Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Uji Deret Positif. Ayundyah. Uji Integral. Uji Komparasi. Uji Rasio.

Ukuran: px
Mulai penontonan dengan halaman:

Download "Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Uji Deret Positif. Ayundyah. Uji Integral. Uji Komparasi. Uji Rasio."

Transkripsi

1 Uji Uji Deret Kesumawati Prodi Statistika FMIPA-UII April 29, 2015

2 Uji Deret Uji Deret yang mempunyai suku-suku positif menjadi bahasan pada uji integral ini. Uji integral ini menggunakan ide dimana suatu integral didefinisikan melalui bentuk jumlahan. Memang, kedua notasi Σ dan ini mempunyai kaitan yang erat. Teorema Jika a k = f (k) dimana f (x) fungsi positif, kontinu dan turun pada x 1 maka kedua ekspresi berikut a k dan 1 f (x)dx sama-sama konvergen atau sama-sama divergen

3 Bukti Perhatikan ilustrasi grafik berikut ini Uji Figure: Jumlah Atas dan Bawah Luas Persegipanjang

4 Uji Luas persegipanjang pada gambar di atas adalah L1 = A1, L2 = A2,..., LN = A n 1 Luas persegipanjang pada gambar dibawah adalah A1 = a1, A2 = a2,..., AN = an Luas daerah yang dibatasi oleh kurva y = f (x) dari x = 1 sampai dengan x = n adalah I n = n 1 f (x)dx Dari ketiga luasan tersebut berlaku hubungan A1 + A2 + A An I n L1 + L2 + L Ln a 2 + a 3 + a a n I n a 1 + a 2 + a 3 + a a n 1

5 Uji Jadi, S n a 1 I n S n a n (1) Misalkan integral 1 f (x)dx < (konvergen), maka berdasarkan persamaan di atas didapatkan dan S = 1 f (x)dx := lim n I n lim n S n a 1 a k := lim n S n 1 f (x)dx + a 1 <

6 Uji Sebaliknya, jika deret a k konvergen maka lim n a n = 0 dan berdasarkan (3.1) diperoleh 1 f (x)dx := lim n I n lim n (S n a n ) = S 0 < Selanjutnya, kedivergenan kedua ekspresi ini juga didasarkan pada ketidaksamaan (3.1) dan dapat dilakukan dengan cara yang sama seperti diatas.

7 Uji Contoh Lakukan uji integral untuk melihat bahwa deret S = 1 k divergen. Penyelesaian Diambil f (x) := 1 x, x 1. Fungsi f (x) kontinu, positif dan turun pada x 1 dan f (k) = 1 k. Selanjutnya, 1 f (x)dx = 1 1 x dx = lnx 1 = ln ln1 = (divergen) Deret S = 1 k disebut Deret Harmonik. Lebih umum, deret harmonik diperumum menjadi Deret-p,

8 Uji Contoh Tentukan harga p agar deret-p berikut S = konvergen. Penyelesaian 1 k p Diambil f (x) = 1 x p, x 1. Fungsi f (x) kontinu, positif, turun pada x 1 dan f (k) = 1 k. Telah diperoleh pada Bab Integral p Tak Wajar bahwa x p dx = p 1, p > 1 divergen, p 1 Oleh karena itu deret S = 1 k p konvergen untuk p > 1

9 Uji Jika diperhatikan pada integral diatas maka Integral dimulai dari x = 1. Dalam kasus batas ini lebih dari 1 maka teorema ini tetap berlaku. Untk kasus ini kita harus menentukan nilai b > 1 sehingga fungsi f (x) positif, kontinu dan turun untuk x > b. Secara sederhana hasil ini dikaitkan pada kenyataan bahwa kekonvergenan suatu deret tidak ditentukan oleh sejumlah berhingga suku-suku awal tapi ditentukan oleh takberhingga banyak suku-suku dibelakangnya.

10 Uji Contoh Ujilah kekonvergenan deret berikut Σ k, dan jika ek/5 konvergen hitunglah jumlahnya secara aproksimasi. Penyelesaian Bila diambil fungsi f (x) = x maka fungsi ini positif dan e x/5 kontinu untuk x > 0. Tetapi sifat turunnya belum dapat dipastikan.

11 Diperhatikan grafiknya pada gambar berikut Uji Figure: Grafik Fungsi f(x)

12 Uji Berdasarkan gambar tersebut, fungsi f (x) = pada awalnya e x/5 naik kemudian turun terus. Untuk memastikan titik dimana fungsi mulai turun, digunakan materi pada kalkulus elementer, f turun jika dan hanya jika f (x) < 0. ( ) 1 f (x) = e x/5 x 5 e x/5 < 0 e x/5 (1 x/5) < 0 x

13 Uji Karena e x/5 0 maka diperoleh harga nolnya, (1 x/5) = 0 x = 5. jadi fungsi f (x) turun untuk x > 5. Selanjutnya, kekonvergenan deret diperiksa dengan menghitung integral tak wajar. 5 xe x/5 dx Dengan menggunakan definisi integral tak wajar, dan teknik integrasi parsial diperoleh

14 Uji 5 T xe x/5 dx = lim xd( 5e x/5 ) T 5 ( = lim 5xe x/5 T 5 T = lim T ( 5xe x/5 25e x/5 ) T 5 5 ) 5e x/5 dx = lim T ( 5Te T /5 25e T /5 + 25e e 1 ) T + 5 = 5 lim + lim 50 T T e = 5 lim T e T / et /5 e = e < Karena integral tak wajat ini konvergen maka disimpulkan deret di atas juga konvergen

15 Uji Uji Deret Uji ada dua macam uji komparasi, yaitu uji komparasi langsung dan uji limit komparasi Ide pada uji ini adalah membandingkan suatu deret dengan deret lain yang konvergen, juga dengan deret lain yang divergen.

