Statistik Pencacahan Radiasi

Ukuran: px
Mulai penontonan dengan halaman:

Download "Statistik Pencacahan Radiasi"

Transkripsi

1 Statistik Pencacahan Radiasi (Radiation Counting Statistics) Latar Belakang Radiasi dipancarkan secara acak (random) sehingga pengukuran radiasi berulang meskipun dilakukan dengan kondisi yang sama akan memperoleh hasil pengukuran yang berfluktuasi (berbeda-beda). Materi ini akan membahas sifat acak pancaran radiasi tersebut yang mengikuti distribusi Gauss, cara untuk menghitung ketidak-pastian pengukuran serta cara menyajikan nilai hasil pengukuran, pengujian data distribusi Gauss (chi square test), dan cara membuang data yang tidak menyimpang. Tujuan Instruksional Setelah mengikuti mata pelajaran ini para peserta diharapkan mampu untuk menerapkan metode statistik dalam pengukuran intensitas radiasi baik menggunakan sistem pencacah maupun sistem spektroskopi. Secara khusus setiap peserta akan mampu untuk: 1. menguraikan sifat acak (random) dari besaran fisis;. menguraikan distribusi Gauss pada intensitas (aktivitas) radiasi; 3. menghitung penyimpangan pengukuran pada distribusi Gauss dengan mempertimbangkan faktor propagasi eror (error propagation); 4. menentukan ketidak-pastian pengukuran pada tingkat kepercayaan (level of confidence) tertentu; 5. menjelaskan limit deteksi dan limit kuantisasi; 6. menentukan nilai intensitas suatu spektrum energi radiasi; 7. menerapkan chi square test pada sekumpulan data pengukuran radiasi; 8. menerapkan uji Chauvenet pada sekumpulan data pengukuran radiasi. Statistik Pencacahan Radiasi Halaman 1

2 Materi Pembahasan Pendahuluan Latar Belakang Tujuan Instruksional Materi Pembahasan Sifat Acak (Random) Distribusi Gauss (Normal) Propagasi Eror Ketidak-pastian Pengukuran Limit Deteksi dan Limit Kuantisasi Pengujian Chi Square Kriteria Chauvenet Statistik Pencacahan Radiasi Halaman

3 Statistik Pencacahan Radiasi (Radiation Counting Statistics) Sifat Acak (random) Proses pengukuran, misalnya pengukuran temperatur, panjang atau berat, biasanya dilakukan secara berulang agar diperoleh hasil pengukuran yang lebih dapat dipercaya. Perhatikan tabel berikut ini yang menampilkan hasil tiga jenis pengukuran (A, B, dan C) yang diulang 10 kali. Tabel 1: hasil tiga jenis pengukuran berulang 10 kali A B C Hasil pengukuran manakah yang terbaik, pengukuran A, B, atau C. Jangan terlalu cepat menyimpulkan bahwa pengukuran A lah yang terbaik karena sangat bergantung pada besaran yang sedang diukur. Bila yang diukur adalah panjang sebuah meja atau tinggi sebatang pohon maka akan diperoleh hasil pengukuran A. Tetapi bila mengukur kecepatan angin di atas sebuah gedung maka mungkin akan dihasilkan data pengukuran C. Terdapat jenis pengukuran tertentu yang akan menghasilkan data pengukuran B. Jenis pengukuran tersebut mengikuti kecenderungan atau distribusi tertentu. Sebagai contoh, bila seseorang mempunyai 00 keping uang logam yang sama dan kemudian dilemparkannya semua ke lantai. Statistik Pencacahan Radiasi Halaman 3

4 Berapa keping uang logamkah yang menunjukkan gambar? Bila kegiatan tersebut diulang 10 kali maka akan diperoleh data pengukuran B, bukan pengukuran A apalagi pengukuran C. Eksperimen di atas juga dapat dilakukan dengan menggunakan 600 butir dadu. Data pengukuran B memang berfluktuasi tetapi mempunyai kecenderungan pada nilai 100. Nilai ini dapat ditentukan secara perhitungan yaitu X p N Dengan X adalah nilai hasil pengukuran, p adalah probabilitas (pada uang logam ½ dan pada dadu 1/6), sedangkan N adalah jumlah benda yang terlibat untuk menghasilkan nilai pengukuran tersebut. Fenomena pengukuran ini bersifat acak (random), yang bila dilakukan secara berulang dengan jumlah ulangan sangat banyak (tak berhingga) akan menghasilkan nilai rata-rata 100. Ingat rumusan aktivitas radioaktif! A λ N A adalah aktivitas zat radioaktif, λ adalah konstanta peluruhan, sedangkan N adalah jumlah inti yang tidak stabil. Konstanta peluruhan ( λ ) merupakan probabilitas salah satu inti atom tersebut meluruh atau tidak. Dengan menganalogikan dua rumusan tersebut di atas maka dapat disimpulkan bahwa aktivitas radioaktif bersifat acak (random). Jadi, bila suatu zat radioaktif mempunyai aktivitas sebesar 100 Bq maka tidak berarti bahwa zat radioaktif tersebut selalu memancarkan 100 radiasi per detik, melainkan berbeda-beda tetapi mempunyai kecenderungan di sekitar nilai 100 sebagaimana data pengukuran B. Distribusi Gauss (Normal) Sifat acak suatu pengukuran selalu mengikuti suatu distribusi tertentu, sebagai contoh eksperimen uang logam dan dadu di atas mengikuti distribusi binomial. Bila distribusi binomial tersebut mempunyai probabilitas sangat kecil maka akan berubah menjadi distribusi Poisson, sedangkan bila distribusi Poisson tersebut menghasilkan nilai ukur yang besar (beberapa literatur menuliskan > 40) maka berubah menjadi distribusi Gauss (Normal). Tiga jenis distribusi tersebut memang tidak dibahas pada tulisan ini, bagi yang berminat untuk mempelajari lebih lanjut silahkan membaca literatur statistik. Zat radioaktif mempunyai konstanta peluruhan ( λ ) yang sangat kecil, misalnya U-38 adalah dan aktivitas sumber biasanya bernilai sangat besar dalam orde Bq (peluruhan per detik), misalnya aktivitas 1 µci setara dengan peluruhan per detik. Oleh karena itu pancaran radiasi mengikuti distribusi Gauss (Normal). Statistik Pencacahan Radiasi Halaman 4

5 Gambar 1: distribusi Gauss Gambar di atas menunjukkan probabilitas nilai ukur yang mungkin dihasilkan oleh pengukuran berulang terhadap suatu besaran yang mengikuti distribusi Gauss. Terlihat bahwa nilai ukur yang dihasilkannya dapat bermacam-macam, dengan probabilitas terbesar adalah terletak pada nilai rata-ratanya. Gambar : intensitas radiasi yang dipancarkan suatu sumber radiasi Oleh karena aktivitas zat radioaktif bersifat acak mengikuti distribusi Gauss (Normal) maka intensitas radiasi yang terukurpun akan bersifat acak sehingga data hasil pengukurannya juga akan mengikuti distribusi Gauss. Pengukuran intensitas radiasi yang dilakukan secara berulang pasti akan memperoleh hasil pengukuran yang berbeda-beda. Yang menjadi pertanyaan adalah berapakah nilai ukur yang sebenarnya. Dengan fenomena tersebut di atas maka pengukuran intensitas radiasi harus dilakukan secara berulang, baik beberapa kali atau dalam selang waktu cukup panjang, yang berarti akumulasi nilai dari pengulangan waktu beberapa detik. Nilai ukur sebenarnya diduga berada di dalam rentang nilai rata-rata ± nilai simpangannya. Statistik Pencacahan Radiasi Halaman 5

6 Sebagaimana perhitungan matematika biasa, nilai rata-rata dapat dihitung dengan persamaan berikut X i X (1) N Sedangkan nilai simpangan ( ) dari pengukuran tunggal suatu besaran yang mengikuti distribusi Gauss adalah akar dari nilai ukurnya. Propagasi Eror (Error Propagation) X () Propagasi eror adalah metode untuk menghitung simpangan suatu nilai yang berasal dari beberapa faktor, misalnya beberapa hasil pengukuran dan data pendukung lainnya. Rumusan dasar propagasi eror untuk suatu nilai F yang merupakan fungsi dari faktor X, Y dan Z adalah sebagai berikut. F F F f x + y + z (3) X Y Z f adalah simpangan nilai F yang merupakan kalkulasi dari faktor nilai X, Y, dan Z. x, y, dan z adalah masing-masing simpangan nilai X, Y, dan Z. Laju Cacah Laju cacah atau cacahan per detik adalah suatu nilai yang sebanding dengan aktivitas atau intensitas radiasi. C R (3) T Karena simpangan waktu ( t ) dapat diasumsikan tidak ada maka simpangan laju cacah ( r ) hanya dihitung dari satu faktor saja yaitu nilai cacahan ( C ) dengan simpangan cacahan ( c ) adalah sebesar C (4) c Sehingga simpangan laju cacah ( r ) dapat dihitung sebagaimana persamaan berikut. R C 1 T 1 1 r c maka r C T T R r (5) T Statistik Pencacahan Radiasi Halaman 6

