A B S T R A K. Setiap teori integral selalu memuat masalah sebagai. berikut. Jika untuk setiap n berlaku fungsi f n

Ukuran: px
Mulai penontonan dengan halaman:

Download "A B S T R A K. Setiap teori integral selalu memuat masalah sebagai. berikut. Jika untuk setiap n berlaku fungsi f n"

Transkripsi

1 INTEGRAL TAK MUTLAK

2 A B S T R A K Seti teori itegral selalu memuat masalah sebagai berikut. Jika utuk seti berlaku fugsi f teritegral da barisa fugsi {f } koverge ke f hampir di maa-maa pada selag (a,b), maka syarat cukup akah yag diperluka agar fugsi f juga teritegral pada selag yag sama da 1 i m J b f (t)dt = J b l i m f (t)dt -+ m m Utuk itegral Lebesgue syarat cukup yag dimaksud telah terumuska mejadi bebera betuk, atara lai jika if ) merupaka barisa terdomiasi atau jika fugsi asal Lebesgue f kotiu mutlak seragam pada [a,b). Utuk itegral Hestock syarat cukup yag dimaksud telah terumuska dalam bebera betuk, atara lai jika {f } merupaka barisa koverge terkedali ke f pada lad)) atau If } merupaka barisa terdomiasi. Sekarag masalah tersebut di atas a- ka diteliti utuk itegral tumpat Bulle. Itegral tu mpat Bulle dibagu berdasarka atas pegertia partisi liput peuh tumpat. Liput peuh tumpat merupaka pegitlaktumpata liput peuh. j adi itegral tumpat Bulle merupaka pegitlaktumpata itegral Hestock. Oleh karea itu, setelah meelusuri pegertia dasar pegitlaktumpata, jikalau mugki disusu lebih dahulu betuk itlak tumpat seti pegertia yag berkaita dega itegral Hestock. Sebagai cotoh pegertia limit diitlaktum-

3 2 patka mejadi pegertia limit tumpat, pegertia turua diitlaktumpatka mejadi pegertia turua tumpat, pegertia kekotiua diitlaktumpatka mejadi pegertia kekotiua tumpat, da seterusya. Pegertia-pegertia dalam betuk tumpat seperti itu bayak yag telah dirumuska. Dega Cara yag sama pegertia barisa fugsi koverge seragam dat diitlaktumpatka mejadi pegertia betuk tumpatya yaitu pegertia barisa fugsi koverge tumpat lokal. Dega Cara seperti itu peelitia masalah tersebut di atas dikerjaka. Hasil-hasil peelitia dat dirumuska sebagai berikut. Jika f e R (a,b), yaitu f teritegral tumpat Bulle pada [a,b) utuk seti da {f } koverge ke f hampir di maa-maa pada (a,b], diperoleh tiga pasag rumusa syarat cukup agar f E R (a,b] da e.p 1 i m (R )f b f (t)dt = (R x ) f 1 i m f (t)dt -i m P a a -i m Tiga pasag syarat cukup yag dimaksud teryata ekuivale da masig-masig sebagai berikut : a. (i) { F } koverge tumpat lokal ke F pada [a,b] de (ii) b. (i) da ga F sebagai fugsi asal-r k F e ACG (a,b) seragam. fugsi f, da (iii) Ada barisa himpua tutup {X. } dega [a,b] _ U X, da utuk seti c > 0 da i ada bilaga asli sehigga utuk seti k c (0,1) da

4 3 a k, (i k e X. ( k=1,2,...,p ) dega ak< Ok5 a k«s ada himpua EX [ a k, 0 k ) dega a k, (i k E Ek, k C a(e X ) (1-X)(fl k -a k ) da p k i 0(F m -F ;E k ) < c utuk seti,m.. c. (1) da (iv) Para f palig sedikit mempuyai satu fugsi ma- * yor-p a da satu fugsi mior-p P _ op secara bersama. Selai tiga pasag syarat cukup di atas Juga dat disusu syarat-syarat cukup yag lai, teti masig-masig dat dipadag sebagai akibat salah satu syarat cukup di atas. Di bawah ii ditulis syarat-syarat cukup yag dimaksud. - F E AC[a,b) seragam. - Ada fugsi G,H E C op[a,b) ACG op [a,b) sehigga G(u,v) <_ F (u,v) 5 N(u,v) utuk seti u,v e (a,b) da u < v. k - Ada fugsi g,h e R [a,b1 sehigga g(x) 5 f(x) 5 h(x) hampir di maa-maa pada [a,bl. - fs(x) <_ f i (x) 5 f a (x) 5... hampir di maa-maa pada (a,bl da {F (a,b)} koverge. - ( F } koverge tumpat lokal ke f pada [a,bl. Fugsi f dikataka teritegral-rda p pada [a,b1 jika ada barisa fugsi lagkah (O } yag koverge t...,_4.,.,i.+!i i,., i,,.

