TINJAUAN PUSTAKA Asuransi Kelompok Penyakit Lanjut Usia (Lansia) di Indonesia

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "TINJAUAN PUSTAKA Asuransi Kelompok Penyakit Lanjut Usia (Lansia) di Indonesia"

Transkripsi

1 3 TINJAUAN PUSTAKA Asuransi Asuransi berasal dari kata assurance atau insurance, yang berarti jaminan atau pertanggungan. Asuransi dalam Undang-Undang No.2 Th 1992 tentang usaha perasuransian adalah perjanjian antara dua pihak atau lebih, dengan mana pihak penanggung mengikatkan diri kepada tertanggung, dengan menerima premi asuransi, untuk memberikan penggantian kepada tertanggung karena kerugian, kerusakan atau kehilangan keuntungan yang diharapkan atau tanggung jawab hukum pihak ke tiga yang mungkin akan diderita tertanggung, yang timbul dari suatu peristiwa yang tidak pasti, atau memberikan suatu pembayaran yang didasarkan atas meninggal atau hidupnya seseorang yang dipertanggungkan. Beberapa istilah dalam asuransi yaitu: 1. Premi adalah sejumlah uang yang harus dibayarkan oleh tertanggung guna mendapatkan perlindungan atas obyek yang dipertanggungkan. 2. Polis adalah dokumen tertulis yang berisi persetujuan antara perusahaan asuransi dan pemilik polis (tertanggung). 3. Klaim adalah hak tertanggung meminta jaminan/perlindungan kepada pihak penanggung. 4. Tertanggung adalah seseorang atau badan hukum yang memiliki atau berkepentingan atas harta benda yang diasuransikan. 5. Penanggung adalah pihak yang menerima premi asuransi dari tertanggung dan menanggung resiko atas kerugian/musibah yang menimpa harta benda yang diasuransikan. Kelompok Penyakit Lanjut Usia (Lansia) di Indonesia Survei Kesehatan Rumah Tangga (SKRT) tahun 1995 menyimpulkan bahwa berbagai penyakit degeneratif seperti diabetes melitus, hipertensi, gangguan refraksi, ketulian, osteoarthritis banyak ditemukan pada lansia. Penyakit-penyakit sistem sirkulasi darah, sistem pernafasan dan tuberkulosis paru merupakan penyebab kematian paling tinggi pada kelompok umur tua. Menurut Aprilianti (2009), penyakit lansia di Indonesia dapat dikelompokkan menjadi 8 kelompok penyakit, yaitu:

2 4 1. Penyakit persendian dan tulang 2. Penyakit kardiovaskuler 3. Penyakit pencernaan 4. Penyakit urogenital 5. Penyakit metabolik 6. Penyakit pernafasan 7. Penyakit keganasan 8. Penyakit lain-lain. Sebaran Peluang Diskret Jika gugus semua nilai yang mungkin dari peubah acak X merupakan gugus terhitung, maka X disebut dengan peubah acak diskret. Sebaran peluang diskret atau biasa disebut dengan fungsi massa peluang adalah fungsi f(x) = P (X=x) untuk x = yang mengalokasikan peluang untuk setiap kemungkinan nilai x. a. Sebaran Bernoulli Sebaran Bernoulli adalah sebaran peluang diskret yang ditemukan oleh ilmuan Swiss yang bernama Jacob Bernoulli. Sebuah percobaan dikatakan mengikuti sebaran Bernoulli, jika percobaan tersebut mengikuti sifat-sifat sebagai berikut: 1. Percobaannya terdiri atas dua kejadian, yaitu kejadian yang diperhatikan (sering disebut kejadian berhasil) dan kejadian yang tidak diperhatikan (sering disebut kejadian gagal). 2. Percobaan hanya dilakukan sekali saja. Peubah acak X dikatakan menyebar Bernoulli, jika dan hanya jika fungsi massa peluangnya berbentuk Nilai harapan dari sebaran Bernoulli adalah E(X) = p dan ragamnya adalah var(x)= p (1-p) (Herrhyanto & Gantini 2009). b. Sebaran binomial Bila percobaan terdiri dari n kejadian yang saling bebas, yang masing-masing berpeluang p untuk berhasil dan 1 p untuk gagal. Jika X menyatakan berapa kali terjadi keberhasilan dalam n tindakan tersebut, maka X dinamakan peubah

3 5 acak binom dengan parameter (n,p). Peubah acak Bernoulli adalah peubah acak binom dengan parameter (1,p). Peubah acak X dikatakan menyebar binomial, jika dan hanya jika fungsi massa peluangnya berbentuk P(X=x) = Nilai harapan dari sebaran binomial adalah E(X) = np dan ragamnya adalah var(x)= np (1-p) (Nugroho 2008). c. Sebaran Poisson Sebaran Poisson diperkenalkan pada tahun 1837 oleh S.D. Poisson. Sebaran Poisson diperoleh dari sebaran binomial, apabila dalam sebaran binomial berlaku syarat-syarat sebagai berikut: 1. Banyaknya pengulangan percobaan sangat besar ( n ) 2. Peluang terjadinya peristiwa yang diperhatikan mendekati nol (p 3. Perkalian n.p =, sehingga p = (Herrhyanto & Gantini 2009). Peubah acak X dikatakan menyebar Poisson, jika dan hanya jika fungsi massa peluangnya berbentuk: P(X=x) = Nilai harapan dari sebaran Poisson adalah E(X) = dan ragamnya adalah var(x)=. Baik nilai harapan maupun ragam keduanya sama dengan, sehingga ragamnya selalu tergantung pada nilai harapan (nilai tengah). Salah satu ciri dari pola sebaran Poisson adalah miring ke kanan atau memiliki ekor yang memanjang ke arah nilai yang besar, dengan bertambah nilai akan terlihat semakin simetris (Aunuddin 2005). d. Sebaran zero-truncated Poisson Sebaran zero-truncated Poisson adalah salah satu bentuk modifikasi dari sebaran Poisson. Pada sebaran ini diasumsikan tidak mungkin ada pengamatan yang bernilai nol. Fungsi massa peluang dari sebaran zero-truncated Poisson yaitu: P(

4 6 Nilai harapan dan ragam sebaran zero-truncated Poisson adalah E( dan (1-, (Moye 1991). e. Sebaran binomial negatif ( Sebaran gamma memiliki fungsi kepekatan peluang g( dengan α,β > 0. Jika sebaran Poisson( dimana merupakan nilai dari peubah acak yang menyebar gamma, maka dihasilkan sebaran Poisson campuran dengan fungsi massa peluang bersyarat: (Karlis 2005). f. Sebaran Poisson-Lindley (p) Sebaran Lindley memiliki fungsi kepekatan peluang g( dengan. Jika sebaran Poisson( dimana merupakan nilai dari peubah acak yang menyebar Lindley maka dihasilkan sebaran Poisson campuran dengan fungsi kepekatan peluang bersyarat: = (Karlis 2005). Sebaran Kontinu Peubah acak kontinu adalah suatu peubah acak dengan ruang contoh S yang terdiri dari suatu selang (interval) atau gabungan dari beberapa selang. Sebaran peluang kontinu atau biasa disebut dengan fungsi kepekatan peluang dari peubah acak kontinu X adalah F(x) untuk yang bersifat F(x) = F(X=x) = dt, untuk a. Sebaran eksponensial Sebaran eksponensial diperoleh dari sebaran gamma dengan dan β = Suatu peubah acak kontinu X memiliki sebaran eksponensial dengan parameter jika fungsi kepekatan peluangnya memiliki bentuk

