANG 2012

PRA ULANGAN UMUM SEMESTER GENAP KELAS X RPL SMK NEGERI 2 MAGELANG 2012 Mtemtik TI SMK Negeri Mgl wwwfrusgintowordpresscom hl PRA ULANGAN UMUM SEMESTER GENAP KELAS X RPL SMK NEGERI MAGELANG PILIHAN GANDA: Jik = 8, mk nili dlh A C E 8 B D Dikethui A = dn B = 7 9 Jik determinn

Lebih terperinci

BAB 3 SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR

BAB 3 SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR A SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR. Metode Eliminsi Guss Tinu sistem persmn liner ng terdiri dri i ris dn peuh, kni,,,, erikut.......... i i i Jik =, sistem persmn linern diseut sistem homogen, sedngkn

Lebih terperinci

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT . PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT A. Persmn Kudrt. Bentuk umum persmn kudrt : x + bx + c = 0, 0. Nili determinn persmn kudrt : D = b c. Akr-kr persmn kudrt dpt dicri dengn memfktorkn tupun

Lebih terperinci

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0 PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh c 0,,,c R, 0 Penyelesin Persmn Kudrt. Rumus c Rumus menentukn kr persmn kudrt c 0;,, c R dn 0, = ± 4c. Memfktorkn

Lebih terperinci

INTEGRAL. Integral Tak Tentu Dan Integral Tertentu Dari Fungsi Aljabar

INTEGRAL. Integral Tak Tentu Dan Integral Tertentu Dari Fungsi Aljabar INTEGRAL Integrl Tk Tentu Dn Integrl Tertentu Dri Fungsi Aljr A. Integrl Tk Tentu Hitung integrl dlh kelikn dri hitung differensil. Pd hitung differensil yng dicri dlh fungsi turunnny, sedngkn pd hitung

Lebih terperinci

Kompetensi 2 (Bagian 2) PERSAMAAN DAN FUNGSI KUADRAT

Kompetensi 2 (Bagian 2) PERSAMAAN DAN FUNGSI KUADRAT Kometensi (Bgin PERSAMAAN DAN FUNGSI KUADRAT PERSAMAAN KUADRAT Menentukn Jenis Akr-Akr Persmn Kudrt Menggunkn Diskriminn (D Bentuk Umum: D = - 4c + x + c ; 0 Pengertin: x = α dlh kr-kr ersmn + x + c α

Lebih terperinci

2. A dan B titik-titik ujung sebuah terowongan yang dilihat dari C dengan sudut lihat

2. A dan B titik-titik ujung sebuah terowongan yang dilihat dari C dengan sudut lihat . Dikethui segitig ABC dengn sudut B= dn CT gris tinggi dri titik C. Jik BC = dn AT = mk tentukn AC! C A T B AC ( CT CT ) ( ). A dn B titik-titik ujung seuh terowongn yng diliht dri C dengn sudut liht

Lebih terperinci

D E F I N I S I. Contoh 1: 08/11/2015. Anita T. Kurniawati. Mendefinisikan fungsi f yang mengawankan bilangan dengan bilangan x

D E F I N I S I. Contoh 1: 08/11/2015. Anita T. Kurniawati. Mendefinisikan fungsi f yang mengawankan bilangan dengan bilangan x 08//05 Anit T. Kurniwti disebut unsi dri jik dpt ditentukn sutu hubunn ntr dn SDH untuk setip nili menentukn secr tunl nili. Hubunn ntr dn bisn ditulis : Contoh : ) ) Mendeinisikn unsi n menwnkn bilnn

Lebih terperinci

3. SISTEM PERSAMAAN LINEAR

3. SISTEM PERSAMAAN LINEAR . SISTEM PERSAMAAN LINEAR A. Sistem Persmn Liner Du Vriel (SPLDV) ) Bentuk umum : ) Dpt iselesikn engn metoe grfik, sustitusi, eliminsi, n eterminn. ) Metoe eterminn: D ; D ; D ; D D ; D D B. Sistem Persmn

Lebih terperinci

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn

Lebih terperinci

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini: ) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut

Lebih terperinci

MATEMATIKA INTEGRAL TENTU DAN LUAS DAERAH

MATEMATIKA INTEGRAL TENTU DAN LUAS DAERAH MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 5 Sesi N INTEGRAL TENTU DAN LUAS DAERAH A. DEFINISI INTEGRAL TENTU Bentuk integrl f d = f + c diseut segi integrl tk tentu kren hsil dri pengintegrlnn msih erup

Lebih terperinci

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: GARIS SINGGUNG PADA HIPERBOLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (, ) pd

Lebih terperinci

SUKUBANYAK (POLINOMIAL)

