PERENCANAAN KONSTRUKSI BAJA BANGUNAN GUDANG

Ukuran: px
Mulai penontonan dengan halaman:

Download "PERENCANAAN KONSTRUKSI BAJA BANGUNAN GUDANG"

Transkripsi

1 PERENCANAAN KONSTRUKSI BAJA BANGUNAN GUDANG JURNAL TUGAS AKHIR Diajukan untuk Memenuhi Salah Satu Syarat Akademik Menempuh Gelar Sarjana Teknik Sipil Strata Satu Oleh : RIZA ZAKARIYA JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS SILIWANGI TASIKMALAYA

2 PERENCANAAN KONSTRUKSI BAJA BANGUNAN GUDANG Oleh : Ria Zakariya Dosen Pembimbing 1 : Yusep Ramdani, MT. Dosen Pembimbing II : Agus Widodo, Ir., MM. ABSTRAK Perencanaan suatu gudang sebagai pelindung mutu dan kualitas barang menggunakan perhitungan yang matang, karena bangunan ini digunakan dalam kurun waktu yang panjang dan juga bangunan yang dihasilkan harus aman, kuat, nyaman, dan sesuai dengan persyaratan yang telah ditetapkan. Pengolahan data dianalisis dengan menggunakan SAP 2000 v.14 untuk perhitungan portal, balok dan kolom. Pada perencanaan struktur gudang ini, digunakan Tata Cara Perhitungan Struktur Beton Bertulang Untuk Bangunan Gedung (SKSNI T ), Tata Cara Perencanaan Struktur Baja untuk Bangunan Gedung (SNI ), Peraturan Perencanaan Bangunan Baia Indonesia 1984 (PPBBI), Peraturan Pembebanan Indonesia Untuk Gedung 1983 (PPIUG). Berdasarkan dari perhitungan, dapat disimpulkan bahwa perencanaan gudang ini menggunakan struktur profil baja IWF dan pondasi setempat dengan ukuran tapak pondasi 2,3 x 2,8 meter dengan kedalaman 2,90 meter dinyatakan aman. Kata kunci : Gudang, IWF , Perencanaan Struktur BAB I PENDAHULUAN 1.1. Latar Belakang Baja merupakan bahan yang mempunyai sifat struktur yang sangat baik sehingga pada akhir abad 19, dimulainya menggunaan baja sebagai bahan struktur (konstruksi) utama, ketika itu metode pengolahan baja yang murah dikembangkan dengan skala yang luas. Sifat Baja mempunyai kekuatan yang tinggi dan sama kuat pada kekuatan tarik maupun tekan dan oleh karena itu baja adalah menjadi elemen struktur yang memiliki batasan sempurna yang akan menahan beban jenis tarik aksial, tekan aksial, dan lentur dengan fasilitas yang hampir sama pada konstruksi (struktur) nya. Berat jenis baja tinggi, tetapi perbandingan antara kekuatan terhadap beratnya juga tinggi sehingga komponen baja tersebut tidak terlalu berat jika dihubungkan dengan kapasitas muat bebannya, selama bentuk-bentuk struktur (konstruksi) yang digunakan menjamin bahwa bahan tersebut dipergunakan secara efisien. Dan dalam pembangunan gudang, umumnya struktur bangunan gudang menggunakan material baja, hal ini karena kebutuhan jarak antar kolom yang jauh sedangkan atap biasanya merupakan atap metal yang ringan. Dengan material baja, dengan kekakuan 10x lipat dari beton didapat strutkur yang lebih kecil dan ringan.untuk bentang antar kolom yang tidak terlalu panjang (misal 10m), bisa digunakan baja profil biasa, untuk yang lebih panjang dapat digunakan castileted, yaitu profil baja misal baja I/WF (wide flange) dibelah menjadi dua dengan irisan membentuk trapesium kemudian badan baja di geser ke samping dan keatas sedemikian hingga badan baja yang bawah bertemu dengan yang atas, badan ini kemudian di las, dan akan terbentuk lubang berbentuk segi enam. Castileted beam ini sangat efektif karena tinggi baja akan menjadi 2 kali lipat sehingga kekakuan dan kekuatan lenturnya jauh bertambah. Dan karena terdapat lubang segi enam tadi akan mengurangi berat sendiri struktur yang menjadikannya lebih efektif. 1

3 1.2. Identifikasi Masalah Permasalahan yang akan ditinjau adalah sebagai berikut : 1. Bagaimana menentukan jenis pembebanan yang akan digunakan dalam desain? 2. Bagaimana merencanakan struktur bangunan gudang? 3. Bagaimana melakukan analisa struktur pada baja Gable Frame? 4. Bagaimana menuangkan hasil perencanaan ke dalam gambar teknik? 1.3. Tujuan Perencanaan 1. Menghitung gaya-gaya dalam yang terjadi akibat beban kerja. 2. Melakukan analisa penampang untuk dapat menahan lenturan akibat gaya-gaya yang bekerja. 3. Menuangkan hasil analisa struktur ke dalam gambar teknik Batasan Masalah Permasalahan dalam penggunaan baja sebenarnya cukup banayk yang harus diperhatikan, namun mengingat keterbatasan waktu, perencanaan ini mengambil batasan : 1. Perencanaan yang akan dihitung adalah struktur Gudang tipe Portal Kaku (Gable Frame). 2. Tinjauan meliputi struktur atas dan struktur bawah bangunan. 3. Tidak melakukan peninjauan terhadap analisa biaya dan waktu perencanaan. 4. Aspel-aspek peraturan yang dipakai dalam perencanaan Bangunan Gudang yakni SNI tentang Tata Cara Perencanaan Struktur Baja untuk Bangunan Gedung Umum BAB II TINJAUAN PUSTAKA Gudang adalah sebuah ruangan yang digunakan untuk menyimpan berbagai macam barang. Setiap jenis bangunan bisa saja memiliki gudang, misalnya saja gudang pada bangunan pabrik, toko, dan bahkan rumah tinggal. Karena digunakan untuk menyimpan berbagai macam barang, biasanya gudang berpotensi untuk menyimpan debu. Karena itu, peletakan gudang perlu diperhatikan agar tidak mengganggu aktivitas lain dalam bangunan tersebut. Pada saat ini kebutuhan akan gudang sangat tinggi. Salah satunya diakibatkan oleh bertumbuhnya pasar retail yang pesat terutama di kota-kota besar. Sarana penyimpanan berbagai komoditas sebelum akhirnya didistribusikan ke pasar menjadi hal yang perlu diperhatikan. Oleh karena itu dibutuhkan bangunan yang dapat mengakomodir keperluan ini dengan baik, aman, fungsional, dan tentunya kuat. Umumnya struktur bangunan gudang menggunakan material baja, hal ini karena kebutuhan jarak antar kolom yang jauh sedangkan atap biasanya merupakan atap metal yang ringan. Dengan material baja, dengan kekakuan 10x lipat dari beton didapat strutkur yang lebih kecil dan ringan.untuk bentang antar kolom yang tidak terlalu panjang (misal 10m), bisa digunakan baja profil biasa, untuk yang lebih panjang dapat digunakan castileted, yaitu profil baja misal baja I/WF (wide flange) dibelah menjadi dua dengan irisan membentuk trapesium kemudian badan baja di geser ke samping dan keatas sedemikian hingga badan baja yang bawah bertemu dengan yang atas, badan ini kemudian di las, dan akan terbentuk lubang berbentuk segi enam. Castileted beam ini sangat efektif karena tinggi baja akan menjadi 2 kali lipat sehingga kekakuan dan kekuatan lenturnya jauh bertambah. Dan karena terdapat lubang segi enam tadi akan mengurangi berat sendiri struktur yang menjadikannya lebih efektif Struktur Gudang Standarisasi struktur baja pembangunan pabrik atau gudang (disesuaikan dengan bentangan) antara lain : Kolom Utama Kolom Gable Rafter/Portal Tie Beam (untuk mengikat kolom utama terhadap portal) Struktur Pondasi 2

4 Accesories (Base Plate, Stifner, Futte, Top Plate, End Plate, Plat Join, Plat Gording, dll). Dalam kenyataannya konstruksi adalah berbentuk ruang, sehingga secara keseluruhan konstruksi belum stabil, maka perlu diatur lagi dalam arah yang lain. Contoh : P P P P H Gambar 2.8. Contoh Pembebanan Pada bidang kuda-kuda, konstruksi ini stabil, sebab sudah diperhitungkan terhadap beban yang bekerja yaitu P dan H (angin / gempa) -kuda, bila ada beban H bekerja dalam arah ini, konstruksi akan roboh/terguling, jadi masih labil. Maka perlu distabilkan dalam arah ini. Konstruksi untuk memberikan stabilitas dalam arah ini dinamakan : Yang dipasang pada bidang atap dan pada bidang dinding Bentuk-Bentuk Konstruksi Rangka Gudang a) Konstruksi kap rangka sendi rol A B sendi rol sendi Gambar 2.1. Rangka Sendi-Rol Konstruksi kuda-kuda dengan tumpuan A sendi, B rol merupakan konstruksi statis tertentu, maka penyelesaian statikanya dengan statis tertentu. Namun sering didalam praktek dibuat A sendi, B sendi, dengan demikian konstruksi menjadi statis tak tentu. Tetapi sering diselesaikan dengan cara pendekatan dengan menganggap perletakan A = B didalam menerima beban H. R AH = R BH = H/2 H A H/2 H/2=RBH B 3

5 Gambar 2.2. R AH = R BH = H/2 Untuk mencari gaya-gaya batangannya dapat digunakan cara : Cremona Keseimbangan titik Ritter Dan lain-lain Kemudian untuk mendukung kuda-kuda diperlukan kolom. Apabila dipakai kolom dengan perletakan bawah sendi, maka struktur menjadi tidak stabil bila ada beban H (angin/gempa). H S S akan roboh sendi sendi Gambar 2.3. Gaya yang Bekerja akibat Beban H Karena itu untuk mendukung kuda-kuda ini, harus dipakai kolom dengan perletakan bawah jepit. H H/2 H/2 h V M = H/2 = h H/2 jepit V M H/2 jepit Gambar 2.4. Kestabilan Gaya Bila gaya H bekerja maka struktur/konstruksi ini akan stabil/kokoh. Pada perletakan bawah kolom terjadi gaya V, H dan M. Besarnya M = adalah cukup besar. Maka bila struktur ini yang dipilih pada tanah yang jelek, pondasinya akan mahal. hh.2 Dicari penyelesaian suatu bentuk struktur agar pondasi tidak terlalu mahal. b) Kuda-kuda dihubungkan dengan pengaku pada kolom 1. Kuda-kuda dengan pengaku dan perletakan bawah kolom jepitan. Struktur dengan sistem ini cukup kaku dan memberikan momen M lebih kecil dari pada struktur sebelumnya. 4

6 H e f h 1 a a c S H/2 S H/2 H/2 H/2 M jepit M jepit A d Gambar 2.5. Struktur Statis Tak Tentu Struktur semacam ini adalah statis tak tentu, maka statistikanya diselesaikan dengan cara statis tak tentu. Namun sering didalam prkateknya diselesaikan dengan cara pendekatan/sederhana yaitu : - Bila beban vertikal (gravitasi) yang bekerja, struktur dianggap statis tertentu, yang bekerja pada kolom gaya V saja. Selanjutnya gaya-gaya batang KRB dicari dengan : Cremona, Kesetimbangan Titik, Ritter, dan sebagainya. - Bila beban H bekerja, dianggap terjadi titik balik (= inflection point) terjadi ditengah-tengah yaitu S1 dan S2. M pada titik balik = 0 (seperti sendi) 2. Kuda-kuda dengan pengaku dan perletakan bawah kolom sendi. c c h 1 b a h 1 b a h h sendi sendi sendi sendi Gambar 2.6. Kuda-kuda Berpengaku dan perletakan bawah kolom sendi Struktur ini sama seperti pada perletakan bawah kolom jepit. Gaya batang (a), (b) dan (c) dapat dihitung seperti sebelumnya, hanya mengganti jarak a dengan h. Keuntungan kolom dengan perletakan sendi ini adalah : - Momen pada perletakan bawah/sendi = 0 - Momen pada pondasi menjadi kecil, pondasinya menjadi murah - Namun momen pada kolomnya menjadi besar 2 kali dari pada kolom perletakan jepit (h = 2a) c. Konstruksi 3 Sendi S RAH A sendi sendi RBH RAV RBV Gambar 2.6. Konstruksi Tiga Sendi 5

