BIOENERGETIKA DAN FOFORILASI OKSIDATIF T. HELVI MARDIANI. Bagian Biokimia Fakultas Kedokteran Universitas Sumatera Utara

Ukuran: px
Mulai penontonan dengan halaman:

Download "BIOENERGETIKA DAN FOFORILASI OKSIDATIF T. HELVI MARDIANI. Bagian Biokimia Fakultas Kedokteran Universitas Sumatera Utara"

Transkripsi

1 BIOENERGETIKA DAN FOSFORILASI OKSIDATIF T. HELVI MARDIANI Bagian Biokimia Fakultas Kedokteran Universitas Sumatera Utara Pendahuluan Bioenergetika atau termodinamika biokimia memberikan prinsip dasar untuk menjelaskan mengapa sebagian reaksi dapat terjadi sedangkan sebagian yang lain tidak. Sejumlah sistem non biologik dapat menggunakan energi panas untuk melaksanakan kerjanya, namun sistem biologi pada hakekatnya bersifat isotermik dan memakai energi kimia untuk memberikan tenaga bagi proses kehidupan. Prinsip reaksi oksidasi reduksi yaitu reaksi pengeluaran dan perolehan elektron berlaku pada berbagai sistem biokimia dan merupakan konsep penting yang melandasi pemahaman tentang sifat oksidasi biologi. Ternyata banyak reaksi-reaksi oksidasi dalam sel hidup dapat berlangsung tanpa peran molekul oksigen. Mitokondria sebagai organella pernapasan sel, dikatakan demikian karena didalamnya berlangsung sebagian besar peristiwa penangkapan energi yang berasal dari oksidasi dalam rantai pernapasan sel. Sistem dalam mitokondria yang merangkaikan respirasi dengan produksi ATP sebagai suatu zat antara berenergi tinggi dikenal dengan fosforilasi oksidatif. Fosforilasi oksidatif memungkinkan organisme aerob menangkap energi bebas dengan proporsi yang lebih besar bila dibandingkan dengan organisme an aerob. BIOENERGETIKA DAN FOFORILASI OKSIDATIF Hukum termodinamika Organisme hidup mengubah energi yang diperolehnya dari makanan untuk berbagai tujuan seperti pemeliharaan sel, reproduksi dan berbagai kerja baik fisik maupun kimia. Dalam banyak reaksi biokimia, energi dari reaktan diubah dengan sangat efisien menjadi bentuk yang berbeda. Dalam fotosintesa, energi cahaya diubah menjadi energi ikatan kimia. Dalam mitokondria, energi bebas yang terkandung dalam molekul kecil dari bahan makanan diubah mnjadi suatu alat tukar energi dalam bentuk adenosin trifosfat ( ATP ). Energi ikatan kimia yang terkandung dalam ATP selanjutnya digunakan dalam berbagai cara dan tujuan. Dalam kontraksi otot, energi ATP diubah oleh miosin menjadi energi mekanik. Membran dan organel sel mempunyai pompa yang menggunakan ATP untuk transport molekul dan ion. ATP juga digunakan untuk berbagai aktiviatas sel lainnya. Bioenergetika atau thermodinamika biokimia menerangkan berbagai macam perubahan energi yang menyertai reaksi-reaksi biokimia. Energi bebas adalah bahagian energi total yang dapat digunakan untuk kerja-kerja bermanfaat, difungsikan berdasar hukum thermodinamika pertama dan kedua. Hukum thermodinamika pertama menyatakan jumlah energi dalam suatu sistem dan lingkungannya adalah tetap. Hukum kedua menyatakan bahwa suatu proses dapat berlangsung spontan hanya bila jumlah entropi (tingkat kekacauan) suatu sistem dan lingkungannya bertambah. Suatu masalah dalam menggunakan entropi sebagai kriteria apakah suatu reaksi kimia dapat berjalan spontan, ialah bahwa perubahan entropi reaksi kimia tidak dapat diukur secara langsung. Kesukaran ini diatasi 2004 Digitized by USU digital library 1

2 dengan menggunakan fungsi thermodinamika lain yang disebut energi bebas ( G ) dengan persamaan : tg = th - T ts. tg adalah perubahan energi bebas suatu sistem yang mengalami perubahan pada suatu tekanan (P) dan suhu (T) yang tetap. th adalah perubahan entalpi (kandungan panas) sistem dan ts perubahan entropinya. Perubahan entalpi dinyatakan sebagai : th = te PtV, karena perubahan volume, tv dalam reaksi biokimia kecil sehingga th hampir sama dengan te, maka : tg = te - T ts. Berlawanan dengan perubahan energi dalam sistem (te ), perubahan energi bebas (tg ) suatu reaksi adalah kriteria yang berharga untuk menentukan apakah reaksi tersebut dapat berlangsung dengan spontan. Suatu reaksi dapat berlangsung spontan hanya bila tg negatif. Bila tg nol, sistem berada dalam keseimbangan dan bila positif, diperlukan masukan energi bebas untuk menggerakkan reaksi tersebut. ATP merangkai proses eksergonik dan endergonik Proses dimana berlangsungnya reaksi-reaksi yang melepaskan energi bebas (eksergonik) selalu dirangkaikan dengan proses yang reaksi-reaksinya memerlukan energi bebas (endergonik). Reaksi eksergonik adalah reaksi dalam proses katabolisme yaitu reaksi-reaksi pemecahan atau oksidasi molekul bahan bakar sedangkan reaksi sintesa yang membangun berbagai substansi terdapat dalam proses anabolisme. Untuk merangkaikan kedua proses eksergonik dan endergonik harus ada senyawa antara dengan potensial energi tinggi yang dibentuk dalam reaksi eksergonik dan menyatukan senyawa yang baru dibentuk tersebut kedalam reaksi endergonik, sehingga energi bebasnya dialihkan antara dua proses tersebut. Senyawa antara yang dibentuk tidak perlu mempunyai hubungan struktural dengan reaktan-reaktan yang bereaksi. Dalam sel hidup, reaksi oksidasi yang melepas energi bebas selalu disertai dengan peristiwa fosforilasi yang membentuk senyawa dengan potensial energi lebih tinggi. Senyawa pembawa atau senyawa antara energi tinggi yang utama adalah ATP. ATP adalah nukleotida yang terdiri dari adenin, ribosa dan trifosfat. Bentuk aktif ATP adalah kompleksnya bersama dengan Mg 2+ atau Mn 2+. Sebagai pengemban energi, ATP kaya energi karena unit trifosfatnya mengandung dua ikatan fosfoanhidrida. Sejumlah besar energi bebas dilepaskan ketika ATP dihidrolisis menjadi adenosin difosfat (ADP) dan ortofosfat (Pi) atau ketika ATP dihidrolisis menjadi adenosin monofosfat (AMP) dan pirofosfat (Ppi). ATP memungkinkan perangkaian reaksi yang secara termodinamik tidak menguntungkan menjadi reaksi yang menguntungkan. Reaksi pertama dalam lintasan glikolisis yaitu fosforilasi glukosa menjadi glukosa 6 fosfat adalah reaksi yang endergonik (tgº = + 13,8 kj/mol), agar reaksi dapat berlangsung harus terangkai dengan reaksi lain yang lebih eksergonik yaitu hidrolisa gugus terminal fosfat ATP (tgº = - 30,5 kj/mol ) sehingga rangkaian reaksi yang dikatalisa oleh heksokinase tersebut berlangsung dengan mudah dan sangat eksergonik (tgº = - 16,7 kj/mol ). Konversi antar ATP, AMP dan ADP adalah mungkin. Enzym adenilat kinase (miokinase) mengkatalisis reaksi : ATP + AMP ADP + ADP. Reaksi ini mempunyai fungsi antara lain, memungkinkan fosfat energi tinggi dalam ADP untuk digunakan dalam sintesa ATP, memungkinkan AMP yang terbentuk dari beberapa reaksi aktivasi yang melibatkan ATP difasforilasi ulang menjadi ADP dan memungkinkan peningkatan konsentrasi AMP (ketika ATP terpakai habis) sebagai sinyal metabolik untuk menaikkan kecepatan reaksi-reaksi katabolik (menghasilkan ATP). Beberapa reaksi biosintesis dijalankan oleh nukleotida trifosfat yang analog dengan ATP, yaitu guanosin trifosfat (GTP), uridin trifosfat (UTP) dan sitidin trifosfat (CTP). Bentuk difosfat nukleotida-nukleotida ini disebut dengan GDP, UDP dan CDP dan bentuk Digitized by USU digital library 2