5 4 ke f pada tad)), yaitu {0 } koverge ke f hampir at maamaa pada (a,bl da memeuhi kodisi (a). Dega megguaka pegertia itu defiisi tipe Riesz utuk itegral tumpat Bulle dat dirumuska sebagai berikut : Fugsi f teritegral tumpat Sulle pada [a,bl Jika da haya jika f teritegral-rd pada [a,b1 da * b ( R * )Ib f(t)dt = (RD )I f(t)dt a op a

6 A B S T R A C T For every let the fuctio f be itegrable i some sese o [a,b] ad the sequece {id coverget to f almost everywhere o [a,b]. A commo but iterestig problem is to fid sufficiet coditios i order that f will be itegrable o [a,b] ad J b f(t)dt = 1 i m f b f (t)dt. I the a m case of Lebesque"s itegral, several such sets of coditios have bee established, for istace that all the fuctios f are domiated by oe itegralble fuctio or, that all the primitives of 7 are uiformly absolutely cotiuous o [a,b]. I the case of Hestock"s itegral, it is sufficiet that the sequece {i t } coverges i the cotrolled sese or, that all the fuctios are domiated by some itegral fuctio. This dissertatio is cocered with seekig solutios for the above problem i case of the proximately cotiuous itegral of Sulle. This itegral is based o the cocept of a proximately full cover, which is a proximate geeralizatio of a full cover. Therefore Buile"s proximate cotiuous itegral is the proximate geeralizatio of Hestock"s itegral. It is therefore logical that the search for those sufficiet coditios starts with formulatig proximate geeralizatios for cocepts ad otios associated with the Hestock"s itegral ad covergece of fuctios. The ew cocepts iclude : limits, derivatives, primitives,

7 2 cotiuity, absolute cotiuity, local covergece ad cotrolled covergece of fuctios. Let R [a,b] deote the class of all proximately cotiuously itegrable fuctios o [a,b] ad for f e R op [a,b] let CR * )f b f(t)dt be its Bulle itegral over [a,b]. The mai result of this dissertatio ca be formulated as follows. Suppose the sequece of fuctios if 1 a i * fas t)] R coverges almost everywhere o [a,b] to the fuctio f ad for each let F be its Bulle R * -primitive. The, the three followig coditios are equivalet ad are sufficiet to isure that f c R * [a,b] ad (Ra p )f b f(t)dt = 1 i m (R )f b j (t)dt : a -, co (a) (i) the sequece {F } coverges locally proximately to F o [a,b] ad (ii) the fuctios F e ACG * [a,b] uiformly. (b) (1) (ill) ad There is a sequece of closed sets {X.} such that [a,b] = U X, ad for every e > 0 ad i there is a positive iteger, such that for ay X e (0,1) ad a k, (3 k e X (k=1,2,...,p) with a k <(3 k 5 a kts there is a set EXk c [a k,p k ] with a k, (3 k a Ek, N(E ) > (l-x)(rk-ak) ad k

8 3 p E o(fm F ;E k-1 for every,m?.. k ) < e (c) (1) ad ( iv) f have at least oe commo R -major fuctio ad at least oe commo R * -mior fuctio o [a,b]. Furthermore, other sufficiet coditios ca be derived as a corollary of coditio (a), (b), or (c). (d) There exist G,H E C [a,b] ACG [a,b] such that G(u,v) F (u,v) H(u,v) for every u,v e [a,b] ad u < v. (e) There exist 8,h e R * [a,b] such that g(x) f(x) 5 h(x) almost everywhere o [a,b]. (f) f i ( x) 5 f z ( x) f a (x)... almost everywhwre o [a,b] ad the sequece {F (a,b)} is coverget. (g) {F } is locally proximately coverget to / o [a,b]. Based o the above mai results, we may costruct a type Riess defiitio of the proximately cotiuous itegral of Sulle as follows. A fuctio f is said to be RD -itegrable o[a,b] if there exists a sequece of simple up fuctios { 0 } which is proximately cotrolled coverget

9 4 to f o [a,b], i.e., {0, 1 coverges to f almost everywhere o Ca,b] ad satisfies the coditio (a). Usig RD * p-itegral, the Riess type defiitio of the proximately cotiuous itegral of Bulle ca be formalated as follows. A fuctio f is proximately cotiuous itegrable of Bulle o [a,b] if ad oly if f is RD * -itegrable o [a,b] ad (R ).f e f(t)dt = (RD * )f b f(t)dt

10

11

12

13

14

15

16

17

T DAR INTEGRAL TAK MUTLAK

T DAR INTEGRAL TAK MUTLAK INTEGRAL TAK MUTLAK T 515.43 DAR INTEGRAL TAK MUTLAK A B S T R A K Setiap teori integral selalu memuat masalah sebagai berikut. Jika untuk setiap n berlaku fungsi f» terintegral dan barisan fungsi {f n

Lebih terperinci

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 2, No.1, Februari 2013

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 2, No.1, Februari 2013 IfiityJural Ilmiah Program Studi Matematika STKIP Siliwagi Badug, Vol 2, No.1, Februari 2013 KEKONTINUAN FUNGSI PADA RUANG METRIK Oleh: Cece Kustiawa Jurusa Pedidika Matematika FPMIPA UPI, cecekustiawa@yahoo.com

Lebih terperinci

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B.