7 d. Konstruksi Portal Kaku (Gable Frame) kolom haunch rafter stiffener base plate Gambar 2.7. Konstruksi Portal Kaku (Gable Frame) Konstruksi ini adalah statis tak tentu. Diselesaikan dengan cara cross, clapeyron, slope deflection, tabel, dan sebagainya. Gaya yang bekerja pada batang-batangnya N, D dan M. Batang menerima Nu dan Mu perhitungan sebagai beam column. Suatu Gable Frame mempunyai berbagai macam komponen yang berperan dalam menunjang kekuatan strukturnya secara keseluruhan, yaitu antara lain rafter, kolom, base plate, haunch, dan stiffener. Dalam perhitungan atau pemodelan struktur, beberapa komponen tersebut seringkali tidak diperhitungkan. Demikian juga halnya dengan haunch (pengaku). Dalam pelaksanaan di lapangan, gable frame biasanya diberi pengaku. Biasanya pengaku diberi untuk memuat alat penyambung baut dan mencukupi kekuatan sambungan. Sedangkan pengaku sebagai salah satu komponen gable frame tersebut mempunyai pengaruh terhadap kekuatan struktur secara keseluruhan. Jika haunch diikutsertakan dalam perhitungan struktur gable frame maka diharapkan terjadi penurunan tegangan dan lendutan yang terjadi, bila dibandingkan dengan yang tidak mempunyai haunch Material Baja Keuntungan Baja sebagai Material Struktur Bangunan (Konstruksi bangunan). Sifat Baja di samping kekuatannya yang besar untuk menahan kekuatan tarik dan tekan tanpa membutuhkan banyak volume, baja juga mempunyai sifat-sifat lain yang menguntungkan sehingga menjadikannya sebagai salah satu bahan bangunan yang sangat umum dipakai dewasa ini. Beberapa keuntungan baja sebagai material struktur antara lain: Baja memiliki Kekuatan yang Tinggi Baja mudah dalam pemasangan Baja memiliki Keseragaman Baja memiliki sifat Daktail/Liat (Daktilitas) Di samping itu keuntungan-keuntungan lain dari struktur baja, antara lain adalah : Proses pemasangan di lapangan berlangsung dengan cepat. Dapat di las (welding) atau sistem baut (bolting). Komponen-komponen struktumya bisa digunakan lagi untuk keperluan lainnya. Komponen-komponen yang sudah tidak dapat digunakan lagi masih mempunyai nilai sebagai besi tua. Struktur yang dihasilkan bersifat permanen dengan cara pemeliharaan yang tidak terlalu sukar. Selain keuntungan-keuntungan tersebut bahan baja juga mempunyai kelemahan-kelemahan sebagai berikut : o Komponen-komponen struktur yang dibuat dari bahan baja perlu diusahakan supaya tahan api sesuai dengan peraturan yang berlaku untuk bahaya kebakaran. o Diperlukannya suatu biaya pemeliharaan untuk mencegah baja dari bahaya karat. o Akibat kemampuannya menahan tekukan pada batang-batang yang langsing, walaupun dapat menahan gaya-gaya aksial, tetapi tidak bisa mencegah terjadinya pergeseran horisontal 6

8 Sifat Mekanis Baja : Menurut SNI tentang TATA CARA PERENCANAAN STRUKTUR BAJA UNTUK BANGUNAN GEDUNG sifat mekanis baja struktural yang digunakan dalam perencanaan harus memenuhi persyaratan minimum yang diberikan pada tabel 1. Tabel 1. Sifat mekanis baja struktural : Jenis Baja Tegangan Putus Minimum fu (MPa) Tegangan Leleh Minimum fy (MPa) Peregangan Minimum (%) BJ BJ BJ BJ BJ Sifat-sifat mekanis lainnya, Sifat-sifat mekanis lainnya baja struktural untuk maksud perencanaan ditetapkan sebagai berikut: Modulus elastisitas : E = MPa Modulus geser : G = MPa Nisbah poisson : μ = 0,3 Koefisien pemuaian : á = 12 x 10-6 / o C Menurut SNI tentang TATA CARA PERENCANAAN STRUKTUR BAJA UNTUK BANGUNAN GEDUNG, semua baja struktural sebelum difabrikasi, harus memenuhi ketentuan berikut ini: SK SNI S F: Spesifikasi Bahan Bangunan Bagian B (Bahan Bangunan dari Besi/baja); SNI : Baja Kanal Bertepi Bulat Canai Panas, Mutu dan Cara Uji; SNI : Pipa Baja Karbon untuk Konstruksi Umum, Mutu dan Cara Uji; SNI : Baja Kanal C Ringan; SNI : Baja Bentuk I Bertepi Bulat Canai Panas, Mutu dan Cara Uji; SNI A: Baja, Peraturan Umum Pemeriksaan; SNI : Baja Canai Panas untuk Konstruksi Umum; SNI : Pipa dan Pelat Baja Bergelombang Lapis Seng; SNI : Baja Siku Sama Kaki Bertepi Bulat Canai Panas, Mutu dan Cara Uji; SNI : Baja Profil H Hasil Pengelasan dengan Filter untuk Konstruksi Umum; SNI : Baja untuk Keperluan Rekayasa Umum; SNI : Baja Canai Panas untuk Konstruksi dengan Pengelasan; SNI : Tata Cara Perencanaan Ketahanan Gempa Untuk Rumah dan Gedung Pembebanan Perencanaan suatu struktur untuk keadaan-keadaan stabil batas, kekuatan batas, dan kemampuan-layan batas harus memperhitungkan pengaruh-pengaruh dari aksi sebagai akibat dari beban-beban berikut ini: 1) beban hidup dan mati seperti disyaratkan pada SNI atau penggantinya; 2) untuk perencanaan keran (alat pengangkat), semua beban yang relevan yang disyaratkan pada SNI , atau penggantinya; 3) pembebanan gempa sesuai dengan SNI , atau penggantinya; 4) beban-beban khusus lainnya, sesuai dengan kebutuhan Pembebanan pada Gording a. Beban Mati / Dead Load Gording ditempatkan tegak lurus bidang penutup atap dan beban mati Px bekerja vertikal, P diuraikan pada sumbu X dan sumbu Y, sehingga diperoleh : 7

9 Y X X qy a q qx Gambar Gaya kerja pada gording qx = q. sin a... (2.1) qy = q. cos a...(2.2) Dimana : qx : Beban mati arah x qy : Beban mati arah y a : Sudut kemiringan Gording diletakan di atas beberapa tumpuan (kuda-kuda), sehingga merupakan balok menerus di atas beberapa tumpuan dengan reduksi momen lentur maksimum adalah 80 %. Momen maksimum akibat beban mati : Mx1 = 1/8. qx. (l) %...(2.3) My1 = 1/8.qy. (l) %... (2.4) Dimana : Mx : Momen maksimum arah x My : Momen maksimum arah y b. Beban Hidup / Live Load Y X X Py a P Px Gambar Gaya yang bekerja pada beban hidup Beban hidup adalah beban terpusat yang bekerja di tengah-tengah bentanggording, beban ini diperhitungkan jika ada orang yang bekerja di atas gording. Besarnya beban hidup diambil dari PPURG 1987, P = 100 kg Px = P. sin a... (2.5) Py = P. cos a... (2.6) Dimana : Px : Beban hidup arah x Py : Beban hidup arah y Momen yang timbul akibat beban terpusat dianggap Continous Beam Momen maksimum akibat beban hidup Mx2 = (1/4. Px. l). 80 % My2 = (1/4. Py. l). 80 % c. Beban Angin Beban angin diperhitungkan dengan menganggap adanya tekanan positif (tiup) dan tekanan negatif (hisap), yang bekerja tegak lurus pada bidang atap. Menurut PPPURG 1987, tekanan tiup harus diambil minimal 25 kg/m 2. Y X X Y a Gambar Gaya kerja pada beban angin 8

10 d. Kombinasi Pembebanan Akibat Beban Tetap M = Mbeban Mati + M Beban Hidup Akibat Beban Sementara M = Mbeban Mati + M Beban Hidup + M Beban Angin e. Kontrol Tegangan Akibat Beban Mati + Beban Hidup... (2.7) Akibat Beban Mati + Beban Hidup + Beban Angin... (2.8) Dimana : : Tegangan yang bekerja : Tegangan ijin maksimal \ Wx : Beban arah x Wy : Beban arah y f. Kontrol Lendutan Lendutan yang diijinkan untuk gording (pada arah x terdiri 2 wilayah yang ditahan oleh trakstang)... (2.9) Dimana : fx : lendutan arah x fy : lendutan arah y E : modulus elastisitas Ix : Momen inersia penampang x Iy : momen inersia penampang y... (2.10) Perhitungan Batang Tarik Batang tarik (trackstang) berfungsi untuk mengurangi lendutan gording pada arah sumbu x (miring atap) sekaligus untuk mengurangi tegangan lendutan yang timbul pada arah x. Gx = Berat sendiri gording + penutup atap sepanjang gording arah sumbu x Px = Beban hidup arah sumbu x P total = Gx + Px = (qx. L) + Px... (2.11) Jika batang tarik yang dipasang dua buah, maka per batang tarik adalah : P = Ptotal / 2 = (qx. L) + Px) / 2... (2.12) σ =... (2.13) Fn =... (2.14) Dimana : P : Beban hidup qx :beban mati arah x L : lebar bentang Fn : gaya yang terjadi Perhitungan Ikatan Angin Ikatan angin hanya bekerja menahan gaya normal (axial0 tarik saja. Adapun cara kerjanya adalah apabila salah satu ikatan angin bekerja sebagai batang tarik, maka yang lainnya tidak menahan gaya apapun. Sebaliknya apabila arah angin berubah, maka secara bergantian batang tersebut bekerja sebagai batang tarik. gording P P Nx h b kuda-kuda P N N Ny ikatan angin N dicari dengan syarat keseimbangan, sedangkan P = gaya / tekanan angin Gambar Ikatan Angin 9

11 2.7. Sambungan Sambungan Baut Jenis baut yang dapat digunakan adalah baut yang jenisnya ditentukan dalam SII ( , dan , SII ) atau SNI ( A, A, dan A) yang sesuai, atau penggantinya. Tegangan-tegangan yang diizinkan dalam menghitung kekuatan baut adalah sebagai berikut. Tegangan geser yang diizinkan : = 0,6... ( 2.15 ) Tegangan tarik yang diizinkan : ta = 0,7... ( 2.16) Kombinasi tegangan geser dan tegangan tarik yang diizinkan : = 1 2 1,56... ( 2.17) Tegangan tumpu yang diizinkan : tu = 1,5 untuk s 1 2 a... ( 2.18 ) tu = 1,2 untuk 1,5 d 1 s < 2 d...( 2.19 ) Dimana : s = jarak dari sumbu baut yang paling luar ke tepi bagian yang disambung. 1 d = diameter baut. = tegangan dasar, di mana persamaan ( 2.15 ), ( 2.16 ), ( 2.17)menggunakan tegangan dasar dari bahan baut, sedangkan persamaan ( 2.18 )dan ( 2.19) menggunakan tegangan dasar bahan yang disambung Sambungan Las Pengelasan harus memenuhi standar SII yang berlaku ( , , , , , , dan ), atau penggantinya. Las Tumpul Pada suatu pelaksanaan yang baik, dimana penampang las sesuai dengan penampang batang, tegangan pada las sama dengan tegangan pada batang, sehingga apabila batang itu telah cukup kuat, maka las itu tidak perlu dihitung lagi. Las Sudut Panjang netto las adalah : Ln = L brutto - 3 a... ( 2.20) Panjang netto las tidak boleh kurang dari 40 mm atau 8a 10 kali tebal teras batang las. Panjang netto las tidak boleh lebih dari 40 kali tebal las. Apabila ternyata diperlukan panjang netto las yang lebih dari 40 kali tebal las, sebaiknya dibuat las yang terputus-putus ( las terputus ). Untuk las terputus pada batang tekan, jarak antara bagian-bagian las itu tidak boleh melebihi 16 t atau 30 cm, sedangkan pada batang tarik, jarak itu tidak boleh melebihi 24 t atau 30 cm, dimana t adalah tebal terkecil dari elemen yang dilas. Las terputus tidak diperkenankan jika dikhawatirkan terjadi pengkaratan pada permukaan bidang kontak dibagian yang tidak ada lasnya, atau pada elemen yang dipengaruhi gaya getar. Tebal las sudut tidak boleh lebih dari ½ t 2, dimana t adalah tebal terkecil pelat yang dilas. Apabila gaya P yang ditahan oleh las membentuk sudut α dengan bidang retak las, tegangan miring yang diizinkan adalah : 10

