Disain Cache pada Sistem Komputer

Ukuran: px
Mulai penontonan dengan halaman:

Download "Disain Cache pada Sistem Komputer"

Transkripsi

1 Disain Cache pada Sistem Komputer Pada rancangan prosesor modern dengan beberapa tingkat pipeline, upaya untuk mengisi penuh seluruh pipeline dengan instruksi dan data perlu dilakukan agar operasi sistem komputer secara keseluruhan efisien. Perbedaan kecepatan operasi antara prosesor dan memori utama bisa menjadi kendala bagi dicapainya efisiensi kerja sistem komputer. Bila prosesor bekerja jauh lebih cepat daripada memori utama maka setiap kali prosesor mengambil instruksi atau data, diperlukan waktu tunggu yang cukup lama. Waktu tunggu tersebut akan lebih berarti bila digunakan untuk memproses data. Kendala ini menyebabkan diperlukannya cache, yakni memori berkapasitas kecil tetapi berkecepatan tinggi, yang dipasang di antara prosesor dan memori utama. Instruksi dan data yang sering diakses oleh prosesor ditempatkan dalam cache sehingga dapat lebih cepat diakses oleh prosesor. Hanya bila data atau instruksi yang diperlukan tidak tersedia dalam cache barulah prosesor mencarinya dalam memori utama. Cache umumnya menggunakan memori statik yang mahal harganya, sedangkan memori utama menggunakan memori dinamik yang jauh lebih murah. Sistem komputer akan bekerja sangat cepat apabila seluruh sistem memori utamanya menggunakan memori statik, tetapi akibatnya harga sistem komputer akan menjadi sangat mahal. Selain itu, karena hamburan panas pada memori statik lebih besar, sistem komputer yang menggunakan memori statik ini akan menghasilkan panas yang berlebihan. Hirarki Sistem Memori Pada sistem komputer terdapat berbagai jenis memori, yang berdasarkan kecepatan dan posisi relatifnya terhadap prosesor, bisa disusun secara hirarkis. Puncak hirarki sistem "memori" komputer adalah register yang berada dalam chip prosesor dan merupakan bagian integral dari prosesor itu sendiri. Isi register-register itu bisa dibaca dan ditulisi dalam satu siklus detak. Level hirarki berikutnya adalah memori cache internal (on-chip). Kapasitas cache internal yang sering disebut sebagai cache level pertama ini umumnya 1 / 7

2 sekitar 8 KB. Waktu yang diperlukan untuk mengakses data atau instruksi dalam cache internal ini sedikit lebih lama dibanding register, yakni beberapa siklus detak. Prosesor-prosesor mutakhir dilengkapi dengan cache level kedua yang kapasitasnya lebih besar dan ditempatkan di luar chip. Prosesor P6 (Pentium Pro), misalnya, cache level pertamanya berkapasitas 8KB untuk data dan 8 KB untuk instruksi. Cache level keduanya berkapasitas 256 KB, yang merupakan keping terpisah tetapi dikemas menjadi satu dengan prosesornya. Selama program dieksekusi, sistem komputer secara terus menerus memindah-mindahkan data dan instruksi ke berbagai tingkat dalam hirarki sistem "memori". Data dipindahkan menuju ke puncak hirarki bila diakses oleh prosesor, dan dikembalikan lagi ke hirarki yang lebih rendah bila sudah tidak diperlukan lagi. Data-data tersebut ditransfer dalam satuan-satuan yang disebut "blok"; satu "blok" dalam cache disebut satu "baris". Umumnya, data yang berada pada suatu level hirarki merupakan bagian dari data yang disimpan pada level di bawahnya. Program komputer pada umumnya tidak mengakses memori secara acak. Besar kecenderungannya bahwa bila program mengakses suatu word maka dalam waktu dekat word tersebut akan diakses lagi. Hal ini dikenal sebagai prinsip lokalitas temporal. Juga besar kecenderungannya bahwa dalam waktu dekat word yang berada di dekat word yang baru diakses akan diakses juga. Yang terakhir ini dikenal sebagai prinsip lokalitas spatial. Karena sifat lokalitas temporal, maka harus diperhatikan word yang telah ada dalam cache, dan karena sifat lokalitas spatial maka perlu diperhatikan kemungkinan memindahkan beberapa word yang berdekatan sekaligus. Rasio (Kena) dan Waktu Akses Kemungkinan bahwa suatu kata (word) berupa data/instruksi ditemukan dalam cache (disebut kena atau hit) sehingga prosesor tidak perlu mencarinya dalam memori utama, akan tergantung pada program, ukuran dan organisasi cache. Bila kata yang diperlukan tidak ada dalam cache (berarti luput atau miss), maka prosesor harus merujuknya ke memori utama. Rasio kena (h) didefinisikan sebagai perbandingan antara jumlah perujukan yang berhasil memperoleh kata dari cache dengan banyaknya perujukan yang dilakukan. h = (jumlah perujukan yang berhasil) / ( jumlah perujukan) Dalam studi tentang cache, pengukuran umumnya justru terhadap rasio luput (miss) yang besarnya adalah: m = (1 - h) Waktu akses rata-rata, dengan asumsi bahwa perujukan selalu dilakukan ke cache lebih dahulu sebelum ke memori utama, dapat dihitung sebagai berikut: t a = t c + (1-h) t m 2 / 7

3 dengan ta adalah waktu akses rata-rata, tc adalah waktu akses cache dan tm adalah waktu akses ke memori utama. Setiap kali prosesor terpaksa mengakses memori utama, diperlukan tambahan waktu akses sebesar tm(1-h). Misalnya, bila rasio kena adalah 0,85, waktu akses ke memori utama adalah 200 ns dan waktu akses ke cache adalah 25 ns, maka waktu akses rata-rata adalah 55 ns. Bila persamaan ta disusun ulang, dapat ditulis menjadi: ta = t c {1/k + (1-h)} dengan k adalah rasio antara waktu akses memori utama dengan waktu akses cache (tm/tc). Dari persamaan di atas dapat dilihat bahwa waktu akses rata-rata didominasi oleh rasio waktu akses memori utama dengan cache bila k kecil. Pada kasus di atas, dengan waktu akses memori utama 200 ns dan waktu akses cache 25 ns, maka k = 8. Rasio luput 1 prosen menyebabkan waktu akses rata-rata menjadi 27 ns, tidak jauh beda dengan waktu akses cache. Pada umumnya k berkisar antara Organisasi Cache Dalam mendesain sistem cache, yang pertama kali perlu diperhatikan adalah masalah penempatan suatu blok data/instruksi dari memori utama ke baris-baris cache. Berkaitan dengan masalah itu, ada tiga macam organisasi cache yakni organisasi cache yang dipetakan langsung (direct-mapped), asosiatif penuh (fully associative), dan asosiatif-kelompok ( set-associative). Misalkan suatu sistem menggunakan pengalamatan 32-bit. Jika ukuran tiap-tiap blok adalah 64 byte (26) maka 6-bit terendah dari alamat tersebut (yang disebut offset) menentukan byte mana dalam blok itu yang dialamati. Jika cache terdiri atas 1024 (210) baris yang masing-masing terdiri dari 64 byte, maka 10 bit berikutnya menentukan pada baris mana blok yang diambil harus ditempatkan. Bit sisanya, yakni 16-bit paling atas yang disebut tag bersesuaian dengan baris cache. Organisasi cache yang dipetakan langsung, menyimpan satu tag perbaris dalam larik tag-nya. Selama pengaksesan memori, pada operasi load misalnya, cache menggunakan bit-bit tengah alamat sebagai indeks ke larik tagnya. Tag yang muncul dicocokkan dengan 16-bit teratas dari alamat memori yang diakses. Jika cocok, data yang ditunjukan oleh nilai offset akan dikirim ke prosesor. Bila tidak cocok, isi baris cache diganti dengan blok yang diperlukan, yang diambil dari memori utama. Organisasi cache yang dipetakan langsung hanya memerlukan satu kali pembandingan untuk setiap akses ke cache. Baris cache merupakan indeks yang diimplementasikan dengan perangkat keras, sehingga hanya tag dari alamat memori yang diakses yang perlu dibandingkan dengan baris cache. Pada sistem komputer yang memerlukan frekuensi detak tinggi, cara ini sangat menguntungkan. Masalah muncul apabila dua blok yang sering diakses dipetakan ke baris cache yang sama. Dua blok ini akan saling usir dari cache. 3 / 7