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B. TUGAS ANALISIS REAL LANJUT NOVEMBER 207 () (a) Jika b > 0, B > 0, da a b < A, buktika ab < ba. Kemudia buktika B a b < a + A b + B < A B. (b) Buktika [ 2 (a + b)] 2 2 (a2 + b 2 ). Kemudia tujukka bahwa

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci

BARISAN DAN DERET. Nurdinintya Athari (NDT)

BARISAN DAN DERET. Nurdinintya Athari (NDT) BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2016/2017 3 Februari 2017 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg Batas

Lebih terperinci

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real:

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real: BARISAN TAK HINGGA Secara umum, suatu barisa dapat diyataka sebagai susua terurut dari bilaga-bilaga real: u 1, u 2, u 3, Barisa tak higga merupaka suatu fugsi dega domai berupa himpua bilaga bulat positif

Lebih terperinci

KEKONVERGENAN BARISAN DI DALAM RUANG

KEKONVERGENAN BARISAN DI DALAM RUANG KEKONVERGENAN BARISAN DI DALAM RUANG FUNGSI KONTINU C[a, b] Firdaus Ubaidillah 1, Soepara Darmawijaya, Ch. Rii Idrati 1 Jurusa Matematika FMIPA Uiversitas Gadjah Mada Yogyakarta e-mail: irdaus_u@yahoo.com

Lebih terperinci

PEMBUKTIAN SIFAT RUANG BANACH PADA B 1/4 (K) Malahayati

PEMBUKTIAN SIFAT RUANG BANACH PADA B 1/4 (K) Malahayati Jural Matematika Muri da Terapa εpsilo Vol. 07, No.01, (2013), Hal. 33 44 PEMBUKTIAN SIFAT RUANG BANACH PADA B 1/4 (K) Malahayati Program Studi Matematika Fakultas Sais da Tekologi UIN Sua Kalijaga Yogyakarta

Lebih terperinci

Modul 1. (Pertemuan 1 s/d 3) Deret Takhingga

Modul 1. (Pertemuan 1 s/d 3) Deret Takhingga Modul. (Pertemua s/d ) Deret Takhigga. Deret Tidak Terhigga. Pembicaraa kita sekarag deret pada umumya. Deret yag bayakya suku tak terbatas disebut deret tak higga, otasi : Masalah pokok pada deret tak

Lebih terperinci

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,

Lebih terperinci

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Fugsi Kompleks (Pertemua XXVII - XXX) Dr. AZ Jurusa Tekik Sipil Fakultas Tekik Uiversitas Brawijaya Pedahulua Persamaa x + 1 = 0 tidak memiliki akar dalam himpua bilaga real. Pertayaaya,

Lebih terperinci

DERET Matematika Industri 1

DERET Matematika Industri 1 DERET TIP FP UB Pokok Bahasa Barisa Deret Deret aritmetik Deret geometrik Deret pagkat dari bilaga-bilaga asli Deret tak berhigga Nilai-ilai limit Deret koverge da deret diverge Uji kovergesi Deret secara

Lebih terperinci

FOURIER Juni 2014, Vol. 3, No. 1, TEOREMA TITIK TETAP PADA RUANG QUASI METRIK TERASING TANPA MENGGUNAKAN SIFAT KEKONTINUAN FUNGSI

FOURIER Juni 2014, Vol. 3, No. 1, TEOREMA TITIK TETAP PADA RUANG QUASI METRIK TERASING TANPA MENGGUNAKAN SIFAT KEKONTINUAN FUNGSI FOURIER Jui 04, Vol. 3, No., 4 6 TEOREMA TITIK TETAP PADA RUANG QUASI METRIK TERASING TANPA MENGGUNAKAN SIFAT KEKONTINUAN FUNGSI Malahayati, Mutia Utami, Program Studi Matematika Fakultas Sais da tekologi

Lebih terperinci

Kalkulus Rekayasa Hayati DERET

Kalkulus Rekayasa Hayati DERET Kalkulus Rekayasa Hayati DERET 1 Isi Bab Pedahulua Barisa tak-higga Deret tak-higga Deret Positif : Uji kekovergea Deret Gati Tada Deret Pagkat Deret Taylor da Maclauri 2 Kompetesi Dasar Setelah megikuti

Lebih terperinci

Himpunan/Selang Kekonvergenan

Himpunan/Selang Kekonvergenan oki eswa (fmipa-itb) Deret Pagkat Kita aka mempelajari beberapa tehik utuk meyajika suatu fugsi f (x) dalam betuk deret pagkat (power series), yaitu meetuka derat pagkat c (x a) sehigga f (x) = c (x a)

Lebih terperinci

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Itegral adalah salah satu kosep petig dalam Matematika yag dikemukaka pertama kali oleh Isac Newto da Gottfried Wilhelm Leibiz pada akhir abad ke-17. Selajutya

Lebih terperinci

BARISAN TAK HINGGA DAN DERET TAK HINGGA

BARISAN TAK HINGGA DAN DERET TAK HINGGA BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { } adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila.. maka fugsi

Lebih terperinci

BAB 1 PENDAHULUAN. dimana f(x) adalah fungsi tujuan dan h(x) adalah fungsi pembatas.