7 Cacahan Rata-rata Cacahan rata-rata ( C ) merupakan nilai rata-rata dari beberapa kali pengukuran, misalnya N kali. C C + C + C N C n C 1 N c1 + 1 N c + 1 N c N cn C (6) C N Laju Cacah Rata-rata R (7) R N T Laju Cacah Sumber Hasil pengukuran intensitas radiasi suatu sumber selalu merupakan gabungan antara radiasi yang berasal dari sumber tersebut dan radiasi yang berasal dari lingkungan sekitarnya, atau disebut sebagai radiasi latar belakang. Laju cacah radiasi yang hanya berasal dari sumber saja ( R s ) dapat dihitung dengan cara mengurangi laju cacah keseluruhan (R t ) dengan laju cacah latar belakang ( R b ). Simpangan laju cacah sumber adalah Rs R s Rt R t R Rb b + (8) Tentu saja nilai simpangan laju cacah keseluruhan ( Rt ) dan simpangan laju cacah latar belakang ( Rb ) harus dihitung dahulu menggunakan persamaan sebelumnya. Perhitungan propagasi eror, khususnya untuk yang mempunyai relasi matematik lebih rumit dapat menggunakan persamaan berikut. f F x x y + y z + z (9) Statistik Pencacahan Radiasi Halaman 7

8 Berikut ini sebuah contoh untuk menentukan simpangan dari efisiensi pengukuran ( η ) yaitu suatu nilai yang membandingkan antara laju cacah dan aktivitas sumber standar. η R A η R A + (10) η R Nilai simpangan dari aktivitas sumber dapat dihitung dari toleransi sumber standar, misalnya toleransi 1% berarti nilai simpangan adalah sebesar 1% dari nilai aktivitasnya. A 0.01 x A A Ketidak-pastian Pengukuran (Measurements Uncertainty) Ketidak-pastian sebenarnya tidak hanya berasal dari pengukuran saja melainkan berasal dari semua langkah analisis mulai dari preparasi sampel, faktor kesalahan alat, kesalahan personil, kesalahan metode, dan pengukurannya sendiri. Akan tetapi dalam pembahasan ini hanya akan dipelajari ketidak-pastian yang berasal dari proses pengukuran dan faktor yang berkaitan langsung dengan pengukuran. Setiap pengukuran selalu mempunyai kesalahan (eror) oleh karena itu hasil pengukuran atau kalkulasi yang berdasarkan hasil pengukuran harus ditampilkan dalam bentuk suatu rentang nilai (bukan nilai tunggal). Rentang nilai tersebut adalah ketidak-pastian suatu pengukuran. Nilai ukur sebenarnya diduga berada di dalam rentang nilai tersebut. Pertanyaannya adalah seberapa yakinkah nilai ukur sebenarnya berada di dalam rentang nilai tersebut. Sebagai contoh, pengukuran aktivitas suatu sumber radiasi yang dilakukan 10 kali dengan kondisi yang sama, ternyata diperoleh hasil sebagai berikut. 15; 116; 103; 138; 11; 144; 119; 17; 11; dan 134. Berapakah nilai aktivitas sumber tersebut sebenarnya? Tidak ada yang tahu! Kemungkinan nilai aktivitas sebenarnya berada di dalam suatu rentang nilai di sekitar nilai rata-ratanya. Sekali lagi hanya dugaan saja. Hasil pengukuran disajikan dengan format seperti berikut ini. X X ± λ (11) λ adalah suatu faktor yang menunjukkan tingkat kepercayaan (level of confidence) dengan nilai sebagaimana tabel berikut. Statistik Pencacahan Radiasi Halaman 8

9 Tabel : beberapa jenis tingkat kepercayaan yang sering digunakan. Jenis Tingkat Kepercayaan λ Prosentase Benar 1 sigma 1 68,5 % nine tenth 1,645 90% sigma 95,5 % ninety nine,576 99% 3 sigma 3 99,5 % Gambar 3: dugaan nilai sebenarnya berada di dalam rentang nilai yang ditampilkan dengan tingkat kepercayaan 1 sigma (kiri) dan tingkat kepercayaan sigma (kanan). Memang dengan memilih tingkat kepercayaan yang semakin besar, misalnya 3 sigma, akan memperoleh kemungkinan nilai ukur sebenarnya berada di dalam rentang dugaan semakin besar, tetapi nilai rentangnya juga semakin lebar. Oleh karena itu, nilai simpangan ( ) harus diusahakan sekecil mungkin, yaitu dengan cara mengulang pengukuran semakin sering atau memperpanjang waktu pengukuran. Limit Deteksi dan Limit Kuantisasi Sebagaimana telah dibahas sebelumnya bahwa setiap pengukuran radiasi akan menghasilkan kesalahan atau ketidak-pastian, termasuk pengukuran radiasi latar belakang (background). Yang menjadi permasalahan sekarang adalah bila aktivitas suatu sumber atau intensitas radiasi yang dipancarkan oleh sumber tidak terlalu dibandingkan dengan intensitas radiasi latar belakang. Statistik Pencacahan Radiasi Halaman 9

10 Sebagai contoh, hasil pengukuran intensitas suatu sampel -yang berarti pengukuran radasi yang berasal dari sumbernya dan ditambah dengan radiasi latar belakang- adalah 10 sedangkan pengukuran tanpa sampel -yang berarti hanya pengukuran radiasi letar belakang- adalah 100. Secara perhitungan dengan mudah dapat ditentukan bahwa radiasi latar belakang adalah 100 sehingga radiasi sumbernya saja adalah 0. Hal di atas tidak dapat dibenarkan karena nilai intensitas radiasi latar belakang selalu berfluktuasi sehingga nilai 10 tersebut mungkin saja hanya fluktuasi nilai intensitas radiasi latar belakang, jadi sampel tersebut sebenarnya tidak mengandung zat radioaktif sama sekali. Limit deteksi adalah suatu batas nilai yang digunakan untuk menentukan apakah zat radioaktif terdeteksi ada di dalam sampel yang diukur atau memang tidak terdeteksi. Nilai limit deteksi ditentukan sebesar simpangan pengukuran latar belakang dengan tingkat kepercayaan 3 sigma. LD 3 (1) Nilai hasil pengukuran radiasi sumber pada contoh di atas ( 0 ) masih kurang dari limit deteksinya ( 30 ) sehingga pada contoh di atas tidak terdeteksi ada zat radioaktif di dalam sampel. Contoh lain, hasil pengukuran intensitas suatu sampel -yang berarti pengukuran radasi yang berasal dari sumbernya dan ditambah dengan radiasi latar belakang- adalah 150 sedangkan pengukuran tanpa sampel -yang berarti hanya pengukuran radiasi letar belakang- adalah 100. Secara perhitungan dengan mudah dapat ditentukan bahwa radiasi latar belakang adalah 100 sehingga radiasi sumbernya saja adalah 50. Berdasarkan pembahasan limit deteksi, sampel pada contoh tersebut di atas dapat dinyatakan mengandung zat radioaktif karena hasil pengukuran sumber ( 50 ) sudah lebih besar daripada limit deteksi pengukurannya. Tetapi nilai hasil pengukuran ( 50 ) belum dapat dinyatakan sebagai kuantitas (atau dalam contoh ini adalah aktivitas) sumber. Limit kuantisasi adalah suatu batas nilai yang digunakan untuk menentukan apakah nilai hasil pengukuran dapat dinyatakan secara kuantitatif atau tidak. Nilai limit kuantisasi harus ditetapkan secara konvensi, dari satu negara atau laboratorium ke negara atau laboratorium lain mempunyai nilai yang berbeda. Nilai limit kuantisasi yang banyak digunakan adalah sebesar simpangan pengukuran latar belakang dengan tingkat kepercayaan 7 sigma. LK R lb 7 (13) Jadi pada contoh pengukuran di atas hanya dapat dinyatakan secara kualitatif saja bahwa di dalam sampel terdeteksi adanya zat radioaktif tetapi kuantitas atau aktivitas sumber tidak layak untuk dinyatakan karena masih kurang dari limit kuantisasinya ( 70 ). R lb Statistik Pencacahan Radiasi Halaman 10