4 Alamat dibagi menjadi dua bagian, yakni bagian tag dan offset. Tag dicocokkan dengan seluruh tag yang ada dalam baris cache. Dalam rancangan cache asosiatif-penuh (fully associative), suatu blok dapat ditempatkan pada baris cache manapun. Secara sederhana alamat dibagi menjadi dua bagian yakni bit rendah dan bit tinggi. Bit rendah membentuk offset di dalam baris cache, sedangkan bit tinggi membentuk tag untuk dicocokkan dengan rujukan berikutnya. Cache asosiatif-penuh harus memiliki mekanisme untuk menentukan ke dalam baris mana suatu blok harus ditempatkan. Blok dapat ditempatkan dalam baris manapun yang kosong, tetapi bila semua baris cache penuh harus ditentukan blok mana yang akan dikeluarkan dari cache. Idealnya, digunakan prinsip LRU (least recently used) yakni blok yang paling lama tidak dipakai dikeluarkan dari cache. Karena cukup mahal mengimplementasikannya, maka umumnya digunakan teknik-teknik yang mendekati prinsip LRU. Cache asosiatif-penuh memecahkan masalah konflik alamat dengan resiko memperbanyak implementasi rangkaian perangkat keras untuk membandingkan tag terhadap semua baris cache. Untuk memperkecil resiko tersebut sekaligus mengurangi terjadinya konflik alamat, dirancang organisasi cache yang lain yakni asosiatif-kelompok (set-associative). Dalam cache asosiatif-kelompok, satu kelompok terdiri atas beberapa baris. Bit alamat bagian tengah menentukan kelompok baris di mana suatu blok ditempatkan. Mikroprosesor Amd486DX2, misalnya, memiliki 8 KB cache asosiatif-kelompok empat-jalan (four-way set-associative) dengan baris masing-masing selebar 26 byte. Cache sebesar 8 KB tersebut dibagi menjadi 128 kelompok yang masing-masing terdiri atas empat baris. Dalam setiap kelompok, cache dipetakan secara asosiatif-penuh. Cache dengan dua baris per kelompok atau cache asosiatif-kelompok dua-jalan memerlukan dua pembandingan untuk satu kali akses. Selain membutuhkan lebih sedikit pembandingan dibanding cache asosiatif-penuh, cache asosiatif-kelompok juga memudahkan implementasi teknik LRU (least recently used). Bit tengah dari alamat digunakan untuk memilih sekelompok baris (bukan hanya satu baris seperti pada sistem pemetaan langsung). Tag alamat kemudian dicocokkan dengan tag seluruh baris cache yang dipilih. Selain ketiga organisasi cache di atas, pada masa-masa awal pemanfaatan sistem cache beberapa jenis prosesor menggunakan cache, dengan pemetaan-sektor. Pada pemetaan sektor, baik memori utama maupun cache dibagi menjadi sektor-sektor. Setiap sektor terdiri atas sejumlah blok. Sembarang sektor pada memori utama dapat terpetakan ke sembarang sektor dalam cache, dengan suatu tag disimpan bersama tiap-tiap sektor dalam cache untuk mengidentifikasi alamat sektor memori utama. Dalam pengirimannya ke cache atau pengembaliannya ke memori utama, data/instruksi tidak dikirim sektor per sektor tetapi blok per blok. Pada saat terjadi luput sektor (sector miss) blok yang diperlukan dari satu sektor dipindahkan ke lokasi tertentu dalam satu sektor. Lokasi sektor dalam cache dipilih berdasarkan algoritma 4 / 7

5 penggantian tertentu. Desain ini sudah tidak populer lagi karena prosentase kena (hit) lebih rendah dibanting dengan organisasi asosiatif-kelompok. Operasi Asinkron Karena tajamnya perbedaan kecepatan operasi prosesor dengan waktu akses ke memori maka biasanya ditambahkan rangkaian perangkat keras ke dalam prosesor untuk meminimalkan rugi operasi akibat terjadi luput (miss) dalam pengaksesan data/instruksi dalam cache. Pada rancangan prosesor yang paling sederhana, jika cache mengisyaratkan terjadinya luput, prosesor berada pada kondisi menunggu. Rangkaian demikian memang sederhana, tetapi memaksa instruksi berikutnya menunggu dieksekusi sampai cache terisi. Pada rancangan yang lebih canggih, prosesor dapat mengeksekusi instruksi-instruksi berikutnya yang tidak bergantung pada isi cache yang ditunggu. Jika terjadi luput lagi sementara luput sebelumnya belum selesai, prosesor akan berhenti sebagai tanda bahwa telah terjadi satu luput. Pada umumnya dapat ditolerir dua atau lebih keadaan luput sebelum prosesor berhenti. Pada rancangan prosesor paling sederhana, jika terjadi luput, seluruh baris yang berisi nilai yang diperlukan akan diisikan dan diberikan kepada prosesor. Hal ini menjamin bahwa luput berikutnya pada baris yang sama tidak mungkin terjadi saat baris dalam proses dipindahkan. Metode yang lebih canggih mengisikan baris cache mulai dari kata (word) data yang diminta dan seterusnya sampai ke awal baris. Kata data yang diminta dipasok ke prosesor segera setelah dikirim dari memori, dan sisanya dipindahkan saat prosesor melanjutkan pemrosesan. Terdapat banyak parameter organisasi cache, masing-masing mempunyai implikasi berbeda terhadap unjuk-kerjanya. Parameter-parameter itu adalah: ukuran cache, ukuran baris, jenis pengalamatan (nyata atau maya) dan derajat ketaksinkronan (yakni, jumah luput yang ditolerir). Perhatian terhadap parameter-perameter tersebut penting dalam mengevaluasi sistem komputer. Hasil uji suatu sistem komputer mungkin berbeda sama sekali bila prosesor yang sama dikombinasikan dengan organisasi cache yang berbeda. Memori Nyata dan Memori Maya Sistem operasi yang memberikan fasilitas multitasking, misalnya OS/2 atau Unix, mampu memberikan kesan seolah-olah setiap program mengakses dan mengalokasikan memori sendiri-sendiri tanpa khawatir terjadi tumpang-tindih pemakaian ruang memori. Padahal kenyataannya, setiap byte memori utama hanya memiliki satu alamat saja. Sistem operasi bersama-sama dengan perangkat keras menciptakan dua jenis alamat yakni alamat nyata dan alamat maya. Program menggunakan alamat maya sedangkan pengendali sistem memori memerlukan alamat nyata. Sistem operasi mengalokasikan memori untuk program dalam unit-unit berukuran tetap yang disebut halaman (page). Satu halaman pada umumnya berukuran 4 KB. Sistem operasi juga menyimpan tabel yang berisi pemetaan halaman maya ke halaman nyata. Setiap kali program mengakses alamat maya, sistem harus melihat tabel translasi alamat maya ke alamat nyata sehingga lokasi memori yang benar dapat diakses. 5 / 7

