BAB VI HIPERBOLA. - Titik 0, yaitu titik tengah FG, disebut pusat hiperbola. dan G(c,0) disebut titik fokus hiperbola

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB VI HIPERBOLA. - Titik 0, yaitu titik tengah FG, disebut pusat hiperbola. dan G(c,0) disebut titik fokus hiperbola"

Transkripsi

1 B VI : Hierol 85 BAB VI HIPERBOLA 6.. Definisi Hierol Hierol dlh temt kedudukn titik-titik ng selisih jrkn terhd du titik tertentu tet hrgn. Cttn: du titik tertentu itu diseut fokus hierol - - Mislkn: F dn G dlh titik fokus hierolh ng jrkn sedngkn selisih jrkn terhd fokus dlh dimn > > 0 - Titik 0, itu titik tengh FG, diseut ust hierol - Titik F,0 dn G,0 diseut titik fokus hierol - Titik A,0 n B,0 diseut titik unk hierol GA FA FB GB AG GB AG GB AB FP GP GQ FG - Gris AB sumu dn sumu dlh sumu simetri. Sumu, diseut sumu nt Sumu, di seut sumu imjiner - Hrg = diseut eksentrisitet hierol B : Turmudi E-mil : log:

2 86 Geometri Anlitik Dtr dn Rung Cr Melukis Hierol. Butlh lingkrn ng ustn di F dn jri-jrin P di mn P >. Butlh lingkrn ng ustn di G dn jri-jrin di + 3. Lingkrn dn erotongn di Q, titik Q dlh slh stu titik d hierol. 4. Butlh lingkrn ng ustn G dn jri-jri K, dimn K > 5. Butlh lingkrn ng erust di F dn jri-jrin + k 6. Lingkrn 4 dn 5 erotongn di P, titik P, dlh slh stu titik d hierol. 7. Dengn mengmil eer hrg P dn K kn dieroleh eer titik lin ng terletk d hierol dengn menghuungkn titik-titik lewt seuh kurv ng mulus, terdt hierol ng dimint. 6.. Persmn Hierol Jik F,0, G,0, dn P, terletk d hierol mk: PF V PG V Jdi PF PG PF PG

3 B VI : Hierol 87 B : Turmudi E-mil : log: ingt tu ersmn hierol dengn ust 00, Persmn Hierol ng erust di, Jik ust hierol tet sejjr dengn sumu-sumu koordint, mk dengn mudh dt diuktikn hw ersmn hierol terseut dlh: 6.4. Persmn Prmeter Hierol ersmn rmeter rol terseut dlh : tg..se, ingt se tg, = =

4 88 Geometri Anlitik Dtr dn Rung Asmtot hierol Mislkn ersmn gris smtot itu = = rmeter terhd hierol Perotongnn : Jik 0,. Tentulh titik otong imjiner, gris tidk memotong hierol. jik 0, tentulh kedu titik otongn nt dn erlinn. Dt disimulkn segi erikut: 0, Mk gris-gris itu, =, merukn gris-gris singgung koordint. Sehingg :, diseut smtot-smtot hierol tu gris singgung d hierol Merukn koordint dn koordint dri titik otongn.

5 B VI : Hierol 89 Cttn: Persmn hierol, il =, mk : tu, siseut hierol orth0gonl, itu kedu smtotn erotongn tegk lurus. Direktriks dn Eksentrisitet Hierol dlh temt kedudukn titik-titik ng erndingn jrk ke sutu titik dn sutu gris ng tertentu tet hrgn, e Cttn : - Titik tertentu itu diseut fous - Gris tertentu itu diseut direktiks - Hrg tet itu e diseut eksentrisits FP = = + + GP = q = q = 4 + q q = 4 q = 4 q = q = + q = + = + B : Turmudi E-mil : log:

6 90 Geometri Anlitik Dtr dn Rung = + = + + q = q = - q = - q = - q = -... dn, = + = q = - = jdi gris f dn gris g dlh direktriks dengn ersmn erurut-turut : f g Gris dn Hierol Seerti hln d lingkrn, rol dn ellis. Mk hierol dn gris erkemungkinn : - Tidk sling memotong, srt D < 0 - Memotong di du titik, srt D > 0 - Meninggung dengn srt D = 0

7 B VI : Hierol Persmn Gris Singgung Hierol A. Persmn Gris Singgung d Hierol Mislkn ersmn gris singgung = m + n.. Persmn hierol - =.. dn m +n = m - mn - n = m - mn n + = 0 Srt meninggung : D = 0 4 = 0 - mn 4 m. n + = n m + 4 m. n + = n m + 4 n m n 4 m = 0 4 n m = 0 : 4 n + m = 0 n = m - n m.3 Persmn 3 ke m m, ini dlh ersmn gris singgung dengn koofisien rh m m rmeter d hierol Anlog : untuk ersmn gris singgung d hierol, dengn koofisien rh m dlh : m m B : Turmudi E-mil : log:

8 9 Geometri Anlitik Dtr dn Rung B. Persmn Gris Singgung di, d Hierol Dengn jln ng sm d ellis, mk ersmn gris singgung hierol di, dlh 6.6. Du Gris Tengh Sekwn Dengn meruh oleh - dieroleh segi erikut :. Seti gris ng sejjr dengn gris k = m dlh = m + n. Gris k dn l dinmkn du gris tengh sekwn 3. Huungn koofisien rh gris k dn l, mk mk ml 4. Jik titik ujung gris tengh sekwn ng stu, dn titik ujung gris tengh sekwn ng lin,, mk ntr koordint-koordint itu terdt huungn :,,

9 B VI : Hierol 93 P, Q, R, S, Persmn gris tengh sekwn m B : Turmudi E-mil : log:

Yohanes Private Matematika ,

Yohanes Private Matematika , Yohnes Privte Mtemtik 3 081519611185, 08119605588 Irisn keruut: Lingkrn Prol Elis Hierol LINGKARAN Bentuk umum : 2 + 2 = r 2 ust: (0, 0) ; jri-jri = r ( ) 2 + ( ) 2 = r 2 ust: (, ) ; jri-jri = r r r 2

Lebih terperinci

Parabola adalah tempat kedudukan titik-titik yang jaraknya ke satu titik tertentu sama dengan jaraknya ke sebuah garis tertentu (direktriks).