5 7 p(x) = P(X=x) = Nilai harapan dari sebaran eksponensial adalah E(X) = dan ragamnya adalah var(x) = (Herrhyanto & Gantini 2009). b. Sebaran gamma Peubah acak X dikatakan menyebar gamma, jika dan hanya jika fungsi memiliki fungsi kepekatan peluang sebagai berikut: f(x) = Nilai harapan dari sebaran gamma adalah E(X) = αβ dan ragamnya adalah var(x)= α (Herrhyanto & Gantini 2009). c. Sebaran lognormal Peubah acak X dikatakan menyebar lognormal jika ln (X) menyebar normal. Fungsi massa peluang sebaran lognormal sebagai berikut: f(x) = Nilai harapan dari sebaran lognormal adalah E(X) = exp[ ] dan ragamnyanya adalah var(x) = (Krishnamoorthy 2006). d. Sebaran normal Pada tahun 1733 Abraham de Moivre mempublikasikan sebaran normal sebagai pendekatan dari peubah acak binomial. Sebaran normal adalah sebaran yang paling penting dalam teori peluang dan statistika. Suatu peubah acak X dikatakan mengikuti sebaran normal dengan rata-rata µ dan simpangan baku jika memiliki fungsi kepekatan peluang sebagai berikut f(x) =,, Nilai harapan dari sebaran normal adalah E(X) = µ dan ragamnya adalah var(x)=. Jika sebuah peubah acak Y adalah jumlah dari n peubah acak yang bebas yang memenuhi pada kondisi-kondisi umum tertentu, maka untuk n yang cukup besar Y akan mendekati sebaran normal (Nugroho 2008).

6 8 Sebaran Campuran Sebaran campuran adalah campuran dari beberapa sebaran statistik, dimana contoh berasal dari populasi yang tidak sama (populasi campuran). Misalkan X adalah peubah acak yang berasal dari ruang contoh S dan fungsi massa peluang atau fungsi kepekatan peluangnya adalah sebagai berikut g(x) = (x ), dimana 0 i = 1,...,k; dengan g(.) adalah fungsi massa atau kepekatan peluang campuran adalah proporsi subpopulasi ke-i adalah fungsi massa atau kepekatan peluang subpopulasi Fungsi massa atau kepekatan peluang subpopulasi tidak harus memiliki parameter dan sebaran yang sama, namun dalam penelitian ini fungsi massa atau kepekatan peluang subpopulasi memiliki sebaran yang sama dengan penduga parameter yang berbeda sehingga fungsi massa atau kepekatan peluang campuran terbatas menjadi sebagai berikut g(x (x ), dimana =, (Du 2002). Sebaran campuran dapat digunakan dalam keadaan yang berbeda yaitu: 1. Pada populasi yang diketahui terdapat struktur campuran 2. Pada populasi yang belum diketahui struktur campurannya. Pada keadaan pertama, struktur campuran diketahui sehingga tujuannya adalah menduga sebaran masing-masing subpopulasi dan proporsinya. Pada keadaan kedua, tujuannya adalah mengklasifikasikan data ke dalam subpopulasisubpopulasi berdasarkan peluang akhir (McLachlan dan Basford 1988). Uji Khi-Kuadrat Uji khi-kuadrat digunakan untuk menguji kesesuaian sebaran data dengan sebaran diskret. Jika data yang digunakan besar, maka uji khi-kuadrat dapat digunakan untuk menguji kesesuaian sebaran kontinu. Hipotesis pada uji khi-kuadrat sebagai berikut:

7 9 Ho: data mengikuti sebaran yang diinginkan : data mengikuti sebaran lainnya Uji kesesuaian (Goodness of Fit-Test) antara frekuensi teramati dengan frekuensi harapannya didasarkan pada statistik uji sebagai berikut: dengan : frekuensi data yang diamati : frekuensi harapan dari data yang diamati n : banyaknya kelas data yang diamati d : banyaknya parameter sebaran Dengan tingkat signifikansi, hipotesis nol akan ditolak jika (Krishnamoorthy 2006). Plot Kuantil-Kuantil Tujuan dari pembuatan plot kuantil-kuantil adalah memeriksa kesesuaian pola sebaran data terhadap pola sebaran teoritik dengan cara membandingkan antara kuantil yang didasarkan pada data (kuantil empirik) dan kuantil dari sebaran tertentu (kuantil teoritik). Penetapan nilai kuantil dapat dilakukan jika data diurutkan dari nilai terkecil ke nilai terbesar. Kuantil didefenisikan sebagai berikut: Q( = y(i), untuk i = 1,2,..., n =, dimana a = 0, Plot kuantil empirik yaitu plot antara nilai y(i) dengan fraksi. Plot kuantil teoritik yaitu plot antara Q( ) dan. Plot kuantil-kuantil adalah plot antara y(i) dan Q( ). Absis dan ordinat pada plot kuantil berbeda-beda tergantung sebaran yang akan didekati. Absis dan ordinat pada plot kuantil-kuantil sesuai dengan masing-masing sebaran yang akan didekati, seperti yang terdapat pada Tabel 1. Pola pencaran dalam plot yang membentuk garis lurus menjadi petunjuk bahwa sebaran data dapat didekati oleh sebaran teoritik (Aunudin 1989; Chambers et.al 1983).

8 10 Tabel 1. Absis dan ordinat plot kuantil-kuantil sebaran kontinu Sebaran absis ordinat Eksponensial y(i) -log Gamma y(i) ( Lognormal y(i) exp( Normal y(i) Weibull y(i) log(-log Uji Kruskal-Wallis Uji Kruskal-Wallis diperkenalkan pada tahun 1952 oleh W.H. Kruskal dan W.A. Wallis. Uji Kruskal-Wallis sama dengan uji F dalam rancangan acak lengkap. Perbedaanya, rancangan acak lengkap memerlukan asumsi bahwa data menyebar normal, sedangkan uji Kruskal-Wallis tidak memerlukannya. Berikut ini hipotesis pada uji Kruskal-Wallis: Ho: nilai tengah kelompok penyakit lansia sama : minimal ada satu nilai tengah kelompok penyakit lansia yang berbeda dengan yang lainnya. Statistik ujinya sebagai berikut: H = - 3(N+1) dengan : banyaknya lama perawatan dalam kelompok penyakit lansia ke-i : jumlah lama perawatan dari rangking i N : jumlah total lama perawatan = k : banyaknya kelompok penyakit lansia Dengan tingkat signifikansi, hipotesis nol akan ditolak jika H >. Jika nilai-nilai pengamatan pada data banyak yang sama, maka statistik uji harus disesuaikan. Statistik uji yang telah disesuaikan adalah, - t