6 Sistem pemeriksaan tabel (table look-up) memerlukan waktu operasi yang cukup lama. Oleh karena itu, prosesor menggunakan cache khusus yang disebut sebagai TLB (translation look-aside buffer) untuk menyimpan translasi alamat terbaru. Jadi, hanya bila translasi halaman yang diperlukan tidak tersedia dalam TLB, sistem operasi akan menginterupsi program, memeriksa translasi halaman dalam tabel yang menetap dalam memori (memory resident), mengisikan hasil translasi ke dalam TLB dan mengembalikan kontrol kepada program. Luput yang terjadi pada TLB memerlukan siklus detak yang lebih banyak daripada luput yang terjadi pada cache. Bila terjadi luput pada TLB maka seluruh alur-pipa (pipeline) harus dikosongkan, register-register harus diselamatkan, rutin pemeriksaan harus dieksekusi, dan register-register harus dipulihkan. Proses ini memerlukan belasan bahkan ratusan siklus detak. Untuk memeriksa dan menyimpan data dalam cache, baik alamat nyata maupun alamat maya dapat dipakai. Pemilihan organisasi cache mempengaruhi berbagai aspek dalam organisasi sistem komputer dan unjuk-kerja aplikasi. Cache Alamat Maya Cache dengan alamat maya memiliki beberapa kelebihan. Pengendali cache tidak perlu menunggu selesainya proses translasi alamat sebelum mulai memeriksa alamat dalam cache sehingga pasokan data dapat lebih cepat diberikan. Karena program juga menggunakan alamat maya, pelaksanaan program yang sama akan membentuk pola pemakaian cache yang sama pula. Pada cache yang dipetakan ke alamat nyata, sistem operasi bisa saja mengalokasikan halaman nyata yang berbeda untuk pelaksanaan program yang sama. Dengan demikian, tag dari cache untuk alamat-alamat instruksi bisa berbeda pada pelaksanaan program yang sama, bahkan meskipun dilakukan komputasi yang sama. Unjuk-kerja bisa berbeda jauh meskipun program yang dijalankan sama, terutama bila alamat nyata tersebut dipetakan langsung. Cache Alamat Nyata Meski cache dengan alamat nyata unjuk-kerjanya bervariasi, cache ini memiliki dua kelebihan. Pertama, jika cache eksternal dirancang untuk prosesor yang memiliki unit pengelola memori internal (on-chip memory management unit), alamat yang dikirimkan oleh prosesor telah merupakan alamat hasil translasi, dan dengan demikian cache dengan alamat nyata adalah satu-satunya pilihan. Kedua, karena semua alamat adalah untuk ruang alamat-nyata tunggal, maka data dapat ditinggalkan dalam cache saat sistem operasi memindahkan kendali dari satu aplikasi ke aplikasi lain. Hal ini tidak bisa dilakukan pada cache yang menggunakan ruang alamat-maya berbeda untuk tiap-tiap aplikasi. Pada sistem cache dengan alamat-maya, data harus dihapus setiap kali terjadi pemindahan kendali. Bila tidak, aplikasi A misalnya, akan membaca isi alamat 0 aplikasi B, bukan alamat 0nya sendiri. Karena alasan itulah, cache dengan alamat nyata memiliki unjuk kerja yang lebih baik dalam lingkungan multitasking di mana pemindahan kendali relatif sering terjadi. 6 / 7

7 Cache Tunggal dan Cache Ganda Bagaimanapun baiknya organisasi cache, kemungkinan terjadinya luput (miss), yakni tidak didapatkannya instruksi atau data yang diperlukan di dalam cache sehingga prosesor harus mengaksesnya dari memori utama, selalu ada. Prosentase luput yang terjadi merupakan salah satu kriteria dalam menilai unjuk kerja cache. Tujuan utama organisasi cache adalah menekan prosentase luput, karena setiap terjadi luput, prosesor harus menghabiskan lebih banyak siklus detak untuk mengakses data atau instruksi dari memori utama. Unjuk kerja cache berkaitan langsung dengan organisasi yang diterapkan. Secara kasar dapat dinyatakan bahwa cache berukuran n yang dipetakan langsung (direct-mapped) memiliki prosentase luput yang sama dengan cache asosiatif-kelompok dua-arah berukuran n/2. Jelas bahwa besarnya kapasitas cache bukanlah ukuran akurat untuk menilai unjuk kerjanya. Hal lain yang juga perlu diperhatikan dalam membandingkan cache adalah arsitekturnya. Beberapa prosesor menerapkan sistem cache tunggal, yakni dimiliki secara bersama oleh data maupun instruksi. Arsitektur cache jenis ini dikenal sebagai arsitektur Princeton. Prosesor Amd486DX2 merupakan contoh prosesor dengan arsitektur Princeton. Sistem prosesor lain, misalnya P6 (Pentium Pro), menggunakan dua cache, yakni satu cache data dan satu cache instruksi. Prosesor dengan cache ganda seperti ini dikenal sebagai prosesor dengan cache berarsitektur Harvard. Pemisahan antara cache instruksi dengan cache data menyebabkan hilangnya interferensi antara perujukan data dan perujukan instruksi. Pemisahan cache instruksi dari cache data juga memungkinkan pengambilan data dan instruksi secara bersamaan. Arsitektur Harvard memiliki dua kelemahan pokok. Jika suatu program memperbarui dirinya sendiri dengan menuliskan instruksi baru, instruksi tersebut akan ditulis dalam cache data. Sebelum instruksi baru itu dapat dieksekusi, kedua cache harus dikosongkan, dan modifikasi yang dilakukan tadi disimpan dulu ke memori utama. Cache instruksi mengambil instruksi hasil modifikasi tersebut dari memori utama. Kelemahan kedua, bila suatu program memerlukan cache instruksi yang lebih besar dan cache data yang lebih kecil, cache berarsitektur Hardvard tidak bisa memenuhi karena alokasinya tidak bisa diubah seperti cache tunggal. 7 / 7

Pertemuan Ke-10 Cache Memory

Pertemuan Ke-10 Cache Memory Pertemuan Ke-10 Cache Memory Kapasitas relatif lebih kecil dari main memory, tetapi memiliki kecepatan yang relativ lebih tinggi dibanding main memory Cache memory merupakan suatu memori buffer (salinan

Lebih terperinci

Mempercepat kerja memori sehingga mendekati kecepatan prosesor. Memori utama lebih besar kapasitasnya namun lambat operasinya, sedangkan cache memori

Mempercepat kerja memori sehingga mendekati kecepatan prosesor. Memori utama lebih besar kapasitasnya namun lambat operasinya, sedangkan cache memori Mempercepat kerja memori sehingga mendekati kecepatan prosesor. Memori utama lebih besar kapasitasnya namun lambat operasinya, sedangkan cache memori berukuran kecil namun lebih cepat. Cache memori berisi

Lebih terperinci

Hanif Fakhrurroja, MT

Hanif Fakhrurroja, MT Pertemuan 7 Memori Internal Hanif Fakhrurroja, MT PIKSI GANESHA, 2013 Hanif Fakhrurroja @hanifoza hanifoza@gmail.com Pengemasan (Packging) Pengemasan (Packging) Gambar (a) EPROM yang merupakan keping 8

Lebih terperinci

Tujuan Pembelajaran. Memahami pengalamatan dengan menggunakan paging

Tujuan Pembelajaran. Memahami pengalamatan dengan menggunakan paging Tujuan Pembelajaran Memahami pengalamatan dengan menggunakan paging Paging Paging mekanisme yang memungkinkan proses user ditempatkan pada memori secara tidak berurutan. Paging diimplementasikan dengan

Lebih terperinci

VIRTUAL MEMORY. Gambar 1. Struktur Umum Overlay

VIRTUAL MEMORY. Gambar 1. Struktur Umum Overlay VIRTUAL MEMORY Overlay : Program dipecah menjadi bagian-bagian yang dapat dimuat memori, jika memori terlalu kecil untuk menampung seluruhnya sekaligus. Overlay disimpan pada disk dan dikeluar-masukkan

Lebih terperinci

Alamat Logika dan Fisik

Alamat Logika dan Fisik 1 Sistem Paging Salah satu cara untuk mengatasi fragmentasi eksternal (proses lebih besar daripada partisi yang tersedia) adalah dengan teknik pengalokasian memori dengan paging Paging : memori fisik dibagi

Lebih terperinci

Arsitektur Komputer dan Sistem Operasi. Hirarki Memori. Sekolah Teknik Elektro dan Informatika - ITB

Arsitektur Komputer dan Sistem Operasi. Hirarki Memori. Sekolah Teknik Elektro dan Informatika - ITB Arsitektur Komputer dan Sistem Operasi Hirarki Memori Sekolah Teknik Elektro dan Informatika - ITB 2009 1 Pembahasan Referensi locality Cache pada hirarki memori 2 Locality Prinsip locality : Program cenderung

Lebih terperinci

Cache Memori (bagian 1)

Cache Memori (bagian 1) Cache Memori (bagian 1) (Pertemuan ke-11) Diedit ulang oleh: Endro Ariyanto Prodi S1 Teknik Informatika Fakultas Informatika Universitas Telkom Februari 2016 Hirarki Memori Registers L1 Cache L2 Cache

Lebih terperinci

Organisasi Sistem Komputer. Virtual Memory. Sekolah Teknik Elektro dan Informatika ITB

Organisasi Sistem Komputer. Virtual Memory. Sekolah Teknik Elektro dan Informatika ITB Organisasi Sistem Komputer Bagian 11 Virtual Memory Sekolah Teknik Elektro dan Informatika ITB 2009 1 Pembahasan Fungsi virtual memory Penerjemah (translasi) alamat pada virtual memory Mempercepat translasi

Lebih terperinci

DCH1B3 Konfigurasi Perangkat Keras Komputer

DCH1B3 Konfigurasi Perangkat Keras Komputer DCH1B3 Konfigurasi Perangkat Keras Komputer Cache Memory (Direct Mapping) 1 9/24/2016 1 Hirarki Memori Registers L1 Cache L2 Cache Main memory (RAM) Disk cache Disk (Harddisk) Biaya per bit makin murah

Lebih terperinci

Pertemuan ke 5 Cache Memory. Computer Organization Dosen : Eko Budi Setiawan

Pertemuan ke 5 Cache Memory. Computer Organization Dosen : Eko Budi Setiawan Pertemuan ke 5 Cache Memory Computer Organization Dosen : Eko Budi Setiawan Tujuan Menjelaskan tentang memori utama komputer Menjelaskan tipe dari memori, waktu dan pengontrolan Menjelaskan pembetulan

Lebih terperinci

MEMORI. Secara garis besar, memori dapat diklasifikasikan menjadi dua bagian yaitu memori utama dan memori pembantu.