12 2.9. Pondasi Desain Perencanaan Pondasi Telapak 1. Menentukan Dimensi Pondasi Dimensi yang direncanakan meliputi : panjang, lebar dan ketebalan telapak pondasi. Semuanya harus di desain sedemikian rupa, sehingga tegangan yang terjadi pada dasar pondasi tidak melebihi daya dukung tanah dibawahnya. 2. Mengontrol Kuat Geser 1 Arah Kerusakan akibat gaya geser 1 arah terjadi pada keadaan dimana mula- mula terjadi retak miring pada daerah beton tarik (seperti creep), akibat distribusi beban vertikal dari kolom (Pu kolom) yang diteruskan ke pondasi sehingga menyebabkan bagian dasar pondasi mengalami tegangan. Akibat tegangan ini, tanah memberikan respon berupa gaya reaksi vertikal ke atas (gaya geser) sebagai akibat dari adanya gaya aksi tersebut. Kombinasi beban vertikal Pu kolom (ke bawah) dan gaya geser tekanan tanah ke atas berlangsung sedemikian rupa hingga sedikit demi sedikit membuat retak miring tadi semakin menjalar keatas dan membuat daerah beton tekan semakin mengecil. Dengan semakin mengecilnya daerah beton tekan tersebut, maka mengakibatkan beton tidak mampu menahan beban geser tanah yang mendorong ke atas, akibatnya beton tekan akan mengalami keruntuhan. Berikut ini ilustrasinya : Pu Pu h retak miring h retak miring menjalar ke atas d d ds ds tekanan tanah tekanan tanah Gambar Kerusakan Pondasi Akibat Gaya Geser 1 arah Kerusakan pondasi yang diakibatkan oleh gaya geser 1 arah ini biasanya terjadi jika nilai perbandingan antara nilai a dan nilai d cukup kecil, dan karena mutu beton yang digunakan juga kurang baik, sehingga mengurangi kemampuan beton dalam menahan beban tekan. luas bid. geser kolom B b d h L Pu a h d a retak miring d ds L tekanan tanah Gambar Keretakan Pondasi Akibat Gaya Geser 1 arah Tegangan tanah pada bidang kritis geser qx = qmin + (Bx - ax) / Bx. (qmax - qmin)... (2.21) Dimana : qx : tegangan tanah qmin : tegangan tanah minimum qmax : tegangan tanah maksimum Bx : lebar pondasi ax :jarak bidang kritis terhadap sisi luar 11

13 3. Mengontrol Kuat Geser 2 Arah (Punching Shear) Kuat geser 2 arah atau biasa disebut juga dengan geser pons, dimana akibat gaya geser ini pondasi mengalami kerusakan di sekeliling kolom dengan jarak kurang lebih d/2. Gaya geser pons yang terjadi, Vup = ( Bx. By - cx. cy ). [ ( qmax + qmin ) / 2 - q ]... (2.22) Dimana : Vup : gaya geser pons Bx & By : lebar pondasi cx : lebar bidang geser pons arah x cy : lebar bidang geser pons arah y qmin : tegangan tanah minimum qmax : tegangan tanah maksimum q : tekanan akibat berat pondasi pada tanah lokasi retak yang diakibatkan oleh punching shear h B d/2 d/2 Gambar Kerusakan Pondasi Akibat Gaya Geser 2 arah a L Pu h L Pu a retak miring d ds tekanan tanah 4. Menghitung Tulangan Pondasi Beban yang bekerja pada pondasi adalah beban dari reaksi tegangan tanah yang bergerak vertikal ke atas akibat adanya gaya aksi vertikal kebawah (Pu) yang disalurkan oleh kolom. Tulangan pondasi dihitung berdasarkan momen maksimal yang terjadi pada pondasi dengan asumsi bahwa pondasi dianggap pelat yang terjepit dibagian tepi- tepi kolom. Menurut SNI , tulangan pondasi telapak berbentuk bujur sangkar harus disebar merata pada seluruh lebar pondasi (lihat pasal ) h Rasio tulangan yang diperlukan : keruntuhan beton pondasi akibat punching shear = fc / fy. [ 1 - {1 2. Rn / ( fc ) } ]... (2.23) Dimana : : rasio tulangan yang diperlukan fc : kuat tekan beton fy :kuat leleh baja tulangan Rn : faktor reduksi kekuatan lentur 5. Mengontrol Daya Dukung Pondasi Pondasi sebagai struktur bangunan bawah yang menyangga kolom memikul beban-beban diatasnya (bangunan atas), harus mampu menahan beban axial terfaktor (Pu) dari kolom tersebut. Maka dari itu beban dari Pu diisyaratkan tidak boleh melebihi daya dukung dari pondasi (Pup) yang dirumuskan sebagai berikut : Pu < Pup Pup = Ø x 0,85 x fc x A Dimana : Pu = Gaya aksial terfaktor kolom. (N) Pup = Daya dukung pondasi yang dibebani... (N) fc = Mutu beton yang diisyaratkan. (Mpa) A = Luas daerah yang dibebani (mm 2 ) 12

14 BAB III METODA DAN LANGKAH PERENCANAAN MULAI TINJAUAN PUSTAKA Data : Asumsi : PERLIMINARY DESIGN HITUNG BEBAN-BEBAN YANG BEKERJA PROSES PROGRAM SAP 2000 OUTPUT GAYA DALAM & GAYA BATANG Asumsi Data Teknis : YA PERENCANAAN ELEMEN STRUKTUR TIDAK A YA B KONTROL SYARAT BATAS YA PERENCANAAN SAMBUNGAN KONTROL SYARAT BATAS TIDAK SAMBUNGAN TERPASANG SELESAI Adapun data-data perencanaan adalah sebagai berikut: 1. Tipe Konstruksi : Gudang tipe Gable Frame 2. Bahan penutup Atap : Alumunium Gelombang 3. Jarak Antar Portal : 6,25 meter 4. Bentang Kuda-Kuda (L) : 25 meter 5. Jarak Gording : 1,9 meter 6. Tinggi Kolom (H) : 8 meter 13

15 Kemiringan Atap (a) : 20 o 8. Beban Angin : 40 kg/m 2 9. Beban Hidup : 100 kg 10. Beban Mati : Berat Sendiri Profil 11. Alat Sambung : Baut dan Las 12. Baja Profil : BJ Mutu Beton : fc = 25 MPa 14. Mutu Baja : fy = 400 MPa 15. Tegangan Ijin Baja : 1660 kg/cm Berat Penutup Atap : 3 kg/m 2 BAB IV HASIL DAN PEMBAHASAN 4.1. Umum Perhitungan perencanaan struktur gudang adalah perhitungan-perhitnugan elemen struktural pembentuk struktur gudang secara keseluruhan. Perhitungan struktur ini dilakukan supaya struktur gudang dapat dibangun sesuai kebutuhan, baik dari segi mutu bahan bangunan, umur rencana dan segi keamanan serta stabilitas struktur Data Perhitungan D C 20 o E A B Perhitungan Struktur Perhitungan Gording Gambar 4.1. Portal Gudang sb y D r y C x = 1 2 L F sb x Gambar 4.2. Perhitungan Gording 14

16 Menghitung Panjang Balok Panjang balok adalah 13,302/7 = 1,90 m Perhitungan Dimensi Gording Untuk dimensi gording dicoba dengan menggunakan profil baja Light Lip Channel C ,5 dengan data-data sebagai berikut : - A = 13,97 cm 2 - Ix = 489 cm 4 - q = 11,0 kg/m - Iy = 99,2 cm 4 - ix = 5,92 - Zx = 65,2 cm 3 - iy = 2,66 cm - Zy = 19,8 cm 3 Pembebanan pada Gording : a. Beban Mati / Dead Load - Berat gording = 11,0 kg/m - Berat penutup atap (1,90 m x 3 kg/m 2 ) = 5,7 kg/m q = 16,7 kg/m Momen maksimum akibat beban mati : Mx1 = 1/8. qx. (l) 2. 80% = 1/8. 5,71. (6,25) 2. 0,8 = 22,30 kgm My1 = 1/8. qy. (l) 2. 80% = 1/8. 15,7. (6,25) 2. 0,8 = 61,32 kgm b. Beban Hidup / Live Load y x Py x 20 o P Px Gambar 4.5. gaya kerja pada beban hidup Beban hidup adalah beban terpusat yang bekerja di tengah-tengah bentang gording, beban ini diperhitungkan kalau ada orang yang bekerja di atas gording. Besarnya beban hidup diambil dari PPURG 1987, P = 100 kg. Px = P. sin a = 100. sin 20 o = 34,20 kg Py = P. cos a = 100. cos 20 o = 93,96 kg Momen maksimum akibat beban hidup Mx2 = (1/4. Px. l). 80% = (1/4. 34,20. 6,25). 0,8 = 42,75 kgm My2 = (1/4. Py. l). 80% = (1/4. 93,96. 6,25). 0,8 = 117,45 kgm c. Beban Angin Beban angin diperhitungkan dengan menganggap adanya tekanan positif (tiup) dan tekanan negatif (hisap), yang bekerja tegak lurus pada bidang atap. Menurut PPPURG 1987, tekanan tiup harus diambil minimal 25 kg/m 2. Dalam perencanaan ini, besarnya tekanan angin (w) diambil sebesar 40 kg/m 2. 15

17 y x x o 20 y Gambar 4.7. Gaya kerja pada beban angin Ketentuan : Koefisien angin tekan (c) = (0,02 x a -0,4) Koefisien angin hisap (c ) = -0,4 Beban angin kiri (W1) = 40 kg/m 2 Beban angin kanan (W2) = 40 kg/m 2 Kemiringan atap (a) = 20 o Jarak gording = 1,90 m - Koefisien tekan : C1 = 0,02 a -0,4 = (0,02 x 20) -0,4) = 0 - Koefisien hisap : C2 = -0,4 Maka : W1 = C1 x W x jarak gording = 0 x 40 x 1,90 = 0 W2 = C2 x W x jarak gording = -0,4 x 40 x 1,90 = -30,4 kg/m Momen maksimum akibat beban angin Mx3 = 1/8 x W. l 2 = 1/8 x -30,4 x 6,25 2 karena tegak lurus gording = 148,437 kgm Atap+gording q Kg/m Beban orang P kg Angin kg 16, x 5,71 34,20 0 y 15,7 93,96 0 Mx 22,30 42,75 148,43 My 61,32 117,45 0 Tabel 4.1. Perhitungan momen d. Kombinasi Pembebanan Akibat beban tetap M = M beban mati + M beban hidup = 178,77 kgm = kgcm Akibat beban sementara M = M beban mati + M beban hidup + M beban angin = 213,48 kgm = kgcm My = My1 + My2 + My3 = 178,77 kgm = kgcm e. Kontrol Tegangan Akibat beban mati + beban hidup σ = σ =... ok! Akibat beban mati + beban hidup + beban angin σ = 16

18 8.00 σ =...ok! f. Kontrol lendutan Lendutan yang diijinkan untuk gording (pada arah x terdiri 2 wilayah yang ditahan oleh trakstang) f fx fy 1,37 0,76 1,56cm... 1,736cm... OK! Jadi gording Light Lip Channel C ,5 aman untuk digunakan Perhitungan Batang Tarik (Trackstang) Gording batang tarik (trekstang) Balok WF batang tarik yang dipakai adalah Ø 19 mm Gambar 4.8. Perletakan Batang Tarik (trackstang) Perhitungan Ikatan Angin Ikatan angin hanya bekerja menahan gaya normal (axial) tarik saja. Adapun cara kerjanya adalah apabila salah satu ikatan angin bekerja sebagai batang tarik, maka yang lainnya tidak menahan gaya apa-apa. Sebaliknya apabila arah angin berubah, maka secara bergantian batang tersebut bekerja sebagai batang tarik. gording P P Nx h b kuda-kuda P N N Ny ikatan angin Gambar 4.8. Ikatan angin digunakan ikatan angin Ø 19 mm Perhitungan Dimensi Balok dan Kolom Kuda-kuda 1. Pembebanan pada Balok Gable P8 P7 P7 P6 P6 P3 P4 P5 D P5 P4 P3 P1 P2 P2 P1 C o 20 E A B Gambar 4.9. Pembebanan pada balok gable akibat beban-beban yang dipikul oleh gording terpanjang 6,25 m 17

19 m 6.25 m m Ikatan Angin Gording Balok Gable Gambar Pembebanan yang dipikul gording Balok yang direncanakan menggunakan I WF H = 300 mm - b = 200 mm - Ts = 12 mm - tb = 8 mm - Zx = 771 cm 3 - Zy = 160 cm 3 - Ix = cm 4 - Iy = 1600 cm 4 - ix =12,5 cm - iy = 4,71 cm - A = 72,38 cm 2 - q = 56,8 kg/m Gambar Penampang baja I WF Pembebanan pada balok gable akibat beban-beban yang dipikul oleh 1 gording dengan 6,25 m : a. Beban Gording Gording 1 (terletak di ujung balok ) Beban mati - Berat sendiri penutup atap : 3,125 m x 3 kg/m 2 x0,95 = 8,906 kg - Berat alat penyambung : 10% x q WF (56,8 kg/m ) = 5,68 kg/m+ 15,055 kg/m - Beban hidup (P) = 100 kg/m Gording 2 = G3 = G4 = G5 = G6 = G7 Beban mati Berat sendiri penutup atap : 6,25 m x 3 kg/m 2 x1,90 = 35,625 kg Berat alat penyambung : 10% x q WF (56,8 kg/m) = 5,68 kg/m + = 24,43 kg/m Beban hidup (P) = 100 kg Dengan cara yang sama untuk mempermudah perhitungan beban-beban pada balok gable akibat masing-masing gording dilakukan secara tabelaris sebagai berikut : No. Pembebanan G 1 G 2 = G 3 = G 4 = G 5 = G 6 = G 7 (kg/m) (kg/m) 1 Berat Penutup Atap 8,906 35,625 2 Beban Hidup Berat Alat Penyambung 5,396 10,792 P 114, ,417 Tabel 4.2. Pembebanan pada joint atap 18