3 bentuk monofosfatnya dengan GMP, UMP dan CMP. Transfer gugus fosforil terminal dari satu kelain nukleotida dapat terjadi dengan bantuan enzym nukleosida difosfat kinase seperti reaksi-reaksi ATP + GDP ADP + GTP dan ATP + GMP ADP + GDP. Berbagai senyawa dalam sistem biologi mempunyai potensi fosforil yang tinggi. Ternyata, beberapa diantaranya, seperti fosfoenolpiruvat, karbamoil fosfat, 1, 3 bifosfogliserat, asetil fosfat dan kreatin fosfat mempunyai potensial pemindahan fosfat yang lebih tinggi dari ATP, hal ini berarti senyawa-senyawa tersebut dapat memindahkan gugus fosforilnya ke ADP untuk membentuk ATP. Potensial transfer fosforil senyawa-senyawa terfosforilasi yang penting secara biologis seperti glukosa 1 fosfat, fruktosa 6 fosfat, glukosa 6 fosfat dan gliserol 3 fosfat lebih rendah dari ATP. Posisi ATP yang berada ditengah-tengah dari molekul-molekul terfosforilasi tersebut, memungkinkan ATP berfungsi secara efisien sebagai pengemban gugus fosforil. ATP sering disebut senyawa fosfat berenergi tinggi dan ikatan fosfoanhidridanya disebut sebagai ikatan berenergi tinggi. Senyawa-senyawa tinggi energi adalah senyawa yang banyak melepaskan enegi bebas ketika mengalami hidrolisis. Istilah ikatan berenergi tinggi sering disimbolkan dengan ~ P dan menunjukkan senyawa yang punya potensial transfer fosforil tinggi. Ada tiga sumber utama ~ P yang mengambil bagian dalam penangkapan energi yaitu peristiwa fosforilasi oksidatif, sumber ~ P yang paling besar pada organisme aerobik, sumber energi bebas untuk menggerakkan proses ini berasal dari reaksi-reaksi oksidasi rantai pernapasan. Sumber kedua adalah glikolisis, membentuk total dua ~ P yang terjadi pada reaksi pemecahan glukosa menjadi laktat. Sumber ketiga adalah siklus asam sitrat, dimana satu ~ P dihasilkan langsung pada konversi suksinil ko-a menjadi suksinat. Senyawa biologi penting lainnya yang digolongkan sebagai senyawa energi tinggi adalah yang mengandung ikatan tiol ester, mencakup koenzym A, protein pembawa asil, senyawa ester asam amino, S-adenosilmetionin, uridin difosfat glukosa dan 5.fosforibosil.1.pirofosfat. Reaksi oksidasi molekul bahan bakar dimana NADH dan FADH 2 adalah pengemban elektron utama Kemotrop memperoleh energi bebas dari oksidasi molekul bahan bakar, seperti glukosa dan asam lemak. Pada organisme aerob, akseptor elektron terakhir adalah oksigen. Transport elektron dalam reaksi-reaksi oksidasi tidak langsung dari molekul bahan bakar atau dari produk pemecahannya ke oksigen. Substrat-substrat yang dioksidasi memindahkan elektronnya kepengemban-pengemban khusus yaitu nukleotida piridin atau flavin. Pengemban yang tereduksi ini kemudian memindahkan elektron potensi tingginya ke oksigen melalui rantai pernapasan yang terdapat pada sisi dalam membran mitokondria. Gradien proton yang terbentuk sebagai hasil aliran elektron dalam rantai pernapasan ini yang kemudian mendorong sintesis ATP dari ADP dan ortofosfat ( Pi ). Proses ini yang disebut fosforilasi oksidatif, yang menjadi sumber utama ATP pada organisme aerob. Selain itu, elektron potensi tinggi yang berasal dari oksidasi molekul bahan bakar dapat digunakan pada reaksi-reaksi biosintesa yang memerlukan daya pereduksi. Nikotinamid adenin dinukleotida (NAD + ) adalah pengemban elektron utama pada oksidasi molekul bahan bakar. Bagian reaktif dari NAD + adalah cincin nikotinamidnya, suatu derivat piridin. Pada oksidasi substrat, cincin nikotinamid NAD + menerima satu ion hidrogen dan dua elektron, yang ekivalen dengan satu ion hidrida(h - ). Bentuk tereduksi pengemban ini disebut NADH. Pada dehidrogenasi diatas, satu atom hidrogen dari subsrat dipindahkan langsung ke NAD +, sedangkan yang 2004 Digitized by USU digital library 3

4 lainnya terdapat dalam pelarut sebagai proton. Kedua elektron yang dilepaskan oleh substrat dipindahkan kecincin nikotinamid. Pengemban elektron utama lainnya pada oksidasi molekul bahan bakar adalah flavin adenin dinukleotida (FAD). Bentuk tereduksinya adalah FADH 2. Bagian reaktif dari FAD adalah cincin isoaloksazinnya. FAD, seperti juga NAD +, dapat menerima dua elektron. Tetapi tidak seperti NAD +, FAD mengambil proton dan juga ion hidrida. Rantai pernapasan dan fosforilasi oksidatif NADH dan FADH 2 yang terbentuk pada reaksi oksidasi dalam glikolisis, reaksi oksidasi asam lemak dan reaksi-reaksi oksidasi dalam siklus asam sitrat merupakan molekul tinggi energi karena masing-masing molekul tersebut mengandung sepasang elektron yang mempunyai potensial transfer tinggi. Bila elektron-elektron ini diberikan pada oksigen molekuler, sejumlah besar energi bebas akan dilepaskan dan dapat digunakan untuk menghasilkan ATP. Adanya perbedaan potensial oksidasi reduksi (E 0 ) atau potensial transfer elektron memungkinkan elektron mengalir dari unsur yang potensial redoks lebih negatif (afinitas elektronnya lebih rendah) ke unsur yang potensial redoksnya lebih positif (afinitas elektronnya lebih tinggi). Aliran elektron ini akan melalui komplek-komplek protein yang terdapat pada membran dalam mitokondria dan menyebabkan proton terpompa keluar dari matriks mitokondria. Akibatnya terbentuk kekuatan daya gerak proton yang terdiri dari gradien ph dan potensial listrik transmembran yang kemudian mendorong proton mengalir kembali kedalam matriks melalui suatu kompleks enzym sintesa ATP. Jadi, oksidasi dan fosforilasi terangkai melalui gradien proton pada membran dalam mitokondria. Fosforilasi oksidatif merupakan proses pembentukan ATP akibat transfer elektron dari NADH atau FADH 2 kepada oksigen melalui serangkaian pengemban elektron. Proses ini adalah sumber utama pembentukan ATP pada organisme aerob. Pembentukan ATP dalam glikolisis sempurna glukosa menjadi CO 2 dan H 2 O, dari 30 ATP yang terbentuk 26 ATP berasal dari proses fosforilasi oksidatif. Komplek-komplek enzym yang terangkai pada membran dalam mitokondria untuk pengangkutan elektron dari molekul NADH atau FADH 2 ke oksigen molekuler dimana terbentuk sejumlah ATP dan molekul air dikenal dengan rantai pernapasan. Komplek enzym tersebut adalah NADH-Q reduktase, suksinat-q reduktase, sitokrom reduktase dan sitokrom oksidase. Suksinat-Q reduktase, berbeda dengan ketiga komplek yang lain, tidak memompa proton. Dalam fosforilasi oksidatif, daya gerak elektron diubah menjadi daya gerak proton dan kemudian menjadi potensial fosforilasi. Fase pertama adalah peran komplek enzym sebagai pompa proton yaitu NADH-Q reduktase, sitokrom reduktase dan sitokrom oksidase. Komplek-komplek transmembran ini mengandung banyak pusat oksidasi reduksi seperti flavin, kuinon, besi-belerang, heme dan ion tembaga. Fase kedua dilaksanakan oleh ATP sintase, suatu susunan pembentuk ATP yang digerakkan melalui aliran balik proton kedalam matriks mitokondria. Elektron potensial tinggi dari NADH masuk rantai pernapasan pada NADH-Q reduktase atau disebut juga dengan NADH dehidrogenase atau komplek I. Langkah awal adalah pengikatan NADH dan transfer dua elektronnya ke flavin mononukleotida (FMN), gugus prostetik komplek ini, menjadi bentuk tereduksi, FMNH 2. Elektron kemudian ditransfer dari FMNH 2 keserangkaian rumpun belerang besi (4Fe-4S), jenis kedua gugus prostetik dalam NADH-Q reduktase. Elektron dalam rumpun belerangbesi kemudian diangkut ke ko-enzym Q, dikenal juga sebagai ubiquinon. Ubiquinon mengalami reduksi menjadi radikal bebas anion semiquinon dan reduksi kedua terjadi dengan pengambilan elektron kedua membentuk ubiquinol (QH 2 ) yang terikat enzym. Pasangan elektron pada QH 2 dipindahkan ke rumpun belerang besi (2Fe-2S) kedua yang ada pada NADH-Q reduktase, dan akhirnya ke Q yang bersifat mobil 2004 Digitized by USU digital library 4