Parabola adalah tempat kedudukan titik-titik yang jaraknya ke satu titik tertentu sama dengan jaraknya ke sebuah garis tertentu (direktriks). Prol dlh tempt kedudukn titik-titik ng jrkn ke stu titik tertentu sm dengn jrkn ke seuh gris tertentu (direktriks). Persmn Prol 1. Persmn Prol dengn Punck O(,) Perhtikn gmr erikut ini! PARABOLA g A P(,

Lebih terperinci

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik Hiperol 7.1. Persmn Hiperol Bentuk Bku Hiperol dlh himpunn semu titik (, ) pd idng sedemikin hingg selisih positif jrk titik (, ) terhdp psngn du titik tertentu ng diseut titik fokus (foci) dlh tetp. Untuk

Lebih terperinci

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN HIPERBLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi dn unsur-unsur hiperol.. Dpt menentukn persmn

Lebih terperinci

2.2. BENTUK UMUM PERSAMAAN GARIS LURUS

2.2. BENTUK UMUM PERSAMAAN GARIS LURUS B II : Fungsi Liner Dlil : Grfik ri fungsi-fungsi liner (liner rtin pngkt stu tu stright) lh sutu gris lurus... GARIS LURUS MELALUI TITIK ASAL (,) S. Y Trik Gris ri titik O ke titik P imn OP terletk p

Lebih terperinci

Soal Latihan dan Pembahasan Fungsi kuadrat

Soal Latihan dan Pembahasan Fungsi kuadrat Sol Ltihn dn Pemhsn Fungsi kudrt Di susun Oleh : uun Somntri htt://imingneljr.net/ Di dukung oleh : Portl eduksi Grtis Indonesi Oen Knowledge nd Edution htt://oke.or.id Tutoril ini dierolehkn untuk di

Lebih terperinci

BAB IX BOLA, SILINDER DAN KERUCUT

BAB IX BOLA, SILINDER DAN KERUCUT B IX : Bol Silinder dn Kerucut 7 BAB IX BOLA SILINDER DAN KERUCUT 9.. Tempt Kedudukn di dlm Rung Tempt kedudukn disingkt TK dlh himpunn titik-titik ng memnuhi srt-srt ng ditentukn. TK mungkin hmp stu titik

Lebih terperinci

IRISAN KERUCUT. 1. Persamaan lingkaran dengan pusat (0,0) dan jari-jari r. Persamaan = TK titik T = =

IRISAN KERUCUT. 1. Persamaan lingkaran dengan pusat (0,0) dan jari-jari r. Persamaan = TK titik T = = IRISAN KERUCUT Bb 9 A. LINGKARAN. Persmn lingkrn dengn pust (0,0) dn jri-jri r 0 r T(x,y) X Persmn = TK titik T = { T / OT r } = = {( x, y) / r } {( x, y) / r }. Persmn lingkrn dengn pust (,b) dengn jri-jri

Lebih terperinci

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: PERSAMAAN GARIS SINGGUNG PADA ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (,

Lebih terperinci

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA Persmn dlh klimt mtemtik teruk ng memut huungn sm dengn. Sedngkn klimt mtemtik tertutup ng memut huungn sm dengn diseut kesmn. Klimt mtemtik :. Klimt mtemtik

Lebih terperinci

PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 1

PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 1 PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 6y y 8y. Dikethui R dn. Temukn nili y. y y 8y 6 Solusi: 6y y 8y y y 8y 6 6y y 8y 8y y 6 y 8 0 y y y 0 y y y 0 ( y ) ( y ) 0 y y 8y 6 ( y )(y ) 0 y 0tu y 0

Lebih terperinci

7. APLIKASI INTEGRAL

7. APLIKASI INTEGRAL 7. APLIKASI INTEGRAL 7. Menghitung Lus Derh.Mislkn derh D (, ), f ( ) D f() Lus D =? Lngkh :. Iris D menjdi n gin dn lus stu uh irisn dihmpiri oleh lus persegi pnjng dengn tinggi f() ls(ler) A f ( ). Lus

Lebih terperinci

IV V a b c d. a b c d. b c d. bukan fungsi linier y = x = x y 5xy + y = B.2 Konsep Fungsi Linier

IV V a b c d. a b c d. b c d. bukan fungsi linier y = x = x y 5xy + y = B.2 Konsep Fungsi Linier 8. Dri fungsi-fungsi ng disjikn dengn digrm pnh erikut ini mnkh ng merupkn fungsi onto, injektif tu ijektif, jik relsi dri A ke B? A c d IV B A c d V B A c d VI B B. Konsep Fungsi Linier. Tujun Setelh

Lebih terperinci

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: GARIS SINGGUNG PADA HIPERBOLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (, ) pd

Lebih terperinci

FUNGSI KUADRAT. . a 0, a, b, c bil real. ymax. ymin. , maka harga m= A. 0 B. 1 C. 2 D. 3 E. 4 Jawab : m mempunyai nilai minimum 1 5.

FUNGSI KUADRAT. . a 0, a, b, c bil real. ymax. ymin. , maka harga m= A. 0 B. 1 C. 2 D. 3 E. 4 Jawab : m mempunyai nilai minimum 1 5. FUNGSI KUADRAT Bb Bentuk Umum : x bx c. 0,, b, c bil rel b b c A. Titik Punck =, b Dengn sumbu simetri : x b c mx jik 0 Nili ekstrim : min jik 0 Jik fungsi x x m memuni nili minimum 8, mk hrg m= A. 0 B.