BAB 1 PENDAHULUAN. dimana f(x) adalah fungsi tujuan dan h(x) adalah fungsi pembatas. BAB 1 PENDAHUUAN 1.1 atar Belakag Pada dasarya masalah optimisasi adalah suatu masalah utuk membuat ilai fugsi tujua mejadi maksimum atau miimum dega memperhatika pembatas pembatas yag ada. Dalam aplikasi

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 6 No.1 Juni 2012: 9-16 KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC

Jurnal Matematika Murni dan Terapan Vol. 6 No.1 Juni 2012: 9-16 KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC Jural Matematika Muri da Teraa Vol. 6 No.1 Jui 01: 9-16 KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC Muhammad Ahsar Karim 1 Faisal Yui Yulida 3 [1,,3] PS Matematika FMIPA Uiversitas

Lebih terperinci

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT Jural Matematika UNAND Vol. 4 No. 1 Hal. 12 22 ISSN : 2303 2910 c Jurusa Matematika FMIPA UNAND SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT ENIVA RAMADANI

Lebih terperinci

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1 Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga

Lebih terperinci

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA BAB VI BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { },,,,, adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila,,,..,

Lebih terperinci

Hendra Gunawan. 14 Februari 2014

Hendra Gunawan. 14 Februari 2014 MA20 MATEMATIKA 2A Hedra Guawa Semester II, 203/204 4 Februari 204 Sasara Kuliah Hari Ii 9. Barisa Tak Terhigga Memeriksa kekovergea suatu barisa da, bila mugki, meghitug limitya 9.2 Deret Tak Terhigga

Lebih terperinci

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 <

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 < II. TINJAUAN PUSTAKA 2.1 Keterbagia Secara umum apabila a bilaga bulat da b bilaga bulat positif, maka ada tepat satu bilaga bulat q da r sedemikia sehigga : = +, 0 < dalam hal ii b disebut hasil bagi

Lebih terperinci

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari A ke B kita meuliska f : A

Lebih terperinci

Teorema Nilai Rata-rata

Teorema Nilai Rata-rata Nilai Kus Prihatoso April 27, 2012 Yogyakarta Nilai Suatu Fugsi Masih igatkah ada tetag ilai rata-rata dari sekmpula bilaga? Berapakah ilai rata-rata dari sebayak bilaga y 1, y 2,..., y? Nilai Suatu Fugsi

Lebih terperinci

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0.

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0. PROGRAM STUDI PENDIDIKAN MATEMATIKA FKIP UNMUH PONOROGO SOAL UJIAN TENGAH SEMESTER GENAP TA 03/04 Mata Ujia : Aalisis Real Tipe Soal : REGULER Dose : Dr. Jula HERNADI Waktu : 90 meit Hari, Taggal : Selasa,

Lebih terperinci

MATEMATIKA DISKRIT FUNGSI

MATEMATIKA DISKRIT FUNGSI 1 MATEMATIKA DISKRIT FUNGSI Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL

SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL Riza Febri Yusma Sri Gemawati Asli Sirait *riza_febri@yahoo.com Mahasiswa Program S Matematika Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua Alam Uiveritas

Lebih terperinci

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN Jural Matematika UNAND Vol. 2 No. 2 Hal. 0 6 ISSN : 2303 290 c Jurusa Matematika FMIPA UNAND HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN VIRA AGUSTA, DODI

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 71-76, Agustus 2003, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 71-76, Agustus 2003, ISSN : JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 71-76, Agustus 2003, ISSN : 1410-8518 SYARAT CUKUP AGAR SUATU FUNGSI TERINTEGRAL HENSTOCK MUTLAK DI DALAM RUANG METRIK KOMPAK LOKAL Mauharawati Jurusa Matematika

Lebih terperinci

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang 2 LANDASAN TEORI Ruag Cotoh, Kejadia, da Peluag Percobaa acak adalah suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak dapat diprediksi secara tepat tetapi dapat diketahui semua

Lebih terperinci

Definisi Integral Tentu

Definisi Integral Tentu Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.

Lebih terperinci

Pengertian Secara Intuisi

Pengertian Secara Intuisi Pegertia Secara Ituisi Coba Gambarka grafik fugsi-fugsi berikut.. f ( ) +, pada [0,].. ) pada [0, ] da.. Dari grafik fugsi yag kamu peroleh, apa yag dapat kamu kataka tetag ilai-ilai ketiga fugsi tersebut

Lebih terperinci

Bab 3 Metode Interpolasi

Bab 3 Metode Interpolasi Baha Kuliah 03 Bab 3 Metode Iterpolasi Pedahulua Iterpolasi serig diartika sebagai mecari ilai variabel tergatug tertetu, misalya y, pada ilai variabel bebas, misalya, diatara dua atau lebih ilai yag diketahui

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

ISIAN SINGKAT! 1. Diberikan hasil kali digit digit dari n harus sama dengan 25

ISIAN SINGKAT! 1. Diberikan hasil kali digit digit dari n harus sama dengan 25 head office : Kompleks Sawaga Permai Blok A5 No.1A, Sawaga, Depok 16511 Telp.01-951 1160. cotact perso : 0-878787-1-8585 / 081-8691-10 Bidag Studi Kode Berkas Waktu : Matematika : MA-L01 (solusi) : 90