9 11 dengan t adalah banyaknya nilai pengamatan yang sama dalam sekelompok penyakit N adalah jumlah total lama perawatan = (Daniel 1989). Metode Pendugaan Parameter Sebaran Campuran Ada beberapa metode yang digunakan untuk menduga parameter, antara lain metode momen, metode bayes dan kemungkinan maksimum. Pendugaan parameter yang digunakan untuk menduga parameter sebaran campuran adalah metode kemungkinan maksimum dan metode EM (Expectation Maximation). Metode kemungkinan maksimum adalah suatu metode yang paling baik untuk memperoleh sebuah parameter tunggal. Menurut Hogg dan Craig (2005), dengan memisalkan masing-masing peubah acak yang saling bebas dengan sebaran yang memiliki fungsi kepekatan peluang f(x; ) dimana 0 1, dan adalah ruang contoh. Fungsi kepekatan peluang bersama dari adalah L( yang disebut juga sebagai fungsi kemungkinan. Andaikan dicari fungsi sederhana dari yaitu ( sehingga = u ( membuat fungsi kemungkinan L maksimum untuk semua. Statistik u( disebut penduga kemungkinan maksimum dari yang dinotasikan dengan = u(. Menurut Dimitri Karlis (2005) seringkali untuk pendugaan parameter dengan menggunakan metode kemungkinan maksimum tidak bisa secara langsung karena datanya tidak lengkap, untuk itu dapat digunakan algoritma EM (Expectation Maximation). Algoritma EM adalah suatu algoritma yang sangat handal untuk pendugaan parameter dari fungsi kemungkinan pada data yang tidak teramati seperti yang terdapat pada sebaran campuran (Dempster 1997). Ada dua tahap dalam menggunakan algoritma EM yaitu tahap E(Expectation) dan tahap M (Maximation). Dalam tahap E mencari nilai harapan penduga parameter dan pada tahap M memaksimumkan nilai harapan ke fungsi kemungkinan.

10 METODOLOGI PENELITIAN Data Data yang digunakan dalam penelitian ini adalah data sekunder yang diperoleh dari P.T. Asuransi Jiwa Bringin Jiwa Sejahtera. Data ini merupakan data klaim nasabah asuransi kesehatan khusus lansia dengan jenis klaim rawat inap yang dikumpulkan dari tahun 2002 sampai dengan bulan april Jumlah nasabah sebanyak 1585 nasabah dengan 2807 klaim dan lama perawatan hari, usia nasabah lebih dari 55 tahun. Metode Analisis Data Tahapan analisis yang dilakukan dalam penelitian ini sebagai berikut: 1. Analisis deskriptif Pada tahap pertama ini akan dideskripsikan data lama perawatan secara keseluruhan dan data lama perawatan per kelompok penyakit. Data dikelompokkan berdasarkan kelompok penyakit lansia di Indonesia, kemudian mengkaji hubungan antara kelompok penyakit lansia dengan sebaran lama perawatan dengan langkah-langkah sebagai berikut: a. Melakukan analisis ragam dengan 8 kelompok penyakit lansia dianggap sebagai perlakuan. b. Menguji asumsi-asumsi yang harus dipenuhi analisis ragam yaitu uji kenormalan, keaditifan dan kehomogenan. c. Melakukan transformasi dan menguji kembali asumsi-asumsi analisis ragam. d. Melakukan uji statistik nonparametrik yaitu uji Kruskal-Wallis. Jika pada tahap analisis deskriptif diperoleh kesimpulan bahwa kelompok penyakit mempengaruhi lama perawatan maka akan diduga sebaran lama perawatan secara keseluruhan dan sebaran lama perawatan per kelompok penyakit. 2. Pendugaan sebaran Pendugaan sebaran dibagi menjadi dua yaitu pendugaan sebaran dengan sebaran diskret dan sebaran kontinu.

11 14 Langkah-langkah pendugaan sebaran lama perawatan dengan sebaran diskret sebagai berikut: a. Menduga parameter sebaran diskret. b. Menghitung nilai peluang sebaran diskret. c. Menghitung nilai frekuensi harapan sebaran diskret. d. Membuat dan menghampiri histogram dengan pendekatan kurva sebaran diskret. e. Melakukan uji kesesuaian sebaran dengan uji khi-kuadrat. f. Menentukan sebaran yang sesuai dengan sebaran lama perawatan berdasarkan histogram dan nilai khi-kuadrat. Langkah-langkah pendugaan sebaran lama perawatan dengan sebaran kontinu sebagai berikut: a. Membuat dan menghampiri histogram data dengan pendekatan kurva sebaran kontinu. b. Membuat plot kuantil-kuantil untuk masing-masing sebaran kontinu. Membuat plot kuantil-kuantil untuk sebaran normal dengan langkahlangkah sebagai berikut: (1). Mengurutkan data dari yang terkecil sampai data yang terbesar y(1),...,y(i),..., y(n). (2). Menghitung nilai untuk setiap y(i) yaitu =. (3). Menghitung nilai untuk setiap p(i) yaitu =. (4). Membuat plot antara y(i) dengan yang merupakan plot kuantil-kuantil. c. Menghitung nilai statistik dari uji kesesuaian sebaran kontinu. d. Menentukan sebaran yang sesuai dengan sebaran lama perawatan berdasarkan histogram, plot kuantil-kuantil dan nilai statistik uji. 3. Perbandingan kesesuaian sebaran Membandingkan sebaran yang sesuai dengan lama perawatan secara keseluruhan dan lama perawatan per kelompok penyakit. 4. Pendugaan sebaran lama perawatan dengan sebaran campuran. Langkahlangkah pendugaan lama perawatan dengan sebaran campuran sebagai berikut:

12 15 a. Membuat plot sebaran campuran. b. Menentukan nilai parameter awal suatu sebaran (. c. Menduga nilai parameter dari sebaran campuran. d. Melakukan uji kesesuaian sebaran yaitu uji khi-kuadrat. 5. Penerapan sebaran lama perawatan untuk memperkirakan nilai premi yang akan dikenakan pada nasabah asuransi kesehatan.

STK 211 Metode statistika. Materi 4 Peubah Acak dan Sebaran Peluang

STK 211 Metode statistika. Materi 4 Peubah Acak dan Sebaran Peluang STK 211 Metode statistika Materi 4 Peubah Acak dan Sebaran Peluang 1 Pendahuluan Soal ujian masuk PT diselenggarakan dengan sistem pilihan berganda. Jika jawaban benar diberi nilai 4, salah dikurangi 1

Lebih terperinci

II. LANDASAN TEORI. sєs (S ruang sampel) dengan sebuah bilangan real. Salah satu peubah acak adalah

II. LANDASAN TEORI. sєs (S ruang sampel) dengan sebuah bilangan real. Salah satu peubah acak adalah II. LANDASAN TEORI Peubah acak X(s) merupakan sebuah fungsi X yang menetapkan setiap anggota sєs (S ruang sampel) dengan sebuah bilangan real. Salah satu peubah acak adalah peubah acak diskrit, yaitu banyaknya

Lebih terperinci

LANDASAN TEORI. Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu.