SUKUBANYAK (POLINOMIAL) SUKUBANYAK (POLINOMIAL) A. Bentuk Umum Sukubnyk (Polinomil) n n n b c... z n = pngkt tertinggi (derjt sukubnyk) n = koefisien 7 5 5 9 6 dlh sukubnyk berderjt 7, koefisien dlh 9, koefisien konstnt dlh 6

Lebih terperinci

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c BAB XVI. INTEGRAL A. Integrl Tk Tentu. Rumus Integrl Fungsi Aljr. k k n = n +. ( + ) n = ( n + ). = ln + n + + ; n - n+ (+) + ; dn n -. ( f ( ) ± g( ) ) f ( ) ± g ( ) n. os (+)sin(+) = ( n + ) os n + (+)

Lebih terperinci

BAB 3 MATRIKS, SISTEM PERSAMAAN LINEAR, DAN DETERMINAN

BAB 3 MATRIKS, SISTEM PERSAMAAN LINEAR, DAN DETERMINAN iktt Kulih EL- Mtemtik Teknik I BB MTRIKS, SISTEM PERSMN LINER, N ETERMINN Petemun ke- Pokok/Su Pokok Bhsn Tuun Pemelrn Mtriks, Sistem Persmn Liner, dn eterminn Mtriks dn opersin Sistem Persmn Liner; Eliminsi

Lebih terperinci

UJIAN BERSAMA SMA KABUPATEN TANAH DATAR SEMESTER 1 TAHUN PELAJARAN 2008/2009. Mata Pelajaran : MATEMATIKA Kelas/jurusan : XII/ IPA Hari/Tanggal :

UJIAN BERSAMA SMA KABUPATEN TANAH DATAR SEMESTER 1 TAHUN PELAJARAN 2008/2009. Mata Pelajaran : MATEMATIKA Kelas/jurusan : XII/ IPA Hari/Tanggal : UJIAN BERSAMA SMA KABUPATEN TANAH DATAR SEMESTER TAHUN PELAJARAN /9 Mt Peljrn : MATEMATIKA Kels/jurusn : XII/ IPA Hri/Tnggl : Wktu : menit. d... A. c B. c C. c D. c E. c. sin cos d... A. cos C B. cos C

Lebih terperinci

UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN

UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN Mengenng Jejk Sebgin Kecil Bngs Indonesi ng Pernh Mengikuti Ujin Sekolh Pd Awl Ms Keerdekn UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN 98 ALJABAR. SMA 98 Ditentukn persn tingkt du: 7 6.. Berpkh

Lebih terperinci

Nuryanto,ST.,MT DIFERENSIAL FUNGSI MAJEMUK

Nuryanto,ST.,MT DIFERENSIAL FUNGSI MAJEMUK Nurnto,ST,MT DIFERENSIAL FUNGSI MAJEMUK DIFERENSIASI ARSIAL dz q d p d o d q p o f dz z d d z f,,, Nurnto,ST,MT Nurnto,ST,MT = 4-6 z + z + z + 5 Diferensil prsil Diferensil totl Contoh z 8 18 6 z z 6z

Lebih terperinci

MATRIKS. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah.

MATRIKS. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah. MATRIKS Stndr Kompetensi : Menggunkn konsep mtriks, vektor, dn trnsformsi dlm pemechn mslh Kompetensi Dsr : Menggunkn sift-sift dn opersi mtriks untuk menentukn invers mtriks persegi Menggunkn determinn

Lebih terperinci

SUKU BANYAK ( POLINOM)

SUKU BANYAK ( POLINOM) SUKU BANYAK ( POLINOM) B 15 A. PENGERTIAN SUKU BANYAK. Bentuk 1 0 x x x x x, dengn 0 dn n { il. cch } n diseut dengn Suku nyk (Polinomil) dlm x erderjt n ( n dlh pngkt tertinggi dri x),,,., diseut keofisien

Lebih terperinci

7. APLIKASI INTEGRAL

7. APLIKASI INTEGRAL 7. APLIKASI INTEGRAL 7. Menghitung Lus Derh.Mislkn derh D (, ), f ( ) D f() Lus D =? Lngkh :. Iris D menjdi n gin dn lus stu uh irisn dihmpiri oleh lus persegi pnjng dengn tinggi f() ls(ler) A f ( ). Lus

Lebih terperinci

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0.

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0. DETERMINAN Fungsi determinn dri sutu mtriks persegi A (dinotsikn dengn det(a) tu A ) didefinisikn sebgi jumlh dri semu hsil kli elementer bertnd dri A. Sementr, ngk tu bilngn dri det(a) disebut determinn

Lebih terperinci

UN SMA IPA 2004 Matematika

UN SMA IPA 2004 Matematika UN SMA IPA Mtemtik Kode Sol P Doc. Version : - hlmn. Persmn kudrt ng kr-krn dn - dlh... ² + + = ² - + = ² + + = ² + - = ² - - =. Tinggi h meter dri sebuh peluru ng ditembkkn ke ts setelh t detik dintkn

Lebih terperinci

det DEFINISI Jika A 0 disebut matriks non singular

det DEFINISI Jika A 0 disebut matriks non singular DETERINAN DEFINISI Untuk setip mtriks persegi (bujur sngkr), d stu bilngn tertentu yng disebut determinn Determinn dlh jumlh semu hsil kli elementer bertnd dri sutu mtriks bujur sngkr. Disimbolkn dengn:

Lebih terperinci

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L.