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Permasalaha peugasa atau assigmet problem adalah suatu persoala dimaa harus melakuka peugasa terhadap sekumpula orag yag kepada sekumpula job yag ada, sehigga tepat satu

Lebih terperinci

ESSENTIALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA [a,b] Jl. Prof. H. Soedarto, S.H. Semarang 50275

ESSENTIALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA [a,b] Jl. Prof. H. Soedarto, S.H. Semarang 50275 ESSENTILLY SMLL RIEMNN SUMS FUNGSI TERINTEGRL HENSTOCK-DUNFORD PD [ab] Solikhi Sumato Siti Khabibah 3 3 Jurusa Matematika FSM Uiversitas Dioegoro Jl Prof H Soedarto SH Semarag 575 solikhi@liveudiacid khabibah_ku@yahoocoid

Lebih terperinci

ESSENTIALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA [a,b]

ESSENTIALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA [a,b] ESSENTILLY SMLL RIEMNN SUMS FUNGSI TERINTEGRL HENSTOCK-UNFOR P [a,b] Solikhi, Sumato, Siti Khabibah 3,,3 Jurusa Matematika FSM Uiversitas ioegoro Jl Prof H Soedarto, SH Semarag 5075 solikhi@liveudiacid,

Lebih terperinci

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar (pengertian) yang akan digunakan dalam. pembahasan penelitian. 2.

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar (pengertian) yang akan digunakan dalam. pembahasan penelitian. 2. II. LANDASAN TEORI Pada bab ii aka diberika beberapa kosep dasar (pegertia) yag aka diguaka dalam pembahasa peelitia 2.1 Ruag Vektor Defiisi 3.1.1 (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da

Lebih terperinci

MATHunesa (Volume 3 No 3) 2014

MATHunesa (Volume 3 No 3) 2014 MATHuesa (Volume 3 No 3) 014 MINIMUM PENUTUP TITIK DAN MINIMUM PENUTUP SISI PADA GRAF KOMPLIT DAN GRAF BIPARTIT KOMPLIT Yessi Riskiada Kusumawardai Program Studi S1 Matematika, Fakultas Matematika da Ilmu

Lebih terperinci

BARISAN DAN DERET. Materi ke 1

BARISAN DAN DERET. Materi ke 1 BARISAN DAN DERET Materi ke 1 Pola Bilaga adalah? Susua bilaga yag disusu meurut atura tertetu. Cotoh : 1. Pola Bilaga Gajil 1, 3, 5,... 2. Pola Bilaga Geap 2, 4, 6,... PERHATIKAN SSNAN BILANGAN DI BAWAH

Lebih terperinci

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Prosidig Semiar Nasioal Matematika da Terapaya 06 p-issn : 0-0384; e-issn : 0-039 PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Liatus

Lebih terperinci

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari A ke B kita meuliska f : A

Lebih terperinci

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1 BARISAN DAN DERET 05//06 Matematika Tekik BARISAN Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 05//06 Matematika Tekik Barisa Tak Higga Secara sederhaa, barisa merupaka

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 BAB XII. SUKU BANYAK A = a Pegertia: f(x) = a x + a x + a x + + a x +a adalah suku bayak (poliom) dega : - a, a, a,.,a, a, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada

BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada 8 BAB III RUANG HAUSDORFF Pada bab ii aka dibahas megeai ruag Hausdorff, kekompaka pada ruag Hausdorff da ruag regular legkap. Pembahasa diawali dega medefiisika Ruag Hausdorff da beberapa sifatya kemudia

Lebih terperinci

Statistika Matematika. Soal dan Pembahasan. M. Samy Baladram

Statistika Matematika. Soal dan Pembahasan. M. Samy Baladram Statistika Matematika Soal da embahasa M Samy Baladram Bab 4 Ubiasedess, Cosistecy, ad Limitig istributios Ubiasedess, Cosistecy, ad Limitig istributios 41 Ekspektasi Fugsi Key oits Ṫeorema 411 Jika T

Lebih terperinci

BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu:

BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu: 4 BAB II LANDASAN TEORI 2.1 Model matematis da tahapa matematis Secara umum tahapa yag harus ditempuh dalam meyelesaika masalah matematika secara umerik da megguaka alat batu komputer, yaitu: 2.1.1 Tahap

Lebih terperinci

GRUP TERURUT PARSIAL PADA MATRIKS SIMETRI BERUKURAN 2 2

GRUP TERURUT PARSIAL PADA MATRIKS SIMETRI BERUKURAN 2 2 Jural LOG!K@, Jilid 7, No, 7, Hal 46-5 ISSN 978 8568 GRU ERURU ARSIAL ADA MARIKS SIMERI BERUKURAN Irmatul Hasaah Uiversitas Islam Negeri Sulta Maulaa Hasauddi Bate Email: irmatulhasaah@uibateacid Abstract:

Lebih terperinci

Supriyadi Wibowo Jurusan Matematika F MIPA UNS

Supriyadi Wibowo Jurusan Matematika F MIPA UNS Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA akultas MIPA, Uiversitas Negeri Yogyakarta, 16 Mei 29 HUBUNGAN ANTARA ORDER DERIVATI- DARI UNGSI f : DENGAN DIMENSI-γ DARI HIMPUNAN RAKTAL Supriyadi

Lebih terperinci

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN KALKULUS Dra. D. L. Crispia Pardede DEA. SARMAG TEKNIK MESIN KALKULUS - SILABUS. Deret Fourier.. Fugsi Periodik.2. Fugsi Geap da Gajil.3. Deret Trigoometri.. Betuk umum Deret Fourier.. Kodisi Dirichlet.6.