Lebih terperinci

BAB VIII BIDANG RATA DAN GARIS LURUS

BAB VIII BIDANG RATA DAN GARIS LURUS VIII : idng Rt dn Gris Lurus VIII IDNG RT DN GRIS LURUS 8.. Persmn Vektoris idng Rt Sutu idng rt kn tertentu il dikethui tig uh titik (ng tidk segris) ng terletk pd idng rt terseut. Mislkn dikethui tig

Lebih terperinci

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut: INTEGRAL.PENGERTIAN INTEGRAL Integrl dlh cr mencri sutu fungsi jik turunnn di kethui tu kelikn dri diferensil (turunn) ng diseut jug nti derivtif tu nti diferensil. Untuk menentukn integrl tidk semudh

Lebih terperinci

A 1P = PA 2 B 1P = PB 2 F 1P = PF 2 A 1A 2 B 1B 2 F 1 dan F 2 A 1 dan A 2 B 1 dan B 2 B 2

A 1P = PA 2 B 1P = PB 2 F 1P = PF 2 A 1A 2 B 1B 2 F 1 dan F 2 A 1 dan A 2 B 1 dan B 2 B 2 http://www.smkpeklongn.sch.id Elips A. Pengertin Elips Elips dlh tempt kedudukn titik-titik pd geometri dimensi yng memiliki jumlh jrk yng tetp terhdp du titik tertentu. Selnjutny du titik tertentu terseut

Lebih terperinci

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi elips.. Memhmi unsur-unsur elips. 3. Memhmi eksentrisits

Lebih terperinci

SMA Santa Angela. Bandung. 1 P a g e

SMA Santa Angela. Bandung. 1 P a g e Persmn Gris Singgung SMA Snt Angel Bndung P g e P g e Persmn Gris Singgung pd Ellips Seperti hln pd lingkrn, terdpt du mcm gris singgung ng kn diicrkn, itu gris singgung ng mellui slh stu titik pd ellips

Lebih terperinci

Vektor translasi dpt ditunjukkan oleh bil. berurutan yang ditulis dlm bentuk matriks kolom

Vektor translasi dpt ditunjukkan oleh bil. berurutan yang ditulis dlm bentuk matriks kolom TRANSFORMASI GEOMETRI BAB Sutu trnsformsi idng dlh sutu pemetn dri idng Krtesius ke idng ng lin tu T : R R (,) ( ', ') Jenis-jenis trnsformsi ntr lin : Trnsformsi Isometri itu trnsformsi ng tidk menguh

Lebih terperinci

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan LUAS DAERAH APLIKASI INTEGRAL TENTU Indiktor Pencpin Hsil Beljr Mhsisw menunjukkn kemmpun dlm :. Menghitung lus pd idng dtr Ringksn Mteri Perkulihn Jik sutu derh ditsi oleh kurv f(), g(), gris dn dengn

Lebih terperinci

Kompetensi 2 (Bagian 2) PERSAMAAN DAN FUNGSI KUADRAT

Kompetensi 2 (Bagian 2) PERSAMAAN DAN FUNGSI KUADRAT Kometensi (Bgin PERSAMAAN DAN FUNGSI KUADRAT PERSAMAAN KUADRAT Menentukn Jenis Akr-Akr Persmn Kudrt Menggunkn Diskriminn (D Bentuk Umum: D = - 4c + x + c ; 0 Pengertin: x = α dlh kr-kr ersmn + x + c α

Lebih terperinci

Jarak Titik, Garis dan Bidang dalam Ruang

Jarak Titik, Garis dan Bidang dalam Ruang Pge of Kegitn eljr. Tujun Pembeljrn Setelh mempeljri kegitn beljr, dihrpkn sisw dpt :. Menentukn jrk titik dn gris dlm rung b. Menentukn jrk titik dn bidng dlm rung c. Menentukn jrk ntr du gris dlm rung.

Lebih terperinci

INTEGRAL. y dx. x dy. F(x)dx F(x)dx

INTEGRAL. y dx. x dy. F(x)dx F(x)dx Drs. Mtrisoni www.mtemtikdw.wordpress.om INTEGRAL PENGERTIAN Bil dikethui : = F() + C mk = F () dlh turunn dri sedngkn dlh integrl (nti turunn) dri dn dpt digmrkn : differensil differensil Y Y Y Integrl

Lebih terperinci

Matematika EBTANAS Tahun 1992

Matematika EBTANAS Tahun 1992 Mtemtik EBTANAS Thun 99 EBT-SMA-9-0 Grfik fungsi kudrt yng persmnny y = x 5x memotong sumu x. Slh stu titik potongny dlh (, 0), mk nili sm dengn EBT-SMA-9-0 Persmn x px + 5 = 0 kr-krny sm. Nili p 0 tu

Lebih terperinci

Matematika XI MIA Peminatan Persamaan Garis Singgung Parabola. Di Susun Oleh : Markus Yuniarto, S.Si

Matematika XI MIA Peminatan Persamaan Garis Singgung Parabola. Di Susun Oleh : Markus Yuniarto, S.Si Mtetik XI MIA Peintn Persn Gris Singgung Prol Di Susun Oleh : Mrkus Yunirto, S.Si SMA Snt Angel Bndung Thun Peljrn 06 07 PERSAMAAN GARIS SINGGUNG PARABOLA A. Persn Gris Singgung Prol Dengn Punck 0,0. Persn

Lebih terperinci

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS 2015

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS 2015 PAKET SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS. Sit: p q ~ p q Mthmn tidk eljr tu di dpt mengerjkn sol UN mtemtik dn lulus UN setr dengn perntn Jik Mthmn eljr mk di dpt mengerjkn sol UN mtemtik dn

Lebih terperinci

Materi IX A. Pendahuluan

Materi IX A. Pendahuluan Mteri IX Tujun :. Mhsisw dpt memhmi vektor. Mhsisw mmpu mengunkn vektor dlm persoln sederhn 3. Mhsisw mengimplementsikn konsep vektor pd rngkin listrik. Pendhulun Sudh menjdi kesepktn umum hw untuk menentukn

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 3 Sistem Persmn Liner Sistem Persmn Liner Su Pokok Bhsn Pendhulun Solusi SPL dengn OBE Solusi SPL dengn Invers mtriks dn Aturn Crmmer SPL Homogen Beerp Apliksi

Lebih terperinci

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0 PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh c 0,,,c R, 0 Penyelesin Persmn Kudrt. Rumus c Rumus menentukn kr persmn kudrt c 0;,, c R dn 0, = ± 4c. Memfktorkn

Lebih terperinci

BAB 5 TRANSFORMASI GEOMETRI

BAB 5 TRANSFORMASI GEOMETRI BB 5 TRNSFORMSI GEOMETRI I. TRNLSI Minggu llu Cndr dudu di ojo nn ris ertm di elsn. Minggu ini i erindh e ris etig ljur eemt ng minggu llu ditemti Dims. Dims sendiri erindh e ris edu ljur edu ng minggu

Lebih terperinci

Ellips adalah tempat kedudukan titik-titik sedemikian hingga jumlah jaraknya

Ellips adalah tempat kedudukan titik-titik sedemikian hingga jumlah jaraknya Ellips 5.1. Persmn Ellips Bentuk Bku Ellips dlh tempt kedudukn titik-titik sedemikin hingg jumlh jrkn dri psngn du titik tertentu ng ered dlh konstn tertentu. Du titik tertentu di ts diseut titik fokus

Lebih terperinci

0 akar-akarnya adalah p dan q. 0 akar-akarnya 2p dan r.