LANDASAN TEORI. Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu. II. LANDASAN TEORI Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu. Distribusi ini merupakan distribusi fungsi padat yang terkenal luas dalam bidang matematika. Distribusi gamma

Lebih terperinci

Statistik Dasar. 1. Pendahuluan Persamaan Statistika Dalam Penelitian. 2. Penyusunan Data Dan Penyajian Data

Statistik Dasar. 1. Pendahuluan Persamaan Statistika Dalam Penelitian. 2. Penyusunan Data Dan Penyajian Data Statistik Dasar 1. Pendahuluan Persamaan Statistika Dalam Penelitian 2. Penyusunan Data Dan Penyajian Data 3. Ukuran Tendensi Sentral, Ukuran Penyimpangan 4. Momen Kemiringan 5. Distribusi Normal t Dan

Lebih terperinci

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU DISTRIBUSI PELUANG DISKRIT DAN KONTINU A. TUJUAN PRAKTIKUM Melalui praktikum Modul II ini diharapkan praktikan dapat: 1. Mengenal jenis dan karakteristik dari beberapa distribusi peluang. 2. Menguji dan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI Teori yang ditulis dalam bab ini merupakan beberapa landasan yang digunakan untuk menganalisis sebaran besarnya klaim yang berekor kurus (thin tailed) dan yang berekor gemuk (fat

Lebih terperinci

STK 511 Analisis statistika. Materi 3 Sebaran Peubah Acak

STK 511 Analisis statistika. Materi 3 Sebaran Peubah Acak STK 511 Analisis statistika Materi 3 Sebaran Peubah Acak 1 Konsep Peluang 2 Peluang Peluang dapat diartikan sebagai ukuran kemungkinan terjadinya suatu kejadian Untuk memahami peluang diperlukan pemahaman

Lebih terperinci

SATUAN ACUAN PERKULIAHAN MATA KULIAH : STATISTIK & PROBABILITAS KODE : TIK1010 / SKS : 3 SKS

SATUAN ACUAN PERKULIAHAN MATA KULIAH : STATISTIK & PROBABILITAS KODE : TIK1010 / SKS : 3 SKS SATUAN ACUAN PERKULIAHAN MATA KULIAH : KODE : TIK1010 / SKS : 3 SKS SEMESTER : III / GANJIL WAKTU : 150 Menit JUMLAH PERTEMUAN : 16 x pertemuan (14 x materi kuliah, 2 x Ujian (UTS dan UAS)) 1 ANALISIS

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam 4 II. TINJAUAN PUSTAKA Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam menentukan momen, kumulan, dan fungsi karakteristik dari distribusi log-logistik (α,β). 2.1 Distribusi Log-Logistik

Lebih terperinci

MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean

MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean Orang Cerdas Belajar Statistika Silabus Silabus dan Tujuan Peubah acak kontinu, distribusi dan Tabel normal, penaksiran titik dan selang, uji hipotesis untuk

Lebih terperinci

PEUBAH ACAK. Materi 4 - STK211 Metode Statistika. October 2, Okt, Department of Statistics, IPB. Dr. Agus Mohamad Soleh

PEUBAH ACAK. Materi 4 - STK211 Metode Statistika. October 2, Okt, Department of Statistics, IPB. Dr. Agus Mohamad Soleh PEUBAH ACAK Materi 4 - STK211 Metode Statistika October 2, 2017 Okt, 2017 1 Pendahuluan Pernahkah bertanya, mengapa dalam soal ujian penerimaan mahasiswa baru, jika jawaban benar diberi nilai 4, salah

Lebih terperinci

Peubah Acak (Lanjutan)

Peubah Acak (Lanjutan) Learning Outcomes 13 April 2014 Learning Outcomes Learning Outcome Outline Mahasiswa dapat mengerti dan menentukan peubah acak diskret Mahasiswa dapat memahami dan menghitung nilai harapan Mahasiswa dapat

Lebih terperinci

Konsep Dasar Statistik dan Probabilitas

Konsep Dasar Statistik dan Probabilitas Konsep Dasar Statistik dan Probabilitas Pengendalian Kualitas Statistika Ayundyah Kesumawati Prodi Statistika FMIPA-UII September 30, 2015 Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas September

Lebih terperinci

TINJAUAN PUSTAKA. mengestimasi parameter regresi. Distribusi generalized. digunakan dalam bidang ekonomi dan keuangan.

TINJAUAN PUSTAKA. mengestimasi parameter regresi. Distribusi generalized. digunakan dalam bidang ekonomi dan keuangan. II. TINJAUAN PUSTAKA Distribusi generalized,,, adalah salah satu distribusi probabilitas kontinu. Distribusi ini pertama kali diperkenalkan McDonald dan Newey 988 untuk mengestimasi parameter regresi.

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4183 Model Risiko Forecast, assess, and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA4183

Lebih terperinci

25/09/2013. Konsep Peubah Acak. Metode Statistika (STK211) Peubah Acak Diskret. Kuis. Tipe Peubah Acak

25/09/2013. Konsep Peubah Acak. Metode Statistika (STK211) Peubah Acak Diskret. Kuis. Tipe Peubah Acak Konsep Peubah Acak Metode Statistika (STK11) Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Peubah acak merupakan suatu fungsi yang memetakan

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi binomial adalah distribusi probabilitas diskret jumlah keberhasilan dalam n percobaan ya/tidak (berhasil/gagal)

Lebih terperinci

BAB II LANDASAN TEORI. landasan pembahasan pada bab selanjutnya. Pengertian-pengertian dasar yang di

BAB II LANDASAN TEORI. landasan pembahasan pada bab selanjutnya. Pengertian-pengertian dasar yang di 5 BAB II LANDASAN TEORI Bab ini membahas pengertian-pengertian dasar yang digunakan sebagai landasan pembahasan pada bab selanjutnya. Pengertian-pengertian dasar yang di bahas adalah sebagai berikut: A.