11 Chi Square Test Pengukuran besaran fisis yang bersifat acak secara berulang selalu akan menghasilkan nilai yang berubah-ubah, sebagai contoh 10 kali pengukuran intensitas radiasi akan menghasilkan 10 nilai yang berbeda-beda. Hal ini menimbulkan kesulitan untuk mengetahui bahwa perubahan nilai tersebut memang karena sifat acak dari sumber yang diukur, bukan disebabkan oleh anomali alat pengukur. Chi square test adalah sebuah metode yang lazim digunakan untuk menguji apakah sekumpulan data mengikuti distribusi Gauss atau tidak. Terdapat kemungkinan bahwa fluktuasi nilai terlalu kecil (contoh data pengukuran A pada tabel 1) atau fluktuasi terlalu besar (contoh data pengukuran C pada tabel 1). Nilai Chi Square ditentukan dengan persamaan berikut. ( X X) i χ (14) X Dengan X i adalah nilai setiap pengukuran. Nilai chi square ( χ ) dari perhitungan di atas kemudian dicocokkan ke tabel chi square yang terdapat pada lampiran. Tabel 3: sebagian tabel chi square n χ 0,95 χ 0,90 χ 0,75 χ 0,50 χ 0,5 χ 0,10 χ 0, ,5 13,4 10, 7,34 5,07 3,49, ,9 14,7 11,4 8,34 5,90 4,17 3, ,3 16,0 1,5 9,34 6,74 4,87 3, ,7 17,3 13, ,58 5,58 4,57 1 1,0 18,5 14, ,44 6,30 5,3 13,4 19,8 16,0 1,3 9,30 7,04 5, ,7 1,1 17,1 13,3 10, 7,79 6, Cara pembacaan tabel chi square di atas: n adalah derajat kebebasan pengukuran yaitu jumlah pengulangan dikurangi 1 ( N 1 ). Nilai-nilai pada kolom χ 0,50 adalah nilai ideal bila semua nilai hasil pengukuran tepat sesuai dengan distribusi Gauss, tentu saja hal ini sangat sulit dicapai dalam Statistik Pencacahan Radiasi Halaman 11

12 pengukuran sebenarnya. Seberapa besar toleransi tidak ideal harus ditentukan oleh masing-masing keperluan atau laboratoriumnya, tetapi walaupun begitu, nilai yang banyak digunakan adalah nilai di dalam rentang χ 0,90 dan χ 0,10. Data hasil 10 kali pengukuran layak diterima sebagai distribusi Gauss bila nilai χ nya berada di dalam rentang 4,17 ~ 14,7, sedangkan data 15 kali pengukuran harus berada di dalam rentang 7,79 ~ 1,1. Apabila data hasil pengukuran intensitas radiasi tidak memenuhi kriteria di atas maka terdapat kesalahan, mungkin di peralatan ukur atau di sumbernya sendiri. Kriteria Chauvenet Memang secara teori distribusi Gauss, hasil pengukuran dapat bernilai berapapun bahkan sangat jauh berbeda dengan nilai rata-ratanya akan tetapi dalam kenyataannya kemungkinan tersebut sangat kecil sehingga hasil pengukuran yang menyimpang terlalu jauh dari nilai rata-ratanya dapat saja dibuang agar tidak merusak nilai rata-rata pengukuran. Penyimpangan nilai hasil pengukuran dari nilai rata-ratanya kemungkinan disebabkan oleh gangguan dari luar sehingga mempengaruhi kondisi yang seharusnya dijaga selalu sama, sebagai contoh yang paling sering terjadi adalah gangguan listrik. Kriteria Chauvenet adalah salah satu metode yang dapat digunakan untuk membuang salah satu atau beberapa nilai hasil pengukuran yang menyimpang terlalu jauh dari nilai rata-ratanya, atau disebut outlayer. x i x τ i (15) x Nilai Chauvenet dari setiap data pengukuran yang dihitung menggunakan persamaan di atas harus lebih kecil daripada tabel berikut ini. Tabel 4: nilai batas kriteria Chauvenet Jumlah Pengukuran Nilai Chauvenet Jumlah Pengukuran Nilai Chauvenet Statistik Pencacahan Radiasi Halaman 1

13 Sebagai contoh dalam eksperimen 10 kali pengukuran berulang, setiap data pengukuran harus mempunyai nilai τ yang lebih kecil daripada 1,96. Bila salah satu hasil pengukuran mempunyai nilai τ yang lebih besar daripada 1,96 maka data pengukuran tersebut dapat dibuang. Bila jumlah pengulangan tidak terdapat dalam tabel tersebut maka dapat digunakan cara interpolasi linier. ooooo Statistik Pencacahan Radiasi Halaman 13

14 Lampiran Tabel Chi Square Statistik Pencacahan Radiasi Halaman 14

15 Daftar Pustaka 1. G.F. Knoll, Radiation Detection and Measurement, John Wiley, Toronto, N. Tsoulfanidis, Detection and Measurement of Radiation, Taylor and Francis, New York, K. Debertin and R.G. Helmer, Gamma and X-ray Spectrometry with Semiconductor Detectors, North-Holland, Amsterdam, Murray R. Spiegel, Mathematical Handbook, Mc Graw Hill, New York, Statistik Pencacahan Radiasi Halaman 15

Sistem Pencacah dan Spektroskopi

Sistem Pencacah dan Spektroskopi Sistem Pencacah dan Spektroskopi Latar Belakang Sebagian besar aplikasi teknik nuklir sangat bergantung pada hasil pengukuran radiasi, khususnya pengukuran intensitas ataupun dosis radiasi. Alat pengukur

Lebih terperinci

Prinsip Dasar Pengukuran Radiasi

Prinsip Dasar Pengukuran Radiasi Prinsip Dasar Pengukuran Radiasi Latar Belakang Radiasi nuklir tidak dapat dirasakan oleh panca indera manusia oleh karena itu alat ukur radiasi mutlak diperlukan untuk mendeteksi dan mengukur radiasi

Lebih terperinci

Pendahuluan. Angka penting dan Pengolahan data

Pendahuluan. Angka penting dan Pengolahan data Angka penting dan Pengolahan data Pendahuluan Pengamatan merupakan hal yang penting dan biasa dilakukan dalam proses pembelajaran. Seperti ilmu pengetahuan lain, fisika berdasar pada pengamatan eksperimen

Lebih terperinci

UJI BANDING SISTEM SPEKTROMETER GAMMA DENGAN METODA ANALISIS SUMBER Eu-152. Nugraha Luhur, Kadarusmanto, Subiharto

UJI BANDING SISTEM SPEKTROMETER GAMMA DENGAN METODA ANALISIS SUMBER Eu-152. Nugraha Luhur, Kadarusmanto, Subiharto Uji Banding Sistem Spektrometer (Nugroho L, dkk) Abstrak UJI BANDING SISTEM SPEKTROMETER GAMMA DENGAN METODA ANALISIS SUMBER Eu-152 Nugraha Luhur, Kadarusmanto, Subiharto UJI BANDING SPEKTROMETER GAMMA

Lebih terperinci

Probabilitas & Distribusi Probabilitas

Probabilitas & Distribusi Probabilitas Probabilitas & Distribusi Probabilitas Probabilitas Definisi peluang untuk terjadi atau tidak terjadi Probabilitas untuk keluarnya mata satu dalam pelemparan satu kali sebuah dadu? Berapakah peluang seorang

Lebih terperinci

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah Distribusi Diskrit dan Kontinu yang Penting Oleh Azimmatul Ihwah Distribusi Diskrit Fungsi probabilitas dari variabel random diskrit dapat dinyatakan dalam formula matematik tertentu yang dinamakan fungsi

Lebih terperinci

BAB II Besaran dan Satuan Radiasi

BAB II Besaran dan Satuan Radiasi BAB II Besaran dan Satuan Radiasi A. Aktivitas Radioaktivitas atau yang lebih sering disingkat sebagai aktivitas adalah nilai yang menunjukkan laju peluruhan zat radioaktif, yaitu jumlah inti atom yang

Lebih terperinci

EKSPERIMEN SPEKTROSKOPI RADIASI ALFA

EKSPERIMEN SPEKTROSKOPI RADIASI ALFA Laporan Praktikum Fisika Eksperimental Lanjut Laboratorium Radiasi PERCOBAAN R4 EKSPERIMEN SPEKTROSKOPI RADIASI ALFA Dosen Pembina : Herlik Wibowo, S.Si, M.Si Septia Kholimatussa diah* (080913025), Mirza