0 akar-akarnya adalah p dan q. 0 akar-akarnya 2p dan r. Mengenng Jejk Sebgin Kecil Bngs Indonesi Yng Pernh Mengikuti Ujin Sekolh Pd Awl Ms Kemerdekn UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN 5. SMA 5 Berkh m gr suy fungsi nili rel dri? Syrt fungsi

Lebih terperinci

E. INTEGRASI BAGIAN ( PARSIAL )

E. INTEGRASI BAGIAN ( PARSIAL ) E. INTEGRASI BAGIAN ( PARSIAL ) Integrsi gin (prsil) digunkn untuk mengintegrsikn sutu perklin fungsi yng msing-msing fungsiny ukn koefisien diferensil dri yng lin ( seperti yng sudh dihs pd su. B. D )

Lebih terperinci

BAB V TRANSFORMASI GEOMETRI

BAB V TRANSFORMASI GEOMETRI - - Evlusi Pemhmn dn Pengusn teri P c d D D D c d c d e c c Trnslsi (-) oleh dlh: c Trnslsi (-) oleh dlh: () () () () () () O() ngun hsil segi emt O oleh V TNSFOSI GEOETI Ltihn Kometensi Sisw - - trnslsi

Lebih terperinci

(c) lim. (d) lim. (f) lim

(c) lim. (d) lim. (f) lim FMIPA - ITB. MA Mtemtik A Semester, 6-7. Pernytn enr dn slh. () ()! e Solusi. Benr. Fungsi eksonensil (enyeut) memesr leih cet drid fungsi olinom (emilng) sehingg emginny menghsilkn nili Dengn Hoitl s

Lebih terperinci

LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memperebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 2011

LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memperebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 2011 LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Mempereutkn Pil Guernur Sumter Seltn Mei 0 PENYISIHAN I PERORANGAN LCCM TINGKAT SMA. Dikethui kuus ABCD.EFGH dengn rusuk 6 cm. Jik

Lebih terperinci

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN DFTR ISI BB I. MTRIKS BB II. DETERMINN BB III. INVERS MTRIKS BB IV. PENYELESIN PERSMN LINER SIMULTN BB I. MTRIKS Mtriks erup sekelompok ilngn yng disusun empt persegi dn ditsi tnd terdiri dri ris dn kolom

Lebih terperinci

2. A dan B titik-titik ujung sebuah terowongan yang dilihat dari C dengan sudut lihat

2. A dan B titik-titik ujung sebuah terowongan yang dilihat dari C dengan sudut lihat . Dikethui segitig ABC dengn sudut B= dn CT gris tinggi dri titik C. Jik BC = dn AT = mk tentukn AC! C A T B AC ( CT CT ) ( ). A dn B titik-titik ujung seuh terowongn yng diliht dri C dengn sudut liht

Lebih terperinci

MATEMATIKA IPA PAKET A KUNCI JAWABAN

MATEMATIKA IPA PAKET A KUNCI JAWABAN MATEMATIKA IPA PAKET A KUNCI JAWABAN. Jwbn : A Mislkn : p : Msyrkt membung smph pd temptny. q: Kesehtn msyrkt terjg. Diperoleh: Premis : ~q ~p p q Premis : p Kesimpuln : q Jdi, kesimpuln dri premis-premis

Lebih terperinci

Bab 4 Transformasi Geometri

Bab 4 Transformasi Geometri B 4 Trnsformsi Geometri TUJUAN PEMBELAJARAN Pem is memhmi konsep trnsformsi geometri -D dn -D : trnslsi, rotsi, Refleksi, her dn slling OUTCOME PEMBELAJARAN Pem is menghitung trnsformsi geometri -D ser

Lebih terperinci

VECTOR DI BIDANG R 2 DAN RUANG R 3. Nurdinintya Athari (NDT)

VECTOR DI BIDANG R 2 DAN RUANG R 3. Nurdinintya Athari (NDT) VECTOR DI BIDANG R DAN RUANG R Nurdininty Athri (NDT) VEKTOR DI BIDANG (R ) DAN DI RUANG (R ) Pokok Bhsn :. Notsi dn Opersi Vektor. Perklin titik dn Proyeksi Ortogonl. Perklin silng dn Apliksiny Beerp

Lebih terperinci

5. Bangun Geometris. Sudaryatno Sudirham

5. Bangun Geometris. Sudaryatno Sudirham 5.. Persmn Kurv 5. Bngun Geometris Sudrtno Sudirhm Persmn sutu kurv secr umum dpt kit tuliskn sebgi F (, ) = 0 (5.) Persmn ini menentukn tempt kedudukn titik-titik ng memenuhi persmn tersebut. Jdi setip

Lebih terperinci

SIMAK UI 2011 Matematika Dasar

SIMAK UI 2011 Matematika Dasar SIMAK UI 0 Mtemtik Dsr Kode Sol Doc. Nme: SIMAKUI0MATDAS999 Version: 0-0 hlmn 0. Sebuh segitig sm kki mempunyi ls 0 cm dn tinggi 5 cm. Jik dlm segitig tersebut dibut persegi pnjng dengn ls terletk pd ls