Lebih terperinci

TEOREMA WEYL UNTUK OPERATOR HYPONORMAL

TEOREMA WEYL UNTUK OPERATOR HYPONORMAL Jural UJMC, Volume 3, Nomor, Hal. - 6 pissn : 460-3333 eissn : 579-907X TEOREMA WEYL UNTUK OPERATOR HYPONORMAL Guawa Uiversitas Muhammadiyah Purwokerto, gu.oge@gmail.com Abstract This paper aims at describig

Lebih terperinci

Peubah Acak. Peubah Acak Diskrit dan Distribusi Peluang. Peubah Acak. Peubah Acak

Peubah Acak. Peubah Acak Diskrit dan Distribusi Peluang. Peubah Acak. Peubah Acak Peubah Acak Peubah Acak Diskrit da Distribusi Peluag Peubah Acak (Radom Variable): Sebuah keluara umerik yag merupaka hasil dari percobaa (eksperime) Utuk setiap aggota dari ruag sampel percobaa, peubah

Lebih terperinci

Semigrup Matriks Admitting Struktur Ring

Semigrup Matriks Admitting Struktur Ring Semigrup Matriks dmittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIP, Uiversitas Negeri Yogyakarta Email: yatiuy@yahoo.com bstrak Diberika adalah rig komutatif dega eleme satua da adalah

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 SUKU BANYAK A Pegertia: f(x) x + a 1 x 1 + a 2 x 2 + + a 2 +a 1 adalah suku bayak (poliom) dega : - a, a 1, a 2,.,a 2, a 1, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET Pertemua 7. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuaku Tambusai Bagkiag 5. da kekovergeaya 5. DERET Diberika sebuah barisa a, dapat didefeisika barisa bilaga real S N dega S N := N a = a + a 2 +...

Lebih terperinci

Solusi Numerik PDP. ( Metode Beda Hingga ) December 9, 2013. Solusi Numerik PDP

Solusi Numerik PDP. ( Metode Beda Hingga ) December 9, 2013. Solusi Numerik PDP ( Metode Beda Higga ) December 9, 2013 Sebuah persamaa differesial apabila didiskritisasi dega metode beda higga aka mejadi sebuah persamaa beda. Jika persamaa differesial parsial mempuyai solusi eksak

Lebih terperinci

Pendekatan Nilai Logaritma dan Inversnya Secara Manual

Pendekatan Nilai Logaritma dan Inversnya Secara Manual Pedekata Nilai Logaritma da Iversya Secara Maual Moh. Affaf Program Studi Pedidika Matematika, STKIP PGRI BANGKALAN affafs.theorem@yahoo.com Abstrak Pada pegaplikasiaya, bayak peggua yag meggatugka masalah

Lebih terperinci

Mariatul Kiftiah. JurusanMatematika FMIPA Universitas Tanjungpura, Pontianak Jl. A Yani Pontianak ABSTRACT

Mariatul Kiftiah. JurusanMatematika FMIPA Universitas Tanjungpura, Pontianak Jl. A Yani Pontianak ABSTRACT Prosidig Semirata2015 bidag MIPA BKS-PTN Barat Uiversitas Tajugpura Potiaak EKSISTENSI DAN KETUNGGALAN TITIK TETAP DARI PEMETAAN KANNAN DI RUANG MODULAR (THE EXISTENCE AND UNIQUENESS OF A FIXED POINT FOR

Lebih terperinci

BAB III PERUMUSAN PENDUGA DAN SIFAT SIFAT STATISTIKNYA

BAB III PERUMUSAN PENDUGA DAN SIFAT SIFAT STATISTIKNYA BAB III PERUMUSAN PENDUGA DAN SIFAT SIFAT STATISTIKNYA 3. Perumusa Peduga Misalka N adala proses Poisso o omoge pada iterval [, dega fugsi itesitas yag tidak diketaui. Fugsi ii diasumsika teritegralka

Lebih terperinci

KELUARGA EKSPONENSIAL Untuk Memenuhi Tugas Mata Kuliah Statistika Inferensial Dosen Pengampu: Nendra Mursetya Somasih Dwipa, M.Pd

KELUARGA EKSPONENSIAL Untuk Memenuhi Tugas Mata Kuliah Statistika Inferensial Dosen Pengampu: Nendra Mursetya Somasih Dwipa, M.Pd KELUARGA EKSPONENSIAL Utuk Memeuhi Tugas Mata Kuliah Statistika Iferesial Dose Pegampu: Nedra Mursetya Somasih Dwipa, M.Pd Disusu Oleh : V A4 Kelompok. Nuuk Rohaigsih (444009). Rochayati (444000) 3. Siam