5 dalam inti hidrofobik membran dalam mitokondria. Aliran dua elektron ini menyebabkan terpompanya empat H + dari matriks kesisi sitosol membran dalam mitokondria, dengan mekanisme yang belum diketahui. Ubiquinol ( QH 2 ) juga merupakan tempat masuk elektron dari FADH 2 enzymenzym flavoprotein kerantai pernapasan. Suksinat dehidrogenase merupakan bagian dari komplek suksinat-q reduktase atau disebut juga komplek II, suatu protein integral membran dalam mitokondria. FADH 2 tidak meninggalkan komplek, elektronnya ditransfer kerumpun belerang-besi dan kemudian ke Q untuk masuk dalam rantai pernapasan. Enzym-enzym flavoprotein lain seperti gliserol fosfat dehidrogenase dan asil-ko-a dehidrogenase yang membentuk gugus prostetik tereduksi FADH 2, elektronnya dipindahkan ke flavoprotein kedua yang disebut flavoprotein pemindah elektron atau ETF (electron transferring flavoprotein). Selanjutnya ETF memberikan elektronnya kerumpun belerang besi dan Q untuk masuk rantai pernapasan dalam bentuk QH 2. Berbeda dengan komplek I, komplek II dan enzym lain yang mentransfer elektron dari FADH 2 ke Q tidak memompa proton karena perubahan energi bebas dari reaksi yang dikatalisanya terlalu kecil. Itulah sebabnya, ATP yang terbentuk pada oksidasi FADH 2 lebih sedikit dari pada melalui NADH. Pompa proton kedua dalam rantai pernapasan adalah sitokrom reduktase atau ubiquinol-sitokrom c reduktase atau komplek sitokrom bc 1 atau disebut juga komplek III. Sitokrom merupakan protein pemindah elektron yang mengandung heme sebagai gugus prostetik. Komplek III ini berfungsi mengkatalisir transfer elektron dari QH 2 kesitokrom c dan secara bersamaan memompa proton sebanyak dua H + melewati membran dalam mitokondria. Ada dua sitokrom yaitu b dan c 1 dalam komplek ini, juga mengandung protein Fe-S dan beberapa rantai polipeptida lain. Heme pada sitokrom b berbeda dari heme yang ada pada sitokrom c dan c 1 yang terikat secara kovalen berupa ikatan tioester pada proteinnya. Sitokrom oksidase, komponen terakhir dari tiga pompa proton dalam rantai pernapasan, mengkatalisis transfer elektron dari ferositokrom c kemolekul oksigen sebagai akseptor terakhir. Sitokrom oksidase mengandung dua gugus heme yang berbeda dari heme pada sitokrom c dan c 1 karena gugus rantai samping hemenya dan ikatannya pada enzym secara non kovalen. Heme komplek ini dikenali sebagai heme a dan heme a 3, karenanya komplek ini juga disebut sitokrom aa 3. Selain heme komplek ini juga mengandung dua ion tembaga, dikenal dengan Cu A dan Cu B. Ferositokrom c memberikan satu elektronnya kerumpun heme a- Cu A dan satu lagi kerumpun heme a 3 - Cu B dimana oksigen direduksi melalui serangkaian langkah menjadi dua molekul H 2 O. Molekul oksigen merupakan ekseptor elektron terminal yang ideal. Afinitasnya yang tinggi terhadap elektron memberi daya gerak termodinamik yang besar untuk fosforilasi oksidatif. Terjadi pemompaan proton empat H + kesisi sitosol dari membran. Sejumlah ATP yang dibentuk pada peristiwa fosforilasi oksidatif dirantai pernapasan tidak begitu pasti karena stoikiometri pompa proton, sintesa ATP dan proses transport metabolite tidak harus dalam jumlah bulat atau bernilai tetap. Menurut perkiraan saat ini, jumlah H + yang dipompa dari matriks kesisi sitosol membran oleh Komplek enzym I, III dan IV per pasangan elektron, masing-masing adalah 4, 2 dan 4. Sintesa ATP digerakkan oleh aliran kira-kira tiga H + melalui ATP sintase. Sedangkan untuk mengangkut ATP dari matriks kesitosol memerlukan satu H + tambahan. Dengan demikian terbentuk kira-kira 2,5 ATP sitosol akibat aliran sepasang elektron dari NADH ke oksigen. Untuk elektron yang masuk pada tahap komplek III, misalnya yang berasal dari oksidasi suksinat, hasilnya adalah kira-kira 1,5 ATP per pasangan elektron. Kecepatan fosforilasi oksidatif ditentukan oleh kebutuhan ATP. Transport elektron terangkai erat dengan fosforilasi, elektron tidak mengalir melalui rantai 2004 Digitized by USU digital library 5

6 pernapasan ke oksigen bila tidak ada ADP yang secara simultan mengalami fosforilasi menjadi ATP. Fosforilasi oksidatif memerlukan suplai NADH atau sumber elektron lain dengan potensial tinggi, oksigen, ADP dan ortofosfat. Faktor terpenting dalam menentukan kecepatan fosforilasi oksidatif adalah kadar ADP. Kecepatan konsumsi oksigen oleh mitokondria meningkat tajam bila ditambahkan ADP dan kembali kenilai semula bila ADP yang ditambahkan sudah difosforilasi menjadi ATP. Pengaturan oleh kadar ADP ini disebut pengaturan respirasi. Kepentingan fisiologis mekanisme pengaturan ini jelas, kadar ADP meningkat bila ATP dipakai dan dengan demikian fosforilasi oksidatif terangkai dengan penggunaan ATP. Elektron tidak mengalir dari molekul bahan bakar kemolekul oksigen bila sintesa ATP tidak diperlukan. Transfer elektron dalam rantai pernapasan dapat dihambat oleh banyak inhibitor spesifik. Inhibitor-inhibitor ini dibagi menjadi tiga golongan yaitu inhibitor rantai pernapasan, inhibitor fosforilasi oksidatif dan pemutus rangkaian (uncoupler) fosforilasi oksidatif. Amobarbital (barbiturat), pierisidin A (antibiotik), insektisida dan rotenon (racun ikan) menghambat transfer elektron dalam NADH-Q reduktase dengan menyekat pemindahan elektron dari Fe-S ke Q. Karboksin dan TTFA menghambat aliran elektron dalam suksinat-q reduktase, sedangkan malonat merupakan inhibitor kompetitif dari enzym suksinat dehidrogenase. Dimerkaprol dan antimisin A menghambat elektron dari sitokrom b dalam sitokrom reduktase. Racun klasik seperti H 2 S, karbon monoksida (CO), sianida (CN - ) dan azida (N 3 - ) menghambat sitokrom oksidase dan dapat menghentikan respirasi secara total. Oligomisin (antibiotik) menghambat fosforilasi dan dengan begitu juga menghambat oksidasi sedangkan atraktilosida dan asam bongkrek menghambat pengangkutan ADP kemitokondria dan ATP keluar mitokondria, sehingga menganggu fosforilasi oksidatif. Senyawa-senyawa pemutus rangkaian memisahkan proses oksidasi dalam rantai pernapasan dengan proses fosforilasi. Pemisahan ini menyebabkan respirasi menjadi tak terkendali, karena konsentrasi ADP dan ortofosfat tidak lagi membatasi laju respirasi. senyawa-senyawa ini antara lain adalah dinitrofenol, dinitrokresol, pentaklorofenol dan yang memiliki daya paling kuat sampai seratus kali lebih besar dari yang lain adalah CCCP (klorokarbonil sianida phenilhidrazon). Elektron dari NADH sitosol Membran dalam mitokondria tidak permeabel terhadap NADH dan NAD +. NADH yang terbentuk pada glikolisis disitosol, pada oksidasi gliseraldehid 3-fosfat, harus dioksidasi kembali menjadi NAD + untuk kelangsungan glikolisis. Bagaimana NADH sitosol dapat dioksidasi melalui rantai pernapasan bila tidak dapat masuk kemitokondria? Pemecahannya adalah elektronnya saja yang dibawa melintasi membran mitokondria. Salah satu pembawa adalah gliserol 3-fosfat yang dapat menyebrangi membran luar mitokondria. Langkah pertama dalam sistem ini adalah pemindahan elektron dari NADH ke dihidroksiaseton fosfat membentuk gliserol 3- fosfat yang dikatalisa oleh gliserol 3-fosfat dehidrogenase. gliserol 3-fosfat berdifusi kedalam mitokondria dan dioksidasi kembali menjadi dihidroksiaseton fosfat pada permukaan luar membran dalam mitokondria. Sepasang elektron dari gliserol 3- fosfat ditransfer kegugus prostetik gliserol dehidrogenase mitokondria. Enzym ini berbeda dengan enzym serupa yang ada disitosol, karena menggunakan FAD dan bukan NAD sebagai akseptor elektron selain itu juga merupakan protein transmembran. Dihidroksiaseton fosfat yang terbentuk kemudian berdifusi kembali kedalam sitosol untuk melengkapi sistem angkut ini. Flavin tereduksi dalam mitokondria memindahkan elektronnya kepembawa elektron Q dan masuk rantai pernapasan dalam bentuk QH 2. Akibatnya hanya terbentuk 1,5 ATP dan bukan 2,5 ATP bila NADH sitosol yang dioksidasi dalam rantai pernapasan diangkut oleh gliserol 3-fosfat. Penggunaan FAD memungkinkan elektron dari NADH sitosol ditranspor 2004 Digitized by USU digital library 6