MEMORI. Secara garis besar, memori dapat diklasifikasikan menjadi dua bagian yaitu memori utama dan memori pembantu. MEMORI I. Karakteristik Memori : 1. Kapasitas 2. Satuan transfer 3. Metode Akses 4. Kinerja 5. Tipe Fisik 6. Karakteristik Fisik Secara garis besar, memori dapat diklasifikasikan menjadi dua bagian yaitu

Lebih terperinci

Chapter 4 Internal Memory

Chapter 4 Internal Memory Chapter 4 Internal Memory Karakteristik Lokasi Kapasitas Satuan transfer Metode akses Kinerja Tipe p fisik Karakteristik fisik Organisasi Oga a Lokasi CPU/Prosesor Internal/utama External/tambahan Kapasitas

Lebih terperinci

RESUME SISTEM OPERASI MAIN MEMORI

RESUME SISTEM OPERASI MAIN MEMORI RESUME SISTEM OPERASI MAIN MEMORI OLEH : Hasan Sulthoni 08.04.111.00007 Agung Satrio U 08.04.111.00100 Didin Yustisianto 08.04.111.00116 Eri Albar Firdaus 08.04.111.00137 JURUSAN TEKNIK INFORMATIKA FAKULTAS

Lebih terperinci

Pertemuan ke 9 Memori

Pertemuan ke 9 Memori Pertemuan ke 9 Memori Riyanto Sigit, ST. Nur Rosyid, S.kom Setiawardhana, ST Hero Yudo M, ST Politeknik Elektronika Negeri Surabaya Tujuan 1. Menjelaskan tentang memori utama komputer 2. Menjelaskan tipe

Lebih terperinci

Aditya Wikan Mahastama

Aditya Wikan Mahastama ARSITEKTUR DAN ORGANISASI KOMPUTER Aditya Wikan Mahastama mahas@ukdw.ac.id Memori dalam CPU: Register dan Cache 5 UNIV KRISTEN DUTA WACANA GENAP 1213 REGISTER A processor register is a small amount of

Lebih terperinci

Cache Memori (bagian 3)

Cache Memori (bagian 3) Cache Memori (bagian 3) (Pertemuan ke-13) Prodi S1 Teknik Informatika Fakultas Informatika Universitas Telkom Endro Ariyanto Maret 2015 Elemen Perancangan Cache Ukuran (Size) cache Mapping Cache-Main memory

Lebih terperinci

MANAJEMEN MEMORI SISTEM OPERASI

MANAJEMEN MEMORI SISTEM OPERASI MANAJEMEN MEMORI SISTEM OPERASI Manajemen Memori Memori adalah pusat dari operasi pada sistem komputer modern, berfungsi sebagai tempat penyimpanan informasi yang harus diatur dan dijaga sebaik baiknya.

Lebih terperinci

Pertemuan 8 : Sistem Memory

Pertemuan 8 : Sistem Memory Pertemuan 8 : Sistem Memory Kapasitas : ukuran word, banyaknya word Satuan Transfer : word,block Metode Akses : sequential, langsung, acak, associative Kinerja : waktu akses, waktu siklus, transfer rate

Lebih terperinci

Understanding Operating Systems Fifth Edition

Understanding Operating Systems Fifth Edition Understanding Operating Systems Fifth Edition Pendahuluan Evolusi virtual memory Paged, demand paging, segmented, segmented/demand paging Perbaikan di area: Penyimpananan program secara kontinu Perlunya

Lebih terperinci

CACHE MEMORI (BAGIAN 3)

CACHE MEMORI (BAGIAN 3) CACHE MEMORI (BAGIAN 3) Cache Memori (bagian 3) (Pertemuan ke-13) Prodi S1 Teknik Informatika Fakultas Informatika Universitas Telkom Endro Ariyanto Maret 2015 Elemen Perancangan Cache Ukuran (Size) cache

Lebih terperinci

IMPLEMENTASI SISTEM PAGING

IMPLEMENTASI SISTEM PAGING IMPLEMENTASI SISTEM PAGING Ali Pangera, Dony Ariyus, Jurusan Teknik Informatika, STMIK AMIKOM Yogyakarta, Jl. Ring Road Utara, Condong Catur, Sleman, Yogyakarta - Indonesia Setiap sistem operasi mempunyai

Lebih terperinci

IT233-Organisasi dan Arsitektur Komputer Pertemuan 4

IT233-Organisasi dan Arsitektur Komputer Pertemuan 4 MEMORI KOMPUTER Jika CPU merupakan otak dari sebuah komputer, maka memory merupakan komponen pembantu kerja CPU dalam melakukan kegiatan pemrosesan data atau pengeksekusian sebuah perintah. Program dan

Lebih terperinci

Praktikum 13. Manajemen Memori 1 ALOKASI MEMORI POKOK BAHASAN: TUJUAN BELAJAR: DASAR TEORI:

Praktikum 13. Manajemen Memori 1 ALOKASI MEMORI POKOK BAHASAN: TUJUAN BELAJAR: DASAR TEORI: Praktikum 13 Manajemen Memori POKOK BAHASAN: ü Ruang Alamat Logika dan Ruang Alamat Fisik ü Alokasi berurutan ü Paging ü Segmentasi TUJUAN BELAJAR: Setelah mempelajari materi dalam bab ini, mahasiswa diharapkan

Lebih terperinci

Pertemuan 10 MEMORI INTERNAL

Pertemuan 10 MEMORI INTERNAL Pertemuan 10 MEMORI INTERNAL I. Pengertian Memori internal adalah memori yang dapat diakses langsung oleh prosesor. Fungsi dari memori utama adalah: Menyimpan data yang berasal dari peranti masukan sampai

Lebih terperinci

ORGANISASI KOMPUTER SISTEM MEMORI MATA KULIAH: MEMORI CHACE, MEMORI VIRTUAL, PENYIMPANAN SEKUNDER

ORGANISASI KOMPUTER SISTEM MEMORI MATA KULIAH: MEMORI CHACE, MEMORI VIRTUAL, PENYIMPANAN SEKUNDER MATA KULIAH: ORGANISASI KOMPUTER SISTEM MEMORI MEMORI CHACE, MEMORI VIRTUAL, PENYIMPANAN SEKUNDER PRODI PENDIDIKAN TEKNIK INFORMATIKA DAN KOMPUTER JURUSAN PENDIDIKAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

Struktur Sistem Komputer

Struktur Sistem Komputer Struktur Sistem Komputer ARSITEKTUR UMUM SISTEM KOMPUTER Sistem Komputer Sistem komputer terdiri atas CPU dan sejumlah perangkat pengendali yang terhubung melalui sebuah bus yang menyediakan akses ke memori

Lebih terperinci

Cache, Memori Virtual, Dasar - Dasar I/O

Cache, Memori Virtual, Dasar - Dasar I/O Cache, Memori Virtual, Dasar - Dasar I/O Topik Hari Ini: Hirarki cache Memori virtual Overview I/O Dasar - dasar disk RAID 1 Hirarki Cache Data dan instruksi disimpan dalam chip DRAM - DRAM adalah teknologi