16 Uji Uji Deret Uji Misalkan ada dua deret tak berhingga a k dan b k dengan 0 a k b k untuk setiap k N, N suatu bilangan asli. i. Jika deret b k konvergen maka deret a k konvergen ii. Jika deret a k divergen maka deret b k divergen

17 Uji Bukti i. Karena b k konvergen maka b k <. Selanjutnya a k = N 1 a k + a k N 1 a k + b k < (2) yang berarti deret a k konvergen

18 Uji ii. Karena a k divergen dan a k 0 maka a k = sehingga a k = k=n Akhirnya didapat, b k = N 1 b k + N 1 a k a k = (3) b k k=n = N 1 N 1 b k + a k (4) k=n b k + = (5) yang berarti deret b k divergen

19 Uji Untuk menggunakan uji ini dibutuhkan deret lain sebagai pembanding. pekerjaan memilih deret yangtepat yang akan digunakan sebagai bahan perbandingan tidaklah sederhana, sangat bergantung dari pengalaman. Namun dua deret penting yaitu deret p dan deret geometri sering digunakan sebagai deret pembanding. Contoh Ujilah kekonvergenan deret k (k + 2)2 k

20 Uji Penyelesaian a k = k (k + 2)2 k = k k + 2 ( ) 1 k 2 ( ) 1 k 2 ( ) 1 k m Diambil b k =. Diperhatikan bahwa ( ) 1 k 2 2 merupakan deret geometri yang konvergen sebab r = 1/2. jadi, deret k juga konvergen. Dengan menggunakan (k + 2)2k pendekatan numerik diperoleh jumlah deret secara aproksimasi adalah 0,4548 (Silahkan cek)

21 Uji Latihan Gunakan uji integral untuk mengetahui kekonvergenan deret di bawah ini. Bila konvergen, tentukan nilai untuk aproksimasi jumlahnya 1. k=2 2. k=2 1 (2 + 3k) 2. lnk k.

22 Uji Deret Uji Limit Misalkan a k > 0 dan b k > 0 untuk k cukup besar, diambil a k I := lim k b k Jika 0 < L < maka kedua deret a k dan b k sama-sama konvergen atau sama-sama divergen. Untuk melakukan uji ini dalam menguji kekonvergenan deret a k dilakukan prosedur sebagai berikut: 1. Temukan deret b k yang sudah diketahui sifat kekonvergenannya, dan bentuk suku-sukunya b k mirip dengan a k a k 2. Hitunglah limit L = lim k, pastikan nilainya positif. b k 3. Sifat kekonvergenan deret a k akan sama dengan deret b k

23 Uji Dalam kasus dimana L = 0 maka pengujian dengan alat ini dinyatakan gagal, sehingga harus dilakukan dengan uji yang lain. Latihan Lakukan uji komparasi limit untuk mengetahui sifat kekonvergenan deret, nila konvergen, hitunglah jumlahnya secara aproksimasi a. b. 3k + 2 k(3k 5) 1 k k c. 1 2k + 3 d. 1 kk 2

24 Uji Deret Uji Secara intuitif, deret a k dengan suku-suku positif akan konvergen jika kekonvergenan barisan a k ke nol cukup cepat. Bandingkan kedua deret ini 1 k dan 1 k 2 Telah diketahui bahwa deret pertama divergen sedangkan deret kedua konvergen. Faktanya, kekonvergenan barisan 1 k 2 menuju nol lebih cepat dari barisan 1 k. Selain daripada itu, untuk mengukur kecepatan konvergensi ini dapat diperhatikan pola rasio a k+1 /a k untuk k cukup besar. Ide ini merupakan dasar pembentukan uji rasio, seperti pada teorema berikut ini

25 Uji Teorema Diberikan deret a k dengan a k > 0, dan dihitung L = lim k a k+1 a k diperoleh hasil pengujian sebagai berikut: 1 Jika L < 1 maka deret a k konvergen 2 Jika L > 1 atau L = maka deret a k divergen 3 L = 1 maka pengujian gagal (tidak dapat diambil kesimpulan) Contoh Dengan menggunakan uji rasio, ujilah kekonvergenan deret berikut k k k!

26 Uji Penyelesaian Karena a k = kk k! k k L = lim k k! = lim k = lim k = lim k maka diperoleh (k + 1) k+1 (k + 1)! k k k! (k + 1) k k k (k + 1) k+1 k k = lim k (k + 1)! k! (k + 1) k = lim k k k ( k ) k = e 2, 7183

27 Uji Latihan Dengan menggunakan uji rasio, ujilah kekonvergenan deret berikut k 2 2 k

28 Uji Deret Uji Pada bahasan sebelumnya kita dapatkan bahwa lim k a k = 0 belumlah menjamin bahwa deret konvergen, karena dapat saja deret tersebut divergen. Pada uji akar ini akan dilihat kekonvergenan deret melalui suku-suku k a k. Teorema Diberikan deret a k dengan a k 0 dan dihitung L = lim k k ak diperoleh hasil pengujian sebagai berikut: 1 Jika L < 1 maka deret a k konvergen 2 Jika L > 1 atau L = maka deret a k divergen 3 L = 1 maka pengujian gagal (tidak dapat diambil kesimpulan)

29 Uji Latihan Gunakan uji akar untuk mengetahui apakah deret ( ) k 2 k konvergen. Bila konvergen, aproksimasikan jumlahnya.

30 Uji Pemilihan uji merupakan masalah tersendiri yang juga membutuhkan pengalaman agar tepat memilih uji mana yang akan dipakai. Namun, dari beberapa contoh sebelumnya, uji rasio lebih cocok digunakan pada deret yang suku-sukunya memuat eksponen dan faktorial. Sedangkan uji akar lebih cocok untuk deret dengan suku-suku memaut pangkat k.