Lebih terperinci

Peubah Acak. Bab 4. Definisi 4.1 Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R

Peubah Acak. Bab 4. Definisi 4.1 Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Bab 4 Peubah Acak Definisi 4. Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Contoh 4. Jika Y adalah peubah acak banyaknya sisi muka yang muncul pada pelemparan tiga sisi

Lebih terperinci

Metode Statistika (STK 211) Pertemuan ke-5

Metode Statistika (STK 211) Pertemuan ke-5 Metode Statistika (STK 211) Pertemuan ke-5 rrahmaanisa@apps.ipb.ac.id Memahami definisi dan aplikasi peubah acak (peubah acak sebagai fungsi, peubah acak diskrit dan kontinu) Memahami sebaran peubah acak

Lebih terperinci

PEMODELAN DENGAN REGRESI LOGISTIK. Secara umum, kedua hasil dilambangkan dengan (sukses) dan (gagal)

PEMODELAN DENGAN REGRESI LOGISTIK. Secara umum, kedua hasil dilambangkan dengan (sukses) dan (gagal) PEMODELAN DENGAN REGRESI LOGISTIK 1. Data Biner Data biner merupakan data yang hanya memiliki dua kemungkinan hasil. Secara umum, kedua hasil dilambangkan dengan (sukses) dan (gagal) dengan peluang masing-masing

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan pada semester genap tahun ajaran 2014/2015 di Jurusan

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan pada semester genap tahun ajaran 2014/2015 di Jurusan III METODOLOGI PENELITIAN 31 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada semester genap tahun ajaran 2014/2015 di Jurusan Matematika dan Ilmu Pengetahuan Alam Universitas Lampung 32 Metode

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan pengertian tentang distribusi Weibull, maximum

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan pengertian tentang distribusi Weibull, maximum 4 II. TINJAUAN PUSTAKA Dalam bab ini akan dijelaskan pengertian tentang distribusi Weibull, maximum likelihood estimation, penyensoran, bias relatif, penduga parameter distribusi Weibull dan beberapa istilah

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4183 Model Risiko Risk: Quantify and Control Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang MA4183 Model Risiko

Lebih terperinci

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI STATISTIKA Muhamad Nursalman Pendilkom/Ilkom UPI 1 Daftar Isi Bab 1 Peluang Bab Peubah Acak Bab 3 Distribusi Peluang Diskret Bab 4 Distribusi Peluang Kontinu Bab 5 Fungsi Peubah Acak Bab 6 Teori Penaksiran

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pendugaan Area Kecil Secara umum metode pendugaan area kecil dibagi menjadi dua bagian yaitu metode penduga langsung (direct estimation) dan metode penduga tak langsung (indirect

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan diuraikan beberapa teori dasar yang digunakan untuk menetapkan harga premi pada polis partisipasi asuransi jiwa endowmen yang terdapat opsi surrender dalam kontraknya,

Lebih terperinci

Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution)

Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Peubah acak merupakan suatu fungsi yang memetakan ruang kejadian (daerah fungsi) ke ruang bilangan

Lebih terperinci

STK511 Analisis Statistika. Pertemuan 3 Sebaran Peluang Peubah Acak

STK511 Analisis Statistika. Pertemuan 3 Sebaran Peluang Peubah Acak STK511 Analisis Statistika Pertemuan 3 Sebaran Peluang Peubah Acak Beberapa Konsep Dasar Percobaan statistika: kegiatan yang hasil akhir keluarannya tidak diketahui di awal, tetapi kemungkinan-kemungkinannya

Lebih terperinci

6 Departemen Statistika FMIPA IPB

6 Departemen Statistika FMIPA IPB Suplemen Responsi Pertemuan ANALISIS DATA KATEGORIK (STK351) 6 Departemen Statistika FMIPA IPB Pokok Bahasan Sub Pokok Bahasan Referensi Waktu Uji Kebaikan Suai Khi- Kuadrat untuk Sebaran Kontinu dan Uji

Lebih terperinci

HASIL DAN PEMBAHASAN Model Regresi Poisson

HASIL DAN PEMBAHASAN Model Regresi Poisson HASIL DAN PEMBAHASAN Model Regresi Poisson Hubungan antara jumlah penderita DBD dan faktor-faktor yang mempengaruhinya dapat diketahui dengan menggunakan analisis regresi. Analisis regresi yang digunakan

Lebih terperinci

MA4183 MODEL RISIKO Control your Risk!

MA4183 MODEL RISIKO Control your Risk! Catatan Kuliah MA4183 MODEL RISIKO Control your Risk! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4183 Model Risiko A. Jadwal

Lebih terperinci

I. PENDAHULUAN. merangkum, dan mempresentasikan data dengan cara informatif. Sedangkan

I. PENDAHULUAN. merangkum, dan mempresentasikan data dengan cara informatif. Sedangkan I. PENDAHULUAN 1.1 Latar Belakang Statistika merupakan ilmu tentang pengumpulan, pengaturan, analisis, dan pendugaan data untuk membantu proses pengambilan keputusan secara lebih efisien. Ilmu statistika

Lebih terperinci

BAB II TINJAUAN TEORITIS. Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu

BAB II TINJAUAN TEORITIS. Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu BAB II TINJAUAN TEORITIS 2.1 Pendahulauan Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu rekayasa suatu model logika ilmiah untuk melihat kebenaran/kenyataan model tersebut.

Lebih terperinci

MA4183 MODEL RISIKO Control your Risk!

MA4183 MODEL RISIKO Control your Risk! Catatan Kuliah MA4183 MODEL RISIKO Control your Risk! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4183 Model Risiko A. Jadwal

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA4183 Model Risiko

Lebih terperinci

Metode Statistika. Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution)

Metode Statistika. Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Metode Statistika Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Konsep Peubah Acak Peubah acak merupakan suatu fungsi yang memetakan ruang kejadian (daerah

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA4183 Model Risiko

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemuan V Peubah Acak dan Sebaran Peubah Acak Septian Rahardiantoro - STK IPB 1 Pertemuan minggu lalu kita sudah belajar mengenai cara untuk membuat daftar kemungkinan-kemungkinan

Lebih terperinci

II. LANDASAN TEORI. karakteristik dari generalized Weibull distribution dibutuhkan beberapa fungsi

II. LANDASAN TEORI. karakteristik dari generalized Weibull distribution dibutuhkan beberapa fungsi II. LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan penelitian penulis. Dalam menyelesaikan momen, kumulan dan fungsi karakteristik dari generalized Weibull

Lebih terperinci

BAB II DISTRIBUSI PROBABILITAS

BAB II DISTRIBUSI PROBABILITAS BAB II DISTRIBUSI PROBABILITAS.1. VARIABEL RANDOM Definisi 1: Variabel random adalah suatu fungsi yang memetakan ruang sampel (S) ke himpunan bilangan Real (R), dan ditulis X : S R Contoh (Variabel random)

Lebih terperinci

MA2181 Analisis Data - U. Mukhaiyar 1

MA2181 Analisis Data - U. Mukhaiyar 1 DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA 2181 Analisis Data Utriweni Mukhaiyar September 20 By NN 2008 DISTRIBUSI UNIFORM Distribusi kontinu yang paling sederhana Notasi: X ~ U (a,b) f.k.p:

Lebih terperinci

DISTRIBUSI KONTINU. Utriweni Mukhaiyar

DISTRIBUSI KONTINU. Utriweni Mukhaiyar DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA 2081 Statistika ti tik Dasar Utriweni Mukhaiyar Maret 2012 By NN 2008 Distribusi Uniform Distribusi kontinu yang paling sederhana Notasi: X ~ U

Lebih terperinci

LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel

LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel 5 II. LANDASAN TEORI 2.1 Model Regresi Poisson Analisis regresi merupakan metode statistika yang populer digunakan untuk menyatakan hubungan antara variabel respon Y dengan variabel-variabel prediktor