Lebih terperinci

PENGANTAR ORGANISASI DAN ARSITEKTUR KOMPUTER ARSITEKTUR SISTEM MEMORI

PENGANTAR ORGANISASI DAN ARSITEKTUR KOMPUTER ARSITEKTUR SISTEM MEMORI PENGANTAR ORGANISASI DAN ARSITEKTUR KOMPUTER ARSITEKTUR SISTEM MEMORI KARAKTERISTIK MEMORI KAPASITAS SATUAN TRANSFER METODE AKSES KINERJA TIPE FISIK KARAKTERISTIK FISIK 2 KAPASITAS Kapasitas dinyatakan

Lebih terperinci

PERTEMUAN. 1. Organisasi Processor. 2. Organisasi Register

PERTEMUAN. 1. Organisasi Processor. 2. Organisasi Register PERTEMUAN. Organisasi Processor Hal-hal yang perlu dilakukan CPU adalah ::.. Fetch Instruction = mengambil instruksi 2. 2. Interpret Instruction = Menterjemahkan instruksi 3. 3. Fetch Data = mengambil

Lebih terperinci

BAB V VIRTUAL MEMORY. Tujuan: 1. Menggetahui penggunaan virtual memori dalam komputer 2. Mengetahui peran virtual memori dalam sistem operasi

BAB V VIRTUAL MEMORY. Tujuan: 1. Menggetahui penggunaan virtual memori dalam komputer 2. Mengetahui peran virtual memori dalam sistem operasi BAB V VIRTUAL MEMORY Tujuan: 1. Menggetahui penggunaan virtual memori dalam komputer 2. Mengetahui peran virtual memori dalam sistem operasi 5.1 Overlay Program dipecah menjadi bagian-bagian yang dapat

Lebih terperinci

In te rn al Me m ori

In te rn al Me m ori Organisasi Komputer In te rn al Me m ori STMIK-AUB SURAKARTA Pertemuan ke 6 Memori Tujuan 1. Menjelaskan tentang memori utama komputer 2. Menjelaskan tipe dari memori, waktu dan pengontrolan 2 1 Memori?

Lebih terperinci

CARA KERJA CACHE MEMORY

CARA KERJA CACHE MEMORY CACHE MEMORY PENGERTIAN Cache Memory adalah: memory yang berukuran kecil yang sifatnya temporary (sementara). Dalam terminologi hardware: memory berkecepatan tinggi yang menjembatani aliran data antara

Lebih terperinci

Sistem Operasi Komputer. Pertemuan VIII Manajemen Memori

Sistem Operasi Komputer. Pertemuan VIII Manajemen Memori Sistem Operasi Komputer Pertemuan VIII Manajemen Memori Pembahasan Manajemen Memori Latar belakang dan konsep dasar Strategi Ruang alamat lojik dan fisik Swapping Pencatatan pemakaian memori Monoprogramming

Lebih terperinci

Pertemuan ke 7 Memori

Pertemuan ke 7 Memori Pertemuan ke 7 Memori Riyanto Sigit, ST. Nur Rosyid, S.kom Setiawardhana, ST Hero Yudo M, ST Politeknik Elektronika Negeri Surabaya Tujuan 1. Menjelaskan tentang memori utama komputer 2. Menjelaskan tipe

Lebih terperinci

3. Apa kekurangan paging sederhana dibandingkan dengan paging pada virtual memory?

3. Apa kekurangan paging sederhana dibandingkan dengan paging pada virtual memory? Sistem Operasi (CSG3E3) IF-35-Gabungan & IF-35-07 Dosen: NGS Petunjuk umum: 1. Dikerjakan berkelompok 2. Tutup buku dan dilarang menggunakan laptop/alat komunikasi 3. Tulis jawaban di lembar soal pada

Lebih terperinci

Bab 8. Memori Virtual POKOK BAHASAN: TUJUAN BELAJAR: 8.1 LATAR BELAKANG

Bab 8. Memori Virtual POKOK BAHASAN: TUJUAN BELAJAR: 8.1 LATAR BELAKANG Bab 8 Memori Virtual POKOK BAHASAN: Latar Belakang Demand Paging Page Replacement Alokasi Frame Thrashing Contoh Sistem Operasi TUJUAN BELAJAR: Setelah mempelajari materi dalam bab ini, mahasiswa diharapkan

Lebih terperinci

Manajemen Memori Virtual

Manajemen Memori Virtual Manajemen Memori Virtual Click Dosen: to edit Master subtitle style Resi Utami Putri, S.Kom., M.Cs Memori virtual Program yang dijalankan harus dimuat di memori utama. Masalah: jika program lebih besar

Lebih terperinci

Cache Memori (bagian 2)

Cache Memori (bagian 2) Cache Memori (bagian 2) (Pertemuan ke-12) Diedit ulang oleh: Endro Ariyanto Prodi S1 Teknik Informatika Fakultas Informatika Universitas Telkom Maret 2016 Associative Mapping Format alamat memori: (dari

Lebih terperinci

1 Tinjau Ulang Sistem Komputer

1 Tinjau Ulang Sistem Komputer 1 Tinjau Ulang Sistem Komputer Overview Sebelum memulai mempelajari sistem operasi penting bagi kita untuk mengetahui komponen-komponen yang menjadi bagian dari sebuah sistem komputer disertai cara kerjanya.

Lebih terperinci

Pengelolaan Keterbatasan dan Pencirian

Pengelolaan Keterbatasan dan Pencirian Pengelolaan Keterbatasan dan Pencirian Pokok Bahasan: 1. Kinerja CPU dan Konsumsi Daya 2. Pengelolaan Caches dan Memori 3. Bus dan Memory 4. Perangkat I/O Baku Tujuan Belajar: Setelah mempelajari dalam

Lebih terperinci

DCH1B3 Konfigurasi Perangkat Keras Komputer

DCH1B3 Konfigurasi Perangkat Keras Komputer DCH1B3 Konfigurasi Perangkat Keras Komputer Cache Memory (Associative Mapping) 1 9/29/2016 1 Associative Mapping Format alamat memori: (dari sisi cache) Tag Word (w) Alamat memori diinterpretasikan sebagai

Lebih terperinci

Sistem Operasi Pertemuan 1 Arsitektur Komputer. (Penyegaran) H u s n i Lab. Sistem Komputer & Jaringan Teknik Informatika Univ.

Sistem Operasi Pertemuan 1 Arsitektur Komputer. (Penyegaran) H u s n i Lab. Sistem Komputer & Jaringan Teknik Informatika Univ. Sistem Operasi 2009 Pertemuan 1 Arsitektur Komputer (Penyegaran) H u s n i Lab. Sistem Komputer & Jaringan Teknik Informatika Univ. Trunojoyo Ikhtisar Elemen Utama dari Komputer Processor Main Memory Input/Output

Lebih terperinci

PERTEMUAN. 1. Karakteristik karakteristik Eksekusi Instruksi

PERTEMUAN. 1. Karakteristik karakteristik Eksekusi Instruksi PERTEMUAN Arsitektur RIS merupakan kemajuan yang sangat dramatis dalam frase sejarah arsitektur PU. Dan merupakan tantangan bagi arsitektur konvensional Walaupun sistem RIS telah ditentukan dan dirancang

Lebih terperinci

1. Address Binding. Sebuah program ditempatkan dalam disk dalam bentuk berkas biner Sebelum dieksekusi, sebuah program harus ditempatkan di memori.