Lebih terperinci

GEOMETRI ANALITIK DATAR. Oleh: Dr. Susanto, MPd

GEOMETRI ANALITIK DATAR. Oleh: Dr. Susanto, MPd GEOMETRI ANALITIK DATAR Oleh: Dr. Susnto, MPd PROGRAM STUDI PENDIDIKAN MATEMATIKA JURUSAN PENDIDIKAN MATEMATIKA DAN IPA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS JEMBER TAHUN 0 KATA PENGANTAR Puji

Lebih terperinci

GEOMETRI ANALITIK RUANG. Dr. Susanto, MPd

GEOMETRI ANALITIK RUANG. Dr. Susanto, MPd GEOMETRI ANALITIK RUANG Dr. Susnt MPd PROGRAM STUDI PENDIDIKAN MATEMATIKA JURUSAN PENDIDIKAN MATEMATIKA DAN IPA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS JEMBER TAHUN KATA PENGANTAR Puji sukur

Lebih terperinci

UN SMA IPA 2004 Matematika

UN SMA IPA 2004 Matematika UN SMA IPA Mtemtik Kode Sol P Doc. Version : - hlmn. Persmn kudrt ng kr-krn dn - dlh... ² + + = ² - + = ² + + = ² + - = ² - - =. Tinggi h meter dri sebuh peluru ng ditembkkn ke ts setelh t detik dintkn

Lebih terperinci

APLIKASI INTEGRAL TENTU

APLIKASI INTEGRAL TENTU APLIKASI INTEGAL TENTU A. Lus Derh Bing t 1. Mislkn erh = x, y x, y f x. Lus? y = f(x) x Lngkh-lngkh: 1. Iris menji n gin ri lus stu uh irisn ihmpiri oleh lus persegi pnjng engn tinggi f(x). ls (ler) x

Lebih terperinci

MATEMATIKA INTEGRAL TENTU DAN LUAS DAERAH

MATEMATIKA INTEGRAL TENTU DAN LUAS DAERAH MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 5 Sesi N INTEGRAL TENTU DAN LUAS DAERAH A. DEFINISI INTEGRAL TENTU Bentuk integrl f d = f + c diseut segi integrl tk tentu kren hsil dri pengintegrlnn msih erup

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika Antiremed Kels 11 Mtemtik Persipn UAS - 0 Doc. Nme: AR11MAT0UAS Version : 016-07 hlmn 1 01. Pd ulngn mtemtik, dikethui nili rt -rt kels dlh 58. Jik rt-rt nili mtemtik untuk sisw priny dlh 65, sedngkn untuk

Lebih terperinci

Definisi Vektor. Vektor adalah besaran yang mempunyai besar dan arah

Definisi Vektor. Vektor adalah besaran yang mempunyai besar dan arah VEKTOR Definisi Vektor Vektor dlh esrn yng mempunyi esr dn rh Besr vektor rtiny pnjng vektor Arh vektor rtiny sudut yng dientuk dengn sumu X positif Vektor disjikn dlm entuk rus gris errh Gmr Vektor B

Lebih terperinci

SIMAK UI DIMENSI TIGA

SIMAK UI DIMENSI TIGA IMK I IMNI I. IMK I Mtemtik I, 00 ikethui blok. di mn = cm, = cm, = cm. Mislkn dlh sudut ntr dn, mk cos.... olusi: []. 0... 00 0 cos 0 cos cos cos. IMK I Mtemtik I, 00 Kubus. mempunyi rusuk cm. itik M

Lebih terperinci

Matematika SKALU Tahun 1978

Matematika SKALU Tahun 1978 Mtemtik SKALU Thun 978 MA-78-0 Persmn c + b + = 0, mempunyi kr-kr dn, mk berlku A. + = b B. + = c C. = c = c = c MA-78-0 Akr dri persmn 5 - = 7 + dlh A. B. C. 4 5 MA-78-0 Hrg dri log b. b log c. c log

Lebih terperinci

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 2015

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 2015 SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPA Pket Pilihlh jwn yng ling tet!. Dierikn remis-remis erikut!. Jik enggun kendrn ermotor ertmh nyk mk kemcetn di rus jln semkin dt.. Kemcetn di rus jln tidk

Lebih terperinci

FISIKA BESARAN VEKTOR

FISIKA BESARAN VEKTOR K-3 Kels X FISIKA BESARAN VEKTOR TUJUAN PEMBELAJARAN Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi pengertin besrn vektor.. Mengusi konsep penjumlhn vektor dengn berbgi metode.

Lebih terperinci

GEOMETRI BIDANG DATAR

GEOMETRI BIDANG DATAR GEOMETRI ING TR. Unsur-Unsur idng tr idng dtr merupkn jek yng sering kit jumpi di lingkungn sekitr, is lingkungn rumh, seklh, tmn, keun dn lin-lin. i dlm lingkungn terseut terdpt ermm-mm end/jek dengn

Lebih terperinci

, 4, 3, 2, 1, 0, 1, 2, 3, 4, (3) Bilangan rasional melibatkan hasil bagi dua bilangan bulat, seperti. 04, tidak termasuk bilangan rasional

, 4, 3, 2, 1, 0, 1, 2, 3, 4, (3) Bilangan rasional melibatkan hasil bagi dua bilangan bulat, seperti. 04, tidak termasuk bilangan rasional Diktt Kulih TK Mtemtik BAB PENDAHULUAN. Sistem Bilngn Rel Terdpt eerp sistem ilngn itu: ilngn sli, ilngn ult, ilngn rsionl, ilngn irrsionl, dn ilngn rel. Msing-msing ilngn itu segi erikut. ) Bilngn sli

Lebih terperinci

PRINSIP DASAR SURVEYING

PRINSIP DASAR SURVEYING POKOK HSN : PRINSIP DSR SURVEYING Metri system, Dsr Mtemtik, Prinsip pengkurn : pengkurn jrk, pengkurn sudut dn pengukurn jrk dn sudut,.. Sistem Ukurn Jrk Unit pling dsr dlm sistem metrik dlh meter, dimn

Lebih terperinci

METODE ANALISIS. Tentukan arus pada masing-masing tahanan dengan menggunakan metode arus cabang untuk rangkaian seperti pada Gambar 1.