20 b. Tekanan Angin pada Bidang Atap c. q = 50. c0s 20 o = 46,98 kg/m d. q = cos 20 o = -93,96 kg/m e. Tekanan Angin pada Bidang Dinding Koefisien angin tekan C 1h = 0,9 Wt = 0, ,25 = 225 kg/m Koefisien angin hisap C hs = -0,4 W h = -0, = -100 kg/m f. Beban Portal TABLE: Groups 3 - Massa dan Berat GroupName SelfMass SelfWeight TotalMassX TotalMassY TotalMassZ Text Kgf-s2/m Kgf Kgf-s2/m Kgf-s2/m Kgf-s2/m SEMUA 3045, , ,9 3045,9 3045,9 KOLOM TENGAH KOLOM UTAMA 807, ,88 807,71 807,71 807,71 FRAME 1345, , , , ,89 GORDING 786, ,75 786,07 786,07 786,07 JOINT JOINT TENGAH JOINT UJUNG 27,91 273,74 27,91 27,91 27,91 Tabel 4.3. output dari SAP 2000 v.14 - Berat Portal = 3425,96 - Berat dinding pas. Batako : 8 x 6,25 x 300 = 2812,5 kg/m x 2 + W= 9050,96 kg/m Perhitungan Beban Gempa Perhitungan beban gempa ekivalen mengacu pada SNI konstruksi Wi ( kg ) hi ( kg ) Wi. hi H (W) 9050,96 12, ,548 W 9050,96 W.h ,548 Tabel 4.4. Berat struktur gudang yang dianalisis Lokasi = Tasikmalaya ( wilayah gempa zona 4) Struktur di atas tanah sedang I = 1 R = 5,5 3 4 T = 0,06. H. Didapat, 3 4 = 0,06.12,55 = 0,400 C 0.42 = T (untuk tanah sedang) C 0.42 = 1, V C. I =. Wt R 19

21 1,05.1 =.9050, 96 5,5 = 1727,91 kg Perhitungan beban gempa ekivalen untuk joint pada portal Untuk joint H ( F) W. H W. h F =. V ,548 =.1727, ,548 = 1727,91 kg Beban gempa arah x dan y F = 1727,91 kg 1727,91 863,995kg 2 g. Perhitungan Momen Perhitungan analisa struktur menggunakan Program SAP 2000 Versi 14. Gambar BMD dan SFD h. Kontrol balok yang direncanakan Terhadap momen tekanan (Wx) Mmax = 11057,03 kgm = kgcm Wx = Profil baja I WF dengan harga Wx hitung = 663,68 cm 3 < Wx rencana = 771 cm 3, maka profil baja ini dapat digunakan...ok! Stabilitas batang tekan Lk = 13,302 m = 1330,2 cm (tabel 3 PPBBI 1984) Terhadap balok yang dibebani lentur (KIP) Cek profil berubah bentuk atau tidak : = = = 20,80 44,34 20,80...ok! Penampang tidak berubah bentuk = 1752,01 kg/cm 2 > 556,96 kg/cm 2...ok! Kontrol terhadap tegangan N = 2227,45 (output SAP 2000 v14) 20

22 = 67,94 kg/cm 2 < 1666 kg/cm 2...ok! Kontrol terhadap lendutan 0,76 cm < 3,695 cm...ok! Kontrol tegangan geser D = 1754,26 (output SAP 2000 v14) = 7,61 kg/cm 2 966,288 kg/cm 2...ok! i. Kontrol kolom yang direncanakan Dari hasil analisa SAP didapatkan Pu kolom sebesar -3779,997 kg kg Dimana nilai kc pada kolom dengan asumsi ujung jepit sendi : 0,7 Tinggi kolom = 8 m = 800 cm Lk = 0,7 x 800 = 560 cm r min Kontrol penampang : 1. Cek kelangsingan penampang a. Pelat sayap b. Pelat badan...ok!...ok! 2. Kuat tekan rencana kolom, øpn øpn = 0,85. Ag. Fy = 0,85. 72, = ,5 kg maka digunakan persamaan : 3. Kuat lentur rencana kolom ømnx Mnx = Fy x Wx = 2500 x 771 = kgcm = kgm Diperoleh nilai Mmax = 11057,03 4. Rasio tegangan total...ok! kuat menerima beban dan memenuhi syarat! Perencanaan Base Plate Gaya normal dengan gaya hitung yang terjadi adalah : DA = 6188,23 kg NA = 3779,997 kg Mmax = 10579,80 kgm = kgcm Ukuran base plate ditaksir 35 cm x 30 cm dan tebal = 12 mm = 1,2 cm Kontrol tegangan yang timbul F = a. b = = 1050 cm 2 Wn = 1/6. a 2. b = 1/ = 6125 cm 2 Angker baut Angker baut yang digunakan sebanyak 4 buah Akibat beban gaya geser tiap baut memikul beban Diameter angker baut d = = Ambil baut ø19 mm sebanyak 4 buah F gs = 4. ¼.. d 2 = 4. 0,25. 3,14. (1,9) 2 = 11,3354 cm 2 21

23 ...aman! Sambungan a. Pertemuan balok dan kolom Momen maksimal yang bekerja 11057,03 kgm Dipakai baut (mutu tinggi) ø16 Jarak baut dalam 1 baris ambil = 5d = 8 cm (antara 2,5 d s/d 7d) Kita tinjau akibat momen 11057,03 kgm...ok! b. Perhitungan sambungan di titik buhul MC = 1661,52 kgm = kgcm DC = 1396,14 kg...aman! Gaya geser baut akibat gaya lintang : D = 1396,14 kg Setiap baut memikul gaya geser sebesar Q = V/6 = 1396,14/6 = 232,69 kg Gaya geser pada baut :...aman! Kombinasi gaya geser dan gaya aksial baut : = 831,42 kg/cm 2 < = 1666 kg/cm 2 Gaya geser pada ulir : c. Perhitungan las pelat sambungan arah sejajar kolom Tebal las ditaksir a = 4 mm = 0,4 cm Panjang las (lbr) = 36 cm P = N balok = 2333,469 kg 2334 kg 22

24 Kontrol :...ok! Kesimpulan : tebal las 0,4 cm dapat digunakan pada pelat penyambung arah sejajar kolom. d. Perhitungan las pelat sambungan arah sejajar balok Tebal las ditaksir a = 4 mm = 0,4 cm Panjang las (lbr) = 100 cm Kontrol :...ok! Kesimpulan : tebal las 0,4 cm dapat digunakan pada pelat penyambung arah sejajar balok Perhitungan Pondasi Telapak a. Data Pondasi Kedalaman pondasi (D f ) = 2,90 m lebar pondasi (Bx) = 2,30 m lebar pondasi (By) = 2,80 m tebal pondasi (h) = 0,60 m lebar kolom (bx) = 0,40 m lebar kolom (by) = 0,35 m kuat tekan beton (f c) = 25 MPa kuat leleh baja tulangan (fy) = 400 MPa berat baja ( = 25 kn/m 3 Pu = 33,381 kn Mux = 12,572 knm Muy = 180,157 knm b. kapasitas dukung tanah Kapasitas dukung tanah menurut Meyerhof (1956) : qa = (dalam kg/cm2) dengan, K d = 1 + 0,33. harus 1.33 Diambil Kd = 1,33 Kapasitas dukung ijin tanah qa = 247,01 kn/m 2 c. Kontrol Tegangan Tanah Tekanan akibat berat foot plat dan tanah q = (h. c) + (z. ) = (0,60.25) + (2,30.20,00) = 61 kn/m2 Tegangan tanah maksimum yang terjadi pada dasar fondasi : qmax = qmax < qa 131,230 < 247,01... Aman (OK) Tegangan tanah minimum yang terjadi pada dasar fondasi : qmin = qmin > 0 1,137 > 0... tak terjadi teg.tarik (OK) 23

25 d. Gaya geser pada foot plat 1. Tinjauan Geser Arah x Tegangan tanah pada bidang kritis geser arah x, qx = 922,343 kn/m 2 Gaya geser arah x Vux = 97,764 kn kuat geser foot plat Vc = 2450 kn Faktor reduksi kekuatan geser = 0,75 Kuat geser foot plat. Vc = 0, = 1837,5 kn Syarat yang harus dipenuhi, 2. Tinjauan Geser Arah y. Vc Vux 1837,5 > 97,764...Aman (OK) Tegangan tanah pada bidang kritis geser arah y, qy = 86,278 kn/m2 Gaya geser arah y Vuy = 106,264 kn kuat geser foot plat Vc = 1974,167 kn Faktor reduksi kekuatan geser = 0,75 Kuat geser foot plat.vc = 0, ,167 = 1480,625 kn Syarat yang harus dipenuhi,. Vc Vuy 1480,625 > 106,264...Aman (OK) 3. Tinjauan Geser Dua Arah (Pons) Gaya geser pons yang terjadi, Vup = 29,278 kn Tegangan geser pons yang disyaratkan, fp = 1,667 MPa Faktor reduksi kekuatan geser pons, = 0,75 Kuat geser pons,. Vnp =. Ap. p = 0,75. 1, = 2291,75 kn Syarat :. Vnp Vup 2291,750 > 29, Aman (OK). Vnp Pu 2291,750 > 33,381...Aman (OK) e. Pembesian Footplat 1. Tulangan Lentur Arah Tegangan tanah pada tepi kolom, qx = 77,496 kn/m2 Momen yang terjadi pada plat fondasi akibat tegangan tanah, Mux = 66,104 knm Rmax = 6,574 Mn = 82,630 knm Rn = 0,107 Rn < Rmax 0,107 < 6, (OK) 24

26 Diameter tulangan yang digunakan, D 16 mm Jarak tulangan yang diperlukan, s = = = 153 mm Jarak tulangan maksimum, Smax = 200 mm Jarak tulangan yang digunakan, S = 153 mm Digunakan tulangan, D Luas tulangan terpakai, As = 2. Tulangan Lentur Arah y Tegangan tanah pada tepi kolom, = = 3753,16 mm 2 qy = 74,314 kn/m 2 Momen yang terjadi pada plat fondasi akibat tegangan tanah, Muy = 88,457 knm Rmax = 6,574 Mn = 110,571 knm Rn = 0,1812 Rn < Rmax 0,1812 < 6,574...(OK) Rasio tulangan yang digunakan, = 0,0025 Luas tulangan yang diperlukan, As =. b. d = 0, = 2961,25 mm 2 Diameter tulangan yang digunakan, D16 mm Jarak tulangan yang diperlukan, S = Jarak tulangan maksimum, Smax = 200 mm Jarak tulangan yang digunakan, S = 156 mm Digunakan tulangan, D Luas tulangan terpakai, As = 3. Tulangan Susut = = 156 mm = = 3082,95 mm 2 Diameter tulangan yang digunakan, ø 12 mm Jarak tulangan susut arah x, sx = = = 154 mm Jarak tulangan susut maksimum arah x, sx,max = 200 mm Jarak tulangan susut arah x yang digunakan, sx = 154 mm Jarak tulangan susut arah y, sy = = = 157 mm Jarak tulangan susut maksimum arah y, sy,max = 200 mm Jarak tulangan susut arah y yang digunakan, sy = 157 mm Digunakan tulangan susut arah x, ø Digunakan tulangan susut arah y, ø