7 kedalam mitokondria melawan gradien konsentrasi NADH, walaupun untuk itu, sistem angkut ini harus merugi satu ATP dibanding bila sistem menggunakan NAD +. Sistem angkut ini terutama berperan pada otot terbang serangga yang dapat mempertahankan kecepatan fosforilasi oksidatif yang sangat tinggi. Dalam jantung dan hati, elektron dari NADH sitosol dibawa kedalam mitokondria melalui sitem angkut malat-aspartat, yang menggunakan dua penggemban membran dan empat enzym. Diawali dengan transfer elektron dari NADH sitosol ke oksaloaetat, membentuk malat, yang kemudian melintasi membran dalam mitokondria dan dioksidasi kembali melalui NAD + dalam matriks mitokondria membentuk NADH. Karena oksaloasetat yang dibentuk tidak mudah melintasi membran dalam mitokondria, diperlukan reaksi transaminasi untuk membentuk aspartat, yang dapat diangkut kesisi sitosol. Berbeda dari sistem angkut gliserol fosfat, NADH hanya dapat dibawa kedalam mitokondria bila ratio NADH / NAD + disitosol lebih tinggi dari pada dimatriks mitokondria. Protein pengangkut dalam mitokondria Mitokondria merupakan organel yang berbentuk lonjong, biasanya dengan panjang kurang lebih dua mikrometer dan diameter setengah mikrometer. Mitokondria mengandung susunan rantai pernapasan, enzym-enzym siklus asam sitrat dan enzym-enzym oksidasi asam lemak. mitokondria memiliki dua sistem membran, membran luar dan membran dalam yang luas dan berlipat-lipat. Lipatanlipatan pada membran dalam disebut krista. Dua kompartemen dalam mitokondria yaitu ruang antar membran (ruang antara membran dalam dan membran luar mitokondria) dan matriks yang dibatasi membran dalam. Membran luar cukup permeabel untuk sebagian besar molekul kecil dan ion, karena mengandung banyak porin, suatu protein transmembran dengan pori besar. Sebaliknya hampir tidak ada ion atau molekul polar yang dapat menembus membran dalam. Sekelompok besar protein transport mengangkut metabolit seperti ATP dan sitrat, melalui membran dalam kedalam matriks dan sebaliknya. Kedua sisi membran dalam disebut sisi matriks (sisi negatif) dan sisi sitosol (sisi positif) karena potensial membran antara dua sisi tersebut. Sisi ruang antar membran dikatakan sisi sitosol karena dapat dicapai oleh hampir semua molekul kecil dalam sitosol. ATP dan ADP tidak berdifusi bebas melintasi membran dalam mitokondria. Suatu protein transport spesifik, ATP-ADP translokase (pembawa adenin nukleotida), memungkinkan molekul yang tinggi muatan ini menyebrangi sawar permeabilitas membran dalam mitokondria. Aliran ATP dan ADP terangkai secara antiport, ADP masuk matriks bila ATP keluar matriks mitokondria, dan sebaliknya. Pertukaran ATP- ADP sangat banyak mengunakan energi, kurang lebih seperempat energi yang dihasilkan pada transfer elektron melalui rantai pernapasan. Beberapa protein pengangkut atau pengemban mitokondria lain untuk ion dan metabolite bermuatan bekerja dengan cara simport dan antiport. Pengemban fosfat, bekerja bersama dengan translokase ATP-ADP, menyebabkan pertukaran antara Pi (sebagai ion H 2 PO - 4 ) dengan OH - atau simport dari Pi dan H +. Kerjasama kedua pengangkut ini, menyebabkan pertukaran ADP dan Pi sitosol dengan ATP matriks, disertai masuknya satu H +. Pengemban dikarboksilat, memungkinkan malat, suksinat dan fumarat dikeluarkan dari mitokondria secara antiport dengan Pi. Pengemban trikarboksilat, mengangkut sitrat dan satu proton masuk mitokondria secara antiport dengan malat. Pengemban piruvat, membawa masuk piruvat dari sitosol kematriks mitokondria secara simport dengan H + atau secara antiport dengan OH -. Pengangkut α ketoglutarat, membawa masuk α ketoglutarat secara antiport dengan malat. Protein-protein pengangkut mitokondria ini dan lebih dari lima yang lainnya mempunyai struktur yang sama. Membran dalam mitokondria bersifat permeabel bebas terhadap molekul kecil yang tidak bermuatan, seperti air, oksigen, CO 2, NH Digitized by USU digital library 7

8 dan asam monokarboksilat (seperti 3-hidroksibutirat, asetoasetat, dan asetat ), sedangkan asam lemak rantai panjang masuk mitokondria dengan pembawa karnitin. Kreatin fosfat mengangkut fosfat energi tinggi Gerakan ulang alik kreatin fosfat memungkinkan pemindahan cepat fosfat energi tinggi dari mitokondria kesitosol. Gerakan ini menguatkan fungsi kreatin fosfat sebagai pendapar energi dengan bekerja sebagai suatu sistem yang dinamis untuk pemindahan fosfat energi tinggi dari mitokondria pada jaringan yang aktif seperti otot jantung dan otot skelet. Jumlah ATP pada otot hanya mencukupi untuk menopang aktivitas produksi selama kurang dari satu detik. Otot vertebrata mengandung gudang fosfat energi tinggi dalam bentuk kreatin fosfat (fosfokreatin), yang dapat dengan mudah mentransfer fosfat energi tingginya ke ADP membentuk ATP. Kreatin fosfat mempertahankan konsentrasi ATP tinggi selama periode kerja otot. Kreatin kinase yang ada pada ruang antar membran mitokondria, mengkatalisa pemindahan fosfat energi tinggi dari ATP kepada kreatin. Selanjutnya, kreatin fosfat yang terbentuk diangkut kesitosol melalui porin (pori-pori protein) yang terdapat pada membran luar mitokondria. Isozym kreatin kinase yang berbeda mengantarai pemindahan fosfat energi tinggi ke dan dari berbagai sistem yang menggunakan atau menghasilkannya. CKa, kreatin kinase yang bertanggung jawab terhadap kebutuhan ATP yang besar, seperti kontraksi otot. CKc, kreatin kinase untuk mempertahankan keseimbangan antara kreatin dan kreatin fosfat, juga keseimbangan ATP dan ADP. CKg, kreatin kinase yang menggabungkan glikolisis pada kreatin untuk sintesa kreatin fosfat. Dan CK m, kreatin kinase mitokondria yang memperantarai pembentukan kreatin fosfat dari ATP yang terbentuk melalui fosforilasi oksidatif. Kreatin fosfat + ADP + H + ATP + kreatin, energi bebas standart hidrolisa kreatin fosfat adalah 10,3 kkal/mol, dibandingkan dengan hidrolisa ATP yang 7,3 kkal/mol maka, perubahan energi bebas standart pada pembentukan ATP dari kreatin fosfat adalah 3 kkal/mol. Potensial transfer fosforil kreatin fosfat yang lebih tinggi dari ATP, menyebabkan kreatin fosfat menjadi dapar fosfat energi tinggi yang sangat efektif. Kesimpulan 1. Reaksi berlangsung spontan bila terjadi pelepasan energi bebas (tg negatif) yaitu reaksi tersebut bersifat eksergonik, dan jika tg positif, reaksi hanya berlangsung bila diperoleh energi bebas, reaksi ini bersifat endergonik. 2. ATP adalah zat perantara penukar energi bebas, yang merangkaikan prosesproses yang bersifat eksergonik dengan proses-proses yang bersifat endergonik. 3. Enzym oksidase dan dehidrogenase memiliki peran utama dalam proses rantai pernapasan. 4. Komplek-komplek enzym dalam rantai pernapasan menggunakan potensial energi dari gradien proton untuk mensintesa ATP dari ADP dan Pi. Dengan demikian jelas terlihat bahwa rangkaian reaksi oksidasi terangkai erat dengan fosforilasi. 5. Terdapat sejumlah senyawa kimia yang dapat menghambat rangkaian reaksi oksidasi dan peristiwa fosforilasi atau memutus rangkaian oksidasi dan fosforilasi. 6. Terdapat protein pengangkut khusus untuk perlintasan beberapa ion dan metabolit pada membran mitokondria Digitized by USU digital library 8

9 DAFTAR PUSTAKA - Champe P C PhD, Harvey R A PhD. Lippincott s Illustrated Reviews: Biochemistry 2 nd.1994 : Lehninger A, Nelson D, Cox M M. Principles of Biochemistry 2 nd 1993 : Murray R K, et al. Harper s Biochemistry 25 th ed. Appleton & Lange. America 2000 : Stryer L Biochemistry 4 th : ; ; ; Digitized by USU digital library 9

2.1.3 Terjadi dimana Terjadi salam mitokondria

2.1.3 Terjadi dimana Terjadi salam mitokondria 2.1.1 Definisi Bioenergetika Bioenergetika atau termodinamika biokimia adalah ilmu pengetahuan mengenai perubahan energi yang menyertai reaksi biokimia. Reaksi ini diikuti oleh pelepasan energi selama

Lebih terperinci

BIOENERGETIKA. Oleh: Moammad Hanafi Dan Trimartini

BIOENERGETIKA. Oleh: Moammad Hanafi Dan Trimartini BIOENERGETIKA Oleh: Moammad Hanafi Dan Trimartini 1 BIOENERGETIKA MEMPELAJARI DINAMIKA/ PERUBAHAN ENERGI PADA REAKSI BIOKIMIAWI (REAKSI KIMIA PADA ORGANISME) 2 PADA ILMU KIMIA TELAH DIKENAL ADANYA: 1.REAKSI

Lebih terperinci

METABOLISME ENERGI. Metabolisme : segala proses reaksi kimia yang terjadi dalam tubuh makhluk hidup