Lebih terperinci

DISTRIBUSI DISKRIT KHUSUS

DISTRIBUSI DISKRIT KHUSUS DISTRIBUSI DISKRIT KHUSUS UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON MULTINOMIAL HIPERGEOMETRIK GEOMETRIK BINOMIAL NEGATIF MA3181 Teori Peluang 27 Oktober 2014 Utriweni Mukhaiyar DISTRIBUSI UNIFORM (SERAGAM)

Lebih terperinci

DISTRIBUSI NORMAL. Pertemuan 3. Distribusi Normal_M. Jainuri, M.Pd 1

DISTRIBUSI NORMAL. Pertemuan 3. Distribusi Normal_M. Jainuri, M.Pd 1 DISTRIBUSI NORMAL Pertemuan 3 1 Distribusi Normal Pertama kali diperkenalkan oleh Abraham de Moivre (1733). De Moivre menemukan persamaan matematika untuk kurva normal yang menjadi dasar dalam banyak teori

Lebih terperinci

BAB I PENDAHULUAN. Dalam penelitian di dunia teknologi, khususnya bidang industri dan medis

BAB I PENDAHULUAN. Dalam penelitian di dunia teknologi, khususnya bidang industri dan medis BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dalam penelitian di dunia teknologi, khususnya bidang industri dan medis sering kali analisis data uji hidup digunakan. Analisis data uji hidup sendiri bertujuan

Lebih terperinci

DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar

DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar Distribusi Uniform 2 Distribusi kontinu yang paling sederhana Notasi: X ~ U (a,b) f.k.p: f(x)

Lebih terperinci

dari tahun pada stasiun pengamat yang berada di daerah Darmaga, Bogor.

dari tahun pada stasiun pengamat yang berada di daerah Darmaga, Bogor. Jika plot peluang dan plot kuantil-kuantil membentuk garis lurus atau linier maka dapat disimpulkan bahwa model telah memenuhi asumsi (Mallor et al. 2009). Tingkat Pengembalian Dalam praktik, besaran atau

Lebih terperinci

Makalah Sebagai Salah Satu Tugas dalam Mata Kuliah ANALISIS STATISTIK. Oleh: 1. Trilius Septaliana KR ( ) 2. Aisyah ( )

Makalah Sebagai Salah Satu Tugas dalam Mata Kuliah ANALISIS STATISTIK. Oleh: 1. Trilius Septaliana KR ( ) 2. Aisyah ( ) MOMEN, KEMIRINGAN DAN KERUNCINGAN, DISTRIBUSI NORMAL, DISTRIBUSI T, DISTRIBUSI F, DISTRIBUSI BINOMIAL, DISTRIBUSI POISSON, UJI NORMALITAS DAN HOMOGENITAS, UJI F DAN t, HIPOTESIS, DAN ANOVA Makalah Sebagai

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Berikut ini adalah beberapa definisi dan teorema yang menjadi landasan dalam penentuan harga premi, fungsi permintaan, dan kesetimbangannya pada portfolio heterogen. 2.1 Percobaan

Lebih terperinci

Peubah acak X yang berdistribusi normal dengan rataan sebagai: 2 ) X ~ N(,

Peubah acak X yang berdistribusi normal dengan rataan sebagai: 2 ) X ~ N(, 0 DISTRIBUSI NORMAL UMUM Distribusi normal umum ini merupakan distribusi dari peubah acak kontinu yang paling banyak sekali dipakai sebagai pendekatan yang baik dari distribusi lainnya dengan persyaratan

Lebih terperinci

TINJAUAN PUSTAKA. ruang sampel dan dilambangkan dengan huruf S. Ruang sampel beranggotakan

TINJAUAN PUSTAKA. ruang sampel dan dilambangkan dengan huruf S. Ruang sampel beranggotakan II. TINJAUAN PUSTAKA 2.1 Percobaan dan Ruang Sampel Menurut Walpole (1995), istilah percobaan digunakan untuk sembarang proses yang dapat membangkitkan data. Himpunan semua hasil suatu percobaan disebut

Lebih terperinci

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 5. Beberapa jenis Distribusi Variabel Acak Prima Kristalina April 215 1 Outline 1. Beberapa macam

Lebih terperinci

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi Bab 5 Peubah Acak Kontinu 5.1 Pendahuluan Definisi 5.1. Peubah acak adalah suatu fungsi dari ruang contoh S ke R (himpunan bilangan nyata) Peubah acak X bersifat diskret jika F (x) adalah fungsi tangga.

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Menurut Open Darnius (2006, hal: 53) simulasi dapat diartikan sebagai suatu

BAB 2 TINJAUAN TEORITIS. Menurut Open Darnius (2006, hal: 53) simulasi dapat diartikan sebagai suatu xiv BAB 2 TINJAUAN TEORITIS 2.1 Pendahuluan Menurut Open Darnius (2006, hal: 53) simulasi dapat diartikan sebagai suatu rekayasa dari suatu model secara logika ilmiah merupakan suatu metode alternatif

Lebih terperinci

STK 203 TEORI STATISTIKA I

STK 203 TEORI STATISTIKA I STK 203 TEORI STATISTIKA I III. PEUBAH ACAK KONTINU III. Peubah Acak Kontinu 1 PEUBAH ACAK KONTINU Ingat definisi peubah acak! Definisi : Peubah acak Y adalah suatu fungsi yang memetakan seluruh anggota

Lebih terperinci

Nilai Harapan / Nilai Ekspektasi

Nilai Harapan / Nilai Ekspektasi EKSPEKTASI Misalkan sebuah eksperimen menghasilkan k peristiwa, dan peluang masing-masing peristiwa P 1, P, P k dan untuk tiap peristiwa terdapat satuan (bobot d 1, d d k ) maka ekspektasi eksperimen itu

Lebih terperinci

3.3 Pengumpulan Data Primer

3.3 Pengumpulan Data Primer 10 pada bagian kantong, dengan panjang 200 m dan lebar 70 m. Satu trip penangkapan hanya berlangsung selama satu hari dengan penangkapan efektif sekitar 10 hingga 12 jam. Sedangkan untuk alat tangkap pancing

Lebih terperinci

Distribusi Probabilitas : Gamma & Eksponensial

Distribusi Probabilitas : Gamma & Eksponensial Distribusi Probabilitas : Gamma & Eksponensial 11 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Distribusi Gamma Distribusi Eksponensial 3 Distribusi Gamma Tidak selamanya

Lebih terperinci

Prosiding Statistika ISSN:

Prosiding Statistika ISSN: Prosiding Statistika ISSN: 2460-6456 Penaksiran Besar Klaim Optimal Menggunakan Metode Linear Empirical Bayesian yang Diaplikasikan untuk Perhitungan Premi Asuransi Kendaraan Bermotor di Indonesia 1 Hilda