27 BAB V KESIMPULAN DAN SARAN 5.1. Kesimpulan Dari uraian pada bab-bab sebelumnya dapat disimpulkan antara lain : 1. Baja merupakan bahan yang mempunyai sifat struktur yang sangat baik, terlebih untuk bangunan gudang karena kebutuhan jarak antar kolom yang jauh sedangkan atap biasanya merupakan atap metal yang ringan. 2. Profil baja yang digunakan dalam perencanaan ini adalah baja I WF untuk struktur balok dan kolom, sedangkan untuk gording digunakan profil baja Light Lip Channel C ,5. 3. Dengan kondisi tanah setempat yang keadaan tanahnya tidak keras dan daya dukungnya cukup baik, maka pondasi telapak atau foot plate yang digunakan. Dengan kedalaman pondasi 3,0 meter lebar pondasi 2,3 x 2,8 meter, tebal pondasi 0,6 meter, dan lebar kolom 0,40 x 0,35 meter. 4. Ketelitian dari cara dan data perencanaan akan sangat berpengaruh pada tingkat kekuatan struktur Saran 1. Untuk merelisasikan hasil perhitungan dengan di lapangan maka diperlukan pengawasan yang benarbenar teliti. 2. Pondasi yang direncanakan harus kuat menahan beban yang bekerja padanya. Selain itu tanah tempat pondasi diletakan juga harus bisa memberikan daya dukung yang cukup kuat agar pondasi tidak mengalami penurunan yang melebihi batas toleransi. 3. Pada keseluruhan pembangunan gudang ini seluruh material harus benar-benar sesuai dengan hasil perhitungan. DAFTAR PUSTAKA Aminullah, Muhammad, Ir, Mt. Perencanaan Pondasi Telapak Beton. Pusat Pengembangan Bahan Ajar- UMB. Berutu, Beni Efisiensi dan Optimalisasi Pemakaian Baja Sebagai Bahan Konstruksi. USU Repository. Departemen Pekerjaan Umum. Peraturan Perencanaan Bamgunan Baja Indonesia 1984 (PPBBI 1984). Bandung : Yayasan Lembaga Penyelidikan Masalah Bangunan. Departemen Pekerjaan Umum. Tata Cara Perencanaan Struktur Baja Untuk Bangunan Gedung. Standar Nasional Indonesia. Gunawan, Rudy, Ir Tabel Profil Konstruksi Baja. Yogyakarta : Kanisius. Ilham, M. Noer Perhitungan Fondasi Footplat (Bentuk Empat Persegi Panjang). Konstruksi Gudang Baja. [online]. Tersedia : http : // Konstruksi Gudang. (Maret 2013). Nt, Suyono Rangkuman Peraturan Pembebanan Indonesia untuk Gedung Perencanaan Konstruksi Baja II (Gable). [online]. Tersedia : http : // Konstruksi Gudang. (Maret 2013). Setiaawan, M. Ikhsan Analisa Dimensi dan Biaya Struktur Baja. Setyowati, Sri Utami Efisiensi Dimensi dan Biaya Atap Baja Rumah Susun C Siwalankerto. 26

PERENCANAAN KONSTRUKSI BAJA TIPE GABLE FRAME PADA BANGUNAN PABRIK

PERENCANAAN KONSTRUKSI BAJA TIPE GABLE FRAME PADA BANGUNAN PABRIK PERENCANAAN KONSTRUKSI BAJA TIPE GABLE FRAME PADA BANGUNAN PABRIK Aif Firman 09701104 (aif_firman@ymail.com) Jurusan Teknik Sipil, Fakultas Teknik, Universitas Siliwangi Jl. Siliwangi No. 4 Tasikmalaya

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN 3.1 Diagram Alir Mulai Data Eksisting Struktur Atas As Built Drawing Studi Literatur Penentuan Beban Rencana Perencanaan Gording Preliminary Desain & Penentuan Pembebanan

Lebih terperinci

PERENCANAAN LAPANGAN TENIS INDOOR DENGAN KONSTRUKSI RANGKA ATAP BAJA BERBENTUK PELANA

PERENCANAAN LAPANGAN TENIS INDOOR DENGAN KONSTRUKSI RANGKA ATAP BAJA BERBENTUK PELANA PERENCANAAN LAPANGAN TENIS INDOOR DENGAN KONSTRUKSI RANGKA ATAP BAJA BERBENTUK PELANA Novi Futri Srinovatawati 1, Yusep Ramdani ST.,M.T. 2, Agus Widodo IR.,M.M. 2, Empung IR.,M.T. 2 Jurusan Teknik Sipil

Lebih terperinci

BAB I. Perencanaan Atap

BAB I. Perencanaan Atap BAB I Perencanaan Atap 1. Rencana Gording Data perencanaan atap : Penutup atap Kemiringan Rangka Tipe profil gording : Genteng metal : 40 o : Rangka Batang : Kanal C Mutu baja untuk Profil Siku L : BJ

Lebih terperinci

ANALISA DIMENSI DAN STRUKTUR ATAP MENGGUNAKAN METODE DAKTILITAS TERBATAS

ANALISA DIMENSI DAN STRUKTUR ATAP MENGGUNAKAN METODE DAKTILITAS TERBATAS Analisa Dimensi dan Struktur Atap Menggunakan Metode Daktilitas Terbatas 1 - ANALISA DIMENSI DAN STRUKTUR ATAP MENGGUNAKAN METODE DAKTILITAS TERBATAS M. Ikhsan Setiawan ABSTRAK Sttruktur gedung Akademi

Lebih terperinci

PERENCANAAN LAPANGAN TENIS INDOOR DENGAN KONSTRUKSI RANGKA ATAP BAJA BERBENTUK LENGKUNG

PERENCANAAN LAPANGAN TENIS INDOOR DENGAN KONSTRUKSI RANGKA ATAP BAJA BERBENTUK LENGKUNG PERENCANAAN LAPANGAN TENIS INDOOR DENGAN KONSTRUKSI RANGKA ATAP BAJA BERBENTUK LENGKUNG Mizan Insani Novandalu 1, Yusep Ramdani S.T.,M.T. 2, Iman Handiman S.T.,M.T. 2 Jurusan Teknik Sipil Fakultas Teknik

Lebih terperinci

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan BAB DASAR TEORI.1. Dasar Perencanaan.1.1. Jenis Pembebanan Dalam merencanakan struktur suatu bangunan bertingkat, digunakan struktur yang mampu mendukung berat sendiri, gaya angin, beban hidup maupun beban

Lebih terperinci

BAB 2 DASAR TEORI. Bab 2 Dasar Teori. TUGAS AKHIR Perencanaan Struktur Show Room 2 Lantai Dasar Perencanaan

BAB 2 DASAR TEORI. Bab 2 Dasar Teori. TUGAS AKHIR Perencanaan Struktur Show Room 2 Lantai Dasar Perencanaan 3 BAB DASAR TEORI.1. Dasar Perencanaan.1.1. Jenis Pembebanan Dalam merencanakan struktur suatu bangunan bertingkat, digunakan struktur yang mampu mendukung berat sendiri, gaya angin, beban hidup maupun

Lebih terperinci

TAMPAK DEPAN RANGKA ATAP MODEL 3

TAMPAK DEPAN RANGKA ATAP MODEL 3 TUGAS STRUKTUR BAJA 11 Bangunan gedung dengan struktur atap dibuat dengan struktur rangka baja. Bentang struktur bangunan, beban gravitasi, beban angin dan mutu bahan, dijelaskan pada data teknis berikut.

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Dunia konstruksi saat ini semakin berkembang pesat, meningkatnya berbagai kebutuhan manusia akan pekerjaan konstruksi menuntut untuk terciptanya inovasi dan kreasi

Lebih terperinci

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan BAB 2 DASAR TEORI 2.1. Dasar Perencanaan 2.1.1 Jenis Pembebanan Dalam merencanakan struktur suatu bangunan bertingkat, digunakan struktur yang mampu mendukung berat sendiri, gaya angin, beban hidup maupun

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN 3.1. Diagram Alir Perencanaan Struktur Atas Baja PENGUMPULAN DATA AWAL PENENTUAN SPESIFIKASI MATERIAL PERHITUNGAN PEMBEBANAN DESAIN PROFIL RENCANA PERMODELAN STRUKTUR DAN

Lebih terperinci

DAFTAR ISI. Latar Belakang... 1 Rumusan Masalah... 2 Batasan Masalah... 2 Maksud dan Tujuan... 3 Sistematika Penulisan... 3

DAFTAR ISI. Latar Belakang... 1 Rumusan Masalah... 2 Batasan Masalah... 2 Maksud dan Tujuan... 3 Sistematika Penulisan... 3 DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii MOTO DAN PERSEMBAHAN... iii KATA PENGANTAR... vi ABSTRAK... vii DAFTAR ISI... viii DAFTAR GAMBAR... xi DAFTAR TABEL... xiii BAB I PENDAHULUAN... 1

Lebih terperinci

BAB V PEMBAHASAN. terjadinya distribusi gaya. Biasanya untuk alasan efisiensi waktu dan efektifitas

BAB V PEMBAHASAN. terjadinya distribusi gaya. Biasanya untuk alasan efisiensi waktu dan efektifitas BAB V PEMBAHASAN 5.1 Umum Pada gedung bertingkat perlakuan stmktur akibat beban menyebabkan terjadinya distribusi gaya. Biasanya untuk alasan efisiensi waktu dan efektifitas pekerjaan dilapangan, perencana

Lebih terperinci

PRESENTASI TUGAS AKHIR PROGRAM STUDI D III TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010

PRESENTASI TUGAS AKHIR PROGRAM STUDI D III TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010 PRESENTASI TUGAS AKHIR oleh : PROGRAM STUDI D III TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010 LATAR BELAKANG SMA Negeri 17 Surabaya merupakan salah

Lebih terperinci

PERHITUNGAN KONSTRUKSI BAJA II (GABLE)

PERHITUNGAN KONSTRUKSI BAJA II (GABLE) 4.10 1.90 4.896 6.00 PERHITUNGAN KONSTRUKSI BAJA II (GABLE) A. Data Perhitungan D 11.585 C 5 E F 0.45 0.45 A B 10.50 10.50 1.00 Ketentuan - Ketentuan : 1. Type Konstruksi : Portal Gable. Bahan Penutup

Lebih terperinci

PERBANDINGAN STRUKTUR BETON BERTULANG DENGAN STRUKTUR BAJA DARI ELEMEN BALOK KOLOM DITINJAU DARI SEGI BIAYA PADA BANGUNAN RUMAH TOKO 3 LANTAI

PERBANDINGAN STRUKTUR BETON BERTULANG DENGAN STRUKTUR BAJA DARI ELEMEN BALOK KOLOM DITINJAU DARI SEGI BIAYA PADA BANGUNAN RUMAH TOKO 3 LANTAI PERBANDINGAN STRUKTUR BETON BERTULANG DENGAN STRUKTUR BAJA DARI ELEMEN BALOK KOLOM DITINJAU DARI SEGI BIAYA PADA BANGUNAN RUMAH TOKO 3 LANTAI Wildiyanto NRP : 9921013 Pembimbing : Ir. Maksum Tanubrata,

Lebih terperinci

PLATE GIRDER A. Pengertian Pelat Girder

PLATE GIRDER A. Pengertian Pelat Girder PLATE GIRDER A. Pengertian Pelat Girder Dalam penggunaan profil baja tunggal (seperti profil I) sebagai elemen lentur jika ukuran profilnya masih belum cukup memenuhi karena gaya dalam (momen dan gaya

Lebih terperinci

PERBANDINGAN BIAYA STRUKTUR BAJA NON-PRISMATIS, CASTELLATED BEAM, DAN RANGKA BATANG

PERBANDINGAN BIAYA STRUKTUR BAJA NON-PRISMATIS, CASTELLATED BEAM, DAN RANGKA BATANG PERBANDINGAN BIAYA STRUKTUR BAJA NON-PRISMATIS, CASTELLATED BEAM, DAN RANGKA BATANG Jason Chris Kassidy 1, Jefry Yulianus Seto 2, Hasan Santoso 3 ABSTRAK : Pesatnya perkembangan dalam dunia konstruksi

Lebih terperinci

BAB III PEMODELAN STRUKTUR

BAB III PEMODELAN STRUKTUR BAB III Dalam tugas akhir ini, akan dilakukan analisis statik ekivalen terhadap struktur rangka bresing konsentrik yang berfungsi sebagai sistem penahan gaya lateral. Dimensi struktur adalah simetris segiempat

Lebih terperinci

PERENCANAAN GEDUNG HOTEL 4 LANTAI & 1 BASEMENT DENGAN SISTEM DAKTAIL PARSIAL DI WILAYAH GEMPA 4

PERENCANAAN GEDUNG HOTEL 4 LANTAI & 1 BASEMENT DENGAN SISTEM DAKTAIL PARSIAL DI WILAYAH GEMPA 4 PERENCANAAN GEDUNG HOTEL 4 LANTAI & 1 BASEMENT DENGAN SISTEM DAKTAIL PARSIAL DI WILAYAH GEMPA 4 Naskah Publikasi Untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S-1 Teknik Sipil Diajukan Oleh

Lebih terperinci

CAHYA PUTRI KHINANTI Page 3

CAHYA PUTRI KHINANTI Page 3 BAB II PERHITUNGAN KAP A. Perhitungan Gording Gambar 2.1 Rencana Kap 1. Data Perhitungan Bentang kuda kuda = 10 m Jarak antar kuda-kuda = 4 m Kemiringan atap = 20 Berat penutup atap = 10 kg/m² (Seng Gelombang)

Lebih terperinci

STUDI PERBANDINGAN PENGGUNAAN BALOK ANAK KONSTRUKSI PROPPED PADA BANGUNAN TINGKAT DUA DENGAN VARIASI JARAK BALOK DAN PORTAL DARI SEGI TEKNIK DAN BIAYA

STUDI PERBANDINGAN PENGGUNAAN BALOK ANAK KONSTRUKSI PROPPED PADA BANGUNAN TINGKAT DUA DENGAN VARIASI JARAK BALOK DAN PORTAL DARI SEGI TEKNIK DAN BIAYA Perbandingan Balok Anak Konstruksi Propped pada Gedung (Julistyana T) 61 STUDI PERBANDINGAN PENGGUNAAN BALOK ANAK KONSTRUKSI PROPPED PADA BANGUNAN TINGKAT DUA DENGAN VARIASI JARAK BALOK DAN PORTAL DARI

Lebih terperinci

MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER

MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER MAKALAH TUGAS AKHIR PS 1380 MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER FERRY INDRAHARJA NRP 3108 100 612 Dosen Pembimbing Ir. SOEWARDOYO, M.Sc. Ir.