METABOLISME ENERGI. Metabolisme : segala proses reaksi kimia yang terjadi dalam tubuh makhluk hidup METABLISME EERGI Metabolisme : segala proses reaksi kimia yang terjadi dalam tubuh makhluk hidup Energi : kemampuan makhluk hidup untuk melakukan aktivitas Metabolisme energi dipelajari bioenergitika Disebut

Lebih terperinci

RESPIRASI SELULAR. Cara Sel Memanen Energi

RESPIRASI SELULAR. Cara Sel Memanen Energi RESPIRASI SELULAR Cara Sel Memanen Energi TIK: Setelah mengikuti kuliah ini mahasiswa dapat menjelaskan cara sel memanen energi kimia melalui proses respirasi selular dan faktorfaktor yang mempengaruhi

Lebih terperinci

BAB Latar Belakang Masalah 1.2. Rumusan Masalah

BAB Latar Belakang Masalah 1.2. Rumusan Masalah BAB 1 1.1. Latar Belakang Masalah Sistem pernapasan yang lazim digunakan mencakup 2 proses; pernapasan luar (eksternal), yaitu penyerapan O 2 dan pengeluaran CO 2 dari tubuh secara keseluruhan ;serta pernapasan

Lebih terperinci

organel yang tersebar dalam sitosol organisme

organel yang tersebar dalam sitosol organisme STRUKTUR DAN FUNGSI MITOKONDRIA Mitokondria Mitokondria merupakan organel yang tersebar dalam sitosol organisme eukariot. STRUKTUR MITOKONDRIA Ukuran : diameter 0.2 1.0 μm panjang 1-4 μm mitokondria dalam

Lebih terperinci

Secara sederhana, oksidasi berarti reaksi dari material dengan oksigen. Secara kimiawi: OKSIDASI BIOLOGI

Secara sederhana, oksidasi berarti reaksi dari material dengan oksigen. Secara kimiawi: OKSIDASI BIOLOGI Proses oksidasi Peranan enzim, koenzim dan logam dalam oksidasi biologi Transfer elektron dalam sel Hubungan rantai pernapasan dengan senyawa fosfat berenergi tinggi Oksidasi hidrogen (H) dalam mitokondria

Lebih terperinci

BAB I PENDAHULUAN BAB II

BAB I PENDAHULUAN BAB II BAB I PENDAHULUAN. LATAR BELAKANG Mitokondria adalah tempat di mana fungsi respirasi pada makhluk hidup berlangsung. Respirasi merupakan proses perombakan atau katabolisme untuk menghasilkan energi atau

Lebih terperinci

Siklus Krebs. dr. Ismawati, M.Biomed

Siklus Krebs. dr. Ismawati, M.Biomed Siklus Krebs dr. Ismawati, M.Biomed Berfungsi dalam katabolisme dan juga anabolisme amfibolik Katabolisme memproduksi molekul berenergi tinggi Anabolisme memproduksi intermedier untuk prekursor biosintesis

Lebih terperinci

Secara sederhana, oksidasi berarti reaksi dari material dengan oksigen OKSIDASI BIOLOGI

Secara sederhana, oksidasi berarti reaksi dari material dengan oksigen OKSIDASI BIOLOGI Proses oksidasi Peranan enzim, koenzim dan logam dalam oksidasi biologi Transfer elektron dalam sel Hubungan rantai pernapasan dengan senyawa fosfat berenergi tinggi Oksidasi hidrogen (H) dalam mitokondria

Lebih terperinci

Pertemuan III: Cara Kerja Sel dan Respirasi Seluler. Program Tingkat Persiapan Bersama IPB 2011

Pertemuan III: Cara Kerja Sel dan Respirasi Seluler. Program Tingkat Persiapan Bersama IPB 2011 Pertemuan III: Cara Kerja Sel dan Respirasi Seluler Program Tingkat Persiapan Bersama IPB 2011 Pertemuan III. Cara Kerja Sel Topik Bahasan: Fungsi (protein) membran Energi dalam kehidupan Fungsi enzim

Lebih terperinci

MAKALAH BIOKIMIA II DEKARBOKSILASI OKSIDATIF, SIKLUS ASAM SITRAT, DAN FOSFORILASI OKSIDATIF

MAKALAH BIOKIMIA II DEKARBOKSILASI OKSIDATIF, SIKLUS ASAM SITRAT, DAN FOSFORILASI OKSIDATIF MAKALAH BIOKIMIA II DEKARBOKSILASI OKSIDATIF, SIKLUS ASAM SITRAT, DAN FOSFORILASI OKSIDATIF OLEH KELOMPOK IV NAMA ANGGOTA : 1. LALU SINGGIH AJI PUTRA 2. NONI MULIANA LISTIAWATI 3. SAMSUL RIZAL UMAMI 4.

Lebih terperinci

Metabolisme : Enzim & Respirasi

Metabolisme : Enzim & Respirasi Metabolisme : Enzim & Respirasi SMA Regina Pacis Ms. Evy Anggraeny August 2014 1 Pengantar Metabolisme Yaitu modifikasi reaksi biokimia dalam sel makhluk hidup Aktivitas sel Metabolit Enzim/fermen Macamnya

Lebih terperinci

BIOLOGI. Nissa Anggastya Fentami, M.Farm, Apt

BIOLOGI. Nissa Anggastya Fentami, M.Farm, Apt BIOLOGI Nissa Anggastya Fentami, M.Farm, Apt Metabolisme Sel Metabolisme Metabolisme merupakan totalitas proses kimia di dalam tubuh. Metabolisme meliputi segala aktivitas hidup yang bertujuan agar sel

Lebih terperinci

SIKLUS ASAM SITRAT SIKLUS KREBS ETI YERIZEL BAGIAN BIOKIMIA FK-UNAND

SIKLUS ASAM SITRAT SIKLUS KREBS ETI YERIZEL BAGIAN BIOKIMIA FK-UNAND SIKLUS ASAM SITRAT SIKLUS KREBS ETI YERIZEL BAGIAN BIOKIMIA FK-UNAND SIKLUS KREBS Pertama kali ditemukan oleh Krebs tahun 1937, sehingga disebut Daur Krebs Merupakan jalur metabolisme utama dari berbagai

Lebih terperinci

PRINSIP ENERGI METABOLISME

PRINSIP ENERGI METABOLISME PRINSIP ENERGI METABOLISME TUJUAN PEMBELAJARAN MENGETAHUI PRINSIP REAKSI OKSIDASI PADA SIKLUS KREBS MENGETAHUI SUMBER RESIDU ASETIL MENGETAHUI LOKASI ENZIM PADA MITOKONDRIA MENGETAHUI KOMPONEN RANTAI PERNAPASAN

Lebih terperinci

BAHAN AJAR BIOKIMIA Sistem energi untuk olahraga. Oleh: Cerika Rismayanthi, M.Or FIK UNY

BAHAN AJAR BIOKIMIA Sistem energi untuk olahraga. Oleh: Cerika Rismayanthi, M.Or FIK UNY BAHAN AJAR BIOKIMIA Sistem energi untuk olahraga Oleh: Cerika Rismayanthi, M.Or FIK UNY Seluruh sel-sel tubuh memiliki kemampuan mengkonversi makanan (dalam hal ini protein, lemak, dan karbohidrat) menjadi

Lebih terperinci

Dr. Dwi Suryanto Prof. Dr. Erman Munir Nunuk Priyani, M.Sc.

Dr. Dwi Suryanto Prof. Dr. Erman Munir Nunuk Priyani, M.Sc. BIO210 Mikrobiologi Dr. Dwi Suryanto Prof. Dr. Erman Munir Nunuk Priyani, M.Sc. Kuliah 4-5. METABOLISME Ada 2 reaksi penting yang berlangsung dalam sel: Anabolisme reaksi kimia yang menggabungkan bahan

Lebih terperinci

Prasetyastuti Department of Biochemistry Gadjah Mada University

Prasetyastuti Department of Biochemistry Gadjah Mada University Prasetyastuti Department of Biochemistry Gadjah Mada University Kepentingan Biomedis Bioenergetik = termodinamika Biokimia : mempelajari perubahan energi yang menyertai reaksi-reaksi Biokimia Dlm sistem

Lebih terperinci

Tugas Biologi KATABOLISME. Disusun oleh: Niluh Yuliastri. Kelas E

Tugas Biologi KATABOLISME. Disusun oleh: Niluh Yuliastri. Kelas E Tugas Biologi KATABOLISME Disusun oleh: Niluh Yuliastri Kelas E Fakultas Perternakan Universitas Halu Oleo 2017 KATA PENGANTAR Puji syukur kami haturkan kehadirat Tuhan Yang Maha Esa karena dengan rahmat,

Lebih terperinci

A. Respirasi Selular/Aerobik

A. Respirasi Selular/Aerobik UNSYIAH Universitas Syiah Kuala Pendahuluan METABOLISME Pengantar Biologi MPA-107, 3 (2-1) Kuliah 4 SEL: RESPIRASI Tim Pengantar Biologi Jurusan Biologi FMIPA Unsyiah ANABOLISME (Pembentukan molekul kompleks

Lebih terperinci

BIOLOGI. Nissa Anggastya Fentami, M.Farm, Apt

BIOLOGI. Nissa Anggastya Fentami, M.Farm, Apt BIOLOGI Nissa Anggastya Fentami, M.Farm, Apt Metabolisme Sel Metabolisme Metabolisme merupakan totalitas proses kimia di dalam tubuh. Metabolisme meliputi segala aktivitas hidup yang bertujuan agar sel

Lebih terperinci

BAB I PENDAHULUAN UKDW. kosmetik, pembuatan karet sintetis, hingga industri bahan bakar.