1. Address Binding. Sebuah program ditempatkan dalam disk dalam bentuk berkas biner Sebelum dieksekusi, sebuah program harus ditempatkan di memori. Manajemen Memori Latar Belakang Memori merupakan pusat kegiatan pada sebuah komputer. Setiap proses yang akan dijalankan harus melalui memori. CPU mengambil instruksi dari memori sesuai yang ada pada program

Lebih terperinci

(Scott Mueller, 2003)

(Scott Mueller, 2003) BAB IV MEMORY KOMPUTER Jika Central Processing Unit (CPU) atau merupakan otak dari sebuah komputer, maka memory merupakan komponen pembantu kerja CPU dalam melakukan kegiatan pemrosesan data atau pengeksekusian

Lebih terperinci

PERTEMUAN. Karakteristik-karakteristik penting sistem memori. D. Metode akses. E. Kinerja

PERTEMUAN. Karakteristik-karakteristik penting sistem memori. D. Metode akses. E. Kinerja PERTEMUAN Karakteristik memori yang jelas adalah kapasitasnya Kapasitas ini dinyatakan dalam byte (1 byte = 8 bit) atau word. Panjang word yang umum adalah 8, 16 dan 32 bit Kapasitas eksternal memory biasanya

Lebih terperinci

Struktur Sistem Komputer

Struktur Sistem Komputer Struktur Sistem Komputer Pengampu Mata Kuliah Casi Setianingsih (CSI) Hp : 081320001220 (WA Only) Email Tugas : casie.sn@gmail.com Email Tel-U : setiacasie@telkomuniversity.ac.id Komposisi Penilaian Quiz

Lebih terperinci

Cache Memory Direct Mapping (Pertemuan ke-11)

Cache Memory Direct Mapping (Pertemuan ke-11) Soal Tugas 8: PBL (PR) Cache Memory Direct Mapping (Pertemuan ke-11) Disusun oleh: Endro Ariyanto Prodi S1 Teknik Informatika Fakultas Informatika Universitas Telkom Maret 2015 1. Istilah miss-ratio dalam

Lebih terperinci

Bab 8: Manajemen Memori. Latar Belakang

Bab 8: Manajemen Memori. Latar Belakang Bab 8: Manajemen Memori Latar Belakang Swapping Alokasi Berurutan (Contiguous Allocation) Paging Segmentasi Segmentasi dengan Paging 9.1 Latar Belakang Program harus dibawa ke dalam memori dan ditempatkan

Lebih terperinci

MEMORI VIRTUAL. Sistem Operasi TIKB1023 Munengsih Sari Bunga. Politeknik Indramayu. TIKB1023/Sistem Operasi/MSB 1

MEMORI VIRTUAL. Sistem Operasi TIKB1023 Munengsih Sari Bunga. Politeknik Indramayu. TIKB1023/Sistem Operasi/MSB 1 MEMORI VIRTUAL Sistem Operasi TIKB1023 Munengsih Sari Bunga Politeknik Indramayu TIKB1023/Sistem Operasi/MSB 1 Materi: 1. Konsep dasar memori virtual 2. Demand Paging 3. Unjuk Kerja Demand Paging 4. Page

Lebih terperinci

Mata Kuliah Arsitektur Komputer Program Studi Sistem Informasi 2013/2014 STMIK Dumai -- Materi 04 --

Mata Kuliah Arsitektur Komputer Program Studi Sistem Informasi 2013/2014 STMIK Dumai -- Materi 04 -- Mata Kuliah Arsitektur Komputer Program Studi Sistem Informasi 2013/2014 STMIK Dumai -- Materi 04 -- This presentation is revised by @hazlindaaziz, STMIK, 2014 Acknowledgement Main Material: Stallings,

Lebih terperinci

Disk & Memory Semester Ganjil 2014 Fak. Teknik Jurusan Teknik Informatika.

Disk & Memory Semester Ganjil 2014 Fak. Teknik Jurusan Teknik Informatika. Disk & Memory Semester Ganjil 2014 Fak. Teknik Jurusan Teknik Informatika Universitas i Pasundan Caca E Supriana S Si MT Caca E. Supriana, S.Si.,MT. caca.e.supriana@unpas.ac.id Pengelolaan Record dalam

Lebih terperinci

P6 Memori Universitas Mercu Buana Yogyakarta

P6 Memori Universitas Mercu Buana Yogyakarta P6 Memori Universitas Mercu Buana Yogyakarta A. Sidiq P. 1 SQ http://sidiq.mercubuana-yogya.ac.id - dnd_07june07@live.com Memory 2 SQ http://sidiq.mercubuana-yogya.ac.id - dnd_07june07@live.com Memory

Lebih terperinci

DASKOM & PEMROGRAMAN. Dani Usman

DASKOM & PEMROGRAMAN. Dani Usman DASKOM & PEMROGRAMAN Dani Usman Latar Belakang Memory merupakan tempat menampung data dan kode instruksi program Memori adalah pusat kegiatan pada sebuah komputer, karena setiap proses yang akan dijalankan,

Lebih terperinci

Hanif Fakhrurroja, MT

Hanif Fakhrurroja, MT Pertemuan 12 Organisasi Komputer Pipeline, Processor RISC dan CISC Hanif Fakhrurroja, MT PIKSI GANESHA, 2013 Hanif Fakhrurroja @hanifoza hanifoza@gmail.com http://hanifoza.wordpress.com Sub-siklus Instruksi

Lebih terperinci

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

BAB I PENDAHULUAN 1.1 LATAR BELAKANG BAB I PENDAHULUAN 1.1 LATAR BELAKANG Pada saat ini prosesor saat ini yang dikenal ada 2 yaitu. RISC dan CISC. Prosesor CISC merupakan prosesor yang memiliki intruksi yang kompleks untuk memudahkan penulisan

Lebih terperinci

STRUKTUR SISTEM OPERASI

STRUKTUR SISTEM OPERASI STRUKTUR SISTEM OPERASI 1. Komponen-Komponen Sistem a. Manajemen Proses Proses adalah keadaan ketika sebuah program sedang di eksekusi. Sebuah proses membutuhkan beberapa sumber daya untuk menyelesaikan

Lebih terperinci

Pertemuan ke 5 BAB IV Sintesis Rangkaian Sekuensial (2) Deskripsi Manfaat Relevansi Learning Outcome Materi I. Rangkaian Memori Terbatas RAM dinamik

Pertemuan ke 5 BAB IV Sintesis Rangkaian Sekuensial (2) Deskripsi Manfaat Relevansi Learning Outcome Materi I. Rangkaian Memori Terbatas RAM dinamik Pertemuan ke 5 1 BAB IV Sintesis Rangkaian Sekuensial (2) Deskripsi Pada bab ini akan dibahas tentang proses Rangkaian memori terbatas, dan penentuan kelas yang berbeda Manfaat Memberikan kompetensi untuk

Lebih terperinci

Hal-hal yang perlu dilakukan CPU adalah : 1. Fetch Instruction = mengambil instruksi 2. Interpret Instruction = Menterjemahkan instruksi 3.

Hal-hal yang perlu dilakukan CPU adalah : 1. Fetch Instruction = mengambil instruksi 2. Interpret Instruction = Menterjemahkan instruksi 3. PERTEMUAN 1. Organisasi Processor #1 Hal-hal yang perlu dilakukan CPU adalah : 1. Fetch Instruction = mengambil instruksi 2. Interpret Instruction = Menterjemahkan instruksi 3. Fetch Data = mengambil data

Lebih terperinci

Organisasi Sistem Komputer

Organisasi Sistem Komputer LOGO Organisasi Sistem Komputer OSK 10 Reduced Instruction Set Computer Pendidikan Teknik Elektronika FT UNY Perkembangan Komputer RISC Family concept melepaskan arsitektur mesin dari implementasinya.

Lebih terperinci

Arsitektur RISC merupakan kemajuan yang sangat dramatis dalam frase sejarah arsitektur CPU. Dan merupakan tantangan bagi arsitektur konvensional

Arsitektur RISC merupakan kemajuan yang sangat dramatis dalam frase sejarah arsitektur CPU. Dan merupakan tantangan bagi arsitektur konvensional PERTEMUAN Arsitektur RISC merupakan kemajuan yang sangat dramatis dalam frase sejarah arsitektur CPU. Dan merupakan tantangan bagi arsitektur konvensional Walaupun sistem RISC telah ditentukan dan dirancang

Lebih terperinci

SINYAL INTERUPSI. 1. Latar Belakang

SINYAL INTERUPSI. 1. Latar Belakang SINYAL INTERUPSI 1. Latar Belakang Sistem komputer tidak akan berguna tanpa adanya peralatan input dan output. Operasioperasi I/O diperoleh melalui sejumlah perangkat eksternal yang menyediakan alat untuk

Lebih terperinci

Organisasi & Arsitektur Komputer

Organisasi & Arsitektur Komputer Organisasi & Arsitektur Komputer 1 Memori Eko Budi Setiawan, S.Kom., M.T. Eko Budi Setiawan mail@ekobudisetiawan.com www.ekobudisetiawan.com Teknik Informatika - UNIKOM 2013 Memori 2 Pengertian Memori