31 Uji Latihan Gunakan uji rasio atau uji akar untuk mengetahui kekonvergenan deret dibawah ini, jika konvergen hitung nilainya. a. b. c. ) k ( k 3k + 1 ( k 5 ) ( k! 2 k k! )

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Deret Tak Terhingga. Ayundyah. Barisan Tak Hingga. Deret Tak Terhingga

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Deret Tak Terhingga. Ayundyah. Barisan Tak Hingga. Deret Tak Terhingga Kesumawati Prodi Statistika FMIPA-UII April 29, 2015 Akar Barisan a 1, a 2, a 3, a 4,... adalah susunan bilangan-bilangan real yang teratur, satu untuk setiap bilangan bulat positif. adalah fungsi yang

Lebih terperinci

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +

Lebih terperinci

Modul KALKULUS MULTIVARIABEL II

Modul KALKULUS MULTIVARIABEL II Modul KALKULUS MULTIVARIABEL II Oleh Ayundyah Kesumawati, S.Si., M.Si. (Program Studi Statistika) FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ISLAM INDONESIA 26 Daftar Isi Daftar Isi iv Daftar

Lebih terperinci

DERET TAK HINGGA. Contoh deret tak hingga :,,, atau. Barisan jumlah parsial, dengan. Definisi Deret tak hingga,

DERET TAK HINGGA. Contoh deret tak hingga :,,, atau. Barisan jumlah parsial, dengan. Definisi Deret tak hingga, DERET TAK HINGGA Contoh deret tak hingga :,,, atau. Barisan jumlah parsial, dengan Definisi Deret tak hingga,, konvergen dan mempunyai jumlah S, apabila barisan jumlah jumlah parsial konvergen menuju S.

Lebih terperinci

Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan

Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan 4 BARISAN TAK HINGGA DAN DERET TAK HINGGA JUMLAH PERTEMUAN : 5 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan kekonvergenan

Lebih terperinci

MODUL RESPONSI MAM 4222 KALKULUS IV

MODUL RESPONSI MAM 4222 KALKULUS IV MODUL RESPONSI MAM 4222 KALKULUS IV Mata Kuliah Wajib 2 sks untuk mahasiswa Program Studi Matematika Oleh Dr. WURYANSARI MUHARINI KUSUMAWINAHYU, M.Si. PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS

Lebih terperinci

Pertemuan ke-10: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR

Pertemuan ke-10: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR Pertemuan ke-0: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR Departemen Matematika FMIPA IPB Bogor, 205 (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, 205

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1 Ringkasan Kalkulus 2, Untuk dipakai di ITB Deret Tak Hingga Pada bagian ini akan dibicarakan penjumlahan berbentuk a +a 2 + +a n + dengan a n R Sebelumnya akan dibahas terlebih dahulu pengertian barisan

Lebih terperinci

Barisan dan Deret Agus Yodi Gunawan

Barisan dan Deret Agus Yodi Gunawan Barisan dan Deret Agus Yodi Gunawan Barisan. Definisi. Barisan tak hingga adalah suatu fungsi dengan daerah asalnya himpunan bilangan bulat positif dan daerah kawannya himpunan bilangan real. Notasi untuk

Lebih terperinci

Definisi 1 Deret Tak Hingga adalah suatu ekspresi yang dapat dinyatakan dalam bentuk:

Definisi 1 Deret Tak Hingga adalah suatu ekspresi yang dapat dinyatakan dalam bentuk: DERET TAK HINGGA Definisi 1 Deret Tak Hingga adalah suatu ekspresi yang dapat dinyatakan dalam bentuk: u k = u 1 + u 2 + u 3 + + u k + Bilangan-bilangan u 1, u 2, u 3, disebut suku-suku dalam deret tersebut.

Lebih terperinci

MA1201 KALKULUS 2A Do maths and you see the world

MA1201 KALKULUS 2A Do maths and you see the world Catatan Kuliah MA20 KALKULUS 2A Do maths and you see the world disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 203 Catatan kuliah ini ditulis

Lebih terperinci

SATUAN ACARA PERKULIAHAN ( KALKULUS II ) Pengesahan. Nama Dokumen : SATUAN ACARA PERKULIAHAN KALKULUS II

SATUAN ACARA PERKULIAHAN ( KALKULUS II ) Pengesahan. Nama Dokumen : SATUAN ACARA PERKULIAHAN KALKULUS II Pengesahan Nama Dokumen : KALKULUS II No Dokumen : No ISO 91:28/IWA 2 1dari 6 Diajukan oleh Imelda Saluza, S.Si.,M.Sc (Dosen Pengampu) Diperiksa oleh Ir. Dedi Hermanto, MT (GPM) Disetujui oleh Lastri Widya

Lebih terperinci

Deret Binomial. Ayundyah Kesumawati. June 25, Prodi Statistika FMIPA-UII. Ayundyah (UII) Deret Binomial June 25, / 14

Deret Binomial. Ayundyah Kesumawati. June 25, Prodi Statistika FMIPA-UII. Ayundyah (UII) Deret Binomial June 25, / 14 Deret Binomial Ayundyah Kesumawati Prodi Statistika FMIPA-UII June 25, 2015 Ayundyah (UII) Deret Binomial June 25, 2015 1 / 14 Pendahuluan Deret Binomial Kita telah mengenal Rumus Binomial. Untuk bilangan

Lebih terperinci

Dwi Lestari, M.Sc: Konvergensi Deret 1. KONVERGENSI DERET

Dwi Lestari, M.Sc: Konvergensi Deret   1. KONVERGENSI DERET 1. KONVERGENSI DERET Suatu barisan disebut konvergen jika terdapat bilangan Z yang setiap lingkungannya memuat semua. Jika bilangan Z itu ada maka dapat ditulis: lim sehingga dapat dikatakan bahwa barisan

Lebih terperinci

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use INTISARI KALKULUS 2 Penyusun: Drs. Warsoma Djohan M.Si. Program Studi Matematika - FMIPA Institut Teknologi Bandung Januari 200 Pengantar Kalkulus & 2 merupakan matakuliah wajib tingkat pertama bagi semua

Lebih terperinci

BARISAN DAN DERET. Nurdinintya Athari (NDT)

BARISAN DAN DERET. Nurdinintya Athari (NDT) BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun oleh berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan,

Lebih terperinci

Deret Pangkat. Ayundyah Kesumawati. June 23, Prodi Statistika FMIPA-UII

Deret Pangkat. Ayundyah Kesumawati. June 23, Prodi Statistika FMIPA-UII Keonvergenan Kesumawati Prodi Statistia FMIPA-UII June 23, 2015 Keonvergenan Pendahuluan Kalau sebelumnya, suu suu pada deret ta berujung berupa bilangan real maa ali ini ita embangan suu suunya dalam