Lebih terperinci

Bab 2 DISTRIBUSI PELUANG

Bab 2 DISTRIBUSI PELUANG Bab 2 DISTRIBUSI PELUANG PENDAHULUAN Setiap peristiwa akan mempunyai peluangnya masingmasing, dan peluang terjadinya peristiwa itu akan mempunyai penyebaran yang mengikuti suatu pola tertentu yang di sebut

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Perkembangan teori statistika telah mempengaruhi hampir semua aspek kehidupan. Hal ini disebabkan statistika merupakan salah satu disiplin ilmu yang berperan

Lebih terperinci

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang BAB II LANDASAN TEORI 2.1 Konsep Dasar Peluang Pada dasarnya statistika berkaitan dengan penyajian dan penafsiran hasil yang berkemungkinan (hasil yang belum dapat ditentukan sebelumnya) yang muncul dalam

Lebih terperinci

MA4181 MODEL RISIKO Risk is managed, not avoided

MA4181 MODEL RISIKO Risk is managed, not avoided Catatan Kuliah MA4181 MODEL RISIKO Risk is managed, not avoided disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA4181 Model Risiko

Lebih terperinci

BAB II KAJIAN TEORI. Analisis survival atau analisis ketahanan hidup adalah metode yang

BAB II KAJIAN TEORI. Analisis survival atau analisis ketahanan hidup adalah metode yang BAB II KAJIAN TEORI BAB II KAJIAN TEORI A. Analisis Survival Analisis survival atau analisis ketahanan hidup adalah metode yang berhubungan dengan jangka waktu, dari awal pengamatan sampai suatu kejadian

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Data Data adalah bentuk jamak dari datum, yang dapat diartikan sebagai informasi yang diterima yang bentuknya dapat berupa angka, kata-kata, atau dalam bentuk lisan dan tulisan

Lebih terperinci

Pemodelan Data Besar Klaim Asuransi Kendaraan Bermotor Menggunakan Distribusi Mixture Erlang

Pemodelan Data Besar Klaim Asuransi Kendaraan Bermotor Menggunakan Distribusi Mixture Erlang Statistika, Vol. 17 No. 1, 45 51 Mei 2017 Pemodelan Data Besar Klaim Asuransi Kendaraan Bermotor Menggunakan Distribusi Mixture Erlang Indah permatasari, aceng komarudin mutaqin, lisnur wachidah Program

Lebih terperinci

REVIEW: DISTRIBUSI PELUANG KHUSUS & UJI HIPOTESIS. Utriweni Mukhaiyar MA2281 Statistika Nonparametrik Kamis, 21 Januari 2016

REVIEW: DISTRIBUSI PELUANG KHUSUS & UJI HIPOTESIS. Utriweni Mukhaiyar MA2281 Statistika Nonparametrik Kamis, 21 Januari 2016 REVIEW: DISTRIBUSI PELUANG KHUSUS & UJI HIPOTESIS Utriweni Mukhaiyar MA81 Statistika Nonparametrik Kamis, 1 Januari 016 PEUBAH ACAK Peubah acak, yaitu pemetaan X: S R Ruang Sampel, S X x Himpunan Bil.Riil,

Lebih terperinci

BAB 1 PENDAHULUAN. masing-masing individu untuk terhindar dari kerusakan dan kehilangan. Asuransi

BAB 1 PENDAHULUAN. masing-masing individu untuk terhindar dari kerusakan dan kehilangan. Asuransi BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Harta benda pribadi merupakan bagian yang selalu dilindungi oleh masing-masing individu untuk terhindar dari kerusakan dan kehilangan. Asuransi non-life adalah

Lebih terperinci

Terima hipotesis Tidak membuat kesalahan Kesalahan tipe II Tolak hipotesis Kesalahan tipe I Tidak membuat kesalahan

Terima hipotesis Tidak membuat kesalahan Kesalahan tipe II Tolak hipotesis Kesalahan tipe I Tidak membuat kesalahan PENGUJIAN HIPOTESIS Hipotesis Statistik adalah pernyataan atau dugaan mengenai satu atau lebih populasi. Dengan mengambil suatu sampel acak dari populasi tersebut dan menggunakan informasi yang dimiliki

Lebih terperinci

PELUANG DAN PEUBAH ACAK

PELUANG DAN PEUBAH ACAK PELUANG DAN PEUBAH ACAK Materi 3 - STK511 Analisis Statistika October 3, 2017 Okt, 2017 1 Konsep Peluang 2 Pendahuluan Kejadian di dunia: pasti (deterministik) atau tidak pasti (probabilistik) Contoh kejadian

Lebih terperinci

Sampling dengan Simulasi Komputer

Sampling dengan Simulasi Komputer Modul Sampling dengan Simulasi Komputer PENDAHULUAN Sutawanir Darwis M etode statistika merupakan alat untuk menyelesaikan masalah apabila solusi analitik tidak mungkin diperoleh. Dengan metode statistika

Lebih terperinci

II. TINJAUAN PUSTAKA. Untuk menguji kesamaan dari beberapa nilai tengah secara sekaligus diperlukan

II. TINJAUAN PUSTAKA. Untuk menguji kesamaan dari beberapa nilai tengah secara sekaligus diperlukan II. TINJAUAN PUSTAKA 2.1 Analisis Ragam Klasifikasi Satu Arah Untuk menguji kesamaan dari beberapa nilai tengah secara sekaligus diperlukan sebuah teknik yang disebut analisis ragam. Analisis ragam adalah

Lebih terperinci

Learning Outcomes Sebaran Kontinu Nilai Harapan dan Ragam Beberapa Sebaran Kontinu. Peubah Acak Kontinu. Julio Adisantoso.

Learning Outcomes Sebaran Kontinu Nilai Harapan dan Ragam Beberapa Sebaran Kontinu. Peubah Acak Kontinu. Julio Adisantoso. Beberapa 27 April 2014 Beberapa Learning Outcome Outline Mahasiswa dapat mengerti dan menentukan peubah acak diskret Mahasiswa dapat memahami dan menghitung nilai harapan Mahasiswa dapat memahami dan menghitung

Lebih terperinci

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

II. TINJAUAN PUSTAKA. Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E

II. TINJAUAN PUSTAKA. Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E 5 II. TINJAUAN PUSTAKA 2.1 Konsep Dasar Peluang Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E adalah himpunan bagian dari ruang sampel. Peluang suatu kejadian P(E) adalah

Lebih terperinci

PERBANDINGAN KUASA WILCOXON RANK SUM TEST DAN PERMUTATION TEST DALAM BERBAGAI DISTRIBUSI TIDAK NORMAL

PERBANDINGAN KUASA WILCOXON RANK SUM TEST DAN PERMUTATION TEST DALAM BERBAGAI DISTRIBUSI TIDAK NORMAL Jurnal Matematika UNAND Vol. 3 No. 4 Hal. 139 146 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PERBANDINGAN KUASA WILCOXON RANK SUM TEST DAN PERMUTATION TEST DALAM BERBAGAI DISTRIBUSI TIDAK NORMAL