BAB I PENDAHULUAN UKDW. kosmetik, pembuatan karet sintetis, hingga industri bahan bakar. 1 BAB I PENDAHULUAN A. Latar Belakang Etanol banyak digunakan dalam dunia industri obat obatan, kosmetik, pembuatan karet sintetis, hingga industri bahan bakar. Penggunaan etanol pada industri bahan bakar

Lebih terperinci

Metabolisme (Katabolisme) Radityo Heru Mahardiko XII IPA 2

Metabolisme (Katabolisme) Radityo Heru Mahardiko XII IPA 2 Metabolisme (Katabolisme) Radityo Heru Mahardiko XII IPA 2 Peta Konsep Kofaktor Enzim Apoenzim Reaksi Terang Metabolisme Anabolisme Fotosintesis Reaksi Gelap Katabolisme Polisakarida menjadi Monosakarida

Lebih terperinci

Metabolisme Karbohidrat. Oleh : Muhammad Fakhri, S.Pi, MP, M.Sc Tim Pengajar Biokimia

Metabolisme Karbohidrat. Oleh : Muhammad Fakhri, S.Pi, MP, M.Sc Tim Pengajar Biokimia Metabolisme Karbohidrat Oleh : Muhammad Fakhri, S.Pi, MP, M.Sc Tim Pengajar Biokimia LATAR BELAKANG Kemampuan ikan untuk memanfaatkan karbohidrat tergantung pada kemampuannya menghasilkan enzim amilase

Lebih terperinci

TEORI PEMBENTUKAN ATP, KAITANNYA DENGAN PERALIHAN ASAM-BASA. Laurencius Sihotang BAB I PENDAHULUAN

TEORI PEMBENTUKAN ATP, KAITANNYA DENGAN PERALIHAN ASAM-BASA. Laurencius Sihotang BAB I PENDAHULUAN TEORI PEMBENTUKAN ATP, KAITANNYA DENGAN PERALIHAN ASAM-BASA Laurencius Sihotang BAB I PENDAHULUAN A. LATAR BELAKANG Semua kehidupan di bumi ini bergantung kepada fotosintesis baik langsung maupun tidak

Lebih terperinci

DOSEN PENGAMPU : Dra.Hj.Kasrina,M.Si

DOSEN PENGAMPU : Dra.Hj.Kasrina,M.Si DISUSUN OLEH : WIDIYA AGUSTINA (A1F013001) FEPRI EFFENDI (A1F013021) DIAN KARTIKA SARI (A1F013047) DHEA PRASIWI (A1F013059) TYAS SRI MURYATI (A1F013073) DOSEN PENGAMPU : Dra.Hj.Kasrina,M.Si RESPIRASI Respirasi

Lebih terperinci

Aliran elektron pembawa elektron berupa satu seri protein pembawa elektron dan lipid (quinone)

Aliran elektron pembawa elektron berupa satu seri protein pembawa elektron dan lipid (quinone) Aliran elektron pembawa elektron berupa satu seri protein pembawa elektron dan lipid (quinone) Setiap pembawa elektron mempunyai potensial elektroda yang berbeda serta mentransfer elektron ke pembawa dengan

Lebih terperinci

BAB 10. TRANSFER ELEKTRON

BAB 10. TRANSFER ELEKTRON BAB 10. TRANSFER ELEKTRON Membran sel prokariota mempunyai fungsi yang luas. Selain sebagai pintu keluar-masuknya senyawa dan nutrien, membran sel juga berfungsi sebagai organela bermembran seperti organela

Lebih terperinci

oksaloasetat katabolisme anabolisme asetil-koa aerobik

oksaloasetat katabolisme anabolisme asetil-koa aerobik Siklus Kreb s Sumber asetil-koa Pembentukan energi pada siklus Kreb s Fungsi amfibolik siklus Kreb s Siklus asam sitrat pada metabolisme karbohidrat, lipid dan protein Proses metabolisme karbohidrat dan

Lebih terperinci

Rangkaian reaksi biokimia dalam sel hidup. Seluruh proses perubahan reaksi kimia beserta perubahan energi yg menyertai perubahan reaksi kimia tsb.

Rangkaian reaksi biokimia dalam sel hidup. Seluruh proses perubahan reaksi kimia beserta perubahan energi yg menyertai perubahan reaksi kimia tsb. Rangkaian reaksi biokimia dalam sel hidup. Seluruh proses perubahan reaksi kimia beserta perubahan energi yg menyertai perubahan reaksi kimia tsb. Anabolisme = (biosintesis) Proses pembentukan senyawa

Lebih terperinci

BAB IV METABOLISME. Proses pembentukan atau penguraian zat di dalam sel yang disertai dengan adanya perubahan energi.

BAB IV METABOLISME. Proses pembentukan atau penguraian zat di dalam sel yang disertai dengan adanya perubahan energi. BAB IV METABOLISME Proses pembentukan atau penguraian zat di dalam sel yang disertai dengan adanya perubahan energi METABOLISME ANABOLISME Proses Pembentukan Contoh: Fotosintesis, Kemosintesis Sintesis

Lebih terperinci

SMA XII (DUA BELAS) BIOLOGI METABOLISME

SMA XII (DUA BELAS) BIOLOGI METABOLISME JENJANG KELAS MATA PELAJARAN TOPIK BAHASAN SMA XII (DUA BELAS) BIOLOGI METABOLISME Metabolisme adalah seluruh reaksi kimia yang dilakukan oleh organisme. Metabolisme juga dapat dikatakan sebagai proses

Lebih terperinci

GLIKOLISIS DAN SIKLUS KREBS. Anggota :

GLIKOLISIS DAN SIKLUS KREBS. Anggota : GLIKOLISIS DAN SIKLUS KREBS Anggota : Ibrahim Febrizky Hadi Winata Mujibur Rahman (G84070035) (G84070024) (G84070020) DEPARTEMEN BIOKIMIA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN

Lebih terperinci

4. Respirasi aerob menghasilkan produk berupa A. sukrosa B. glukosa C. CO D. oksigen

4. Respirasi aerob menghasilkan produk berupa A. sukrosa B. glukosa C. CO D. oksigen 1. Pada respirasi terjadi proses pemakaian karbohidrat menjadi piruvat yang disebut... A. siklus Krebs B. siklus Calvin C. fermentasi D. glikolisis E. fiksasi Pada proses glikolisis, glukosa (C6) di pecah

Lebih terperinci

BAB 14. Siklus ATP dan Bioenergetika Sel. Di dalam setiap perubahan fisik atau kimia, jumlah total energi pada lingkungan adalah tetap.

BAB 14. Siklus ATP dan Bioenergetika Sel. Di dalam setiap perubahan fisik atau kimia, jumlah total energi pada lingkungan adalah tetap. BAB 14 Siklus ATP dan Bioenergetika Sel Bioenergetika adalah bagian dari biokimia yang bersangkutan dengan transformasi dan penggunaan energi oleh sel hidup Hukum Pertama dan Kedua Termodinamika - Hukum

Lebih terperinci

Pertemuan : Minggu ke 7 Estimasi waktu : 150 menit Pokok Bahasan : Respirasi dan metabolisme lipid Sub pokok bahasan : 1. Respirasi aerob 2.

Pertemuan : Minggu ke 7 Estimasi waktu : 150 menit Pokok Bahasan : Respirasi dan metabolisme lipid Sub pokok bahasan : 1. Respirasi aerob 2. Pertemuan : Minggu ke 7 Estimasi waktu : 150 menit Pokok Bahasan : Respirasi dan metabolisme lipid Sub pokok bahasan : 1. Respirasi aerob 2. Respirasi anaerob 3. Faktor-faktor yg mempengaruhi laju respirari

Lebih terperinci

Penemunya adalah Dr. Hans Krebs; disebut juga sebagai siklus asam sitrat atau jalur asam trikarboksilik. Siklus yang merubah asetil-koa menjadi CO 2.