Lebih terperinci

Dari contoh di atas fungsi yang tak diketahui dinyatakan dengan y dan dianggap

Dari contoh di atas fungsi yang tak diketahui dinyatakan dengan y dan dianggap BAB II TINJAUAN PUSTAKA A. Persamaan Diferensial Definisi 2.1 Persamaan diferensial Persamaan diferensial adalah suatu persamaan yang memuat variabel bebas, variabel tak bebas, dan derivatif-derivatif

Lebih terperinci

Turunan. Ayundyah Kesumawati. January 8, Prodi Statistika FMIPA-UII. Ayundyah Kesumawati (UII) Turunan January 8, / 15

Turunan. Ayundyah Kesumawati. January 8, Prodi Statistika FMIPA-UII. Ayundyah Kesumawati (UII) Turunan January 8, / 15 Turunan Ayundyah Kesumawati Prodi Statistika FMIPA-UII January 8, 2015 Ayundyah Kesumawati (UII) Turunan January 8, 2015 1 / 15 Sub Materi Turunan : a. Turunan Fungsi b. Turunan Tingkat Tinggi c. Teorema

Lebih terperinci

BAB IV REDUKSI BIAS PADA PENDUGAAN

BAB IV REDUKSI BIAS PADA PENDUGAAN BAB IV REDUKSI BIAS PADA PENDUGAAN 4.1. Asimtotik Orde-2 Berdasarkan hasil simulasi pada Helmers dan Mangku (2007) kasus kernel seragam, aproksimasi asimtotik orde pertama pada ragam dan bias, gagal memprediksikan

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN LIMIT DAN KEKONTINUAN Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 37 Topik Bahasan 1 Limit Fungsi 2 Hukum Limit 3 Kekontinuan Fungsi (Departemen

Lebih terperinci

II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan

II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Differential Equation Fungsi mendeskripsikan bahwa nilai variabel y ditentukan oleh nilai variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. September 12, Dosen FMIPA - ITB

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. September 12, Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. September 12, 2011 Teorema 11 pada Bab 3 memberi kita cara untuk menyelidiki kekonvergenan sebuah barisan tanpa harus mengetahui

Lebih terperinci

BARISAN BILANGAN REAL

BARISAN BILANGAN REAL BAB 2 BARISAN BILANGAN REAL Di sekolah menengah barisan diperkenalkan sebagai kumpulan bilangan yang disusun menurut pola tertentu, misalnya barisan aritmatika dan barisan geometri. Biasanya barisan dan

Lebih terperinci

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB September 26, 2011

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB   September 26, 2011 (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. September 26, 2011 Diberikan sejumlah terhingga bilangan a 1,..., a N, kita dapat menghitung jumlah a 1 + + a N. Namun,

Lebih terperinci

MATEMATIKA BISNIS DERET. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen

MATEMATIKA BISNIS DERET. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen MATEMATIKA BISNIS Modul ke: DERET Fakultas Ekonomi Bisnis Muhammad Kahfi, MSM Program Studi Manajemen http://www.mercubuana.ac.id Konsep Barisan (sequence) adalah suatu susunan bilangan yang dibentuk menurut

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : KALKULUS III (3 SKS) KODE: MT315. (1) (2) (3) (4) (5) (6) (7) (8) (9) Purcell, hal atau lebih:

SATUAN ACARA PERKULIAHAN MATA KULIAH : KALKULUS III (3 SKS) KODE: MT315. (1) (2) (3) (4) (5) (6) (7) (8) (9) Purcell, hal atau lebih: SATUAN ACARA PERKULIAHAN MATA KULIAH : KALKULUS III (3 SKS) KODE: MT315 Mg Ke- Pokok & Sub Pokok Bahasan Tujuan Instruksional Umum (TIU) Tujuan Instruksional Khusus (TIK) Materi & Pendekatan Media Tes

Lebih terperinci

Fungsi Gamma dan Fungsi Beta. Ayundyah. Ayundyah Kesumawati. Prodi Statistika FMIPA-UII. March 31, 2015

Fungsi Gamma dan Fungsi Beta. Ayundyah. Ayundyah Kesumawati. Prodi Statistika FMIPA-UII. March 31, 2015 Fungsi Kesumawati Prodi Statistika FMIPA-UII March 31, 215 Gamma Fungsi Fungsi Gamma didefinisikan sebagai integral tak wajar berikut: Γ(α) := e x x α 1 dx (1) Integral ini konvergen bila α >. Dengan menerapkan

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah menengah barisan diperkenalkan sebagai kumpulan bilangan yang disusun menurut "pola" tertentu, misalnya barisan aritmatika dan barisan geometri. Biasanya barisan dan

Lebih terperinci

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK 3. Perumusan Penduga Misalkan N adalah proses Poisson non-homogen pada interval 0, dengan fungsi intensitas yang tidak diketahui. Fungsi intensitas

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah menengah barisan diperkenalkan sebagai kumpulan bilangan yang disusun menurut "pola" tertentu, misalnya barisan aritmatika dan barisan geometri. Biasanya barisan dan

Lebih terperinci

16. BARISAN FUNGSI. 16.1 Barisan Fungsi dan Kekonvergenan Titik Demi Titik

16. BARISAN FUNGSI. 16.1 Barisan Fungsi dan Kekonvergenan Titik Demi Titik 16. BARISAN FUNGSI 16.1 Barisan Fungsi dan Kekonvergenan Titik Demi Titik Bila pada bab-bab sebelumnya kita membahas fungsi sebagai sebuah objek individual, maka pada bab ini dan selanjutnya kita akan

Lebih terperinci

URAIAN POKOK-POKOK PERKULIAHAN

URAIAN POKOK-POKOK PERKULIAHAN Pertemuan ke-: 10, 11, dan 12 Penyusun : Kosim Rukmana Materi: Barisan Bilangan Real 7. Barisan dan Limit Barisan 6. Teorema Limit Barisan 7. Barisan Monoton URAIAN POKOK-POKOK PERKULIAHAN 7. Barisan dan

Lebih terperinci

BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR

BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR 3 BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR 4.. Sebaran asimtotik dari,, Teorema 4. ( Normalitas Asimtotik