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L. INTEGRAL FOURIER Disumsikn syrt-syrt berikut pd f(x):. f x memenuhi syrt Dirichlet pd setip intervl terhingg L, L.. f x dx konvergen, yitu f(x) dpt diintegrsikn secr mutlk dlm (, ). Selnjutny, Teorem integrl

Lebih terperinci

http://meetied.wordpress.com Mtemtik X Semester 1 SMAN 1 Bone-Bone Reutlh st ini. Ap pun yng is And lkukn tu And impikn Mulilh!!! Keernin mengndung kejeniusn, kekutn dn kejin. Lkukn sj dn otk And kn muli

Lebih terperinci

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi elips.. Memhmi unsur-unsur elips. 3. Memhmi eksentrisits

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer ljbr Liner Elementer M3 3 SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi

Lebih terperinci

MATEMATIKA DASAR. Bab Bilangan Irasional dan Logaritma. Drs. Sumardi Hs., M.Sc. Modul ke: 02Fakultas FASILKOM. Program Studi Teknik Informatika

MATEMATIKA DASAR. Bab Bilangan Irasional dan Logaritma. Drs. Sumardi Hs., M.Sc. Modul ke: 02Fakultas FASILKOM. Program Studi Teknik Informatika MATEMATIKA DASAR Modul ke: 0Fkults FASILKOM Progrm Studi Teknik Informtik Bb Bilngn Irsionl dn Logritm Drs. Sumrdi Hs., M.Sc. Bgin Isi Bilngn Irsionl - Berbgi bentuk kr dn opersiny Logritm - Sift-sift

Lebih terperinci

Modul PELATIHAN GUIDE MATLAB UNTUK PEMBUATAN ANTARMUKA PEMBELAJARAN PERSAMAAN MATEMATIKA DAN GRAFIKNYA

Modul PELATIHAN GUIDE MATLAB UNTUK PEMBUATAN ANTARMUKA PEMBELAJARAN PERSAMAAN MATEMATIKA DAN GRAFIKNYA Modul PELATIHAN GUIDE MATLAB UNTUK PEMBUATAN ANTARMUKA PEMBELAJARAN PERSAMAAN MATEMATIKA DAN GRAFIKNYA PENGENALAN PROGRAM MATLAB MENGGUNAKAN OPERASI OPERASI MATRIKS Oleh : Nur Hdi Wrnto, S.Si Lbortorium

Lebih terperinci

E-LEARNING MATEMATIKA

E-LEARNING MATEMATIKA MODUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYADIN EKO RAHARJO, M.PD. NIP. 97 Penulisn Moul e Lerning ini iii oleh n DIPA BLU UNY TA Sesui engn Surt Perjnjin Pelksnn e Lerning Nomor 99.9/H4./PL/ Tnggl

Lebih terperinci

VECTOR DI BIDANG R 2 DAN RUANG R 3. Nurdinintya Athari (NDT)

VECTOR DI BIDANG R 2 DAN RUANG R 3. Nurdinintya Athari (NDT) VECTOR DI BIDANG R DAN RUANG R Nurdininty Athri (NDT) VEKTOR DI BIDANG (R ) DAN DI RUANG (R ) Pokok Bhsn :. Notsi dn Opersi Vektor. Perklin titik dn Proyeksi Ortogonl. Perklin silng dn Apliksiny Beerp

Lebih terperinci

4. SISTEM PERSAMAAN LINEAR

4. SISTEM PERSAMAAN LINEAR Persipn UN / Beh SKL http://vigt.worpress.om SMA Negeri Mlng Pge. SISTEM PERSAMAAN LINEAR A. Sistem Persmn Liner Du Vriel (SPLDV). Bentuk umum :. Dpt iselesikn engn metoe grfik, sustitusi, eliminsi, n

Lebih terperinci

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut: INTEGRAL.PENGERTIAN INTEGRAL Integrl dlh cr mencri sutu fungsi jik turunnn di kethui tu kelikn dri diferensil (turunn) ng diseut jug nti derivtif tu nti diferensil. Untuk menentukn integrl tidk semudh

Lebih terperinci

SIFAT-SIFAT LOGARITMA

SIFAT-SIFAT LOGARITMA K- Kels X mtemtik PEMINATAN SIFAT-SIFAT LOGARITMA Tujun Pembeljrn Setelh memeljri mteri ini, kmu dihrkn memiliki kemmun berikut.. Memhmi definisi logritm.. Dt menentukn nili logritm dengn menggunkn tbel