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4183 Model Risiko Forecast, assess, and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA4183

Lebih terperinci

Distribusi Probabilitas Kontinyu Teoritis

Distribusi Probabilitas Kontinyu Teoritis Distribusi Probabilitas Kontinyu Teoritis Suprayogi Dist. Prob. Teoritis Kontinyu () Distribusi seragam kontinyu (continuous uniform distribution) Distribusi segitiga (triangular distribution) Distribusi

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Statistik area kecil (small area statistics) saat ini telah menjadi perhatian para statistisi dunia secara sangat serius. Telah banyak penelitian yang dikembangkan

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Percobaan adalah kegiatan

Lebih terperinci

STATISTIK NON PARAMTERIK

STATISTIK NON PARAMTERIK STATISTIK NON PARAMTERIK PROSEDUR PENGOLAHAN DATA : PARAMETER : Berdasarkan parameter yang ada statistik dibagi menjadi Statistik PARAMETRIK : berhubungan dengan inferensi statistik yang membahas parameterparameter

Lebih terperinci

STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP

STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP STATISTICS WEEK 5 Hanung N. Prasetyo Kompetensi 1. Mahasiswa memahamikonsep dasar distribusi peluang kontinu khusus seperti uniform dan eksponensial 2. Mahasiswamampumelakukanoperasi hitungyang berkaitan

Lebih terperinci

II. TINJAUAN PUSTAKA. 2.1 Fungsi Keberlangsungan Hidup (Survival Function) Misalkan adalah usia seseorang saat menutup polis asuransi, sehingga adalah

II. TINJAUAN PUSTAKA. 2.1 Fungsi Keberlangsungan Hidup (Survival Function) Misalkan adalah usia seseorang saat menutup polis asuransi, sehingga adalah II. TINJAUAN PUSTAKA 2.1 Fungsi Keberlangsungan Hidup (Survival Function) Misalkan adalah usia seseorang saat menutup polis asuransi, sehingga adalah peubah acak waktu meninggal. Fungsi distribusi dinyatakan

Lebih terperinci

STATISTIKA NON PARAMETRIK

STATISTIKA NON PARAMETRIK STATISTIKA NON PARAMETRIK Utriweni Mukhaiyar BI5106 Analisis Biostatistik 4 Desember 2012 Prosedur Uji Hipotesis Prosedur Uji Hipotesis Parametrik Uji Z Uji t ANOVA one way UJI MENYANGKUT RATAAN Asumsi

Lebih terperinci

BIOSTATISTIK HIPOTESIS UNTUK PROPORSI MARIA ALMEIDA ( ) NURTASMIA ( ) SOBRI ( )

BIOSTATISTIK HIPOTESIS UNTUK PROPORSI MARIA ALMEIDA ( ) NURTASMIA ( ) SOBRI ( ) BIOSTATISTIK UJI HIPOTESIS UNTUK PROPORSI MARIA ALMEIDA (20611003) NURTASMIA (20611022) SOBRI (20611027) : Tahapan-tahapan dalam uji hipotesis 1.Membuat hipotesis nol (H o ) dan hipotesis alternatif (H

Lebih terperinci

Teori Peluang Diskrit

Teori Peluang Diskrit Teori Peluang Diskrit Peluang Diskrit Apa yang terjadi jika keluaran dari suatu eksperimen tidak memiliki peluang yang sama? Dalam kasus ini, peluang p(s) dipadankan dengan setiap keluaran s S, di mana

Lebih terperinci

LAB MANAJEMEN DASAR MODUL STATISTIKA 1

LAB MANAJEMEN DASAR MODUL STATISTIKA 1 LAB MANAJEMEN DASAR MODUL STATISTIKA 1 Nama : NPM/Kelas : Fakultas/Jurusan : Hari dan Shift Praktikum : Fakultas Ekonomi Universitas Gunadarma Kelapa dua E531 1 UKURAN STATISTIK Pendahuluan Ukuran statistik

Lebih terperinci

STK 203 TEORI STATISTIKA I

STK 203 TEORI STATISTIKA I STK 203 TEORI STATISTIKA I V. SEBARAN FUNGSI PEUBAH ACAK V. Sebaran Fungsi Peubah Acak 1 Sebaran Fungsi Peubah Acak Dalam banyak kasus untuk melakukan inferensi terhadap suatu parameter kita lebih banyak

Lebih terperinci

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4181 (Pengantar)

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 2015 Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu. Ruang

Lebih terperinci

PEUBAH ACAK DAN SEBARANNYA

PEUBAH ACAK DAN SEBARANNYA LOGO STATISTIKA MATEMATIKA I PEUBAH ACAK DAN SEBARANNYA Hazmira Yozza Izzati Rami HG Jurusan Matematika FMIPA Universitas Andalas Percobaan : Pelemparan dua mata uang AA AG GA GG S X Definisi 2.1. Peubah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA Dalam bab ini dijelaskan beberapa definisi dan teorema yang digunakan dalam pembahasan berikutnya. 2.1 Teori Peluang Definisi 2.1.1 (Percobaan Acak) (Ross 2000) Suatu percobaan

Lebih terperinci

II. TINJAUAN PUSTAKA. kontinu. Bentuk kurva distribusi logistik adalah simetri dan uni-modal. Bentuk

II. TINJAUAN PUSTAKA. kontinu. Bentuk kurva distribusi logistik adalah simetri dan uni-modal. Bentuk 5 II. TINJAUAN PUSTAKA Dalam bab ini akan dijelaskan beberapa tinjauan pustaka yang digunakan penulis pada penelitian ini, antara lain : 2.1 Distribusi Logistik Distribusi logistik merupakan distribusi

Lebih terperinci

4. Sebaran Peluang Kontinyu

4. Sebaran Peluang Kontinyu 4. Sebaran Peluang Kontinyu EL00-Probabilitas dan Statistik Dosen: Andriyan B. Suksmono Isi 1. Sebaran normal/gauss. Luas daerah di bawah kurva normal 3. Hampiran normal untuk sebaran binomial 4. Sebaran

Lebih terperinci

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 4. BEBERAPA DISTRIBUSI PELUANG DISKRET

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 4. BEBERAPA DISTRIBUSI PELUANG DISKRET Pertemuan 7. BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 4. BEBERAPA DISTRIBUSI PELUANG DISKRET 4. Pendahuluan 4.2 Distribusi seragam diskret 4.3 Distribusi binomial dan multinomial

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Bab 1: a FMIPA Universitas Islam Indonesia Parameter adalah karakteristik dari populasi (misal θ) adalah karakteristik dari sampel Akan dibahas konsep statistik dan distribusi sampling Parameter Misalkan

Lebih terperinci

4.1.1 Distribusi Binomial

4.1.1 Distribusi Binomial 4.1.1 Distribusi Binomial Perhatikan sebuah percobaan dengan ciri-ciri sebagai berikut : Hanya menghasilkan (diperhatikan) dua peristiwa atau kategori, misal S (sukses) dan G (gagal) Dilakukan sebanyak

Lebih terperinci