Lebih terperinci

Alat Proteksi Radiasi

Alat Proteksi Radiasi Alat Proteksi Radiasi Latar Belakang Radiasi nuklir tidak dapat dirasakan oleh manusia secara langsung, seberapapun besarnya. Agar pekerja radiasi tidak mendapat paparan radiasi yang melebihi batas yang

Lebih terperinci

BAB I. PENGUKURAN. Kompetensi : Mengukur besaran fisika (massa, panjang, dan waktu) Pengalaman Belajar :

BAB I. PENGUKURAN. Kompetensi : Mengukur besaran fisika (massa, panjang, dan waktu) Pengalaman Belajar : BAB I. PENGUKURAN Kompetensi : Mengukur besaran fisika (massa, panjang, dan waktu) Pengalaman Belajar : Memahami peta konsep tentang besaran fisika, Mengenal besaran pokok dan satuan standar besaran pokok

Lebih terperinci

VALIDASI METODA PENENTUAN UNSUR RADIOAKTIF Pb-212, Cs-137, K-40 DENGAN SPEKTROMETER GAMMA

VALIDASI METODA PENENTUAN UNSUR RADIOAKTIF Pb-212, Cs-137, K-40 DENGAN SPEKTROMETER GAMMA VALIDASI METODA PENENTUAN UNSUR RADIOAKTIF Pb-212, Cs-137, K-40 DENGAN SPEKTROMETER GAMMA Noviarty Pusat Teknologi Bahan Bakar Nuklir-BATAN ABSTRAK VALIDASI METODA PENENTUAN UNSUR RADIOAKTIF Pb-212, Cs-137,

Lebih terperinci

EKSPERIMEN HAMBURAN RUTHERFORD

EKSPERIMEN HAMBURAN RUTHERFORD Laporan Praktikum Fisika Eksperimental Lanjut Laboratorium Radiasi PERCOBAAN R3 EKSPERIMEN HAMBURAN RUTHERFORD Dosen Pembina : Herlik Wibowo, S.Si, M.Si Septia Kholimatussa diah* (080913025), Mirza Andiana

Lebih terperinci

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 5. Beberapa jenis Distribusi Variabel Acak Prima Kristalina April 215 1 Outline 1. Beberapa macam

Lebih terperinci

SISTEM PENCACAHAN RADIASI DENGAN DETEKTOR SINTILASI

SISTEM PENCACAHAN RADIASI DENGAN DETEKTOR SINTILASI SISTEM PENCACAHAN RADIASI DENGAN DETEKTOR SINTILASI Sri Awaliyah Rahmah*, Khoerunnisa Saja ah, Rini Shoffa Aulia, Hesty Ayu Anggraeni 1 Jurusan Fisika Fakultas Sains dan Teknologi UIN Sunan Gunung Djati

Lebih terperinci

Radioaktivitas dan Reaksi Nuklir. Rida SNM

Radioaktivitas dan Reaksi Nuklir. Rida SNM Radioaktivitas dan Reaksi Nuklir Rida SNM rida@uny.ac.id Outline Sesi 1 Radioaktivitas Sesi 2 Peluruhan Inti 1 Radioaktivitas Tujuan Perkuliahan: Partikel pembentuk atom dan inti atom Bagaimana inti terikat

Lebih terperinci

EVALUASI FLUKS NEUTRON THERMAL DAN EPITHERMAL DI FASILITAS SISTEM RABBIT RSG GAS TERAS 89. Elisabeth Ratnawati, Jaka Iman, Hanapi Ali

EVALUASI FLUKS NEUTRON THERMAL DAN EPITHERMAL DI FASILITAS SISTEM RABBIT RSG GAS TERAS 89. Elisabeth Ratnawati, Jaka Iman, Hanapi Ali Buletin Pengelolaan Reaktor Nuklir. Vol. 13 No. 1, April 2016 EVALUASI FLUKS NEUTRON THERMAL DAN EPITHERMAL DI FASILITAS SISTEM RABBIT RSG GAS TERAS 89 Elisabeth Ratnawati, Jaka Iman, Hanapi Ali ABSTRAK

Lebih terperinci

PENGARUH EFEK GEOMETRI PADA KALIBRASI EFISIENSI DETEKTOR SEMIKONDUKTOR HPGe MENGGUNAKAN SPEKTROMETER GAMMA

PENGARUH EFEK GEOMETRI PADA KALIBRASI EFISIENSI DETEKTOR SEMIKONDUKTOR HPGe MENGGUNAKAN SPEKTROMETER GAMMA 258 Prosiding Pertemuan Ilmiah XXIV HFI Jateng & DIY, Semarang 10 April 2010 hal 258-264 PENGARUH EFEK GEOMETRI PADA KALIBRASI EFISIENSI DETEKTOR SEMIKONDUKTOR HPGe MENGGUNAKAN SPEKTROMETER GAMMA Hermawan

Lebih terperinci

RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER

RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER 1. Nama Mata Kuliah : RADIOKIMIA 2. Kode / SKS : TKN 3. Prasyarat : Kimia Dasar, Fisika Dasar, Fisika Atom dan Inti 4. Status Matakuliah : Wajib 5. Deskripsi

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

SATUAN ACARA PENGAJARAN (SAP)

SATUAN ACARA PENGAJARAN (SAP) SATUAN ACARA PENGAJARAN (SAP) Mata Kuliah : Statistik Deskriptif Kode Mata Kuliah : 02085303 SKS : 3 Waktu Pertemuan : 3 x 45 Menit Pertemuan ke : 1 & 2 A. KOMPETENSI 1. Standar Kompetensi : Mahasiswa

Lebih terperinci

PERTEMUAN 2 STATISTIKA DASAR MAT 130

PERTEMUAN 2 STATISTIKA DASAR MAT 130 PERTEMUAN 2 STATISTIKA DASAR MAT 130 Data 1. Besaran Statistika berbicara tentang data dalam bentuk besaran (dimensi) Besaran adalah sesuatu yang dapat dipaparkan secara jelas dan pada prinsipnya dapat

Lebih terperinci

Laporan Praktikum Fisika Eksperimental Lanjut Laboratorium Radiasi

Laporan Praktikum Fisika Eksperimental Lanjut Laboratorium Radiasi Laporan Praktikum Fisika Eksperimental Lanjut Laboratorium Radiasi PERCOBAAN R1 EKSPERIMEN DETEKTOR GEIGER MULLER Dosen Pembina : Drs. R. Arif Wibowo, M.Si Septia Kholimatussa diah* (080913025), Mirza

Lebih terperinci

BAB IV Alat Ukur Radiasi

BAB IV Alat Ukur Radiasi BAB IV Alat Ukur Radiasi Alat ukur radiasi mutlak diperlukan dalam masalah proteksi radiasi maupun aplikasinya. Hal ini disebabkan karena radiasi, apapun jenisnya dan berapapun kekuatan intensitasnya tidak

Lebih terperinci

PENGUKURAN RADIOAKTIF MENGGUNAKAN DETEKTOR NaI, STUDI KASUS LUMPUR LAPINDO

PENGUKURAN RADIOAKTIF MENGGUNAKAN DETEKTOR NaI, STUDI KASUS LUMPUR LAPINDO PENGUKURAN RADIOAKTIF MENGGUNAKAN DETEKTOR NaI, STUDI KASUS LUMPUR LAPINDO Insan Kamil Institut Teknologi Bandung Abstrak Pengukuran radioaktif dengan metode scintillation menggunakan detektor NaI untuk

Lebih terperinci

Metode Penentuan Nilai Kemampuan Ukur Terbaik (KUT) pada Perangkat Spektrometer Gamma

Metode Penentuan Nilai Kemampuan Ukur Terbaik (KUT) pada Perangkat Spektrometer Gamma Gatot Wurdiyanto,dkk/ Metode Penentuan Nilai Kemampuan Ukur Terbaik (KUT) Pada Perangkat Spektrometer 49 Metode Penentuan Nilai Kemampuan Ukur Terbaik (KUT) pada Perangkat Spektrometer Gatot Wurdiyanto,

Lebih terperinci

BESARAN DAN PENGUKURAN

BESARAN DAN PENGUKURAN A. BESARAN DAN SATUAN adalah sesuatu yang dapat diukur dan dapat dinyatakan dengan bilangan dan satuan. Satuan adalah sesuatu yang menyatakan ukuran suatu besaran yang diikuti bilangan. dalam fisika terbagi

Lebih terperinci

STK 211 Metode statistika. Materi 4 Peubah Acak dan Sebaran Peluang

STK 211 Metode statistika. Materi 4 Peubah Acak dan Sebaran Peluang STK 211 Metode statistika Materi 4 Peubah Acak dan Sebaran Peluang 1 Pendahuluan Soal ujian masuk PT diselenggarakan dengan sistem pilihan berganda. Jika jawaban benar diberi nilai 4, salah dikurangi 1