Lebih terperinci

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. Dikethui bhw,. Untuk k didefinisikn bhw k k k. Tentukn jumlh tk hingg dri. Kit mislkn S S. Dengn demikin kit dpt menuliskn Kedu

Lebih terperinci

E-LEARNING MATEMATIKA

E-LEARNING MATEMATIKA MOUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYAIN EKO RAHARJO, M.P. NIP. 7 Penulisn Modul e Lerning ini diiyi oleh dn IPA BLU UNY TA Sesui dengn Surt Perjnjin Pelksnn e Lerning Nomor./H./PL/ Tnggl Juli

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer ljbr Liner Elementer M SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi

Lebih terperinci

SIAP UN MATEMATIKA IPS SMA PAHOA 2. EKSPONEN, AKAR, & LOGARITMA 1. LOGIKA MATEMATIKA 3. PERS, PERTIDAKSAMAAN, FUNGSI KUADRAT.

SIAP UN MATEMATIKA IPS SMA PAHOA 2. EKSPONEN, AKAR, & LOGARITMA 1. LOGIKA MATEMATIKA 3. PERS, PERTIDAKSAMAAN, FUNGSI KUADRAT. SIAP UN MATEMATIKA IPS SMA PAHOA N: Kels : IPS diut oleh: Joo Setiw, ST., MT. ( - - 5 ) eurut kisi-kisi UN -. LOGIKA MATEMATIKA Meetuk igkr tu kesetr dri sutu ert jeuk tu ert erkutor. Meetuk kesiul dri

Lebih terperinci

HITUNG INTEGRAL ( 4 ) 4. Diketahui f(x) = 4x + 1 dan F(2) = 17 ; Tentukan fungsi F f(x) = 4x + 1

HITUNG INTEGRAL ( 4 ) 4. Diketahui f(x) = 4x + 1 dan F(2) = 17 ; Tentukan fungsi F f(x) = 4x + 1 HITUNG INTEGRA BAB.Integrl tk tentu (tnp ts). Rumus-rumus ) ) n n n d c, n ) d c n n n. d c, n ). Sift-sift Integrl Contoh :... ) k. f ( ) d k. f ( ) d d d ln c ) ( ( ) ( )) ( ) ( ) d c ( ) ( ) d ( ) d

Lebih terperinci

Interpolasi. Umi Sa adah

Interpolasi. Umi Sa adah Interolsi Umi S dh Interolsi Perbedn Interolsi dn Ekstrolsi Interolsi Linier L Interolsi Kudrt L h h Interolsi Qubic L h h h Interolsi dg Polinomil 5 Tble : Si equidistntl sced oints in [- ] 5 -..846

Lebih terperinci

Penyelesaian Persamaan dengan Logaritma. Persamaan & Fungsi logaritma. Pengertian Logaritma 10/9/2013

Penyelesaian Persamaan dengan Logaritma. Persamaan & Fungsi logaritma. Pengertian Logaritma 10/9/2013 10/9/013 Penyelesin Persmn dengn Logritm Persmn & Fungsi logritm Tim Dosen Mtemtik FTP Logritm dpt digunkn untuk mencri bilngn yng belum dikethui (bilngn x) dlm sebuh persmn, khususny persmn eksponensil

Lebih terperinci

PERSAMAAN KUADRAT. ac 0 p dan q sama tanda. 2. dg. Melengkapkan bentuk kuadrat ( kuadrat sempurna ) :

PERSAMAAN KUADRAT. ac 0 p dan q sama tanda. 2. dg. Melengkapkan bentuk kuadrat ( kuadrat sempurna ) : PERSAMAAN KUADRAT Bb. Bentuk Umum : b c,,, b, c Re l Menyelesikn ersmn kudrt :. dg. Memfktorkn : b c ( )( q) q q = ( q) dimn : b = + q dn c, Jik c dn q berbed tnd c dn q sm tnd. dg. Melengkkn bentuk kudrt

Lebih terperinci

LIMIT FUNGSI. DEFINISI Notasi. dibaca. limit f(x) bila x mendekati a sama dengan L. atau. f(x) mendekati L bila x mendekati a.