Lebih terperinci

STUDI PERILAKU TEKUK TORSI LATERAL PADA BALOK BAJA BANGUNAN GEDUNG DENGAN MENGGUNAKAN PROGRAM ABAQUS 6.7. Oleh : RACHMAWATY ASRI ( )

STUDI PERILAKU TEKUK TORSI LATERAL PADA BALOK BAJA BANGUNAN GEDUNG DENGAN MENGGUNAKAN PROGRAM ABAQUS 6.7. Oleh : RACHMAWATY ASRI ( ) TUGAS AKHIR STUDI PERILAKU TEKUK TORSI LATERAL PADA BALOK BAJA BANGUNAN GEDUNG DENGAN MENGGUNAKAN PROGRAM ABAQUS 6.7 Oleh : RACHMAWATY ASRI (3109 106 044) Dosen Pembimbing: Budi Suswanto, ST. MT. Ph.D

Lebih terperinci

Integrity, Professionalism, & Entrepreneurship. Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303. Balok Lentur.

Integrity, Professionalism, & Entrepreneurship. Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303. Balok Lentur. Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303 SKS : 3 SKS Balok Lentur Pertemuan 11, 12 TIU : Mahasiswa dapat merencanakan kekuatan elemen struktur baja beserta alat sambungnya TIK : Mahasiswa

Lebih terperinci

ABSTRAK. Kata Kunci : Gedung Parkir, Struktur Baja, Dek Baja Gelombang

ABSTRAK. Kata Kunci : Gedung Parkir, Struktur Baja, Dek Baja Gelombang ABSTRAK Dalam tugas akhir ini memuat perancangan struktur atas gedung parkir Universitas Udayana menggunakan struktur baja. Perencanaan dilakukan secara fiktif dengan membahas perencanaan struktur atas

Lebih terperinci

A. IDEALISASI STRUKTUR RANGKA ATAP (TRUSS)

A. IDEALISASI STRUKTUR RANGKA ATAP (TRUSS) A. IDEALISASI STRUKTUR RAGKA ATAP (TRUSS) Perencanaan kuda kuda dalam bangunan sederhana dengan panjang bentang 0 m. jarak antara kuda kuda adalah 3 m dan m, jarak mendatar antara kedua gording adalah

Lebih terperinci

Analisis Balok Anak Konstruksi Propped pada Portal Tingkat Dua berdasarkan Variasi Jarak Balok dan Portal (Aspek Tehnis dan Biaya)

Analisis Balok Anak Konstruksi Propped pada Portal Tingkat Dua berdasarkan Variasi Jarak Balok dan Portal (Aspek Tehnis dan Biaya) Analisis Balok Propped berdasar Variasi Jarak Balok & Portal (Julistyana T) 139 Analisis Balok Anak Konstruksi Propped pada Portal Tingkat Dua berdasarkan Variasi Jarak Balok dan Portal (Aspek Tehnis dan

Lebih terperinci

BAB IV ANALISA STRUKTUR

BAB IV ANALISA STRUKTUR BAB IV ANALISA STRUKTUR 4.1 Data-data Struktur Pada bab ini akan membahas tentang analisa struktur dari struktur bangunan yang direncanakan serta spesifikasi dan material yang digunakan. 1. Bangunan direncanakan

Lebih terperinci

PLATE GIRDER A. Pengertian Pelat Girder

PLATE GIRDER A. Pengertian Pelat Girder PLATE GIRDER A. Pengertian Pelat Girder Dalam penggunaan profil baja tunggal (seperti profil I) sebagai elemen lentur jika ukuran profilnya masih belum cukup memenuhi karena gaya dalam (momen dan gaya

Lebih terperinci

PERBANDINGAN BERAT KUDA-KUDA (RANGKA) BAJA JENIS RANGKA HOWE DENGAN RANGKA PRATT

PERBANDINGAN BERAT KUDA-KUDA (RANGKA) BAJA JENIS RANGKA HOWE DENGAN RANGKA PRATT PERBANDINGAN BERAT KUDA-KUDA (RANGKA) BAJA JENIS RANGKA HOWE DENGAN RANGKA PRATT Azhari 1, dan Alfian 2, 1,2 Jurusan Teknik Sipil, Fakultas Teknik, Universitas Riau azhari@unri.ac.id ABSTRAK Batang-batang

Lebih terperinci

PERENCANAAN GEDUNG PERPUSTAKAAN KOTA 4 LANTAI DENGAN PRINSIP DAKTAIL PARSIAL DI SURAKARTA (+BASEMENT 1 LANTAI)

PERENCANAAN GEDUNG PERPUSTAKAAN KOTA 4 LANTAI DENGAN PRINSIP DAKTAIL PARSIAL DI SURAKARTA (+BASEMENT 1 LANTAI) 1 PERENCANAAN GEDUNG PERPUSTAKAAN KOTA 4 LANTAI DENGAN PRINSIP DAKTAIL PARSIAL DI SURAKARTA (+BASEMENT 1 LANTAI) Naskah Publikasi untuk memenuhi sebagian persyaratan mencapai S-1 Teknik Sipil diajukan

Lebih terperinci

PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN

PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN TUGAS AKHIR PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN Merupakan Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Jurusan Teknik Sipil Fakultas Teknik

Lebih terperinci

A. IDEALISASI STRUKTUR RANGKA ATAP (TRUSS)

A. IDEALISASI STRUKTUR RANGKA ATAP (TRUSS) A. IDEALISASI STRUKTUR RAGKA ATAP (TRUSS) Perencanaan kuda kuda dalam bangunan sederhana dengan panjang bentang 0 m. jarak antara kuda kuda adalah 3 m dan m, jarak mendatar antara kedua gording adalah

Lebih terperinci

BAB III METODOLOGI PERANCANGAN. Untuk mempermudah perancangan Tugas Akhir, maka dibuat suatu alur

BAB III METODOLOGI PERANCANGAN. Untuk mempermudah perancangan Tugas Akhir, maka dibuat suatu alur BAB III METODOLOGI PERANCANGAN 3.1 Bagan Alir Perancangan Untuk mempermudah perancangan Tugas Akhir, maka dibuat suatu alur sistematika perancangan struktur Kubah, yaitu dengan cara sebagai berikut: START

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG RUSUNAWA UNIMUS

PERENCANAAN STRUKTUR GEDUNG RUSUNAWA UNIMUS TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG RUSUNAWA UNIMUS Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata (S-1) Pada Program Studi Teknik Sipil Fakultas Teknik Universitas Katolik

Lebih terperinci

STUDI PERBANDINGAN STRUKTUR RANGKA ATAP BAJA UNTK BERBAGAI TYPE TUGAS AKHIR M. FAUZAN AZIMA LUBIS

STUDI PERBANDINGAN STRUKTUR RANGKA ATAP BAJA UNTK BERBAGAI TYPE TUGAS AKHIR M. FAUZAN AZIMA LUBIS STUDI PERBANDINGAN STRUKTUR RANGKA ATAP BAJA UNTK BERBAGAI TYPE TUGAS AKHIR Diajukan Untuk Melengkapi Tugas Tugas Dan Memenuhi Syarat Untuk Menempuh Ujian Sarjana Teknik Sipil M. FAUZAN AZIMA LUBIS 050404041

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG SEKOLAH SMP SMU MARINA SEMARANG

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG SEKOLAH SMP SMU MARINA SEMARANG TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG SEKOLAH SMP SMU MARINA SEMARANG Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Fakultas Teknik Program Studi Teknik Sipil

Lebih terperinci

PERENCANAAN PEMBANGUNAN GEDUNG PARKIR UNISMA BEKASI DENGAN MENGGUNAKAN STRUKTUR BAJA

PERENCANAAN PEMBANGUNAN GEDUNG PARKIR UNISMA BEKASI DENGAN MENGGUNAKAN STRUKTUR BAJA 25 PERENCANAAN PEMBANGUNAN GEDUNG PARKIR UNISMA BEKASI DENGAN MENGGUNAKAN STRUKTUR BAJA Nana Suryana 1), Eko Darma 2), Fajar Prihesnanto 3) 1,2,3) Teknik Sipil Universitas Islam 45 Bekasi Jl. Cut Mutia

Lebih terperinci

Tugas Akhir Perencanaan Struktur Salon, fitness & Spa 2 lantai TUGAS AKHIR. Disusun Oleh : Enny Nurul Fitriyati I

Tugas Akhir Perencanaan Struktur Salon, fitness & Spa 2 lantai TUGAS AKHIR. Disusun Oleh : Enny Nurul Fitriyati I Tugas Akhir Perencanaan Struktur Salon, fitness & Spa lantai A- TUGAS AKHIR PERENCANAAN STRUKTUR SALON FITNES DAN SPA LANTAI Disusun Oleh : Enny Nurul Fitriyati I.85060 PROGRAM DIPLOMA III TEKNIK SIPIL

Lebih terperinci

PERENCANAAN STRUKTUR RANGKA BAJA BERATURAN TAHAN GEMPA BERDASARKAN SNI DAN FEMA 450

PERENCANAAN STRUKTUR RANGKA BAJA BERATURAN TAHAN GEMPA BERDASARKAN SNI DAN FEMA 450 PERENCANAAN STRUKTUR RANGKA BAJA BERATURAN TAHAN GEMPA BERDASARKAN SNI 03-1726-2002 DAN FEMA 450 Calvein Haryanto NRP : 0621054 Pembimbing : Yosafat Aji Pranata, S.T.,M.T. JURUSAN TEKNIK SIPIL FAKULTAS

Lebih terperinci

BAB 3 ANALISIS PERHITUNGAN

BAB 3 ANALISIS PERHITUNGAN BAB 3 ANALISIS PERHITUNGAN 3.1 PERHITUNGAN RESERVOIR (ALT.I) Reservoir alternatif ke-i adalah reservoir yang terbuat dari struktur beton bertulang. Pada program SAP2000 reservoir yang dimodelkan sebagai

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG KULIAH 4 LANTAI DENGAN SISTEM DAKTAIL TERBATAS

PERENCANAAN STRUKTUR GEDUNG KULIAH 4 LANTAI DENGAN SISTEM DAKTAIL TERBATAS PERENCANAAN STRUKTUR GEDUNG KULIAH 4 LANTAI DENGAN SISTEM DAKTAIL TERBATAS Naskah Publikasi untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S-1 Teknik Sipil disusun oleh : MUHAMMAD NIM : D

Lebih terperinci

BAB I PENDAHULUAN Konsep Perencanaan Struktur Beton Suatu struktur atau elemen struktur harus memenuhi dua kriteria yaitu : Kuat ( Strength )

BAB I PENDAHULUAN Konsep Perencanaan Struktur Beton Suatu struktur atau elemen struktur harus memenuhi dua kriteria yaitu : Kuat ( Strength ) BAB I PENDAHULUAN 1. Data Teknis Bangunan Data teknis dari bangunan yang akan direncanakan adalah sebagai berikut: a. Bangunan gedung lantai tiga berbentuk T b. Tinggi bangunan 12 m c. Panjang bangunan

Lebih terperinci

PERHITUNGAN IKATAN ANGIN (TIE ROD BRACING )

PERHITUNGAN IKATAN ANGIN (TIE ROD BRACING ) PERHITUNGAN IKATAN ANGIN (TIE ROD BRACING ) [C]2011 : M. Noer Ilham Gaya tarik pada track stank akibat beban terfaktor, T u = 50000 N 1. DATA BAHAN PLAT SAMBUNG DATA PLAT SAMBUNG Tegangan leleh baja, f

Lebih terperinci

fc ' = 2, MPa 2. Baja Tulangan diameter < 12 mm menggunakan BJTP (polos) fy = 240 MPa diameter > 12 mm menggunakan BJTD (deform) fy = 400 Mpa

fc ' = 2, MPa 2. Baja Tulangan diameter < 12 mm menggunakan BJTP (polos) fy = 240 MPa diameter > 12 mm menggunakan BJTD (deform) fy = 400 Mpa Peraturan dan Standar Perencanaan 1. Peraturan Perencanaan Tahan Gempa untuk Gedung SNI - PPTGIUG 2000 2. Tata Cara Perhitungan Struktur Beton Untuk Gedung SKSNI 02-2847-2002 3. Tata Cara Perencanaan Struktur