Lebih terperinci

METODE ANALISIS UNTUK PENENTUAN UNSUR AS DAN SB MENGGUNAKAN ICP AES PLASMA 40

METODE ANALISIS UNTUK PENENTUAN UNSUR AS DAN SB MENGGUNAKAN ICP AES PLASMA 40 Arif Nugroho, dkk. ISSN 0216-3128 295 METODE ANALISIS UNTUK PENENTUAN UNSUR AS DAN SB MENGGUNAKAN ICP AES PLASMA 40 Arif Nugroho, Hendro Wahyono, S. Fatimah Pusat Teknologi Bahan Bakar Nuklir ABSTRAK METODE

Lebih terperinci

KOMPARASI UNJUK KERJA SPEKTROMETRI GAMMA DETEKTOR BICRON 2M2 DENGAN LUDLUM 44-62

KOMPARASI UNJUK KERJA SPEKTROMETRI GAMMA DETEKTOR BICRON 2M2 DENGAN LUDLUM 44-62 Jurnal Forum Nuklir (JFN), Volume 6, Nomor 2, November 2012 KOMPARASI UNJUK KERJA SPEKTROMETRI GAMMA DETEKTOR BICRON 2M2 DENGAN LUDLUM 44-62 Alan Batara Alauddin 1, Argo Satrio Wicaksono 2, Joko Sunardi

Lebih terperinci

UJI KESTABILAN PENCACAH RADIASI DOSE CALIBRATOR

UJI KESTABILAN PENCACAH RADIASI DOSE CALIBRATOR ProsidIJJJ pertmnuan dan Prosontasillmlah FW1IIsInnaITIIknIs Non Penalltl.18 DGS8ItIbor 2006 ISSN :1410 6381 UJI KESTABILAN PENCACAH RADIASI DOSE CALIBRATOR Holnisar dan Agung Agusbudiman PTKMR BA TAN

Lebih terperinci

STATISTIK PERTEMUAN IV

STATISTIK PERTEMUAN IV STATISTIK PERTEMUAN IV PRINSIP DAN DISTRIBUSI PROBABILITAS A. PERANAN PROBABILITAS Pembuatan model, analisis matematis, simulasi komputer dan sebagainya, banyak didasarkan atas asumsi-asumsi yang diidealisir,

Lebih terperinci

BAB V Ketentuan Proteksi Radiasi

BAB V Ketentuan Proteksi Radiasi BAB V Ketentuan Proteksi Radiasi Telah ditetapkan Peraturan Pemerintah No. 63 Tahun 2000 tentang Keselamatan dan kesehatan terhadap pemanfaatan radiasi pengion dan Surat Keputusan Kepala BAPETEN No.01/Ka-BAPETEN/V-99

Lebih terperinci

Penentuan Efisiensi Beta Terhadap Gamma Pada Detektor Geiger Muller

Penentuan Efisiensi Beta Terhadap Gamma Pada Detektor Geiger Muller Jurnal Sains & Matematika (JSM) ISSN Artikel 0854-0675 Penelitian Volume 15, Nomor 2, April 2007 Artikel Penelitian: 73-77 Penentuan Efisiensi Beta Terhadap Gamma Pada Detektor Geiger Muller M. Azam 1,

Lebih terperinci

SPEKTROSKOPI-γ (GAMMA)

SPEKTROSKOPI-γ (GAMMA) SPEKTROSKOPI-γ (GAMMA) Veetha Adiyani Pardede M2954, Program Studi Fisika FMIPA UNS Jl. Ir. Sutami 36 A, Kentingan, Surakarta, Jawa Tengah email: veetha_adiyani@yahoo.com ABSTRAK Aras-aras inti dipelajari

Lebih terperinci

PENGUKURAN FLUKS NEUTRON SALURAN BEAMPORT TIDAK TEMBUS RADIAL SEBAGAI PENGEMBANGAN SUBCRITICAL ASSEMBLY FOR MOLYBDENUM (SAMOP) REAKTOR KARTINI

PENGUKURAN FLUKS NEUTRON SALURAN BEAMPORT TIDAK TEMBUS RADIAL SEBAGAI PENGEMBANGAN SUBCRITICAL ASSEMBLY FOR MOLYBDENUM (SAMOP) REAKTOR KARTINI PENGUKURAN FLUKS NEUTRON SALURAN BEAMPORT TIDAK TEMBUS RADIAL SEBAGAI PENGEMBANGAN SUBCRITICAL ASSEMBLY FOR MOLYBDENUM (SAMOP) REAKTOR KARTINI TAHUN PELAJARAN 2016/2017 Dian Filani Cahyaningrum 1), Riyatun

Lebih terperinci

OPTIMASI PENGUKURAN KEAKTIVAN RADIOISOTOP Cs-137 MENGGUNAKAN SPEKTROMETER GAMMA

OPTIMASI PENGUKURAN KEAKTIVAN RADIOISOTOP Cs-137 MENGGUNAKAN SPEKTROMETER GAMMA OPTIMASI PENGUKURAN KEAKTIVAN RADIOISOTOP Cs-137 MENGGUNAKAN SPEKTROMETER GAMMA NOVIARTY, DIAN ANGGRAINI, ROSIKA, DARMA ADIANTORO Pranata Nuklir Pusat Teknologi Bahan Bakar Nuklir-BATAN Abstrak OPTIMASI

Lebih terperinci

Standar Kompetensi Menerapkan konsep besaran fisika dan pengukurannya Kompetensi Dasar A. Mengukur Besaran Fisika B. Melakukan Penjumlahan Vektor

Standar Kompetensi Menerapkan konsep besaran fisika dan pengukurannya Kompetensi Dasar A. Mengukur Besaran Fisika B. Melakukan Penjumlahan Vektor Standar Kompetensi Menerapkan konsep besaran fisika dan pengukurannya Kompetensi Dasar A. Mengukur Besaran Fisika B. Melakukan Penjumlahan ektor BESARAN dan SATUAN Pengukuran besaran-besaran Fisis Fisika

Lebih terperinci

DISTRIBUSI PELUANG.

DISTRIBUSI PELUANG. DISTRIBUSI PELUANG readonee@yahoo.com Distribusi? Peluang? Distribusi Peluang? Distribusi = sebaran, pencaran, susunan data Peluang : Ukuran/derajat ketidakpastian suatu peristiwa Distribusi Peluang adalah

Lebih terperinci

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU DISTRIBUSI PELUANG DISKRIT DAN KONTINU A. TUJUAN PRAKTIKUM Melalui praktikum Modul II ini diharapkan praktikan dapat: 1. Mengenal jenis dan karakteristik dari beberapa distribusi peluang. 2. Menguji dan

Lebih terperinci

SPEKTROSKOPI-γ (GAMMA)

SPEKTROSKOPI-γ (GAMMA) SPEKTROSKOPI-γ (GAMMA) SPEKTROSKOPI-γ (GAMMA) Veetha Adiyani Pardede M0209054, Program Studi Fisika FMIPA UNS Jl. Ir. Sutami 36 A, Kentingan, Surakarta, Jawa Tengah email: veetha_adiyani@yahoo.com ABSTRAK

Lebih terperinci

BeberapaDistribusiPeluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

BeberapaDistribusiPeluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB BeberapaDistribusiPeluang Diskrit Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Pengantar Pengamatanyang dihasilkanmelaluipercobaanyang berbeda

Lebih terperinci

EVALUASI KINERJA SPEKTROMETER GAMMA YANG MENGGUNAKAN NITROGEN CAIR SEBAGAI PENDINGIN DETEKTOR

EVALUASI KINERJA SPEKTROMETER GAMMA YANG MENGGUNAKAN NITROGEN CAIR SEBAGAI PENDINGIN DETEKTOR EVALUASI KINERJA SPEKTROMETER GAMMA YANG MENGGUNAKAN NITROGEN CAIR SEBAGAI PENDINGIN DETEKTOR POSTER PERFORMANCE EVALUATION OF GAMMA SPECTROMETER WHICH USING LIQUID NITROGEN FOR COOLING ITS DETECTORS Daya

Lebih terperinci

BAB III PERSAMAAN PELURUHAN DAN PERTUMBUIIAN RADIOAKTIF

BAB III PERSAMAAN PELURUHAN DAN PERTUMBUIIAN RADIOAKTIF BAB III PERSAMAAN PELURUHAN DAN PERTUMBUIIAN RADIOAKTIF 1. PELURUHAN EKSPONENSIAL Proses peluruhan merupakan statistik untuk nuklida yang cukup banyak, maka banyaknya peluruhan per satuan waktu (dn/dt)

Lebih terperinci

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari. 6.. Proses Kelahiran Murni Dalam bab ini, akan dibahas beberapa contoh penting dari waktu kontinu, state diskrit, proses Markov. Khususnya, dengan kumpulan dari variabel acak {;0 } di mana nilai yang mungkin

Lebih terperinci

Distribusi Peluang Teoritis. Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan.