LIMIT FUNGSI. DEFINISI Notasi. dibaca. limit f(x) bila x mendekati a sama dengan L. atau. f(x) mendekati L bila x mendekati a. DEFINISI Notsi dibc tu berrti bhw IMIT FUNGSI it bil mendekti sm dengn mendekti bil mendekti nili dpt dibut sedekt mungkin dengn bil cukup dekt dengn, tetpi tidk sm dengn. Perhtikn bhw dlm deinisi tersebut

Lebih terperinci

Vektor di R 2 dan R 3

Vektor di R 2 dan R 3 Vektor di R dn R Pengertin Vektor dlh besrn yng mempunyi besr dn rh Vektor digmbrkn oleh rus gris yng dilengkpi dengn nk pnh vektor dimuli dri titik wl (initil point) dn dikhiri oleh titik khir (terminl

Lebih terperinci

matematika WAJIB Kelas X KUADRAN SUDUT Kurikulum 2013 A. Besar Sudut pada Setiap Kuadran

matematika WAJIB Kelas X KUADRAN SUDUT Kurikulum 2013 A. Besar Sudut pada Setiap Kuadran Kuikulum 03 Kels mtemtik WAJIB KUADRAN SUDUT Tujun Pembeljn Setelh mempelji ini, kmu dihpkn memiliki kemmpun beikut.. Memhmi bes sudut di setip kudn.. Memhmi pebndingn tigonometi sudut-sudut di setip kudn.

Lebih terperinci

c y X = B D y D x h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m

c y X = B D y D x h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m h t t p : / / m t e m t r i k l o g s p o t o m Bentuk umum SPLV : Cr menentukn himpunn penelesin HP : ), ) : Eliminsi dn sutitusi Menggunkn invers mtriks, dengn konsep : B A X mk B AX, Cttn : jik dintkn

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 3 Sistem Persmn Liner Sistem Persmn Liner Su Pokok Bhsn Pendhulun Solusi SPL dengn OBE Solusi SPL dengn Invers mtriks dn Aturn Crmmer SPL Homogen Beerp Apliksi

Lebih terperinci

Sistem Persamaan Linier

Sistem Persamaan Linier b I Sistem Persmn Linier I Sistem Persmn Linier TUJUN PEMELJRN: Mhsisw memhmi konsep-konsep tentng sistem persmn linier, eksistensi dn keunikn sistem persmn linier, keunikn sistem persmn linier homogen,

Lebih terperinci

THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM. Prepared by: Romli Shodikin, M.Pd sabtu., 23 November 2013 Pertemuan 7

THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM. Prepared by: Romli Shodikin, M.Pd sabtu., 23 November 2013 Pertemuan 7 THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM Prepred y: Romli Shodikin, M.Pd stu., 3 Novemer 013 Pertemun 7 TEOREMA SISA dn TEOREMA FAKTOR Teorem Sis untuk Pemgin Bentuk Liner Teorem Sis : 1.Jik sutu

Lebih terperinci

BAB III MATRIKS

BAB III MATRIKS BB III MTRIKS PENGERTIN MTRIKS Pengertin Mtriks Mtriks dlh susunn bilngn-bilngn ng berbentuk persegi tu persegi pnjng ng ditur dlm bris dn kolom Bentuk Umum Mtriks : i m i m i m j j j ij mj n n n in mn

Lebih terperinci

PEMANTAPAN BELAJAR SMA BBS INTEGRAL

PEMANTAPAN BELAJAR SMA BBS INTEGRAL BAB I PEMANTAPAN BELAJAR SMA BBS INTEGRAL I A RANGKUMAN INTEGRAL. Pengertin Apil terdpt fungsi F() yng dpt didiferensilkn pd selng I sedemikin hingg F () = f(), mk nti turunn (integrl) dri f() dlh F()

Lebih terperinci

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan LUAS DAERAH APLIKASI INTEGRAL TENTU Indiktor Pencpin Hsil Beljr Mhsisw menunjukkn kemmpun dlm :. Menghitung lus pd idng dtr Ringksn Mteri Perkulihn Jik sutu derh ditsi oleh kurv f(), g(), gris dn dengn

Lebih terperinci

BAB 1 BENTUK PANGKAT, AKAR, DAN LOGARITMA

BAB 1 BENTUK PANGKAT, AKAR, DAN LOGARITMA BAB BENTUK PANGKAT, AKAR, DAN LOGARITMA A RINGKASAN MATERI. Sift-sift Ekspoe Misl d ilg rel ( 0, 0) sert d ilg rsiol, k erlku huug segi erikut. =... fktor = + = ( ) = ( ) =. Betuk Akr Jik d ilg rsiol positif,

Lebih terperinci

MATRIKS. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

MATRIKS. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ MTRIKS gustin Prdjningsih, M.Si. Jurusn Mtemtik FMIP UNEJ tinprdj.mth@gmil.com DEFINISI MTRIKS Sutu dftr bilngn-bilngn rel tu kompleks terdiri ts m bris dn n kolom, m dn n bilngn bult positip disebut mtriks

Lebih terperinci

ALJABAR. 1. AMS (Algemeene Middelbare School)-HBS (Hogere Burger School), 1949 Y terletak pada garis y

ALJABAR. 1. AMS (Algemeene Middelbare School)-HBS (Hogere Burger School), 1949 Y terletak pada garis y Megeg Jejk Sebgi Kecil Bgs Idoesi Yg Peh Megikuti Uji Sekolh Pd Awl Ms Keedek UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN 949 ALJABAR. AMS (Algeeee Middelbe School)-HBS (Hogee Buge School), 949