METODE ANALISIS. Tentukan arus pada masing-masing tahanan dengan menggunakan metode arus cabang untuk rangkaian seperti pada Gambar 1. 1. Anlisis Arus Cng METODE ANALSS Metode rus ng dlh slh stu metode penyelesin nlisis rngkin il rngkin terdiri dri du tu leih sumer. Pd metode rus ng ini, kn diperoleh rus pd setip ng dri sutu rngkin yng

Lebih terperinci

E-LEARNING MATEMATIKA

E-LEARNING MATEMATIKA MODUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYADIN EKO RAHARJO, M.PD. NIP. 9705 00 00 Penulisn Modul e Lerning ini diiyi oleh dn DIPA BLU UNY TA 00 Sesui dengn Surt Perjnjin Pelksnn e Lerning Nomor

Lebih terperinci

PERSAMAAN KUADRAT. ac 0 p dan q sama tanda. 2. dg. Melengkapkan bentuk kuadrat ( kuadrat sempurna ) :

PERSAMAAN KUADRAT. ac 0 p dan q sama tanda. 2. dg. Melengkapkan bentuk kuadrat ( kuadrat sempurna ) : PERSAMAAN KUADRAT Bb. Bentuk Umum : b c,,, b, c Re l Menyelesikn ersmn kudrt :. dg. Memfktorkn : b c ( )( q) q q = ( q) dimn : b = + q dn c, Jik c dn q berbed tnd c dn q sm tnd. dg. Melengkkn bentuk kudrt

Lebih terperinci

BAB IV METODE ANALISIS RANGKAIAN

BAB IV METODE ANALISIS RANGKAIAN BAB IV METODE ANALISIS RANGKAIAN. Anlisis Arus Cng Anlisis rus cng memnftkn hukum Kirchoff I (KCL) dn hukum Kirchoff I (KVL). Contoh - Tentukn esr rus dlm loop terseut dn gimn rh rusny? Ohm 0V 0V Ohm 0V

Lebih terperinci

VEKTOR. seperti AB, AB, a r, a, atau a.

VEKTOR. seperti AB, AB, a r, a, atau a. VEKTOR I. KOMPETENSI YANG DICAPAI Mhsisw dpt :. Menggmr vektor dengn sistem vektor stun.. Menghitung perklin vektor. 3. Menghitung penmhn vektor dengn turn segitig, turn rn genng, dn turn poligon. 4. Menghitung

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika Antiremed Kels Mtemtik Persipn UAS 0 Doc. Nme: ARMAT0UAS Version : 06-09 hlmn 0. Pd ulngn mtemtik, dikethui nili rt -rt kels dlh 8, Jik rt-rt nili mtemtik untuk sisw priny dlh 6, sedngkn untuk sisw wnit

Lebih terperinci

PEMANTAPAN BELAJAR SMA BBS INTEGRAL

PEMANTAPAN BELAJAR SMA BBS INTEGRAL BAB I PEMANTAPAN BELAJAR SMA BBS INTEGRAL I A RANGKUMAN INTEGRAL. Pengertin Apil terdpt fungsi F() yng dpt didiferensilkn pd selng I sedemikin hingg F () = f(), mk nti turunn (integrl) dri f() dlh F()

Lebih terperinci

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan.

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan. 1. Identits Trigonometri Pengertin Identits Trigonometri dlh kesmn yng memut entuk trigonometri dn erlku untuk semrng sudut yng dierikn. Jenis Identits Trigonometri 1. Identits trigonometri dsr erikut

Lebih terperinci

A. PANGKAT. Materi Pokok BENTUK PANGKAT,AKAR DAN LOGARITMA

A. PANGKAT. Materi Pokok BENTUK PANGKAT,AKAR DAN LOGARITMA Mtemtik SMA Semester B : Bentuk Pngkt,Akr & Logritm Mteri Pokok BENTUK PANGKAT,AKAR DAN LOGARITMA Kometensi Dsr : Menggunkn sift dn turn tentng ngkt, kr dn logritm dlm emechn mslh Kometensi Dsr : Melkukn

Lebih terperinci

E-LEARNING MATEMATIKA

E-LEARNING MATEMATIKA MOUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYAIN EKO RAHARJO, M.P. NIP. 7 Penulisn Modul e Lerning ini diiyi oleh dn IPA BLU UNY TA Sesui dengn Surt Perjnjin Pelksnn e Lerning Nomor./H./PL/ Tnggl Juli

Lebih terperinci

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini: ) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut

Lebih terperinci

DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN

DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN I TU URI HANDA AN TW DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN 009 Irisn Kerucut Mtriks G A O M AT E M A T AK A R Shdiq, M.App.Sc. DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENINGKATAN

Lebih terperinci

RUANG DEMENSI TIGA. C Sumbu Afinitas

RUANG DEMENSI TIGA. C Sumbu Afinitas RUNG EMENSI TIG b. IRISN NGUN RUNG Yng dimksud dengn irisn sutu bidng dengn bngun rung dlh derh yng dibtsi oleh gris potong-gris potong ntr bidng tersebut dengn semu sisi bngun rung yng terpotong oleh

Lebih terperinci

UJIAN BERSAMA SMA KABUPATEN TANAH DATAR SEMESTER 1 TAHUN PELAJARAN 2008/2009. Mata Pelajaran : MATEMATIKA Kelas/jurusan : XII/IPS Hari/Tanggal :

UJIAN BERSAMA SMA KABUPATEN TANAH DATAR SEMESTER 1 TAHUN PELAJARAN 2008/2009. Mata Pelajaran : MATEMATIKA Kelas/jurusan : XII/IPS Hari/Tanggal : UJIN ERSM SM KUPTEN TNH DTR SEMESTER THUN PELJRN / Mt Peljrn : MTEMTIK Kels/jurusn : XII/IPS Hri/Tnggl : Wktu : menit Pilihlh slh stu jwn ng dinggp pling enr dn tept!. d c c c c. Jik F '( ) dn F () mk

Lebih terperinci

Modul Matematika 2012

Modul Matematika 2012 Modul Mtemtik. ANTI TURUNAN Definisi Mislkn fungsi f terdefinisi pd selng teruk I. Fungsi F ng memenuhi F () = f () pd I dinmkn nti turunn tu fungsi primitif dri fungsi f pd I.. F() = cos nti turunn dri