Distribusi Peluang Teoritis. Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan. Distribusi Peluang Teoritis. Pendahuluan Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan. Peubah Acak Fungsi yang mendefinisikan titik-titik contoh dalam ruang

Lebih terperinci

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30 DISTRIBUSI TEORITIS Distribusi teoritis merupakan alat bagi kita untuk menentukan apa yang dapat kita harapkan, apabila asumsi-asumsi yang kita buat benar. Distribusi teoritis memungkinkan para pembuat

Lebih terperinci

BAB II PROSES-PROSES PELURUHAN RADIOAKTIF

BAB II PROSES-PROSES PELURUHAN RADIOAKTIF BAB II PROSES-PROSES PELURUHAN RADIOAKTIF 1. PROSES PROSES PELURUHAN RADIASI ALPHA Nuklida yang tidak stabil (kelebihan proton atau neutron) dapat memancarkan nukleon untuk mengurangi energinya dengan

Lebih terperinci

MODUL 2 STATISTIKA RADIOAKTIVITAS

MODUL 2 STATISTIKA RADIOAKTIVITAS MODUL STATISTIKA RADIOAKTIVITAS Muhammad Ilham, Rizki, Moch. Arif Nurdin,Septia Eka Marsha Putra, Hanani, Robbi Hidayat. 008, 000, 000, 00, 00, 00. Program Studi Fisika, Institut Teknologi Bandung, Indonesia

Lebih terperinci

KONSEP DASAR STATISTIK

KONSEP DASAR STATISTIK KONSEP DASAR STATISTIK Hakikat Statistika 1. Asal Kata Kata statistika berasal dari kata status atau statista yang berarti negara Tulisan Aristoteles Politeia menguraikan keadaan dari 158 negara yakni

Lebih terperinci

ANALISIS UNSUR RADIOAKTIVITAS UDARA BUANG PADA CEROBONG IRM MENGGUNAKAN SPEKTROMETER GAMMA

ANALISIS UNSUR RADIOAKTIVITAS UDARA BUANG PADA CEROBONG IRM MENGGUNAKAN SPEKTROMETER GAMMA No.05 / Tahun III April 2010 ISSN 1979-2409 ANALISIS UNSUR RADIOAKTIVITAS UDARA BUANG PADA CEROBONG IRM MENGGUNAKAN SPEKTROMETER GAMMA Noviarty, Sudaryati, Susanto Pusat Teknologi Bahan Bakar Nuklir -

Lebih terperinci

Penentuan Spektrum Energi dan Energi Resolusi β dan γ Menggunakan MCA (Multi Channel Analizer)

Penentuan Spektrum Energi dan Energi Resolusi β dan γ Menggunakan MCA (Multi Channel Analizer) Penentuan Spektrum Energi dan Energi Resolusi β dan γ Menggunakan MCA (Multi Channel Analizer) 1 Mei Budi Utami, 2 Hanu Lutvia, 3 Imroatul Maghfiroh, 4 Dewi Karmila Sari, 5 Muhammad Patria Mahardika Abstrak

Lebih terperinci

KISI DIFRAKSI (2016) Kisi Difraksi

KISI DIFRAKSI (2016) Kisi Difraksi KISI DIFRAKSI (2016) 1-6 1 Kisi Difraksi Rizqi Ahmad Fauzan, Chi Chi Novianti, Alfian Putra S, dan Gontjang Prajitno Jurusan Fisika, Fakultas MIPA, Institut Teknologi Sepuluh Nopember Jl. Arief Rahman

Lebih terperinci

LATIHAN UJIAN NASIONAL

LATIHAN UJIAN NASIONAL LATIHAN UJIAN NASIONAL 1. Seorang siswa menghitung luas suatu lempengan logam kecil berbentuk persegi panjang. Siswa tersebut menggunakan mistar untuk mengukur panjang lempengan dan menggunakan jangka

Lebih terperinci

EVALUASI PENGARUH POLA ALIR UDARA TERHADAP TINGKAT RADIOAKTIVITAS DI DAERAH KERJA IRM

EVALUASI PENGARUH POLA ALIR UDARA TERHADAP TINGKAT RADIOAKTIVITAS DI DAERAH KERJA IRM No. 12/ Tahun VI. Oktober 2013 ISSN 1979-2409 EVALUASI PENGARUH POLA ALIR UDARA TERHADAP TINGKAT RADIOAKTIVITAS DI DAERAH KERJA IRM Endang Sukesi I dan Suliyanto Pusat Teknologi Bahan Bakar Nuklir -BATAN

Lebih terperinci

Pengukuran 2. Modul 1 PENDAHULUAN

Pengukuran 2. Modul 1 PENDAHULUAN Modul 1 Pengukuran 2 Drs. Sutrisno, M.Pd. D PENDAHULUAN alam mata kuliah Fisika Dasar 1 telah dibahas mengenai pengukuran, besaran, satuan, dan dimensi. Pembahasan itu lebih menekankan kepada pengetahuan

Lebih terperinci

DISTRIBUSI PELUANG TEORITIS

DISTRIBUSI PELUANG TEORITIS Distribusi Teoritis 1/ 15 DISTRIBUSI PELUANG TEORITIS 1. Pendahuluan Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan.. PEUBAH ACAK Fungsi yang mendefinisikan

Lebih terperinci

FISIKA 2014 TIPE A. 30 o. t (s)

FISIKA 2014 TIPE A. 30 o. t (s) No FISIKA 2014 TIPE A SOAL 1 Sebuah benda titik dipengaruhi empat vektor gaya masing-masing 20 3 N mengapit sudut 30 o di atas sumbu X positif, 20 N mnegapit sudut 60 o di atas sumbu X negatif, 5 N pada

Lebih terperinci

Beberapa Peubah Acak Diskret (1) Kuliah 8 Pengantar Hitung Peluang

Beberapa Peubah Acak Diskret (1) Kuliah 8 Pengantar Hitung Peluang Beberapa Peubah Acak Diskret (1) Kuliah 8 Pengantar Hitung Peluang rahmaanisa@apps.ipb.ac.id Outline Peubah acak Bernoulli Peubah acak binom Peubah acak geometrik Latihan dan Diskusi Review Peubah Acak

Lebih terperinci

BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR

BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR 3 BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR 4.. Sebaran asimtotik dari,, Teorema 4. ( Normalitas Asimtotik

Lebih terperinci

Xpedia Fisika. Soal Fismod 1

Xpedia Fisika. Soal Fismod 1 Xpedia Fisika Soal Fismod 1 Doc. Name: XPPHY0501 Version: 2013-04 halaman 1 01. Pertanyaan 01-02 : Sebuah botol tertutup berisi 100 gram iodin radioaktif. Setelah 24 hari, botol itu berisi 12,5 gram iodin

Lebih terperinci

Distribusi Peluang Teoritis

Distribusi Peluang Teoritis Distribusi Peluang Teoritis 1. Pendahuluan Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan.. Peubah Acak Fungsi yang mendefinisikan titik-titik contoh dalam ruang

Lebih terperinci

Sulistyani, M.Si.

Sulistyani, M.Si. Sulistyani, M.Si. Email: sulistyani@uny.ac.id Laju peluruhan radionuklida per satuan waktu berbanding lurus dengan jumlah radioaktif yang ada pada waktu itu. -dn/dt λn -dn/dt = λn dn/n = - λdt (jika diintegralkan)

Lebih terperinci

DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN. Sudarno Jurusan Matematika FMIPA UNDIP. Abstrak

DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN. Sudarno Jurusan Matematika FMIPA UNDIP. Abstrak DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN Sudarno Jurusan Matematika FMIPA UNDIP Abstrak Dalam proses stokhastik yang mana kejadian dapat muncul kembali membentuk proses pembahauruan. Proses pembaharuan

Lebih terperinci

Pusat Pendidikan dan Pelatihan Badan Tenaga Nuklir Nasional

Pusat Pendidikan dan Pelatihan Badan Tenaga Nuklir Nasional Pusat Pendidikan dan Pelatihan Badan Tenaga Nuklir Nasional PDL.PR.TY.PPR.00.D03.BP 1 BAB I : Pendahuluan BAB II : Prinsip dasar deteksi dan pengukuran radiasi A. Besaran Ukur Radiasi B. Penggunaan C.