Lebih terperinci

Catatan Kuliah 2 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks (2)

Catatan Kuliah 2 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks (2) Cttn Kulih Mtemtik Ekonomi Memhmi dn Mengnlis ljbr Mtriks (). Vektor dn kr Krkteristik pbil dlh mtriks berordo n n dn X dlh vector n, kn dicri sklr λ R yng memenuhi persmn : X λ X tu ( λi) X gr X (solusiny

Lebih terperinci

Vektor translasi dpt ditunjukkan oleh bil. berurutan yang ditulis dlm bentuk matriks kolom

Vektor translasi dpt ditunjukkan oleh bil. berurutan yang ditulis dlm bentuk matriks kolom TRANSFORMASI GEOMETRI BAB Sutu trnsformsi idng dlh sutu pemetn dri idng Krtesius ke idng ng lin tu T : R R (,) ( ', ') Jenis-jenis trnsformsi ntr lin : Trnsformsi Isometri itu trnsformsi ng tidk menguh

Lebih terperinci

3 = 3, karena = 0, karena = ( 3) = 3, karena -3<0

3 = 3, karena = 0, karena = ( 3) = 3, karena -3<0 Junl SCIENCETECH Vl N Agustus 016 GEOMETRI ANALITIK BIDANG PADA KOORDINAT MIRING Zinnu Wijynt, M.Pd dn Ds. B. Kusnt, M.Pd Pendidikn Mtetik, FKIP UST Eil: znnuwijy@yh.c Astct The i f this study ws t deteine

Lebih terperinci

Materi V. Determianan dinotasikan berupa pembatas dua gris lurus,

Materi V. Determianan dinotasikan berupa pembatas dua gris lurus, Mteri V Tujun : 1. Mhsisw dpt mengenli determinn.. Mhsisw dpt merubh persmn linier menjdi persmn determinn.. Mhsisw menelesikn determinn ordo du. Mhsisw mmpu menelesikn determinn ordo tig. Mhsisw mengethui

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN

NILAI EIGEN DAN VEKTOR EIGEN Pert 9 (mengjrkomputer.wordpress.com) NILAI EIGEN DAN VEKTOR EIGEN 9. Definisi Sebuh mtriks bujur sngkr dengn orde n n mislkn A, dn sebuh vektor kolom X. Vektor X dlh vektor dlm rung Euklidin n R yng dihubungkn

Lebih terperinci

Tiara Ariqoh Bawindaputri TIP / kelas L

Tiara Ariqoh Bawindaputri TIP / kelas L Tir Ariqoh Bwindputri 500008 TIP / kels L INTEGRAL Integrl Tk tentu Integrl dlh entuk invers dri turunn. Secr umum jik seuh fungsi diintegrlkn terhdp vrile tertentu dpt disjikn dlm entuk : f ( F( C Untuk

Lebih terperinci

LIMIT FUNGSI. Tapi jika x hanya mendekati 1, f(x) mendekati nilai berapa..? x 0,9 0,99 0,999 0, ,0001 1,001 1,01 1,1

LIMIT FUNGSI. Tapi jika x hanya mendekati 1, f(x) mendekati nilai berapa..? x 0,9 0,99 0,999 0, ,0001 1,001 1,01 1,1 Rinksn Limit Funsi Kels XI IPS SMA Trknit Jkrt LIMIT FUNGSI Limit dlm kt-kt sehri-hri: Mendekti hmpir, sedikit li, tu hr bts, sesutu yn dekt tetpi tidk dpt dicpi. Ilustrsi it = = Funsi ini tk mempunyi

Lebih terperinci

Matematika EBTANAS Tahun 1992

Matematika EBTANAS Tahun 1992 Mtemtik EBTANAS Thun 99 EBT-SMA-9-0 Grfik fungsi kudrt yng persmnny y = x 5x memotong sumu x. Slh stu titik potongny dlh (, 0), mk nili sm dengn EBT-SMA-9-0 Persmn x px + 5 = 0 kr-krny sm. Nili p 0 tu

Lebih terperinci

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A.

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A. Bb DETERMINAN MATRIKS Determinn sutu mtriks dlh sutu fungsi sklr dengn domin mtriks bujur sngkr. Dengn kt lin, determinn merupkn pemetn dengn domin berup mtriks bujur sngkr, sementr kodomin berup sutu

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN

NILAI EIGEN DAN VEKTOR EIGEN Hl di 9 NILAI EIGEN DAN VEKTOR EIGEN 7. Definisi Sebuh mtiks buju sngk dengn ode n n mislkn A, dn sebuh vekto kolom X. Vekto X dlh vekto dlm ung Euklidin dengn sebuh pesmn: n R yng dihubungkn AX X (7.)