Lebih terperinci

RINGKASAN MATERI UN SMA

RINGKASAN MATERI UN SMA RINGKASAN MATERI UN SMA - 2016 EKSPONEN DAN LOGARITMA (3 SOAL) PROGRAM LINEAR (1 SOAL) PERSAMAAN KUADRAT DAN FUNGSI KUADRAT (3 SOAL) A. PERSAMAAN KUADRAT (P.K) Bentuk Umum ax 2 + bx + c = 0 Penyelesaian

Lebih terperinci

4 DIFERENSIAL. 4.1 Pengertian derivatif

4 DIFERENSIAL. 4.1 Pengertian derivatif Diferensial merupakan topik yang cukup 'baru' dalam matematika. Dimulai sekitar tahun 1630 an oleh Fermat ketika menghadapi masalah menentukan garis singgung kurva, dan juga masalah menentukan maksimum

Lebih terperinci

44. Mata Pelajaran Matematika untuk Sekolah Menengah Atas (SMA)/ Madrasah Aliyah (MA)

44. Mata Pelajaran Matematika untuk Sekolah Menengah Atas (SMA)/ Madrasah Aliyah (MA) 44. Mata Pelajaran Matematika untuk Sekolah Menengah Atas (SMA)/ Madrasah Aliyah (MA) A. Latar Belakang Matematika merupakan ilmu universal yang mendasari perkembangan teknologi modern, mempunyai peran

Lebih terperinci

TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh

TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh II. TINJAUAN PUSTAKA 2.1 Ruang Metrik Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh aksioma-aksioma tertentu. Ruang metrik merupakan hal yang fundamental dalam analisis fungsional,

Lebih terperinci

FUNGSI-FUNGSI INVERS

FUNGSI-FUNGSI INVERS FUNGSI-FUNGSI INVERS Logaritma, Eksponen, Trigonometri Invers Departemen Matematika FMIPA IPB Bogor, 202 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 202 / 49 Topik Bahasan Fungsi Satu ke Satu 2

Lebih terperinci

BAB I PENDAHULUAN. : k N} dan A(m) menyatakan banyaknya m suku pertama (x n ) yang menjadi suku (x nk ), maka A(m)

BAB I PENDAHULUAN. : k N} dan A(m) menyatakan banyaknya m suku pertama (x n ) yang menjadi suku (x nk ), maka A(m) BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Konvergensi barisan bilangan real mempunyai banyak peranan dan aplikasi yang cukup penting pada beberapa bidang matematika, antara lain pada teori optimisasi,

Lebih terperinci

Catatan Kuliah KALKULUS II BAB V. INTEGRAL

Catatan Kuliah KALKULUS II BAB V. INTEGRAL BAB V. INTEGRAL Anti-turunan dan Integral TakTentu Persamaan Diferensial Sederhana Notasi Sigma dan Luas Daerah di Bawah Kurva Integral Tentu Teorema Dasar Kalkulus Sifat-sifat Integral Tentu Lebih Lanjut

Lebih terperinci

Pertemuan I Mencari Akar dari Fungsi Transendental

Pertemuan I Mencari Akar dari Fungsi Transendental Pertemuan I Mencari Akar dari Fungsi Transendental Daftar Isi: 1.1 Tujuan Perkuliahan 1. Pendahuluan 1.3 Metoda Bisection 1.3.1 Definisi 1.3. Komputasi mencari akar 1.3.3 Ilustrasi 1.4 Metoda Newton-Raphson

Lebih terperinci

VARIABEL KOMPLEKS SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS

VARIABEL KOMPLEKS SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS VARIABEL KOMPLEKS SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2009 2 DAFTAR ISI DAFTAR ISI 2 1 Sistem Bilangan Kompleks (C) 1 1 Pendahuluan...............................

Lebih terperinci

Daftar Isi 3. BARISAN ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB

Daftar Isi 3. BARISAN ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 29, 2011 Dalam kisah Zeno tentang perlombaan lari antara Achilles dan seekor kura-kura, ketika Achilles mencapai

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun oleh berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan,

Lebih terperinci

09. Mata Pelajaran Matematika

09. Mata Pelajaran Matematika 09. Mata Pelajaran Matematika A. Latar Belakang Matematika merupakan ilmu universal yang mendasari perkembangan teknologi modern, mempunyai peran penting dalam berbagai disiplin dan mengembangkan daya

Lebih terperinci

PERBANDINGAN DAN KARAKTERISTIK BEBERAPA TES KONVERGENSI PADA DERET TAK HINGGA

PERBANDINGAN DAN KARAKTERISTIK BEBERAPA TES KONVERGENSI PADA DERET TAK HINGGA Eksakta Vol 8 No Oktober 07 http://eksaktappjunpacid E-ISSN : 549-7464 P-ISSN : 4-374 PERBANDINGAN DAN KARAKTERISTIK BEBERAPA TES KONVERGENSI PADA DERET TAK HINGGA Prodi Matematika Jurusan Matematika FMIPA

Lebih terperinci

09. Mata Pelajaran Matematika

09. Mata Pelajaran Matematika 09. Mata Pelajaran Matematika A. Latar Belakang Matematika merupakan ilmu universal yang mendasari perkembangan teknologi modern, mempunyai peran penting dalam berbagai disiplin dan mengembangkan daya

Lebih terperinci

KARTU SOAL PILIHAN GANDA

KARTU SOAL PILIHAN GANDA 4. Menggunakan konsep barisan dan deret dalam pemecahan masalah 4.1 Menentukan suku ke-n barisan dan jumlah n suku deret aritmetika dan geometri Barisan dan deret aritmatika Siswa dapat menentukan nilai

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

BARISAN DAN DERET. Matematika Dasar

BARISAN DAN DERET. Matematika Dasar BARISAN DAN DERET 8.1 BARISAN BILANGAN A. Mengenal pengertian barisan suatu bilangan Perhatikan ilustrasi berikut! Seorang karyawan pada awalnya memperoleh gaji sebesar Rp.600.000,00. Selanjutnya, setiap

Lebih terperinci

Satuan Acara Perkuliahan SEKOLAH TINGGI ILMU STATISTIK. Jam pembelajaran per Pertemuan kelas 150 menit Pertemuan praktikum 0 menit Kegiatan lain