Lebih terperinci

KALIBRASI DETEKTOR NaI(Tl) UNTUK PEMANTAUAN KONTAMINASI BAHAN RADIOAKTIF DI TANAH SECARA IN-SITU

KALIBRASI DETEKTOR NaI(Tl) UNTUK PEMANTAUAN KONTAMINASI BAHAN RADIOAKTIF DI TANAH SECARA IN-SITU KALIBRASI DETEKTOR NaI(Tl) UNTUK PEMANTAUAN KONTAMINASI BAHAN RADIOAKTIF DI TANAH SECARA IN-SITU Imam Sholihuddin, Drs. Johan A. E. Noor, M.Sc, PhD, Drs. H. Bunawas, APU. Jurusan Fisika, FMIPA Universitas

Lebih terperinci

4. Sebuah sistem benda terdiri atas balok A dan B seperti gambar. Pilihlah jawaban yang benar!

4. Sebuah sistem benda terdiri atas balok A dan B seperti gambar. Pilihlah jawaban yang benar! Pilihlah Jawaban yang Paling Tepat! Pilihlah jawaban yang benar!. Sebuah pelat logam diukur menggunakan mikrometer sekrup. Hasilnya ditampilkan pada gambar berikut. Tebal pelat logam... mm. 0,08 0.,0 C.,8

Lebih terperinci

PELURUHAN GAMMA ( ) dengan memancarkan foton (gelombang elektromagnetik) yang dikenal dengan sinar gamma ( ).

PELURUHAN GAMMA ( ) dengan memancarkan foton (gelombang elektromagnetik) yang dikenal dengan sinar gamma ( ). PELURUHAN GAMMA ( ) Peluruhan inti yang memancarkan sebuah partikel seperti partikel alfa atau beta, selalu meninggalkan inti pada keadaan tereksitasi. Seperti halnya atom, inti akan mencapai keadaan dasar

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Distribusi Normal Salah satu distribusi frekuensi yang paling penting dalam statistika adalah distribusi normal. Distribusi normal berupa kurva berbentuk lonceng setangkup yang

Lebih terperinci

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS Berbeda dengan variabel random diskrit, sebuah variabel random kontinyu adalah variabel yang dapat mencakup nilai pecahan maupun mencakup range/ rentang nilai tertentu. Karena terdapat

Lebih terperinci

Menjelaskan pengertian distribusi binomial, mengidentifikasi eksperimen binomial dan menghitung probabilitas binomial, menghitung ukuran pemusatan

Menjelaskan pengertian distribusi binomial, mengidentifikasi eksperimen binomial dan menghitung probabilitas binomial, menghitung ukuran pemusatan Tujuan Pembelajaran Menjelaskan pengertian distribusi binomial, mengidentifikasi eksperimen binomial dan menghitung probabilitas binomial, menghitung ukuran pemusatan dan penyebaran distribusi binomial

Lebih terperinci

Program Studi Teknik Mesin S1

Program Studi Teknik Mesin S1 SATUAN ACARA PERKULIAHAN MATA KULIAH : STATISTIKA DAN PROBABILITAS KODE / SKS : IT042238 / 2 SKS Program Studi Teknik Mesin S1 Pokok Bahasan Pertemuan dan TIU 1 Pendahuluan memahami tentang konsep statistik

Lebih terperinci

PENCEMBANCAN METODE ANALISIS MENCCUNAKAN" ALAT ICP AES PLASMA 40 UNTUK PENENTUAN UNSUR AS DAN Sb

PENCEMBANCAN METODE ANALISIS MENCCUNAKAN ALAT ICP AES PLASMA 40 UNTUK PENENTUAN UNSUR AS DAN Sb SSN 0854-5561 Hasil-hasil Penelitian EBN Tahun 2005 PENCEMBANCAN METODE ANALSS MENCCUNAKAN" ALAT CP AES PLASMA 40 UNTUK PENENTUAN UNSUR AS DAN Sb Arif Nugroho, Hendro Wahyono, S. Fatimah Abstrak PENGEMBANGAN

Lebih terperinci

DISTRIBUSI POISSON. Nevi Narendrati, M.Pd. Teori Peluang 1

DISTRIBUSI POISSON. Nevi Narendrati, M.Pd. Teori Peluang 1 DISTRIBUSI POISSON Percobaan yang menghasilkan peubah acak X yang bernilai numerik, yaitu banyaknya sukses selama selang waktu tertentu atau dalam daerah tertentu, disebut percobaan Poisson. Panjang selang

Lebih terperinci

Pusat Pendidikan dan Pelatihan Badan Tenaga Nuklir Nasional

Pusat Pendidikan dan Pelatihan Badan Tenaga Nuklir Nasional Pusat Pendidikan dan Pelatihan Badan Tenaga Nuklir Nasional 1 Pokok Bahasan STRUKTUR ATOM DAN INTI ATOM A. Struktur Atom B. Inti Atom PELURUHAN RADIOAKTIF A. Jenis Peluruhan B. Aktivitas Radiasi C. Waktu

Lebih terperinci

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK 4. Sebaran Asimtotik,, Teorema 4. (Sebaran Normal Asimtotik,, ) Misalkan fungsi intensitas seperti (3.2) dan terintegralkan lokal. Jika kernel K adalah

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Kinerja Karyawan Kinerja karyawan adalah seberapa efektif dan efisiennya hasil yang dihasilkan oleh karyawan yang pada umumnya diukur dari beberapa faktor seperti : 2.1.1. Kecepatan

Lebih terperinci

Probabilitas dan Statistika Distribusi Peluang Diskrit 2. Adam Hendra Brata

Probabilitas dan Statistika Distribusi Peluang Diskrit 2. Adam Hendra Brata Probabilitas dan Statistika Distribusi Peluang Diskrit 2 Adam Hendra Brata Distribusi Hipergeometrik Distribusi Hipergeometrik Jika sampling dilakukan tanpa pengembalian dari kejadian sampling yang diambil

Lebih terperinci

Peak to Total Ratio Pada Analisis Aktivasi Neutron dengan Metode ko

Peak to Total Ratio Pada Analisis Aktivasi Neutron dengan Metode ko ; Widyanuklida Vol. 8. No. )-2 Desernber 2007 Penentuan Peak to Total Ratio Pada Analisis Aktivasi Neutron dengan Metode ko Yustina Tri Handayani Pusdiklat - Badan Tenaga Nuklir Nasional Abstrak Penentuan

Lebih terperinci

SILABUS PEMBELAJARAN

SILABUS PEMBELAJARAN SILABUS PEMBELAJARAN Sekolah : SMA... Kelas / Semester : XII / II Mata Pelajaran : FISIKA Standar : 3. Menganalisis berbagai besaran fisis pada gejala kuantum dan batas-batas berlakunya relativitas Einstein

Lebih terperinci

ANALISIS DATA SECARA RANDOM PADA APLIKASI MINITAB DENGAN MENGGUNAKAN DISTRIBUSI PELUANG

ANALISIS DATA SECARA RANDOM PADA APLIKASI MINITAB DENGAN MENGGUNAKAN DISTRIBUSI PELUANG LAPORAN RESMI PRAKTIKUM PENGANTAR METODE STATISTIKA MODUL 3 ANALISIS DATA SECARA RANDOM PADA APLIKASI MINITAB DENGAN MENGGUNAKAN DISTRIBUSI PELUANG Oleh : Diana Nafkiyah 1314030028 Nilamsari Farah Millatina

Lebih terperinci

Adi Setiawan Program Studi Matematika, Fakultas Sains dan Matematika Universitas Kristen Satya Wacana Jl. Diponegoro Salatiga 50711

Adi Setiawan Program Studi Matematika, Fakultas Sains dan Matematika Universitas Kristen Satya Wacana Jl. Diponegoro Salatiga 50711 PENENTUAN DISTRIBUSI SKEWNESS DAN KURTOSIS DENGAN METODE RESAMPLING BERDASAR DENSITAS KERNEL (STUDI KASUS PADA ANALISIS INFLASI BULANAN KOMODITAS BAWANG MERAH, DAGING AYAM RAS DAN MINYAK GORENG DI KOTA

Lebih terperinci

CATATAN KULIAH ATOM, INTI DAN RADIOAKTIF. Diah Ayu Suci Kinasih Departemen Fisika Universitas Diponegoro Semarang 2016

CATATAN KULIAH ATOM, INTI DAN RADIOAKTIF. Diah Ayu Suci Kinasih Departemen Fisika Universitas Diponegoro Semarang 2016 CATATAN KULIAH ATOM, INTI DAN RADIOAKTIF Diah Ayu Suci Kinasih -24040115130099- Departemen Fisika Universitas Diponegoro Semarang 2016 FISIKA NUKLIR Atom, Inti dan Radioaktif 1. Pekembangan Teori Atom