Lebih terperinci

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR Dose Pegampu : Darmadi, S.Si, M.Pd Disusu : Kelas 5A / Kelompok 5 : Dia Dwi Rahayu (084. 06) Hefetamala (084. 4) Khoiril Haafi (084. 70) Liaatul Nihayah (084. 74)

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang Masalah

BAB I PENDAHULUAN. A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakag Masalah Struktur alabar adalah suatu himpua yag di dalamya didefiisika suatu operasi bier yag memeuhi aksioma-aksioma tertetu. Gelaggag ( Rig ) merupaka suatu struktur

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu Secara umum persamaa rekursif liier tigkat-k bisa dituliska dalam betuk: dega C 0 0. C 0 x + C 1 x 1 + C 2 x 2 + + C k x k = b, Jika b = 0 maka persamaa rekursif tersebut diamaka persamaa rekursif liier

Lebih terperinci

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum BAB II TEORI DASAR 2.1 Aljabar Liier Defiisi 2. 1. 1 Grup Himpua tak kosog G disebut grup (G, ) jika pada G terdefiisi operasi, sedemikia rupa sehigga berlaku : a. Jika a, b eleme dari G, maka a b eleme

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

Matematika Terapan Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 3

Matematika Terapan Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 3 Matematika Terapa Dose : Zaid Romegar Mair ST. M.Cs Pertemua 3 PROGRAM STUDI TEKNIK INFORMATIKA Jl. Koloel Wahid Udi Lk. I Kel. Kayuara Sekayu 30711 web:www.polsky.ac.id mail: polsky@polsky.ac.id Tel.

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Statistika iferesi merupaka salah satu cabag statistika yag bergua utuk meaksir parameter. Peaksira dapat diartika sebagai dugaa atau perkiraa atas sesuatu yag aka terjadi

Lebih terperinci

1. Ubahlah bentuk kuadrat di bawah ini menjadi bentuk

1. Ubahlah bentuk kuadrat di bawah ini menjadi bentuk OPERASI ALJABAR. Ubahlah betuk kuadrat di bawah ii mejadi betuk ( a b) c 4 8 4 4 0 4. Uraika betuk di bawah ii ( 5)( ) [ ]( )( )( ) [ ]( ) ( ) ( ). Tetuka ilai a, b, da c, jika ( )( 4 )( ) = a b c 6 (

Lebih terperinci

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b.

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b. Didowload dari ririez.blog.us.ac.id HALAMAN 36 37 5. Dega defiisi limit barisa buktika limit berikut ii : a. lim = 0 lim 1 2 + 3 = 0 > 0 h 1 = 2 + 3 0 = 1 2 + 3 1 2 1 2 1 2 < jadi terbukti bahwa lim =

Lebih terperinci

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc.

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc. METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/0 SUGENG00 Copyright 996-98 Dale Caregie & Associates, Ic. Kesalaha ERROR: Selisih atara ilai perkiraa dega ilai eksakilai

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang II. LANDASAN TEORI Pada bab ii aka diberika beberapa istilah, defiisi serta kosep-kosep yag medukug dalam peelitia ii. 2.1 Kosep Dasar Teori Graf Berikut ii aka diberika kosep dasar teori graf yag bersumber

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 010 TIM OLIMPIADE MATEMATIKA INDONESIA 0 Prestasi itu diraih buka didapat!!! SOLUSI SOAL Bidag Matematika Disusu oleh : Eddy Hermato, ST Olimpiade Matematika Tk

Lebih terperinci

HUBUNGAN VARIETY DAN IDEAL RADIKAL SKRIPSI. Oleh : Ambar Mujiarti J2A

HUBUNGAN VARIETY DAN IDEAL RADIKAL SKRIPSI. Oleh : Ambar Mujiarti J2A HUBUNGAN VARIETY DAN IDEAL RADIKAL SKRIPSI Oleh : Ambar Mujiarti J2A 004 003 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS DIPONEGORO SEMARANG 2009

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Defiisi Persamaa diferesial adalah persamaa yag melibatka variabelvariabel tak bebas da derivatif-derivatifya terhadap variabel-variabel bebas. Berikut ii adalah

Lebih terperinci

Bab 2. Sistem Bilangan Real Aksioma Bilangan Real Misalkan adalah himpunan bilangan real, P himpunan bilangan positif dan fungsi + dan.