Lebih terperinci

Matematika X Semester 1 SMAN 1 Bone-Bone

Matematika X Semester 1 SMAN 1 Bone-Bone http://meetbied.wordpress.com Mtemtik X Semester SMAN Bone-Bone Hsil yng pling berhrg dri semu jenis pendidikn dlh kemmpun untuk membut diri kit melkukn sesutu yng hrus kit lkukn, pd st hl itu hrus dilkukn,

Lebih terperinci

SMA Santa Angela. Bandung. 1 P a g e

SMA Santa Angela. Bandung. 1 P a g e Persmn Gris Singgung SMA Snt Angel Bndung P g e P g e Persmn Gris Singgung pd Ellips Seperti hln pd lingkrn, terdpt du mcm gris singgung ng kn diicrkn, itu gris singgung ng mellui slh stu titik pd ellips

Lebih terperinci

Integral Tak Tentu dan Integral Tertentu

Integral Tak Tentu dan Integral Tertentu Integrl Tk Tentu dn Integrl Tertentu Pengertin Integrl Jik F dlh fungsi umum yng ersift F = f, mk F merupkn ntiturunn tu integrl dri f. Pengintegrln fungsi f terhdp dinotsikn segi erikut : f d F c notsi

Lebih terperinci

EXPONEN DAN LOGARITMA

EXPONEN DAN LOGARITMA Drs Pudjul Prijoo SMA Negeri Mlg EXPONEN DAN LOGARITMA A EXPONEN Sift-sift il Berpgkt yg ekspoey il Bult Sift-sift il Berpgkt yg ekspoey il Rsiol/Peh 0 ; 0 ; 0 0, 0 ; 0 0 d ; 7 0 0; ; Meyederhk etuk :

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika Antiremed Kels 11 Mtemtik Persipn UAS - 0 Doc. Nme: AR11MAT0UAS Version : 016-07 hlmn 1 01. Pd ulngn mtemtik, dikethui nili rt -rt kels dlh 58. Jik rt-rt nili mtemtik untuk sisw priny dlh 65, sedngkn untuk

Lebih terperinci

Hendra Gunawan. 26 Maret 2014

Hendra Gunawan. 26 Maret 2014 MA1201 MATEMATIKA 2A Hendr Gunwn Semester II 2013/2014 26 Mret 2014 Kuli ng Llu 12.1 Fungsi du tu lebi peub 12.2 Turunn Prsil 12.3 Limitdn Kekontinun 12.4 Turunn ungsi du peub 12.5 Turunn berr dn grdien

Lebih terperinci

Masalah Dalam Menentukan Persamaan Garis Singgung Lingkaran Melalui Satu Titik di Luar Lingkaran Dengan Cara Mencari Gradiennya.

Masalah Dalam Menentukan Persamaan Garis Singgung Lingkaran Melalui Satu Titik di Luar Lingkaran Dengan Cara Mencari Gradiennya. Mslh Dl Menentukn Pesn Gis Singgung Lingkn Mellui Stu Titik di Lu Lingkn Dengn C Menci Gdienn. g g P A B T (, ) Mellui titik T di lu lingkn, dpt ditentukn tept du gis singgung pd lingkn tesebut. Gis singgung

Lebih terperinci

IRISAN KERUCUT. 1. Persamaan lingkaran dengan pusat (0,0) dan jari-jari r. Persamaan = TK titik T = =

IRISAN KERUCUT. 1. Persamaan lingkaran dengan pusat (0,0) dan jari-jari r. Persamaan = TK titik T = = IRISAN KERUCUT Bb 9 A. LINGKARAN. Persmn lingkrn dengn pust (0,0) dn jri-jri r 0 r T(x,y) X Persmn = TK titik T = { T / OT r } = = {( x, y) / r } {( x, y) / r }. Persmn lingkrn dengn pust (,b) dengn jri-jri

Lebih terperinci

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN HIPERBLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi dn unsur-unsur hiperol.. Dpt menentukn persmn

Lebih terperinci

Kerjakan di buku tugas. Tentukan hasil operasi berikut. a. A 2 d. (A B) (A + B) b. B 2 e. A (B + B t ) c. A B f. A t (A t + B t ) Tes Mandiri

Kerjakan di buku tugas. Tentukan hasil operasi berikut. a. A 2 d. (A B) (A + B) b. B 2 e. A (B + B t ) c. A B f. A t (A t + B t ) Tes Mandiri Mmt Apliksi SMA Bhs Dikethui A = Tentukn hsil opersi berikut A c A A b A A d A Dikethui A = Tentukn hsil opersi berikut (A + B) c (B A) b A + AB + B d B BA + A Sol Terbuk Kerjkn di buku tugs Jik X = dn