Lebih terperinci

TI2043 Organisasi dan Arsitektur Komputer Tugas 2 Interrupt Driven I/O

TI2043 Organisasi dan Arsitektur Komputer Tugas 2 Interrupt Driven I/O TI2043 Organisasi dan Arsitektur Komputer Tugas 2 Interrupt Driven I/O Aditya Legowo Pra Utomo 2B 08501039 Tugas ini disusun untuk memenuhi salah satu tugas Mata Kuliah Organisasi dan Arsitektur Komputer

Lebih terperinci

Sistem Operasi. Struktur Sistem Komputer. Adhitya Nugraha. Fasilkom 10/6/2014

Sistem Operasi. Struktur Sistem Komputer. Adhitya Nugraha. Fasilkom 10/6/2014 Sistem Operasi Struktur Sistem Komputer Adhitya Nugraha 2014 adhitya@dsn.dinus.ac.id Fasilkom 10/6/2014 Objectives Mahasiswa mengetahui komponen-komponen yang membangun sebuah sistem komputer. Mahasiswa

Lebih terperinci

ARSITEKTUR DAN ORGANISASI KOMPUTER

ARSITEKTUR DAN ORGANISASI KOMPUTER ARSITEKTUR DAN ORGANISASI KOMPUTER PART 3: THE CENTRAL PROCESSING UNIT CHAPTER 8: OPERATING SYSTEM SUPPORT PRIO HANDOKO, S.KOM., M.T.I. CHAPTER 8: OPERATING SYSTEM SUPPORT Kompetensi Dasar Mahasiswa memiliki

Lebih terperinci

PENGELOLAAN MEMORY AGUS PAMUJI. SISTEM OPERASI - Pengelolaan Memory

PENGELOLAAN MEMORY AGUS PAMUJI. SISTEM OPERASI - Pengelolaan Memory PENGELOLAAN MEMORY AGUS PAMUJI SISTEM OPERASI - Pengelolaan Memory 1 Konsep Dasar Mengapa Memory perlu di atur? CPU Memori utama Konsep Von Neumann Memori sekunder SISTEM OPERASI - Pengelolaan Memory 2

Lebih terperinci

MANAJEMEN MEMORI PEMARTISIAN STATIS

MANAJEMEN MEMORI PEMARTISIAN STATIS MANAJEMEN MEMORI PEMARTISIAN STATIS Sistem Operasi FUNGSI MEMORI Mengelola informasi memori yang dipakai dan tidak sedang dipakai Mengalokasikan memori ke proses yang diperlukan Mendealokasikan memori

Lebih terperinci

IKI20210 Pengantar Organisasi Komputer Kuliah no. 6c:Cache Memory. Bobby Nazief Johny Moningka

IKI20210 Pengantar Organisasi Komputer Kuliah no. 6c:Cache Memory. Bobby Nazief Johny Moningka IKI20210 Pengantar Organisasi Komputer Kuliah no. 6c:Cache Memory diadaptasikan dari materi kuliah CS61C/2000 & CS152/1997 2000/1997 UCB Bobby Nazief (nazief@cs.ui.ac.id) Johny Moningka (moningka@cs.ui.ac.id)

Lebih terperinci

1. MANAJEMEN MEMORI. Gambar 2 Relokasi dinamis menggunakan register relokasi

1. MANAJEMEN MEMORI. Gambar 2 Relokasi dinamis menggunakan register relokasi 1. MANAJEMEN MEMORI Memori merupakan pusat kegiatan pada sebuah komputer, karena setiap proses yang akan dijalankan harus melalui memori terlebih dahulu. CPU mengambil instruksi dari memori sesuai yang

Lebih terperinci

Soal Tugas 9: PBL (PR)

Soal Tugas 9: PBL (PR) Soal Tugas 9: PBL (PR) Cache Memory : Associative & Set Associative Mapping (Pertemuan ke-12) Disusun oleh: Endro Ariyanto Prodi S1 Teknik Informatika Fakultas Informatika Universitas Telkom Maret 2015

Lebih terperinci

MEMORI. Memori. Memori Pembantu. Eksternal - ROM - PROM - EPROM - EEPROM - Cache. Kategori Penghapusan Mekanisme penulisan. Electrically Readonly

MEMORI. Memori. Memori Pembantu. Eksternal - ROM - PROM - EPROM - EEPROM - Cache. Kategori Penghapusan Mekanisme penulisan. Electrically Readonly MEMORI Utama Pembantu Internal - RAM - DRAM - SDRAM Eksternal - ROM - PROM - EPROM - EEPROM - Cache - Disk Magnetik - Pita Magnetik - Floppy Disk - Drum Magnetik - Optical Disk Tipe RAM ROM PROM EPROM

Lebih terperinci

Memori? menunjuk ke penyimpanan disket. Tempat informasi, dibaca dan ditulis

Memori? menunjuk ke penyimpanan disket. Tempat informasi, dibaca dan ditulis Memori? Memori adalah bagian dari komputer tempat program program dan data data disimpan. Istilah store atau storage digunakan untuk memori, meskipun kata storage sering digunakan untuk menunjuk ke penyimpanan

Lebih terperinci

Sistem Operasi Komputer

Sistem Operasi Komputer Sistem Operasi Komputer Pertemuan IX Memori Virtual Memori Virtual Latar belakang Demand paging Unjuk kerja demand paging Page replacement Algoritma page replacement Pengalokasian frame Trashing Universitas

Lebih terperinci

Recap. Proses. Proses. Multiprogramming. Multiprocessing 9/16/2016. Ricky Maulana Fajri

Recap. Proses. Proses. Multiprogramming. Multiprocessing 9/16/2016. Ricky Maulana Fajri Recap Pengertian Sistem Operasi? Generasi Sistem Operasi? Arsitektur Sistem Operasi Ricky Maulana Fajri Proses Outline Proses Multiprogramming, Multiprocessing, Distributed Processing Diagram State Proses

Lebih terperinci

Pertemuan Ke-8 Unit I/O (Unit Masukan dan Keluaran)

Pertemuan Ke-8 Unit I/O (Unit Masukan dan Keluaran) Pertemuan Ke-8 Unit I/O (Unit Masukan dan Keluaran) Sistem komputer memiliki tiga komponen utama, yaitu : CPU, memori (primer dan sekunder), dan peralatan masukan/keluaran (I/O devices) seperti printer,

Lebih terperinci

1. Jelaskan karakteristik memori lengkap beserta contohnya

1. Jelaskan karakteristik memori lengkap beserta contohnya Nama : DIYANAH AFIFAH NIM : 11018094 Tugas : Tugas3 ORKOM 1. Jelaskan karakteristik memori lengkap beserta contohnya a. Location Ada tiga lokasi keberadaan memori di dalam sistem komputer, yaitu: Memory

Lebih terperinci

SISTEM OPERASI. Oleh:

SISTEM OPERASI. Oleh: SISTEM OPERASI Oleh: Oktapiyanti Sistem Operasi Sistem operasi merupakan sebuah penghubung antara pengguna dari komputer dengan perangkat keras komputer. Fungsi Dasar Sistem komputer pada dasarnya terdiri

Lebih terperinci

Bab 9: Virtual Memory. Latar Belakang

Bab 9: Virtual Memory. Latar Belakang Bab 9: Virtual Memory Latar Belakang Demand Paging Pembuatan Proses Page Replacement Alokasi Frame Thrashing Contoh Sistem Operasi 0. Latar Belakang Virtual memory memisahkan memori logika dari memori

Lebih terperinci

DESAIN MEMORI VIRTUAL PADA MIKROARSITEKTUR POWERPC, MIPS, DAN X86 Kuspriyanto *, Putut Joko Wibowo **

DESAIN MEMORI VIRTUAL PADA MIKROARSITEKTUR POWERPC, MIPS, DAN X86 Kuspriyanto *, Putut Joko Wibowo ** Desain Memori Virtual Pada Mikroarsitektur PowerPC, MIPS, dan X86 (Kuspriyanto) DESAIN MEMORI VIRTUAL PADA MIKROARSITEKTUR POWERPC, MIPS, DAN X86 Kuspriyanto *, Putut Joko Wibowo ** Abstrak - Banyak desain

Lebih terperinci

Karakteristik Cache Memory (Pertemuan ke-13)