Penemunya adalah Dr. Hans Krebs; disebut juga sebagai siklus asam sitrat atau jalur asam trikarboksilik. Siklus yang merubah asetil-koa menjadi CO 2. Siklus Kreb s Sumber asetil-koa Pembentukan energi pada siklus Kreb s Fungsi amfibolik siklus Kreb s Siklus asam sitrat pada metabolisme karbohidrat, lipid dan protein Proses metabolisme karbohidrat dan

Lebih terperinci

Tabel Mengikhtisarkan reaksi glikolisis : 1. Glukosa Glukosa 6-fosfat. 2. Glukosa 6 Fosfat Fruktosa 6 fosfat

Tabel Mengikhtisarkan reaksi glikolisis : 1. Glukosa Glukosa 6-fosfat. 2. Glukosa 6 Fosfat Fruktosa 6 fosfat PROSES GLIKOLISIS Glikolisis merupakan jalur, dimana pemecahan D-glukosa yang dioksidasi menjadi piruvat yang kemudian dapat direduksi menjadi laktat. Jalur ini terkait dengan metabolisme glikogen lewat

Lebih terperinci

METABOLISME MIKROORGANISME

METABOLISME MIKROORGANISME METABOLISME MIKROORGANISME Mengapa mempelajari metabolisme? Marlia Singgih Wibowo School of Pharmacy ITB Tujuan mempelajari metabolisme mikroorganisme Memahami jalur biosintesis suatu metabolit (primer

Lebih terperinci

O CH2-C-S-KoA CH2-COOH. O=C-COOH C-CH3 HO-C-COOH HO-C-COOH + HS-KoA + <----> + H2O ----> CH2-COOH S-KoA CH2-COOH CH2-COOH

O CH2-C-S-KoA CH2-COOH. O=C-COOH C-CH3 HO-C-COOH HO-C-COOH + HS-KoA + <----> + H2O ----> CH2-COOH S-KoA CH2-COOH CH2-COOH SIKLUS ASAM SITRAT Lokasi selluler dari siklus asam sitrat Dalam jaringan-jaringan hewan mammalia semua komponen siklus asam sitrat terdapat pada bagian matriks dari mitokhondria, beberapa komponen juga

Lebih terperinci

Metabolisme karbohidrat

Metabolisme karbohidrat Metabolisme karbohidrat Dr. Syazili Mustofa, M.Biomed Lektor mata kuliah ilmu biomedik Departemen Biokimia, Biologi Molekuler, dan Fisiologi Fakultas Kedokteran Unila PENCERNAAN KARBOHIDRAT Rongga mulut

Lebih terperinci

Peta Konsep. komponen enzim. Ko-enzim. Cara kerja enzim. Bekerja secara spesifik Sifat-sifat enzim. Glikolisis. Siklus krebs.

Peta Konsep. komponen enzim. Ko-enzim. Cara kerja enzim. Bekerja secara spesifik Sifat-sifat enzim. Glikolisis. Siklus krebs. Bab 2 Metabolisme Sel Bab 2 Metabolisme Sel Pengertian metabolisme Peta Konsep komponen enzim Gugus prostetik Ko-enzim Ion-ion organik Cara kerja enzim Teori gembok dan anak kunci Teori kecocokan yang

Lebih terperinci

ENZIM Enzim : adalah protein khusus yang mengkatalisis reaksi biokimia tertentu

ENZIM Enzim : adalah protein khusus yang mengkatalisis reaksi biokimia tertentu ENZIM Enzim : adalah protein khusus yang mengkatalisis reaksi biokimia tertentu terikat pada satu atau lebih zat-zat yang bereaksi. Dengan demikian enzim menurunkan barier energi (jumlah energi aktivasi

Lebih terperinci

1. Glikolisis, yakni proses pemecahan molekul c6 atau glukosa menjadi senyawa bernama asam piruvat atau dikenal dengan rumus kimia C3.

1. Glikolisis, yakni proses pemecahan molekul c6 atau glukosa menjadi senyawa bernama asam piruvat atau dikenal dengan rumus kimia C3. MEKANISME PERNAPASAN Aerob Dan Anaerob Secara kompleks, respirasi diartikan sebagai sebuah proses pergerakan atau mobilisasi energi oleh makhluk hidup dengan cara memecah senyawa dengan ebergi tinggi yakni

Lebih terperinci

Fungsi utama Siklus Kreb 1. Menghasilkan karbondioksida terbanyak pada jaringan manusia.

Fungsi utama Siklus Kreb 1. Menghasilkan karbondioksida terbanyak pada jaringan manusia. URAIAN MATERI A. Glikolisis Glikolisis diperoleh daribahasa yunani glyk manis, dan lysis pemecahan.glikolisis merupakan proses pemecahan glukosa menjadi senyawa triosa (C 3) yaitu piruvat. Siklus asam

Lebih terperinci

Oleh: Tim Biologi Fakultas Teknologi Pertanian Universitas Brawijaya 2013

Oleh: Tim Biologi Fakultas Teknologi Pertanian Universitas Brawijaya 2013 Energi & METABOLISME Oleh: Tim Biologi Fakultas Teknologi Pertanian Universitas Brawijaya 2013 Sesuatu yang diperlukan untuk aktivitas seluler, seperti pertumbuhan, gerak, transport molekul maupun ion

Lebih terperinci

METABOLISME KARBOHIDRAT. Chairul Huda Al Husna

METABOLISME KARBOHIDRAT. Chairul Huda Al Husna METABOLISME KARBOHIDRAT Chairul Huda Al Husna IMAJINASI METABOLISME ENERGI KH Lemak Protein ADP + P ATP Transport aktif membran sel Kontraksi otot Reaksi sintesis : hormon, dll Hantaran impuls syaraf Pertumbuhan

Lebih terperinci

BIOLOGI JURNAL ANABOLISME DAN KATABOLISME MEILIA PUSPITA SARI (KIMIA I A)

BIOLOGI JURNAL ANABOLISME DAN KATABOLISME MEILIA PUSPITA SARI (KIMIA I A) BIOLOGI JURNAL ANABOLISME DAN KATABOLISME MEILIA PUSPITA SARI (KIMIA I A) PROGRAM STUDI KIMIA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI SYARIF HIDAYATULLAH JAKARTA Jalan Ir. H. Juanda No. 95

Lebih terperinci

KEHIDUPAN SEL PELEPASAN ENERGI DALAM SEL

KEHIDUPAN SEL PELEPASAN ENERGI DALAM SEL KEHIDUPAN SEL PELEPASAN ENERGI DALAM SEL Gimana UTSnya??? LUMAYAN...????!!? SILABUS PERTEMUAN KE- TGL MATERI 8 15 NOV 9 22 NOV 10 29 NOV KEHIDUPAN SEL (PELEPASAN ENERGI DALAM SEL) KEHIDUPAN SEL (PELEPASAN

Lebih terperinci

fosfotriose isomerase, dihidroksi aseton fosfat juga dioksidasi menjadi 1,3- bisfosfogliserat melalui gliseraldehid 3-fosfat.

fosfotriose isomerase, dihidroksi aseton fosfat juga dioksidasi menjadi 1,3- bisfosfogliserat melalui gliseraldehid 3-fosfat. 1. GLIKOLISIS PENDAHULUAN Sebagian besar jaringan membutuhkan glukosa meskipun dalam jumlah minimum, terutama otak dan eritrosit. Glikolisis merupakan jalur utama untuk pemanfaatan glukosa dan di sitosol

Lebih terperinci

Pengertian Mitokondria

Pengertian Mitokondria Home» Pelajaran» Pengertian Mitokondria, Struktur, dan Fungsi Mitokondria Pengertian Mitokondria, Struktur, dan Fungsi Mitokondria Pengertian Mitokondria Mitokondria adalah salah satu organel sel dan berfungsi

Lebih terperinci

PETUNJUK PRAKTIKUM BIOKIMIA CONTOH CARA KERJA BEBERAPA ENZIM

PETUNJUK PRAKTIKUM BIOKIMIA CONTOH CARA KERJA BEBERAPA ENZIM PETUNJUK PRAKTIKUM BIOKIMIA CONTOH CARA KERJA BEBERAPA ENZIM LABORATORIUM BIOKIMIA FAKULTAS KEDOKTERAN UNIVERSITAS JEMBER 2015 Pada praktikum ini akan dipelajari cara kerja bebera enzim seperti urease,

Lebih terperinci

Triasilgliserol. = trigliserida 9 kkal/g vs 4 kkal/g (glikogen) Terdiri dari: Asam lemak: 3 asam lemak (gugus asil)

Triasilgliserol. = trigliserida 9 kkal/g vs 4 kkal/g (glikogen) Terdiri dari: Asam lemak: 3 asam lemak (gugus asil) MetabolismeLemak Triasilgliserol = trigliserida 9 kkal/g vs 4 kkal/g (glikogen) Terdiri dari: 3 asam lemak (gugus asil) dan gliserol. Asam lemak: jenuh (cth: as palmitat) tak jenuh (cth: as oleat) Gliserol

Lebih terperinci

Respirasi seluler. Bahasan

Respirasi seluler. Bahasan Respirasi seluler dr.syazili Mustofa, M. Biomed Lektor Mata Kuliah Ilmu Biomedik Fakultas Kedokteran Universitas Lampung Bahasan 1. metabolisme oksidatif dan produksi ATP 2. Siklus asam sitrat 3. fosforilasi

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN 21 HASIL DAN PEMBAHASAN Pada setiap sediaan otot gastrocnemius dilakukan tiga kali perekaman mekanomiogram. Perekaman yang pertama adalah ketika otot direndam dalam ringer laktat, kemudian dilanjutkan

Lebih terperinci

Giant Panda (Ailuropoda melanoleuca)

Giant Panda (Ailuropoda melanoleuca) Giant Panda (Ailuropoda melanoleuca) METABOLISME merupakan keseluruhan reaksi kimia yang terjadi di dalam tubuh makhluk hidup. Transformasi energi selalu mengikuti setiap proses metabolisme. Transformasi

Lebih terperinci

Tabel Perbedan Reaksi terang dan Reaksi gelap secara mendasar: Tempat membran tilakoid kloroplas stroma kloroplas