Lebih terperinci

BAB IV PERMODELAN DAN ANALISIS STRUKTUR

BAB IV PERMODELAN DAN ANALISIS STRUKTUR BAB IV PERMODELAN DAN ANALISIS STRUKTUR 4.1 Permodelan Elemen Struktur Di dalam tugas akhir ini permodelan struktur dilakukan dalam 2 model yaitu model untuk pengecekan kondisi eksisting di lapangan dan

Lebih terperinci

MODIFIKASI PERENCANAAN GEDUNG GRAHA AMERTA RSU Dr. SOETOMO SURABAYA MENGGUNAKAN STRUKTUR KOMPOSIT BAJA BETON

MODIFIKASI PERENCANAAN GEDUNG GRAHA AMERTA RSU Dr. SOETOMO SURABAYA MENGGUNAKAN STRUKTUR KOMPOSIT BAJA BETON SEMINAR TUGAS AKHIR MODIFIKASI PERENCANAAN GEDUNG GRAHA AMERTA RSU Dr. SOETOMO SURABAYA MENGGUNAKAN STRUKTUR KOMPOSIT BAJA BETON Oleh : ANTON PRASTOWO 3107 100 066 Dosen Pembimbing : Ir. HEPPY KRISTIJANTO,

Lebih terperinci

PERHITUNGAN PANJANG BATANG

PERHITUNGAN PANJANG BATANG PERHITUNGAN PANJANG BATANG E 3 4 D 1 F 2 14 15 5 20 A 1 7 C H 17 13 8 I J 10 K 16 11 L G 21 12 6 B 200 200 200 200 200 200 1200 13&16 0.605 14&15 2.27 Penutup atap : genteng Kemiringan atap : 50 Bahan

Lebih terperinci

BAB IV POKOK PEMBAHASAN DESAIN. Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi

BAB IV POKOK PEMBAHASAN DESAIN. Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi BAB IV POKOK PEMBAHASAN DESAIN 4.1 Perencanaan Awal (Preliminary Design) Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi rencana struktur, yaitu pelat, balok dan kolom agar diperoleh

Lebih terperinci

GEDUNG ASRAMA DUA LANTAI

GEDUNG ASRAMA DUA LANTAI digilib.uns.ac.id PERENCANAAN STRUKTUR DAN RENCANA ANGGARAN BIAYA (RAB) GEDUNG ASRAMA DUA LANTAI TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Ahli Madya pada Program D-III Teknik

Lebih terperinci

Soal 2. b) Beban hidup : beban merata, w L = 45 kn/m beban terpusat, P L3 = 135 kn P1 P2 P3. B C D 3,8 m 3,8 m 3,8 m 3,8 m

Soal 2. b) Beban hidup : beban merata, w L = 45 kn/m beban terpusat, P L3 = 135 kn P1 P2 P3. B C D 3,8 m 3,8 m 3,8 m 3,8 m Soal 2 Suatu elemen struktur sebagai balok pelat berdinding penuh (pelat girder) dengan ukuran dan pembebanan seperti tampak pada gambar di bawah. Flens tekan akan diberi kekangan lateral di kedua ujung

Lebih terperinci

PERENCANAAN GEDUNG PASAR TIGA LANTAI DENGAN SATU BASEMENT DI WILAYAH BOYOLALI (DENGAN SISTEM DAKTAIL PARSIAL)

PERENCANAAN GEDUNG PASAR TIGA LANTAI DENGAN SATU BASEMENT DI WILAYAH BOYOLALI (DENGAN SISTEM DAKTAIL PARSIAL) PERENCANAAN GEDUNG PASAR TIGA LANTAI DENGAN SATU BASEMENT DI WILAYAH BOYOLALI (DENGAN SISTEM DAKTAIL PARSIAL) Tugas Akhir untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S 1 Teknik Sipil diajukan

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG BANK MANDIRI JL. NGESREP TIMUR V / 98 SEMARANG

PERENCANAAN STRUKTUR GEDUNG BANK MANDIRI JL. NGESREP TIMUR V / 98 SEMARANG HALAMAN JUDUL TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG BANK MANDIRI JL. NGESREP TIMUR V / 98 SEMARANG Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Fakultas

Lebih terperinci

Penyelesaian : Penentuan beban kerja (Peraturan Pembebanan Indonesia untuk Gedung 1983) : Penutup atap (genteng) = 50 kg/m2

Penyelesaian : Penentuan beban kerja (Peraturan Pembebanan Indonesia untuk Gedung 1983) : Penutup atap (genteng) = 50 kg/m2 II. KONSEP DESAIN Soal 2 : Penelesaian : Penentuan beban kerja (Peraturan Pembebanan Indonesia untuk Gedung 1983) : Penutup atap (genteng) = 50 kg/m2 = 0,50 kn/m2 Air hujan = 40 - (0,8*a) dengan a = kemiringan

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang Isi Laporan

BAB 1 PENDAHULUAN Latar Belakang Isi Laporan BAB 1 PENDAHULUAN 1.1. Latar Belakang Dengan semakin pesatnya perkembangan dunia teknik sipil di Indonesia saat ini menuntut terciptanya sumber daya manusia yang dapat mendukung dalam bidang tersebut.

Lebih terperinci

Oleh : MUHAMMAD AMITABH PATTISIA ( )

Oleh : MUHAMMAD AMITABH PATTISIA ( ) Oleh : MUHAMMAD AMITABH PATTISIA (3109 106 045) Dosen Pembimbing: BUDI SUSWANTO, ST.,MT.,PhD. Ir. R SOEWARDOJO, M.Sc PROGRAM SARJANA LINTAS JALUR JURUSAN TEKNIK SIPIL Fakultas Teknik Sipil dan Perencanaan

Lebih terperinci

Jl. Banyumas Wonosobo

Jl. Banyumas Wonosobo Perhitungan Struktur Plat dan Pondasi Gorong-Gorong Jl. Banyumas Wonosobo Oleh : Nasyiin Faqih, ST. MT. Engineering CIVIL Design Juli 2016 Juli 2016 Perhitungan Struktur Plat dan Pondasi Gorong-gorong

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1. Bagan Alir Mulai PENGUMPULAN DATA STUDI LITERATUR Tahap Desain Data: Perhitungan Beban Mati Perhitungan Beban Hidup Perhitungan Beban Angin Perhitungan Beban Gempa Pengolahan

Lebih terperinci

PERENCANAAN STRUKTUR RANGKA BAJA BRESING TAHAN GEMPA

PERENCANAAN STRUKTUR RANGKA BAJA BRESING TAHAN GEMPA PERENCANAAN STRUKTUR RANGKA BAJA BRESING TAHAN GEMPA Alderman Tambos Budiarto Simanjuntak NRP : 0221016 Pembimbing : Yosafat Aji Pranata, S.T.,M.T. JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS KRISTEN

Lebih terperinci

LANDASAN TEORI. Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan

LANDASAN TEORI. Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan BAB III LANDASAN TEORI 3.1. Tinjauan Umum Menurut Supriyadi dan Muntohar (2007) dalam Perencanaan Jembatan Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan mengumpulkan data dan informasi

Lebih terperinci

PERENCANAAN SHOWROOM DAN BENGKEL NISSAN

PERENCANAAN SHOWROOM DAN BENGKEL NISSAN PERENCANAAN SHOWROOM DAN BENGKEL NISSAN TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat Memperoleh Gelar Ahli Madya Pada Program DIII Teknik Sipil Jurusan Teknik Sipil Fakultas Teknik Universitas Sebelas

Lebih terperinci

Torsi sekeliling A dari kedua sayap adalah sama dengan torsi yang ditimbulkan oleh beban Q y yang melalui shear centre, maka:

Torsi sekeliling A dari kedua sayap adalah sama dengan torsi yang ditimbulkan oleh beban Q y yang melalui shear centre, maka: Torsi sekeliling A dari kedua sayap adalah sama dengan torsi yang ditimbulkan oleh beban Q y yang melalui shear centre, maka: BAB VIII SAMBUNGAN MOMEN DENGAN PAKU KELING/ BAUT Momen luar M diimbangi oleh

Lebih terperinci

Efisiensi Dimensi dan Biaya Atap Baja Rumah Susun C Siwalankerto. Sri Utami Setyowati, Ir., MT

Efisiensi Dimensi dan Biaya Atap Baja Rumah Susun C Siwalankerto. Sri Utami Setyowati, Ir., MT Efisiensi Dimensi dan Biaya Atap Baja Rumah Susun C Siwalankerto 91 Efisiensi Dimensi dan Biaya Atap Baja Rumah Susun C Siwalankerto Sri Utami Setyowati, Ir., MT ABSTRAK Tujuan efisiensi struktur rangka

Lebih terperinci

5.2 Dasar Teori Perilaku pondasi dapat dilihat dari mekanisme keruntuhan yang terjadi seperti pada gambar :

5.2 Dasar Teori Perilaku pondasi dapat dilihat dari mekanisme keruntuhan yang terjadi seperti pada gambar : BAB V PONDASI 5.1 Pendahuluan Pondasi yang akan dibahas adalah pondasi dangkal yang merupakan kelanjutan mata kuliah Pondasi dengan pembahasan khusus adalah penulangan dari plat pondasi. Pondasi dangkal

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN PUSAT YSKI SEMARANG

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN PUSAT YSKI SEMARANG TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN PUSAT YSKI SEMARANG Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Program Studi Teknik Sipil Fakultas Teknik

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG KANTOR PEMERINTAH DAERAH KABUPATEN PAMEKASAN DENGAN METODE LOAD RESISTANCE AND FACTOR DESIGN

PERENCANAAN STRUKTUR GEDUNG KANTOR PEMERINTAH DAERAH KABUPATEN PAMEKASAN DENGAN METODE LOAD RESISTANCE AND FACTOR DESIGN PERENCANAAN STRUKTUR GEDUNG KANTOR PEMERINTAH DAERAH KABUPATEN PAMEKASAN DENGAN METODE LOAD RESISTANCE AND FACTOR DESIGN Oleh : 1. AGUNG HADI SUPRAPTO 3111 030 114 2.RINTIH PRASTIANING ATAS KASIH 3111

Lebih terperinci

BAB V ANALISA STRUKTUR PRIMER

BAB V ANALISA STRUKTUR PRIMER BAB V ANALISA STRUKTUR PRIMER PEMBEBANAN GRAVITASI Beban Mati Pelat lantai Balok & Kolom Dinding, Tangga, & Lift dll Beban Hidup Atap : 100 kg/m2 Lantai : 250 kg/m2 Beban Gempa Kategori resiko bangunan

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG PUSAT KEGIATAN MAHASISWA POLITEKNIK NEGERI MALANG DENGAN SISTEM RANGKA PEMIKUL MOMEN MENENGAH (SRPMM)

PERENCANAAN STRUKTUR GEDUNG PUSAT KEGIATAN MAHASISWA POLITEKNIK NEGERI MALANG DENGAN SISTEM RANGKA PEMIKUL MOMEN MENENGAH (SRPMM) PERENCANAAN STRUKTUR GEDUNG PUSAT KEGIATAN MAHASISWA POLITEKNIK NEGERI MALANG DENGAN SISTEM RANGKA PEMIKUL MOMEN MENENGAH (SRPMM) Oleh : TRIA CIPTADI 3111 030 013 M. CHARIESH FAWAID 3111 030 032 Dosen

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG DEWAN KERAJINAN NASIONAL DAERAH (DEKRANASDA) JL. KOLONEL SUGIONO JEPARA

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG DEWAN KERAJINAN NASIONAL DAERAH (DEKRANASDA) JL. KOLONEL SUGIONO JEPARA TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG DEWAN KERAJINAN NASIONAL DAERAH (DEKRANASDA) JL. KOLONEL SUGIONO JEPARA Merupakan Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Jurusan

Lebih terperinci

DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM

DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM Fikry Hamdi Harahap NRP : 0121040 Pembimbing : Ir. Ginardy Husada.,MT UNIVERSITAS KRISTEN MARANATHA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL BANDUNG

Lebih terperinci

perpustakaan.uns.ac.id digilib.uns.ac.id commit to user

perpustakaan.uns.ac.id digilib.uns.ac.id commit to user 1 BAB 1 PENDAHULUAN 1.1. Latar Belakang Pesatnya perkembangan dunia teknik sipil menuntut bangsa Indonesia untuk dapat menghadapi segala kemajuan dan tantangan. Hal itu dapat terpenuhi apabila sumber daya