Karakteristik Cache Memory (Pertemuan ke-13) Soal Tugas 10: PBL (PR) Karakteristik Cache Memory (Pertemuan ke-13) Disusun oleh: Endro Ariyanto Prodi S1 Teknik Informatika Fakultas Informatika Universitas Telkom Maret 2015 1. Yang tidak termasuk dalam

Lebih terperinci

STRUKTUR SISTEM OPERASI

STRUKTUR SISTEM OPERASI STRUKTUR SISTEM OPERASI STRUKTUR SISTEM OPERASI 1. Komponen-Komponen Sistem a. Manajemen Proses Proses adalah keadaan ketika sebuah program sedang di eksekusi. Sebuah proses membutuhkan beberapa sumber

Lebih terperinci

Pendahuluan BAB I PENDAHULUAN

Pendahuluan BAB I PENDAHULUAN Pendahuluan BAB I PENDAHULUAN 1.1. Definisi Komputer Komputer merupakan mesin elektronik yang memiliki kemampuan melakukan perhitungan-perhitungan yang rumit secara cepat terhadap data-data menggunakan

Lebih terperinci

Pertemuan ke 14 Sistem Bus Riyanto Sigit, ST. Nur Rosyid, S.kom Setiawardhana, ST Hero Yudo M, ST

Pertemuan ke 14 Sistem Bus Riyanto Sigit, ST. Nur Rosyid, S.kom Setiawardhana, ST Hero Yudo M, ST Pertemuan ke 14 Sistem Bus Riyanto Sigit, ST. Nur Rosyid, S.kom Setiawardhana, ST Hero Yudo M, ST Politeknik Elektronika Negeri Surabaya Tujuan Menjelaskan struktur antar hubungan Menjelaskan bus antar

Lebih terperinci

Meningkatkan Kinerja dengan Pipelining

Meningkatkan Kinerja dengan Pipelining Meningkatkan Kinerja dengan Pipelining Topik hari ini: Pipeline 5-tahap Hazard dan penjadwalan instruksi Prediksi branch Eksekusi out-of-order 1 Prosesor Siklus Ganda Unit memori tunggal di-share oleh

Lebih terperinci

Sistem Komputer. Tiga komponen utama : CPU

Sistem Komputer. Tiga komponen utama : CPU PERTEMUAN Tiga komponen utama : CPU Sistem Komputer Memori (primer dan sekunder) Peralatan masukan/keluaran (I/O devices) seperti printer, monitor, keyboard, mouse, dan modem 1 Modul I/O Merupakan peralatan

Lebih terperinci

Pengantar Sistem Mikroprosesor

Pengantar Sistem Mikroprosesor Pengantar Sistem 2001, Arry Akhmad Arman Laboratory for Signal & Systems Electrical Engineering Department Bandung Institute of Technology email : aa@lss.ee.itb.ac.id Pengertian adalah suatu pemroses mikro

Lebih terperinci

Meningkatkan Kinerja Memori Multiprogramming Dengan Memanfaatkan Sistem Paging

Meningkatkan Kinerja Memori Multiprogramming Dengan Memanfaatkan Sistem Paging Meningkatkan Kinerja Memori Multiprogramming Dengan Memanfaatkan Sistem Paging S. P. Hariningsih Abstract : The Management and organization of memory have a great affect in a computer performance, Memory

Lebih terperinci

TUGAS ARSITEKTUR DAN ORGANISASI KOMPUTER PERKEMBANGAN MEMORY PADA PROSESOR INTEL

TUGAS ARSITEKTUR DAN ORGANISASI KOMPUTER PERKEMBANGAN MEMORY PADA PROSESOR INTEL TUGAS ARSITEKTUR DAN ORGANISASI KOMPUTER PERKEMBANGAN MEMORY PADA PROSESOR INTEL NAMA : ABDULLAH NIM : 14111065 PRODI : TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INFORMASI UNIVERSITAS MERCU BUANA YOGYAKARTA

Lebih terperinci

Perkembangan Memory Processor Intel

Perkembangan Memory Processor Intel Perkembangan Memory Intel Disusun Oleh : TRI GUNAWAN (14111063) Kelas 21 Program Studi Teknik Informatika FAKULTAS TEKNOLOGI INFORMASI UNIVERSITAR MERCU BUANA YOGYAKARTA Daftar Isi Daftar Isi... 2 1. Pembahasan...

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER. No.RPS/PTE/PTI6208 Revisi/Tgl : 00/18 Agustus 2015 Semester 2 Hal 1 dari 7

RENCANA PEMBELAJARAN SEMESTER. No.RPS/PTE/PTI6208 Revisi/Tgl : 00/18 Agustus 2015 Semester 2 Hal 1 dari 7 KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA PROGRAM STUDI PENDIDIKAN TEKNIK ELEKTRONIKA RENCANA PEMBELAJARAN SEMESTER No.RPS/PTE/PTI6208 Revisi/Tgl

Lebih terperinci

STRUKTUR CPU. Arsitektur Komputer

STRUKTUR CPU. Arsitektur Komputer STRUKTUR CPU Arsitektur Komputer Tujuan Mengerti struktur dan fungsi CPU yaitu dapat melakukan Fetch instruksi, interpreter instruksi, Fetch data, eksekusi, dan menyimpan kembali. serta struktur dari register,

Lebih terperinci

PENDAHULUAN. Pertemuan 1 1

PENDAHULUAN. Pertemuan 1 1 PENDAHULUAN 1. Konsep Dasar Sistem Komputer dan Sistem Operasi Sistem Komputer adalah adalah suatu jaringan elektronik yang terdiri dari perangkat lunak dan perangkat keras yang melakukan tugas tertentu

Lebih terperinci

Pengelolaan Memori Sistem Operasi (TKE113117) Program Studi Teknik Elektro, Unsoed

Pengelolaan Memori Sistem Operasi (TKE113117) Program Studi Teknik Elektro, Unsoed Pengelolaan Memori Sistem Operasi (TKE113117) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2013/2014 Cyberdex, domain publik, https://en.wikipedia.org/wiki/file:memory_module_ddram_20-03-2006.jpg

Lebih terperinci

Organisasi Komputer II STMIK AUB SURAKARTA

Organisasi Komputer II STMIK AUB SURAKARTA Organisasi Komputer II STMIK AUB SURAKARTA Fetch : membaca instruksi berikutnya dari memori ke dalam CPU Execute : menginterpretasikan opcode dan melakukan operasi yang diindikasikan Interrupt : Apabila

Lebih terperinci

Hubungan CPU dengan Memory

Hubungan CPU dengan Memory Tujuan Pembelajaran Memahami proses penerjemahan alamat memori Memahami langkah proteksi sistem operasi terhadap akses memori Memahami hubungan CPU dengan memori Pendahuluan CPU membutuhkan memory untuk

Lebih terperinci

MANAJEMEN MEMORI. Manajemen Memori 1

MANAJEMEN MEMORI. Manajemen Memori 1 MANAJEMEN MEMORI 1. Konsep dasar memori - Konsep Binding - Dynamic Loading - Dynamic Linking - Overlay 2. Ruang Alamat Logika dan Fisik 3. Swapping 4. Pengalokasian Berurutan (Contiguous Allocation) 5.

Lebih terperinci

Manajemen Memori. Latar Belakang Ruang Alamat Logika dan Ruang Alamat Fisik Swapping Alokasi berurutan Paging Segmentasi Segmentasi dengan Paging

Manajemen Memori. Latar Belakang Ruang Alamat Logika dan Ruang Alamat Fisik Swapping Alokasi berurutan Paging Segmentasi Segmentasi dengan Paging Bab 7 Manajemen Memori POKOK BAHASAN: Latar Belakang Ruang Alamat Logika dan Ruang Alamat Fisik Swapping Alokasi berurutan Paging Segmentasi Segmentasi dengan Paging TUJUAN BELAJAR: Setelah mempelajari

Lebih terperinci

Bab 10. Implementasi Sistem File POKOK BAHASAN: TUJUAN BELAJAR: 10.1 STRUKTUR SISTEM FILE

Bab 10. Implementasi Sistem File POKOK BAHASAN: TUJUAN BELAJAR: 10.1 STRUKTUR SISTEM FILE Bab 10 Implementasi Sistem File POKOK BAHASAN: Struktur Sistem File Implementasi Direktori Metode Alokasi Manajemen Ruang Bebas Efisiensi dan Performansi Perbaikan Sistem File Berstruktur Log Network File

Lebih terperinci