Lebih terperinci

MATERI I : VEKTOR. Pertemuan-01

MATERI I : VEKTOR. Pertemuan-01 MATERI I : VEKTOR Pertemun-0. Pendhulun Definisi Vektor didefinisikn segi esrn yng memiliki rh. Keeptn, gy dn pergesern merupkn ontoh ontoh dri vektor kren semuny memiliki esr dn rh wlupun untuk keeptn

Lebih terperinci

Fungsi f dikatakan pada / onto / surjektif jika setiap elemen himpunan B merupakan

Fungsi f dikatakan pada / onto / surjektif jika setiap elemen himpunan B merupakan III FUNGSI 15 1. Definisi Fungsi Definisi 1 Mislkn dn dlh himpunn. Relsi iner f dri ke merupkn sutu fungsi jik setip elemen di dlm dihuungkn dengn tept stu elemen di dlm. Jik f dlh fungsi dri ke, mk f

Lebih terperinci

MATEMATIKA IPA PAKET B KUNCI JAWABAN SOAL

MATEMATIKA IPA PAKET B KUNCI JAWABAN SOAL MATEMATIKA IPA PAKET KUNCI JAWAAN SOAL. Jwn : Mislkn p: ir sungi jernih q: Tidk terkndung zt pencemr r: Semu ikn tidk mti Diperoleh : Premis : p q Premis : ~r ~q q r Jdi, kesimpuln dri premis-premis terseut

Lebih terperinci

INTEGRAL TAK TENTU. x x x

INTEGRAL TAK TENTU. x x x INTEGRAL TAK TENTU Definisi : Fungsi F diktkn nti turunn dri fungsi f pd selng I jik F () = f() untuk semu di I. Notsi : F() = f() Integrl tk tentu dlh Anti/Invers/Kelikn turunn. c c Integrl tk tentu dlh

Lebih terperinci

HITUNG INTEGRAL ( 4 ) 4. Diketahui f(x) = 4x + 1 dan F(2) = 17 ; Tentukan fungsi F f(x) = 4x + 1

HITUNG INTEGRAL ( 4 ) 4. Diketahui f(x) = 4x + 1 dan F(2) = 17 ; Tentukan fungsi F f(x) = 4x + 1 HITUNG INTEGRA BAB.Integrl tk tentu (tnp ts). Rumus-rumus ) ) n n n d c, n ) d c n n n. d c, n ). Sift-sift Integrl Contoh :... ) k. f ( ) d k. f ( ) d d d ln c ) ( ( ) ( )) ( ) ( ) d c ( ) ( ) d ( ) d

Lebih terperinci

Vektor di R 2 dan R 3

Vektor di R 2 dan R 3 Vektor di R dn R Pengertin Vektor dlh besrn yng mempunyi besr dn rh Vektor digmbrkn oleh rus gris yng dilengkpi dengn nk pnh vektor dimuli dri titik wl (initil point) dn dikhiri oleh titik khir (terminl

Lebih terperinci

RELASI EKUIVALENSI (Minggu ke-12 dan 13)

RELASI EKUIVALENSI (Minggu ke-12 dan 13) ELASI EKUIVALENSI (Minggu ke-1 dn 13) 1. elsi Ekuivlensi. Definisi 1. Dikethui A himpunn tidk kosong. elsi pd A (dri A ke A) diseut refleksif jik untuk setip nggot dri semestny erlku refleksif ( A).. Contoh:

Lebih terperinci

MATEMATIKA. Sesi INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR B. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR TERHADAP SUMBU-X

MATEMATIKA. Sesi INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR B. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR TERHADAP SUMBU-X MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 6 Sesi N INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR Apliksi integrl erikutn dlh menentukn volume end ng memiliki sumu putr. Contoh endn dlh tung,

Lebih terperinci

[RUMUS CEPAT MATEMATIKA]

[RUMUS CEPAT MATEMATIKA] http://meetied.wordpress.com SMAN BoneBone, Luwu Utr, SulSel Keslhn teresr yng diut mnusi dlm kehidupnny dlh terusmenerus mers tkut hw merek kn melkukn keslhn (Elert Hud) [RUMUS CEPAT MATEMATIKA] Vektor

Lebih terperinci

Prestasi itu diraih bukan didapat!!!

Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 00 TIM OLIMPIADE MATEMATIKA INDONESIA 00 Prestsi itu dirih ukn didpt!!! SOLUSI SOAL Bidng Mtemtik Disusun oleh : Olimpide Mtemtik Tk Kupten/Kot 00 BAGIAN PERTAMA.

Lebih terperinci

SUKU BANYAK ( POLINOM)

SUKU BANYAK ( POLINOM) SUKU BANYAK ( POLINOM) B 15 A. PENGERTIAN SUKU BANYAK. Bentuk 1 0 x x x x x, dengn 0 dn n { il. cch } n diseut dengn Suku nyk (Polinomil) dlm x erderjt n ( n dlh pngkt tertinggi dri x),,,., diseut keofisien

Lebih terperinci

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1)

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1) BAB: PENERAPAN INTEGRAL Topik: Volume Bend Putr (Khusus Klkulus ) Kompetensi yng diukur dlh kemmpun mhsisw menghitung volume bend putr dengn metode cincin, metode ckrm, tu metode kulit tbung.. UAS Klkulus,

Lebih terperinci

LIMIT FUNGSI. DEFINISI Notasi. dibaca. limit f(x) bila x mendekati a sama dengan L. atau. f(x) mendekati L bila x mendekati a.