Lebih terperinci

4 HASIL DAN PEMBAHASAN

4 HASIL DAN PEMBAHASAN 16 4 HASIL DAN PEMBAHASAN Pada bab ini dibahas mengenai kajian simulasi dan kajian terapan. Simulasi dilakukan untuk mengevaluasi penduga yang diperoleh dengan menggunakan metode pendugaan klasik dan metode

Lebih terperinci

Penentuan Kadar Besi dalam Pasir Bekas Penambangan di Kecamatan Cempaka dengan Metode Analisis Aktivasi Neutron (AAN)

Penentuan Kadar Besi dalam Pasir Bekas Penambangan di Kecamatan Cempaka dengan Metode Analisis Aktivasi Neutron (AAN) Penentuan Kadar Besi dalam Pasir Bekas Penambangan di Kecamatan Cempaka dengan Metode Analisis Aktivasi Neutron (AAN) Prihatin Oktivasari dan Ade Agung Harnawan Abstrak: Telah dilakukan penentuan kandungan

Lebih terperinci

MODUL 2 DATA BESARAN LISTRIK & KETIDAKPASTIAN

MODUL 2 DATA BESARAN LISTRIK & KETIDAKPASTIAN MODUL 2 DATA BESARAN LISTRIK & KETIDAKPASTIAN PENDAHULUAN Proses pengukuran dalam elektronika instrumentasi bertujuan untuk memperoleh data-data besaran listrik yang selanjutnya diolah menjadi informasi.

Lebih terperinci

PENGARUH WAKTU PENGAMBILAN SAMPLING PADA ANALISIS UNSUR RADIOAKTIF DI UDARA DENGAN MENGGUNAKAN SPEKTROMETER GAMMA

PENGARUH WAKTU PENGAMBILAN SAMPLING PADA ANALISIS UNSUR RADIOAKTIF DI UDARA DENGAN MENGGUNAKAN SPEKTROMETER GAMMA PENGARUH WAKTU PENGAMBILAN SAMPLING PADA ANALISIS UNSUR RADIOAKTIF DI UDARA DENGAN MENGGUNAKAN SPEKTROMETER GAMMA Noviarty, Iis Haryati, Sudaryati, Susanto Pusat Teknologi Bahan Bakar Nuklir-BATAN Kawasan

Lebih terperinci

PETUNJUK PENGGUNAAN PROGRAM RIETICA UNTUK ANALISIS DATA DIFRAKSI DENGAN METODE RIETVELD

PETUNJUK PENGGUNAAN PROGRAM RIETICA UNTUK ANALISIS DATA DIFRAKSI DENGAN METODE RIETVELD PETUNJUK PENGGUNAAN PROGRAM RIETICA UNTUK ANALISIS DATA DIFRAKSI DENGAN METODE RIETVELD I. PENDAHULUAN Analisis Rietveld adalah sebuah metode pencocokan tak-linier kurva pola difraksi terhitung (model)

Lebih terperinci

PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA

PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA Saintia Matematika Vol. 1, No. 3 (2013), pp. 299 312. PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA Raini Manurung, Suwarno Ariswoyo, Pasukat Sembiring Abstrak.

Lebih terperinci

BAB III DASAR DASAR GELOMBANG CAHAYA

BAB III DASAR DASAR GELOMBANG CAHAYA BAB III DASAR DASAR GELOMBANG CAHAYA Tujuan Instruksional Umum Pada bab ini akan dijelaskan mengenai perambatan gelombang, yang merupakan hal yang penting dalam sistem komunikasi serat optik. Pembahasan

Lebih terperinci

BAB XII PENGUJIAN DISTRIBUSI CHI-SQUARED. Pada bab ini akan dibahas mengenai pengujian distribusi dengan menggunakan chi-squared.

BAB XII PENGUJIAN DISTRIBUSI CHI-SQUARED. Pada bab ini akan dibahas mengenai pengujian distribusi dengan menggunakan chi-squared. BAB XII PENGUJIAN DISTRIBUSI CHI-SQUARED Deskripsi: Pada bab ini akan dibahas mengenai pengujian distribusi dengan menggunakan chi-squared. Manfaat: Memberikan konsep pengujian distribusi chi-squared yang

Lebih terperinci

BAB I Jenis Radiasi dan Interaksinya dengan Materi

BAB I Jenis Radiasi dan Interaksinya dengan Materi BAB I Jenis Radiasi dan Interaksinya dengan Materi Radiasi adalah pancaran energi yang berasal dari proses transformasi atom atau inti atom yang tidak stabil. Ketidak-stabilan atom dan inti atom mungkin

Lebih terperinci

ANALISIS PERHITUNGAN KETEBALAN PERISAI RADIASI PERANGKAT RIA IP10.

ANALISIS PERHITUNGAN KETEBALAN PERISAI RADIASI PERANGKAT RIA IP10. ABSTRAK ANALISIS PERHITUNGAN KETEBALAN PERISAI RADIASI PERANGKAT RIA IP10. Benar Bukit, Kristiyanti, Hari Nurcahyadi Pusat Rekayasa Perangkat Nuklir-BATAN ANALISIS PERHITUNGAN KETEBALAN PERISAI RADIASI

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan teori-teori yang menjadi dasar dan landasan dalam penelitian sehingga membantu mempermudah pembahasan selanjutnya. Teori tersebut meliputi arti dan peranan

Lebih terperinci

KOMPARASI UNJUK KERJA SPEKTROMETRI GAMMA MENGGUNAKAN DETEKTOR BICRON 2M2 DENGAN SPEKTROMETRI GAMMA MENGGUNAKAN DETEKTOR LUDLUM 44-62

KOMPARASI UNJUK KERJA SPEKTROMETRI GAMMA MENGGUNAKAN DETEKTOR BICRON 2M2 DENGAN SPEKTROMETRI GAMMA MENGGUNAKAN DETEKTOR LUDLUM 44-62 KOMPARASI UNJUK KERJA SPEKTROMETRI GAMMA MENGGUNAKAN DETEKTOR BICRON 2M2 DENGAN SPEKTROMETRI GAMMA MENGGUNAKAN DETEKTOR LUDLUM 44-62 Alan Batara Alauddin 1, Argo Satrio Wicaksono 2, Joko Sunardi 3 1,2,3

Lebih terperinci

SILABUS PEMBELAJARAN

SILABUS PEMBELAJARAN SILABUS PEMBELAJARAN Sekolah : SMA NEGERI 3 DUMAI Kelas / Semester : XII / II Mata Pelajaran : FISIKA Standar : 3. Menganalisis berbagai besaran fisis pada gejala kuantum dan batas-batas berlakunya relativitas

Lebih terperinci

DISTRIBUSI PROBABILITAS

DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS DISKRIT Distribusi binomial Distribusi binomial - Distribusi peluang diskrit Distribusi geometrik Distribusi hipergeometrik Distribusi poison BERNOULLI TRIAL

Lebih terperinci

Penentuan karakteristik cacahan pada counter dengan menggunakan sumber standar 152 Eu, 60 Co dan 137 Cs

Penentuan karakteristik cacahan pada counter dengan menggunakan sumber standar 152 Eu, 60 Co dan 137 Cs Youngster Physics Journal ISSN: 232-7371 Vol. 6, No. 2, pril 217, Hal. 151-156 Penentuan karakteristik cacahan pada dengan menggunakan sumber standar 152 Eu, 6 Co dan 137 Cs Hendrika Liana Sari dan Wahyu

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Antrian Teori antrian adalah teori yang menyangkut studi sistematis dari antrian atau baris-baris penungguan. Formasi baris-baris penungguan ini tentu saja merupakan suatu

Lebih terperinci

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang BAB II LANDASAN TEORI 2.1 Konsep Dasar Peluang Pada dasarnya statistika berkaitan dengan penyajian dan penafsiran hasil yang berkemungkinan (hasil yang belum dapat ditentukan sebelumnya) yang muncul dalam

Lebih terperinci

RENCANA PERKULIAHAN FISIKA INTI Pertemuan Ke: 1

RENCANA PERKULIAHAN FISIKA INTI Pertemuan Ke: 1 Pertemuan Ke: 1 Mata Kuliah/Kode : Fisika Semester dan : Semester : VI : 150 menit Kompetensi Dasar : Mahasiswa dapat memahami gejala radioaktif 1. Menyebutkan pengertian zat radioaktif 2. Menjelaskan

Lebih terperinci