Bab 2. Sistem Bilangan Real Aksioma Bilangan Real Misalkan adalah himpunan bilangan real, P himpunan bilangan positif dan fungsi + dan. Bab Sistem Bilaga Real.. Aksioma Bilaga Real Misalka adalah himpua bilaga real, P himpua bilaga positif da fugsi + da. dari ke da asumsika memeuhi aksioma-aksioma berikut: Aksioma Lapaga Utuk semua bilaga

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN

Lebih terperinci

Deret Fourier. Modul 1 PENDAHULUAN

Deret Fourier. Modul 1 PENDAHULUAN Modul Deret Fourier Prof. Dr. Bambag Soedijoo P PENDAHULUAN ada modul ii dibahas masalah ekspasi deret Fourier Sius osius utuk suatu fugsi periodik ataupu yag diaggap periodik, da dibahas pula trasformasi

Lebih terperinci

Deret dan Aproksimasi. Deret MacLaurin Deret Taylor

Deret dan Aproksimasi. Deret MacLaurin Deret Taylor Deret da Aproksimasi Deret MacLauri Deret Taylor Tujua Keapa perlu perkiraa? Perkiraa dibetuk dari ugsi palig sederhaa polyomial. Kita bisa megitegrasika da medieresiasi dega mudah. Kita bisa guaka saat

Lebih terperinci

Sistem Bilangan Kompleks (Bagian Ketiga)

Sistem Bilangan Kompleks (Bagian Ketiga) Sistem Bilaga Kompleks (Bagia Ketiga) Supama Jurusa Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemua Miggu III) Outlie 1 Akar Bilaga Kompleks 2 Akar

Lebih terperinci

II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4)

II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4) 3 II LANDASAN TEORI 2.1 Peubah Kompleks da Fugsi Kompleks Sebuah bilaga kompleks dapat diyataka dalam betuk z = x + jy, (2.1) dega x da y adalah bilaga-bilaga real da j = 1. Bilaga x disebut bagia real

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA.1 Ruag Cotoh, Kejadia da Peluag Defiisi.1 (Ruag cotoh da kejadia) Suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak bisa diprediksi secara tepat tetapi

Lebih terperinci

PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN

PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN DALAM SUATU MODEL NON-LINIER Abstrak Nur ei 1 1, Jurusa Matematika FMIPA Uiversitas Tadulako Jl. Sukaro-Hatta Palu,

Lebih terperinci

LANGKAH-LANGKAH PENENTUAN SUATU BARISAN SEBAGAI SUATU GRAFIK DENGAN DASAR TEOREMA HAVEL-HAKIMI. Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang.

LANGKAH-LANGKAH PENENTUAN SUATU BARISAN SEBAGAI SUATU GRAFIK DENGAN DASAR TEOREMA HAVEL-HAKIMI. Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang. LANGKAH-LANGKAH PENENTUAN SUATU BARISAN SEBAGAI SUATU GRAFIK DENGAN DASAR TEOREMA HAVEL-HAKIMI Erly Listiyaa, Susilo Hariyato 2 da Lucia Ratasari 3, 2, 3 Jurusa Matematika FMIPA UNDIP Jl. Prof. H. Soedarto,

Lebih terperinci

METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT

METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT METODE NUMERIK TKM4104 Kuliah ke- DERET TAYLOR DAN ANALISIS GALAT DERET TAYLOR o Deret Taylor adalah alat yag utama utuk meuruka suatu metode umerik. o Deret Taylor bergua utuk meghampiri ugsi ke dalam

Lebih terperinci

DERET DAN APROKSIMASI

DERET DAN APROKSIMASI DERET DAN APROKSIMASI D E R E T M A C L A U R I N D E R E T T A Y L O R COURTESY: IDRIS M. KAMIL DAN ROFIQ IQBAL TUJUAN Keapa perlu perkiraa? Perkiraa dibetuk dari ugsi palig sederhaa polyomial. Kita bisa

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

SUBGELANGGANG KOMUTATIF MAKSIMAL DARI GELANGGANG POLINOM MIRING

SUBGELANGGANG KOMUTATIF MAKSIMAL DARI GELANGGANG POLINOM MIRING SUBGELANGGANG KOMUTATIF MAKSIMAL DARI GELANGGANG POLINOM MIRING Prof. Dr. Amir Kamal Amir, M.Sc Dra. Nur Erawaty, M.Si Filawati, S.Si Jurusa Matematika, Fakultas Matemetika da Ilmu Pegetahua Alam, Uiversitas

Lebih terperinci

Beberapa Sifat Semigrup Matriks Atas Daerah Integral Admitting Struktur Ring 1

Beberapa Sifat Semigrup Matriks Atas Daerah Integral Admitting Struktur Ring 1 Beberapa Sifat Semigrup Matriks Atas Daerah Itegral Admittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIPA, Uiversitas Negeri Yogyakarta Email: yatiuy@yahoo.com Abstrak Diberika adalah daerah

Lebih terperinci

Gambar 1. Partisi P dari empat persegi panjang R = [a, b] x [c, d] adalah dua himpunan i i

Gambar 1. Partisi P dari empat persegi panjang R = [a, b] x [c, d] adalah dua himpunan i i INTEGAL LIPAT. Itegral Lipat Dua dalam Koordiat Kartesius Pada bagia ii, dipelajari itegral lipat dua dalam. Misalka diketahui dua iterval tertutup [a, b] da [c, d]. Hasil kali kartesius dari kedua iterval

Lebih terperinci

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy BAB III PEMBAHASAN Pada BAB III ii aka dibahas megeai betuk program liear fuzzy dega koefisie tekis kedala berbetuk bilaga fuzzy da pembahasa peyelesaia masalah optimasi studi kasus pada UD FIRDAUS Magelag

Lebih terperinci