Satuan Acara Perkuliahan SEKOLAH TINGGI ILMU STATISTIK. Jam pembelajaran per Pertemuan kelas 150 menit Pertemuan praktikum 0 menit Kegiatan lain Satuan Acara Perkuliahan SEKOLAH TINGGI ILMU STATISTIK A. INFORMASI UMUM Mata kuliah SS1131 Kalkulus 1 Jurusan Statistika/Komputasi Statistika Tgl berlaku Oktober 2014 Satuan kredit semester 3 SKS Bidang

Lebih terperinci

CNH2B4 / KOMPUTASI NUMERIK

CNH2B4 / KOMPUTASI NUMERIK CNH2B4 / KOMPUTASI NUMERIK TIM DOSEN KK MODELING AND COMPUTATIONAL EXPERIMENT 1 REVIEW KALKULUS & KONSEP ERROR Fungsi Misalkan A adalah himpunan bilangan. Fungsi f dengan domain A adalah sebuah aturan

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun oleh berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan, kekonvergenan

Lebih terperinci

TINJAUAN MATA KULIAH... MODUL 1: LOGIKA MATEMATIKA 1.1 Kegiatan Belajar 1: Latihan Rangkuman Tes Formatif

TINJAUAN MATA KULIAH... MODUL 1: LOGIKA MATEMATIKA 1.1 Kegiatan Belajar 1: Latihan Rangkuman Tes Formatif Daftar Isi TINJAUAN MATA KULIAH... i MODUL 1: LOGIKA MATEMATIKA 1.1 Pernyataan, Negasi, DAN, ATAU, dan Hukum De Morgan...... 1.3 Latihan... 1.18 Rangkuman... 1.20 Tes Formatif 1...... 1.20 Jaringan Logika

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun dari berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan,

Lebih terperinci

Deret Harmonik. Wono Setya Budhi. October 16, Wono Setya Budhi Deret Harmonik October 16, / 20

Deret Harmonik. Wono Setya Budhi. October 16, Wono Setya Budhi Deret Harmonik October 16, / 20 Wono Setya Budhi October 16, 2014 Wono Setya Budhi October 16, 2014 1 / 20 1 Misalkan kita mempunyai barisan {f n } n=1 dengan f n = 1 n Wono Setya Budhi October 16, 2014 2 / 20 1 Misalkan kita mempunyai

Lebih terperinci

Kelompok Mata Kuliah : MKU Program Studi/Program : Pendidikan Teknik Elektro/S1 Status Mata Kuliah : Wajib. : Aip Saripudin, M.T.

Kelompok Mata Kuliah : MKU Program Studi/Program : Pendidikan Teknik Elektro/S1 Status Mata Kuliah : Wajib. : Aip Saripudin, M.T. DESKIPSI MATA KULIAH EL-121 Matematika Teknik I: S1, 3 SKS, Semester II Mata kuliah ini merupakan kuliah lanjut. Selesai mengikuti perkuliahan ini mahasiswa diharapkan mampu memahami konsep-konsep matematika

Lebih terperinci

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN)

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri SNMPTN) Bidang Matematika Kode Paket 536 Oleh : Fendi Alfi Fauzi. Nilai p agar vektor 2i + pj + k dan i 2j 2k saling tegak lurus adalah... a) 6

Lebih terperinci

SILABUS MATAKULIAH. Indikator Pokok Bahasan/ Materi Aktivitas Pembelajaran

SILABUS MATAKULIAH. Indikator Pokok Bahasan/ Materi Aktivitas Pembelajaran SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : Maret 2014 A. Identitas 1. Nama Matakuliah : A11.54201 / Kalkulus II 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer 4. Bobot sks :

Lebih terperinci

LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 2 LATIHAN 1. Jawab: Jawab:

LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 2 LATIHAN 1. Jawab: Jawab: NAMA : KELAS : C. BARISAN DAN DERET GEOMETRI 1. BARISAN GEOMETRI (B.G) Barisan Geometri adalah suatu barisan dengan rasio antara dua suku yang berurutan selalu tetap dan sama. 1) Perhatikan bentuk di bawah:

Lebih terperinci

KISI-KISI PENULISAN SOAL UJIAN MADRASAH TAHUN PELAJARAN 2015/2016

KISI-KISI PENULISAN SOAL UJIAN MADRASAH TAHUN PELAJARAN 2015/2016 KISI-KISI PENULISAN SOAL UJIAN MADRASAH TAHUN PELAJARAN 2015/2016 SATUAN PENDIDIKAN : Madrasah Aliyah ALOKASI WAKTU : 120 menit MATA PELAJARAN : Matematika JUMLAH SOAL : 40 KELAS / PROGRAM : XII / IPA

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 26, 2007 Misalkan f kontinu pada interval [a, b]. Apakah masuk akal untuk membahas luas daerah

Lebih terperinci

RPKPS (Rencana Program Kegiatan Pembelajaran Semester) Program Studi : S1 Matematika Jurusan/Fakultas : Matematika/FMIPA

RPKPS (Rencana Program Kegiatan Pembelajaran Semester) Program Studi : S1 Matematika Jurusan/Fakultas : Matematika/FMIPA Ver.1.0 : Desember 2015 1. Nama Mata kuliah Kalkulus II Semester/Kode/SKS II/ MAM 1201/4 2. Silabus Aplikasi Integral, Fungsi-fungsi Invers (Eksponensial,, Teknik, Persamaan Parametrik dan Koordinat Polar,

Lebih terperinci

MATEMATIKA 2. DERET Series ASEP MUHAMAD SAMSUDIN, S.T.,M.T. DEPARTEMEN TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO SEMARANG

MATEMATIKA 2. DERET Series ASEP MUHAMAD SAMSUDIN, S.T.,M.T. DEPARTEMEN TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO SEMARANG MATEMATIKA DERET Series ASEP MUHAMAD SAMSUDIN, S.T.,M.T. DEPARTEMEN TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO SEMARANG BARISAN VS DERET BARISAN (Sequences) Himpunan besaran u 1, u, u 3, yang

Lebih terperinci

ANALISIS PERBANDINGAN SKL UN MATEMATIKA SMA TAHUN 2007 s/d 2012 By Pak Anang ( )