LIMIT FUNGSI. DEFINISI Notasi. dibaca. limit f(x) bila x mendekati a sama dengan L. atau. f(x) mendekati L bila x mendekati a. DEFINISI Notsi dibc tu berrti bhw IMIT FUNGSI it bil mendekti sm dengn mendekti bil mendekti nili dpt dibut sedekt mungkin dengn bil cukup dekt dengn, tetpi tidk sm dengn. Perhtikn bhw dlm deinisi tersebut

Lebih terperinci

Penerapan Diferensial dalam ekonomi

Penerapan Diferensial dalam ekonomi enerpn Diferensil dlm ekonomi ermintn Mrjinl Apil mcm rng mempuni huungn dlm penggunnn, mk permintn ts msing-msing rng kn fungsionl terhdp hrg kedu rng terseut Jik Qd = f(, ) dn Qd = f(, ) mk: Qd ermintn

Lebih terperinci

PEMBAHASAN PERSIAPAN UAS X MATEMATIKA PEMINATAN

PEMBAHASAN PERSIAPAN UAS X MATEMATIKA PEMINATAN PEMBAHASAN PERSIAPAN UAS X MATEMATIKA PEMINATAN Sol Dierikn du vektor segi erikut: Grkn vektor ) ) Jw: ) Untuk enggr vektor, gr dhulu vektor, llu disung dengn vektor Vektor dlh vektor yng pnjngny kli vektor

Lebih terperinci

PREDIKSI UJIAN NASIONAL TAHUN PELAJARAN

PREDIKSI UJIAN NASIONAL TAHUN PELAJARAN PREDIKSI UJIAN NASIONAL TAHUN PELAJARAN - Mt Peljrn Progrm : Mtemtik (MA) : IPA Petunjuk : Pilihlh slh stu jwn yng pling tept!. Dikethui: 5. Dikethui log = dn log = y. Nili log P : Hri tidk hujn tu Rudi

Lebih terperinci

Interpolasi. Umi Sa adah

Interpolasi. Umi Sa adah Interolsi Umi S dh Interolsi Perbedn Interolsi dn Ekstrolsi Interolsi Linier L Interolsi Kudrt L h h Interolsi Qubic L h h h Interolsi dg Polinomil 5 Tble : Si equidistntl sced oints in [- ] 5 -..846

Lebih terperinci

Soal-soal dan Pembahasan Matematika Dasar SBMPTN-SNMPTN 2006

Soal-soal dan Pembahasan Matematika Dasar SBMPTN-SNMPTN 2006 www.purwntowhyudi.com Hl- Sol-sol dn Pemhsn Mtemtik Dsr SBMPTN-SNMPTN 006. Jik > 0, > 0 dn mk A. C. E. B. D. Jw:. Jwnny dlh A. Jik p - dn q -, mk q p. A. C. E. B. D. Jw: q p Jwnny dlh A . Grfik y terletk

Lebih terperinci

FUNGSI TRIGONOMETRI LIMIT FUNGSI

FUNGSI TRIGONOMETRI LIMIT FUNGSI FUNGSI TRIGONOMETRI LIMIT FUNGSI Limit Fungsi. Limit fungsi f() merupkn nili hmpirn dri f() untuk nili mendekti nili tertentu misl. Bentuk umum : Lim f() -> Jik dikethui du uh fungsi f() dn g() msing-msing

Lebih terperinci

3 PANGKAT, AKAR, DAN LOGARITMA

3 PANGKAT, AKAR, DAN LOGARITMA PANGKAT, AKAR, DAN LOGARITMA.. Pngkt Pngkt dri seuh ilngn dlh sutu indeks ng menunjukkn nkn perklin ilngn ng sm secr eruntun. Notsi n errti hw hrus diklikn degn itu sendiri senk n kli. Notsi ilngn erpngkt

Lebih terperinci

Percobaan RANGKAIAN RESISTOR, HUKUM OHM DAN PEMBAGI TEGANGAN. (Oleh : Sumarna, Lab-Elins, Jurdik Fisika FMIPA UNY)

Percobaan RANGKAIAN RESISTOR, HUKUM OHM DAN PEMBAGI TEGANGAN. (Oleh : Sumarna, Lab-Elins, Jurdik Fisika FMIPA UNY) Percon ANGKAIAN ESISTO, HUKUM OHM DAN PEMBAGI TEGANGAN (Oleh : Sumrn, L-Elins, Jurdik Fisik FMIPA UNY) E-mil : sumrn@un.c.id) 1. Tujun 1). Mempeljri cr-cr merngki resistor. 2). Mempeljri wtk rngkin resistor.

Lebih terperinci

VEKTOR. Adri Priadana. ilkomadri.com

VEKTOR. Adri Priadana. ilkomadri.com VEKTOR Adri Pridn ilkomdri.com Pengertin Dlm Fisik dikenl du buh besrn, yitu 1. Besrn Sklr. Besrn Vektor Pengertin Besrn Sklr dlh sutu besrn yng hny mempunyi nili dn dinytkn dengn sutu bilngn tunggl diserti

Lebih terperinci

- - GARIS DAN SUDUT - - tujuh8garis

- - GARIS DAN SUDUT - - tujuh8garis - - GARIS DAN SUDUT - - Modul ini singkron dengn Apliksi Android, Downlod mellui Ply Store di HP Kmu, ketik di pencrin tujuh8gris Jik Kmu kesulitn, Tnykn ke tentor gimn cr downlodny. Apliksi ini erjln

Lebih terperinci

TEORI DEFINITE INTEGRAL

TEORI DEFINITE INTEGRAL definite integrl & lus yog.prihstomo TEORI DEFINITE INTEGRAL Definisi : Jik y = f(x) dlh fungsi kontinu dn terdefinisi dlm intervl tertutup [,] sehingg lim n n i= f ( xi). Δxi d (mempunyi nili), mk definite

Lebih terperinci

BAB VI PEWARNAAN GRAF

BAB VI PEWARNAAN GRAF 85 BAB VI PEWARNAAN GRAF 6.1 Pewrnn Simpul Pewrnn dri sutu grf G merupkn sutu pemetn dri sekumpuln wrn ke eerp simpul (vertex) yng d pd grf G sedemikin sehingg simpul yng ertetngg memiliki wrn yng ered.

Lebih terperinci

UNTUK MENDAPATKAN SOAL PREDIKSI SBMPTN 2015

UNTUK MENDAPATKAN SOAL PREDIKSI SBMPTN 2015 -. UNTUK MENDAPATKAN SOAL PREDIKSI SBMPTN 015 SILAHKAN KLIK KUNJUNGI: WWW.E-SBMPTN.COM Ltihn Sol Fisik 1. Thun hy dlh stun dri... (A) jrk (D) momentum (B) keeptn (E) energi (C) wktu. Stu wtt hour sm dengn...

Lebih terperinci