Lebih terperinci

ANALISIS NUMERIK. Inter polasi. SPL simultan. Akar Persama. linear

ANALISIS NUMERIK. Inter polasi. SPL simultan. Akar Persama. linear ANALISIS NUMERIK Inter polsi SPL simultn Akr Persm n Non liner INTERPOLASI Tujun Interpolsi bergun untuk menksir hrg-hrg tengh ntr titik dt yng sudh tept. Interpolsi mempunyi orde tu derjt. Mcm Interpolsi

Lebih terperinci

Fungsi f dikatakan pada / onto / surjektif jika setiap elemen himpunan B merupakan

Fungsi f dikatakan pada / onto / surjektif jika setiap elemen himpunan B merupakan III FUNGSI 15 1. Definisi Fungsi Definisi 1 Mislkn dn dlh himpunn. Relsi iner f dri ke merupkn sutu fungsi jik setip elemen di dlm dihuungkn dengn tept stu elemen di dlm. Jik f dlh fungsi dri ke, mk f

Lebih terperinci

(c) lim. (d) lim. (f) lim

(c) lim. (d) lim. (f) lim FMIPA - ITB. MA Mtemtik A Semester, 6-7. Pernytn enr dn slh. () ()! e Solusi. Benr. Fungsi eksonensil (enyeut) memesr leih cet drid fungsi olinom (emilng) sehingg emginny menghsilkn nili Dengn Hoitl s

Lebih terperinci

PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 1

PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 1 PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 6y y 8y. Dikethui R dn. Temukn nili y. y y 8y 6 Solusi: 6y y 8y y y 8y 6 6y y 8y 8y y 6 y 8 0 y y y 0 y y y 0 ( y ) ( y ) 0 y y 8y 6 ( y )(y ) 0 y 0tu y 0

Lebih terperinci

Suku banyak. Akar-akar rasional dari

Suku banyak. Akar-akar rasional dari Suku nyk Algoritm pemgin suku nyk menentukn Teorem sis dn teorem fktor terdiri dri Pengertin dn nili suku nyk Hsil gi dn sis pemgin suku nyk Penggunn teorem sis Penggunn teorem fktor Derjd suku nyk pd

Lebih terperinci

, 4, 3, 2, 1, 0, 1, 2, 3, 4, (3) Bilangan rasional melibatkan hasil bagi dua bilangan bulat, seperti. 04, tidak termasuk bilangan rasional

, 4, 3, 2, 1, 0, 1, 2, 3, 4, (3) Bilangan rasional melibatkan hasil bagi dua bilangan bulat, seperti. 04, tidak termasuk bilangan rasional Diktt Kulih TK Mtemtik BAB PENDAHULUAN. Sistem Bilngn Rel Terdpt eerp sistem ilngn itu: ilngn sli, ilngn ult, ilngn rsionl, ilngn irrsionl, dn ilngn rel. Msing-msing ilngn itu segi erikut. ) Bilngn sli

Lebih terperinci

VI. DEFLEKSI BALOK ELASTIS: METODE FUNGSI SINGULARITAS

VI. DEFLEKSI BALOK ELASTIS: METODE FUNGSI SINGULARITAS [Defleksi Blk Elstis: etde Fungsi Singulrits] VI. DEFEKSI BOK ESTIS: ETODE FUNGSI SINGUITS.. etde Fungsi Singulrits etde fungsi singulrits merupkn metde yng pling sederhn untuk perhitungn defleksi. etde

Lebih terperinci

MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT. Supriyono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo.

MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT. Supriyono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo. MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT Supriyono Jurusn Pendidikn Mtemtik FKIP Universits Muhmmdiyh Purworejo Abstrk Tulisn ini terdiri bgin yitu () bgin pendhulun yng membhs bentuk umum persmn pngkt

Lebih terperinci

BAB III KERAPATAN FLUKS LISTRIK DAN HUKUM GAUSS -Q +Q. Muatan satu coulomb menimbulkan muatan listrik satu coulomb. (C/m 2 )

BAB III KERAPATAN FLUKS LISTRIK DAN HUKUM GAUSS -Q +Q. Muatan satu coulomb menimbulkan muatan listrik satu coulomb. (C/m 2 ) BAB III KERAPATAN FLUKS LISTRIK DAN HUKUM GAUSS KERAPATAN FLUKS LISTRIK Fluk litik bemul di mutn poitif dn bekhi di mutn negtif ( tu bekhi di tk tehingg klu tidk d mutn negtif (b + - + -~ Gi fluk ( (b

Lebih terperinci

SUKU BANYAK ( POLINOM)

SUKU BANYAK ( POLINOM) SUKU BANYAK ( POLINOM) Bb 16 Skl 8.Menyelesikn mslh yng berkitn dengn teorem sis tu teorem fktor A. PENGERTIAN SUKU BANYAK. Bentuk x x x... x x, dengn 0 dn n { bil. cch} 1 0 disebut dengn Suku bnyk (Polinomil)

Lebih terperinci