ANALISIS PERBANDINGAN SKL UN MATEMATIKA SMA TAHUN 2007 s/d 2012 By Pak Anang (  ) ANALISIS PERBANDINGAN SKL UN MATEMATIKA SMA TAHUN 2007 s/d 2012 By Pak Anang ( http://www.facebook.com/pak.anang ) Email: anangmath@gmail.com STANDAR 1. Memahami pernyataan dalam matematika dan ingkarannya,

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS) PROGRAM STUDI TEKNIK MESIN POLITEKNIK JAMBI

RENCANA PEMBELAJARAN SEMESTER (RPS) PROGRAM STUDI TEKNIK MESIN POLITEKNIK JAMBI RENCANA PEMBELAJARAN SEMESTER (RPS) PROGRAM STUDI TEKNIK MESIN POLITEKNIK JAMBI 1 Nama Mata Kuliah : MATEMATIKA TEKNIK I 2 Kode Mata Kuliah : TM162104 3 Semester : I 4 Bobot (sks) : 2 5 Dosen Pengampu

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER(RPS) PROGRAM STUDI STATISTIKA

RENCANA PEMBELAJARAN SEMESTER(RPS) PROGRAM STUDI STATISTIKA A. MATA KULIAH RENCANA PEMBELAJARAN SEMESTER(RPS) PROGRAM STUDI STATISTIKA Nama Mata Kuliah : Matematika II Kode/sks : MAS 4116/ 3 Semester : III Status (Wajib/Pilihan) : Wajib (W) Prasyarat : MAS 4215

Lebih terperinci

5.1 Fungsi periodik, fungsi genap, fungsi ganjil

5.1 Fungsi periodik, fungsi genap, fungsi ganjil Bab 5 DERET FOURIER Pada Bab sebelumnya kita telah membahas deret Taylor. Syarat fungsi agar dapat diekspansi ke dalam deret Taylor adalah fungsi tersebut harus terdiferensial pada setiap tingkat. Untuk

Lebih terperinci

TINJAUAN SINGKAT KALKULUS

TINJAUAN SINGKAT KALKULUS A TINJAUAN SINGKAT KALKULUS Salah satu syarat yang diperlukan untuk mempelajari komputasi numerik adalah pengetahuan dasar tentang kalkulus, termasuk pengenalan beberapa notasi dalam kalkulus, sifat-sifat

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

SRI REDJEKI KALKULUS I

SRI REDJEKI KALKULUS I SRI REDJEKI KALKULUS I KLASIFIKASI BILANGAN RIIL n Bilangan yang paling sederhana adalah bilangan asli : n 1, 2, 3, 4, 5,. n n Bilangan asli membentuk himpunan bagian dari klas himpunan bilangan yang lebih

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 3.2 Himpunan Buka dan Himpunan Tutup Titik limit dari suatu himpunan tidak harus merupakan anggota himpunan tersebut. Pada interval

Lebih terperinci

CATATAN KULIAH ANALISIS REAL LANJUT

CATATAN KULIAH ANALISIS REAL LANJUT CATATAN KULIAH ANALISIS REAL LANJUT May 26, 203 A Lecture Note Acknowledgement of Sources For all ideas taken from other sources (books, articles, internet), the source of the ideas is mentioned in the

Lebih terperinci

Pengantar Metode Numerik

Pengantar Metode Numerik Pengantar Metode Numerik Metode numerik adalah teknik dimana masalah matematika diformulasikan sedemikian rupa sehingga dapat diselesaikan oleh pengoperasian matematika. Metode numerik menggunakan perhitungan

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 4. Fungsi Kontinu 4.1 Konsep Kekontinuan Fungsi kontinu Limit fungsi dan limit barisan Prapeta himpunan buka 4.2 Sifat-Sifat Fungsi

Lebih terperinci

BAB 2 PENYELESAIAN PERSAMAAN TAKLINIER

BAB 2 PENYELESAIAN PERSAMAAN TAKLINIER BAB 2 PENYELESAIAN PERSAMAAN TAKLINIER Persamaan taklinier sudah diperkenalkan sejak di sekolah menengah, diataranya persamaan kuadrat, persamaan trigonometri dan persamaan yang memuat logaritma atau eksponen.

Lebih terperinci

RPS MATA KULIAH KALKULUS 1B

RPS MATA KULIAH KALKULUS 1B RPS MATA KULIAH KALKULUS 1B CAPAIAN PEMBELAJARAN MATA KULIAH: 1. Mempunyai pengetahuan dibidang matematika, statistika, komputasi (algoritma), dan pengetahuan dasar dalam menyelesaikan permasalahan dibidang

Lebih terperinci

Ilustrasi Persoalan Matematika

Ilustrasi Persoalan Matematika Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa (engineering), seperti

Lebih terperinci

BARISAN DAN DERET TAK BERHINGGA

BARISAN DAN DERET TAK BERHINGGA BARISAN DAN DERET TAK BERHINGGA MATERI KULIAH 1 Kalkulus Lanjut BARISAN DAN DERET TAK BERHINGGA Sahid, MSc. FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA 2010 BARISAN DAN

Lebih terperinci

BAB I TEOREMA TEOREMA LIMIT BARISAN

BAB I TEOREMA TEOREMA LIMIT BARISAN BAB I TEOREMA TEOREMA LIMIT BARISAN Definisi : Barisan bilangan real X = (x n ) dikatakan terbatas jika ada bilangan real M > 0 sedemikian sehingga x n M untuk semua n N. Catatan : X = (x n ) terbatas

Lebih terperinci

ANALISIS VARIABEL REAL 2

ANALISIS VARIABEL REAL 2 2012 ANALISIS VARIABEL REAL 2 www.alfirosyadi.wordpress.com UNIVERSITAS MUHAMMADIYAH MALANG 1/1/2012 IDENTITAS MAHASISWA NAMA : NIM : KELAS : KELOMPOK : 2 PENDAHULUAN Modul ini disusun untuk membantu mahasiswa