Lebih terperinci

PERENCANAAN JEMBATAN MALANGSARI MENGGUNAKAN STRUKTUR JEMBATAN BUSUR RANGKA TIPE THROUGH - ARCH. : Faizal Oky Setyawan

PERENCANAAN JEMBATAN MALANGSARI MENGGUNAKAN STRUKTUR JEMBATAN BUSUR RANGKA TIPE THROUGH - ARCH. : Faizal Oky Setyawan MENGGUNAKAN STRUKTUR JEMBATAN BUSUR Oleh : Faizal Oky Setyawan 3105100135 PENDAHULUAN TINJAUAN PUSTAKA METODOLOGI HASIL PERENCANAAN Latar Belakang Dalam rangka pemenuhan dan penunjang kebutuhan transportasi

Lebih terperinci

BAB III LANDASAN TEORI. A. Pembebanan

BAB III LANDASAN TEORI. A. Pembebanan BAB III LANDASAN TEORI A. Pembebanan Dalam perancangan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku sehingga diperoleh suatu struktur bangunan yang aman secara konstruksi. Struktur

Lebih terperinci

JURNAL TUGAS AKHIR PERHITUNGAN STRUKTUR BETON BERTULANG PADA PEMBANGUNAN GEDUNG PERKULIAHAN FAPERTA UNIVERSITAS MULAWARMAN

JURNAL TUGAS AKHIR PERHITUNGAN STRUKTUR BETON BERTULANG PADA PEMBANGUNAN GEDUNG PERKULIAHAN FAPERTA UNIVERSITAS MULAWARMAN JURNAL TUGAS AKHIR PERHITUNGAN STRUKTUR BETON BERTULANG PADA PEMBANGUNAN GEDUNG PERKULIAHAN FAPERTA UNIVERSITAS MULAWARMAN Diajukan oleh : ABDUL MUIS 09.11.1001.7311.046 JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK

Lebih terperinci

PERANCANGAN STRUKTUR GEDUNG RUSUNAWA 5 LANTAI DI WILAYAH GEMPA 3

PERANCANGAN STRUKTUR GEDUNG RUSUNAWA 5 LANTAI DI WILAYAH GEMPA 3 PERANCANGAN STRUKTUR GEDUNG RUSUNAWA 5 LANTAI DI WILAYAH GEMPA 3 Laporan Tugas Akhir sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh : FELIX BRAM SAMORA

Lebih terperinci

VI. BATANG LENTUR. I. Perencanaan batang lentur

VI. BATANG LENTUR. I. Perencanaan batang lentur VI. BATANG LENTUR Perencanaan batang lentur meliputi empat hal yaitu: perencanaan lentur, geser, lendutan, dan tumpuan. Perencanaan sering kali diawali dengan pemilihan sebuah penampang batang sedemikian

Lebih terperinci

PERHITUNGAN GORDING DAN SAGROD

PERHITUNGAN GORDING DAN SAGROD PERHITUNGAN GORDING DAN SAGROD A. DATA BAHAN [C]2011 : M. Noer Ilham Tegangan leleh baja (yield stress ), f y = 240 MPa Tegangan tarik putus (ultimate stress ), f u = 370 MPa Tegangan sisa (residual stress

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN 2 LANTAI

PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN 2 LANTAI PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN LANTAI Oleh: Fredy Fidya Saputra I.8505014 FAKULTAS TEKNIK UNIVERSITAS SEBELAS MARET PROGRAM D III JURUSAN TEKNIK SIPIL SURAKARTA 009 BAB I PENDAHULUAN 1.1 Latar

Lebih terperinci

Tugas Besar Struktur Bangunan Baja 1. PERENCANAAN ATAP. 1.1 Perhitungan Dimensi Gording

Tugas Besar Struktur Bangunan Baja 1. PERENCANAAN ATAP. 1.1 Perhitungan Dimensi Gording 1.1 Perhitungan Dimensi Gording 1. PERENCANAAN ATAP 140 135,84 cm 1,36 m. Direncanakan gording profil WF ukuran 100x50x5x7 A = 11,85 cm 2 tf = 7 mm Zx = 42 cm 2 W = 9,3 kg/m Ix = 187 cm 4 Zy = 4,375 cm

Lebih terperinci

Sambungan diperlukan jika

Sambungan diperlukan jika SAMBUNGAN Batang Struktur Baja Sambungan diperlukan jika a. Batang standar kurang panjang b. Untuk meneruskan gaya dari elemen satu ke elemen yang lain c. Sambungan truss d. Sambungan sebagai sendi e.

Lebih terperinci

Perhitungan Struktur Bab IV

Perhitungan Struktur Bab IV Permodelan Struktur Bored pile Perhitungan bore pile dibuat dengan bantuan software SAP2000, dimensi yang diinput sesuai dengan rencana dimensi bore pile yaitu diameter 100 cm dan panjang 20 m. Beban yang

Lebih terperinci

BAB IV PERENCANAAN AWAL (PRELIMINARY DESIGN)

BAB IV PERENCANAAN AWAL (PRELIMINARY DESIGN) BB IV PERENCNN WL (PRELIMINRY DESIGN). Prarencana Pelat Beton Perencanaan awal ini dimaksudkan untuk menentukan koefisien ketebalan pelat, α yang diambil pada s bentang -B, mengingat pada daerah sudut

Lebih terperinci

PERENCANAAN GEDUNG BETON BERTULANG BERATURAN BERDASARKAN SNI DAN FEMA 450

PERENCANAAN GEDUNG BETON BERTULANG BERATURAN BERDASARKAN SNI DAN FEMA 450 PERENCANAAN GEDUNG BETON BERTULANG BERATURAN BERDASARKAN SNI 02-1726-2002 DAN FEMA 450 Eben Tulus NRP: 0221087 Pembimbing: Yosafat Aji Pranata, ST., MT JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

LEMBAR PENGESAHAN PERENCANAAN GEDUNG PERUM PERHUTANI UNIT I JAWA TENGAH, SEMARANG

LEMBAR PENGESAHAN PERENCANAAN GEDUNG PERUM PERHUTANI UNIT I JAWA TENGAH, SEMARANG LEMBAR PENGESAHAN PERENCANAAN GEDUNG PERUM PERHUTANI UNIT I JAWA TENGAH, SEMARANG (Design of Perum Perhutani Unit I Central Java Building, Semarang ) Disusun Oleh : ADE IBNU MALIK L2A3 02 095 SHINTA WENING

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi dalam bidang konstruksi terus menerus mengalami peningkatan, kontruksi bangunan merupakan bagian dari kehidupan manusia yang tidak akan pernah

Lebih terperinci

STUDI ANALISA BAJA RINGAN PADA BALOK RUMAH SEDERHANA TAHAN GEMPA

STUDI ANALISA BAJA RINGAN PADA BALOK RUMAH SEDERHANA TAHAN GEMPA STUDI ANALISA BAJA RINGAN PADA BALOK RUMAH SEDERHANA TAHAN GEMPA ROGANDA PARULIAN SIGALINGGING NRP 3105 100 138 Dosen Pembimbing : Endah Wahyuni, ST.MSc.PhD Ir. Isdarmanu MSc JURUSAN TEKNIK SIPIL Fakultas

Lebih terperinci

KAJIAN PEMANFAATAN KABEL PADA PERANCANGAN JEMBATAN RANGKA BATANG KAYU

KAJIAN PEMANFAATAN KABEL PADA PERANCANGAN JEMBATAN RANGKA BATANG KAYU Konferensi Nasional Teknik Sipil 3 (KoNTekS 3) Jakarta, 6 7 Mei 2009 KAJIAN PEMANFAATAN KABEL PADA PERANCANGAN JEMBATAN RANGKA BATANG KAYU Estika 1 dan Bernardinus Herbudiman 2 1 Jurusan Teknik Sipil,

Lebih terperinci

PERENCANAAN STRUKTUR DAN RENCANA ANGGARAN BIAYA RUMAH TINGGAL 2 LANTAI

PERENCANAAN STRUKTUR DAN RENCANA ANGGARAN BIAYA RUMAH TINGGAL 2 LANTAI PERENCANAAN STRUKTUR DAN RENCANA ANGGARAN BIAYA RUMAH TINGGAL 2 LANTAI TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat untuk Memperoleh Gelar Ahli Madya pada Program D-III Teknik Sipil Jurusan Teknik Sipil

Lebih terperinci

Nama : Mohammad Zahid Alim Al Hasyimi NRP : Dosen Konsultasi : Ir. Djoko Irawan, MS. Dr. Ir. Djoko Untung. Tugas Akhir

Nama : Mohammad Zahid Alim Al Hasyimi NRP : Dosen Konsultasi : Ir. Djoko Irawan, MS. Dr. Ir. Djoko Untung. Tugas Akhir Tugas Akhir PERENCANAAN JEMBATAN BRANTAS KEDIRI DENGAN MENGGUNAKAN SISTEM BUSUR BAJA Nama : Mohammad Zahid Alim Al Hasyimi NRP : 3109100096 Dosen Konsultasi : Ir. Djoko Irawan, MS. Dr. Ir. Djoko Untung

Lebih terperinci

BAB III LANDASAN TEORI. untuk bangunan gedung (SNI ) dan tata cara perencanaan gempa

BAB III LANDASAN TEORI. untuk bangunan gedung (SNI ) dan tata cara perencanaan gempa BAB III LANDASAN TEORI 3.1. Pembebanan Beban yang ditinjau dan dihitung dalam perancangan gedung ini adalah beban hidup, beban mati dan beban gempa. 3.1.1. Kuat Perlu Beban yang digunakan sesuai dalam

Lebih terperinci

BAB II PERATURAN PERENCANAAN

BAB II PERATURAN PERENCANAAN BAB II PERATURAN PERENCANAAN 2.1 Klasifikasi Jembatan Rangka Baja Jembatan rangka (Truss Bridge) adalah jembatan yang terbentuk dari rangkarangka batang yang membentuk unit segitiga dan memiliki kemampuan

Lebih terperinci

BAB III PEMODELAN DAN ANALISIS STRUKTUR

BAB III PEMODELAN DAN ANALISIS STRUKTUR BAB III PEMODELAN DAN ANALISIS STRUKTUR 3.1. Pemodelan Struktur Pada tugas akhir ini, struktur dimodelkan tiga dimensi sebagai portal terbuka dengan penahan gaya lateral (gempa) menggunakan 2 tipe sistem

Lebih terperinci

BAB IV PERENCANAAN STRUKTUR. lantai, balok, kolom dan alat penyambung antara lain sebagai berikut :

BAB IV PERENCANAAN STRUKTUR. lantai, balok, kolom dan alat penyambung antara lain sebagai berikut : BAB IV PERENCANAAN STRUKTUR 4.1 Pendahuluan Pada bab ini menjelaskan tentang perencanaan struktur gedung untuk penempatan mesin pabrik pengolahan padi PT. Arsari Pratama menggunakan profil baja. Pada kajian

Lebih terperinci

28 NEUTRON, VOL.10, NO.1, PEBRUARI 2010: 28-42

28 NEUTRON, VOL.10, NO.1, PEBRUARI 2010: 28-42 8 NEUTRON, VOL.0, NO., PEBRUARI 00: 8-4 ANALISA DIMENSI DAN BIAYA STRUKTUR BAJA M. Ikhsan Setiawan ABSTRAK Perhitungan-perhitungan struktur yang dilakukan dalam penelitian ini disesuaikan dengan peraturan-peraturan

Lebih terperinci

BAB II BAB 1 TINJAUAN PUSTAKA. 1. Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung (SNI 03

BAB II BAB 1 TINJAUAN PUSTAKA. 1. Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung (SNI 03 BAB II BAB 1 TINJAUAN PUSTAKA 2.1. Peraturan-Peraturan yang Dugunakan 1. Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung (SNI 03 2847 2002), 2. Peraturan Pembebanan Indonesia Untuk Bangunan

Lebih terperinci

5- STRUKTUR LENTUR (BALOK)

5- STRUKTUR LENTUR (BALOK) Pengertian Balok 5- STRUKTUR LENTUR (BALOK) Balok adalah bagian dari struktur bangunan yang menerima beban tegak lurus ( ) sumbu memanjang batang (beban lateral beban lentur) Beberapa jenis balok pada

Lebih terperinci

MODIFIKASI PERENCANAAN MENGGUNAKAN STRUKTUR BAJA DENGAN BALOK KOMPOSIT PADA GEDUNG PEMERINTAH KABUPATEN PONOROGO

MODIFIKASI PERENCANAAN MENGGUNAKAN STRUKTUR BAJA DENGAN BALOK KOMPOSIT PADA GEDUNG PEMERINTAH KABUPATEN PONOROGO PRESENTASI TUGAS AKHIR MODIFIKASI PERENCANAAN MENGGUNAKAN STRUKTUR BAJA DENGAN BALOK KOMPOSIT PADA GEDUNG PEMERINTAH KABUPATEN PONOROGO MAHASISWA : WAHYU PRATOMO WIBOWO NRP. 3108 100 643 DOSEN PEMBIMBING:

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Pada pekerjaan konstruksi, atap merupakan salah satu elemen penting pada bangunan gedung dan perumahan. Sebab atap pada bangunan berfungsi sebagi penutup seluruh atau

Lebih terperinci