Lebih terperinci

4 DIFERENSIAL. 4.1 Pengertian derivatif

4 DIFERENSIAL. 4.1 Pengertian derivatif Diferensial merupakan topik yang cukup 'baru' dalam matematika. Dimulai sekitar tahun 1630 an oleh Fermat ketika menghadapi masalah menentukan garis singgung kurva, dan juga masalah menentukan maksimum

Lebih terperinci

48. Mata Pelajaran Matematika untuk Sekolah Menengah Atas Luar Biasa Tunalaras (SMALB E) A. Latar Belakang

48. Mata Pelajaran Matematika untuk Sekolah Menengah Atas Luar Biasa Tunalaras (SMALB E) A. Latar Belakang 48. Mata Pelajaran Matematika untuk Sekolah Menengah Atas Luar Biasa Tunalaras (SMALB E) A. Latar Belakang Matematika merupakan ilmu universal yang mendasari perkembangan teknologi modern, mempunyai peran

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Deret Taylor Deret Taylor dinamai berdasarkan seorang matematikawan Inggris, Brook Taylor (1685-1731) dan deret Maclaurin dinamai berdasarkan matematikawan Skotlandia, Colin

Lebih terperinci

BAB I INTEGRAL TAK TENTU

BAB I INTEGRAL TAK TENTU BAB I INTEGRAL TAK TENTU TUJUAN PEMBELAJARAN: 1. Setelah mempelajari materi ini mahasiswa dapat menentukan pengertian integral sebagai anti turunan. 2. Setelah mempelajari materi ini mahasiswa dapat menyelesaikan

Lebih terperinci

Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada

Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada 5 TURUNAN JUMLAH PERTEMUAN : 4 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada permasalahan yang ada Materi : 5.1 Pendahuluan Ide awal

Lebih terperinci

FT UNIVERSITAS SURABAYA VARIABEL KOMPLEKS SUGATA PIKATAN. Bab V Aplikasi

FT UNIVERSITAS SURABAYA VARIABEL KOMPLEKS SUGATA PIKATAN. Bab V Aplikasi Bab V Aplikasi Selain aplikasi yang sudah diperkenalkan di bab I, teori variabel kompleks masih memiliki banyak ragam aplikasi lainnya. Beberapa di antaranya akan dibahas di dalam bab ini. Perhitungan

Lebih terperinci

MACLAURIN S SERIES. Ghifari Eka

MACLAURIN S SERIES. Ghifari Eka MACLAURIN S SERIES Ghifari Eka Taylor Series Sebelum membahas mengenai Maclaurin s series alangkah lebih baiknya apabila kita mengetahui terlebih dahulu mengenai Taylor series. Misalkan terdapat fungsi

Lebih terperinci

KISI-KISI SOAL UJIAN SEKOLAH TAHUN PELAJARAN 2014/2015

KISI-KISI SOAL UJIAN SEKOLAH TAHUN PELAJARAN 2014/2015 KISI-KISI SOAL UJIAN SEKOLAH TAHUN PELAJARAN 2014/2015 Mata Pelajaran : Matematika Alokasi Waktu : 120 menit Kelas : XII IPA Penyusun Standar Kompetensi Kompetensi Dasar Indikator Materi No Soal Menggunakan

Lebih terperinci

MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT

MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT HUKUM BILANGAN BESAR LEMAH DAN KUAT Misalkan X 1, X 2, X 3... barisan variabel random. Kita tulis S n = n X i. Dalam subbab ini kita akan menjawab pertanyaan

Lebih terperinci

KISI-KISI UN MATEMATIKA SMK 2015/2016

KISI-KISI UN MATEMATIKA SMK 2015/2016 KISI-KISI UN MATEMATIKA SMK 2015/2016 ADA BEBERAPA HAL YANG PERLU DIPERHATIKAN: 1. LEVEL KOGNITIF 2. MATERI / BAB 3. TOPIK 4. HUBUNGAN KOGNITIF, MATERI & TOPIK 5. JENIS-JENIS / VARIASI SOAL 6. TINGKAT

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN BAB 4 LIMIT DAN KEKONTINUAN Everything should made as simple as possible, but no simpler. Albert EINSTEIN Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuhnya matematika

Lebih terperinci

PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA

PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA Jurnal Matematika UNAND Vol. 4 No. 1 Hal. 68 75 ISSN : 303 910 c Jurusan Matematika FMIPA UNAND PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA ELSA JUMIASRI, SUSILA BAHRI, BUKTI GINTING

Lebih terperinci

PENGANTAR ANALISIS REAL

PENGANTAR ANALISIS REAL Seri Analisis dan Geometri No. 1 (2009), -15 158 (173 hlm.) PENGANTAR ANALISIS REAL Oleh Hendra Gunawan Edisi Pertama Bandung, Januari 2009 2000 Dewey Classification: 515-xx. Kata Kunci: Analisis matematika,

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 3. Topologi Garis Bilangan Real 3.1 Teori Limit Limit, supremum, dan infimum Titik limit 3.2 Himpunan Buka dan Himpunan Tutup 3.3

Lebih terperinci

PREDIKSI UN 2014 MATEMATIKA IPA

PREDIKSI UN 2014 MATEMATIKA IPA NAMA : KELAS : 1. Kisi-Kisi: Logika Matematika Diketahui 3 Premis, Premis Menggunakan kesetaraan, dan penarikan MP atau MT PREDIKSI UN 2014 MATEMATIKA IPA 3. Kisi-Kisi: Materi Ekponen Éksponen pecahan,3

Lebih terperinci

BAB III SUB BARISAN DAN TEOREMA BOLZANO-WEIERSTRASS

BAB III SUB BARISAN DAN TEOREMA BOLZANO-WEIERSTRASS BAB III SUB BARISAN DAN TEOREMA BOLZANO-WEIERSTRASS Dalam bab ini akan kita bahas pengertian tentang sub barisan dari barisan bilangan real, yang lebih umum dibandingkan ekor suatu barisan, serta dapat

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN SATUAN ACARA PERKULIAHAN Mata Kuliah : Kalkulus Lanjut Kode Mata Kulih : Bobot : 3 sks Semester : 2 Tujuan Instruksi Umum Media / Alat yang digunakan Daftar Referensi : Mahasiswa dapat memahami konsep-konsep

Lebih terperinci