Tabel Perbedan Reaksi terang dan Reaksi gelap secara mendasar: Tempat membran tilakoid kloroplas stroma kloroplas Tabel Perbedan Reaksi terang dan Reaksi gelap secara mendasar: Reaksi Terang Reaksi Gelap Tempat membran tilakoid kloroplas stroma kloroplas Kebutuhan Cahaya membutuhkan cahaya tidak membutuhan cahaya

Lebih terperinci

FUNGSI PHOSPOR DALAM METABOLISME ATP

FUNGSI PHOSPOR DALAM METABOLISME ATP TUGAS MATA KULIAH NUTRISI TANAMAN FUNGSI PHOSPOR DALAM METABOLISME ATP Oleh : Dewi Ma rufah H0106006 Lamria Silitonga H 0106076 FAKULTAS PERTANIAN UNIVERSITAS SEBELAS MARET SURAKARTA 2008 Pendahuluan Fosfor

Lebih terperinci

II. BIOENERGETIKA Mohammad Hanafi, MBBS (Syd).,dr., MS. 1.Pendahuluan Definisi: Bioenergetika adalah ilmu yang mempelajari dinamika atau perubahan

II. BIOENERGETIKA Mohammad Hanafi, MBBS (Syd).,dr., MS. 1.Pendahuluan Definisi: Bioenergetika adalah ilmu yang mempelajari dinamika atau perubahan II. BIOENERGETIKA Mohammad Hanafi, MBBS (Syd).,dr., MS. 1.Pendahuluan Definisi: Bioenergetika adalah ilmu yang mempelajari dinamika atau perubahan energi pada reaksi Biokimiawi. Reaksi Biokimia adalah

Lebih terperinci

Fransiska Ayunintyas W, M.Sc., Apt Akfar Theresiana 2014

Fransiska Ayunintyas W, M.Sc., Apt Akfar Theresiana 2014 Fransiska Ayunintyas W, M.Sc., Apt Akfar Theresiana 2014 Siklus Krebs Tahap 1. Sitrat Sintase (hidrolisis) Asetil KoA + oksaloasetat + H 2 O sitrat + KoA-SH Merupakan reaksi kondensasi aldol yang

Lebih terperinci

Anabolisme Lipid. Biokimia Semester Gasal 2012/2013 Esti Widowati,S.Si.,M.P

Anabolisme Lipid. Biokimia Semester Gasal 2012/2013 Esti Widowati,S.Si.,M.P Anabolisme Lipid Biokimia Semester Gasal 2012/2013 Esti Widowati,S.Si.,M.P Lemak Hewani dan Nabati Lemak hewani mengandung banyak sterol yang disebut kolesterol Lemak nabati mengandung fitosterol dan lebih

Lebih terperinci

akseptor elektron pada saat medium aerob. Disisi lain keberadaan akseptor elektron nitrat dapat menimbulkan interaksi dan berpengaruh terhadap jalur

akseptor elektron pada saat medium aerob. Disisi lain keberadaan akseptor elektron nitrat dapat menimbulkan interaksi dan berpengaruh terhadap jalur PEMBAHASAN Isolat FR1, FR2, HF7 dan LF6 adalah kelompok bakteri fermentatif, tumbuh pada medium denitrifikasi yang mengandung nitrat baik secara anaerob maupun aerob. Rusmana dan Nedwell (2004), melaporkan

Lebih terperinci

Karena glikolisis dan glukoneogenesis mempunyai jalur yang same tetapi arahnya berbeda, maka keduanya hams dikendalikan secara timbal balik.

Karena glikolisis dan glukoneogenesis mempunyai jalur yang same tetapi arahnya berbeda, maka keduanya hams dikendalikan secara timbal balik. 5. GLUKONEOGENESIS Glukoneogenesis merupakan mekanisme dan reaksi-reaksi yang merubah senyawa non karbohidrat menjadi glukosa atau glikogen. Substrat utama glukoneogenesis adalah asam amino glukogenik,

Lebih terperinci

DIKTAT PEMBELAJARAN BIOLOGI KELAS XII IPA 2009/2010

DIKTAT PEMBELAJARAN BIOLOGI KELAS XII IPA 2009/2010 DIKTAT PEMBELAJARAN BIOLOGI KELAS XII IPA 2009/2010 DIKTAT 2 METABOLISME Standar Kompetensi : Memahami pentingnya metabolisme pada makhluk hidup Kompetensi Dasar : Mendeskripsikan fungsi enzim dalam proses

Lebih terperinci

Energi & METABOLISME. Oleh: Mochamad Nurcholis

Energi & METABOLISME. Oleh: Mochamad Nurcholis Energi & METABOLISME Oleh: Mochamad Nurcholis Sesuatu yang diperlukan untuk aktivitas seluler, seperti pertumbuhan, gerak, transport molekul maupun ion melalui membran. Hukum Termodinamika I : Jumlah energi

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA A. Pengertian Pendidikan Pendidikan adalah segala pengalaman belajar yang berlangsung dalam segala lingkungan dan sepanjang hidup serta pendidikan dapat diartikan sebagai pengajaran

Lebih terperinci

Asam Nukleat dan Nukleotida

Asam Nukleat dan Nukleotida Modul Asam ukleat dan ukleotida Asam ukleat dan ukleotida 1. Pendahuluan ukleotida yang merupakan monomer asam nukleat (building block) memiliki banyak fungsi dalam metabolisme selular. Sebagai konstituen

Lebih terperinci

BAB VII PEMBANGKITAN TENAGA DI DALAM SEL

BAB VII PEMBANGKITAN TENAGA DI DALAM SEL BAB VII PEMBANGKITAN TENAGA DI DALAM SEL I. PENDAHULUAN Bab ini menjelaskan proses-proses pembangkitan energi dalam sel yang terjadi pada mitokondria, sitosol maupun dalam kloroplas. Struktur dan fungsi

Lebih terperinci

FISIOLOGI TUMBUHAN MKK 414/3 SKS (2-1)

FISIOLOGI TUMBUHAN MKK 414/3 SKS (2-1) FISIOLOGI TUMBUHAN MKK 414/3 SKS (2-1) OLEH : PIENYANI ROSAWANTI PROGRAM STUDI AGROTEKNOLOGI FAKULTAS PERTANIAN DAN KEHUTANAN UNIVERSITAS MUHAMMADIYAH PALANGKARAYA 2017 METABOLISME Metabolisme adalah proses-proses

Lebih terperinci

Retikulum Endoplasma (Mader, 2000) Tuti N. dan Sri S. (FIK-UI)

Retikulum Endoplasma (Mader, 2000) Tuti N. dan Sri S. (FIK-UI) Retikulum Endoplasma (Mader, 2000) RETIKULUM ENDOPLASMA Ada dua jenis retikum endoplasma (ER) yang melakukan fungsi yang berbeda di dalam sel: Retikulum Endoplasma kasar (rough ER), yang ditutupi oleh

Lebih terperinci

METABOLISME ASAM LEMAK

METABOLISME ASAM LEMAK DAFTAR ISI I. PENDAHULUAN... 1 II.Tata nama asam lemak... 1 III Triasilgliserol... 2 III 1.Triasilgliseroldihidrolisis oleh lipase yang diatur oleh AMP siklik. 3 IV Oksidasi asam lemak.. 4 IV 1. Asettil

Lebih terperinci

Dr. MUTIARA INDAH SARI NIP:

Dr. MUTIARA INDAH SARI NIP: GLIKOLISIS SEBAGAI METABOLISME KARBOHIDRAT UNTUK MENGHASILKAN ENERGI Dr. MUTIARA INDAH SARI NIP: 132 296 973 2007 DAFTAR ISI I. PENDAHULUAN...1 II. III. KATABOLISME KARBOHIDRAT DALAM SALURAN PENCERNAAN....1

Lebih terperinci

METABOLISME LEMAK. Yunita Eka Puspitasari, S.Pi, MP

METABOLISME LEMAK. Yunita Eka Puspitasari, S.Pi, MP METABOLISME LEMAK Yunita Eka Puspitasari, S.Pi, MP MEMBRAN Pada umumnya, lipid tidak larut dalam air Asam lemak tertentu... (sebutkan )... Mengandung gugus polar Larut dalam air dan sebagian larut dalam

Lebih terperinci

METABOLISME MIKROORGANISME

METABOLISME MIKROORGANISME METABOLISME MIKROORGANISME Metabolisme adalah sekumpulan proses kimia dan fisika yang terjadi di dalam tubuh suatu organisme atau makhluk hidup/sel yang dengan proses tersebut dibentuk protoplasma atau

Lebih terperinci

METABOLISME KARBOHIDRAT

METABOLISME KARBOHIDRAT METABOLISME KARBOHIDRAT METABOLISME KARBOHIDRAT Fungsi utama karbohidrat dalam metabolisme adalah sebagai bahan bakar untuk dioksidasi dan menyediakan energi untuk proses metabolisme lain Metabolisme karbohidrat

Lebih terperinci

ASAM NUKLEAT (NUCLEIC ACID)

ASAM NUKLEAT (NUCLEIC ACID) ASAM NUKLEAT (NUCLEIC ACID) Terdapat pada semua sel hidup Merupakan makromolekul dengan monomer Mononukleotida Fungsi : 1. Menyimpan, mereplikasi dan mentranskripsi informasi genetika 2. Turut dalam metabolisme

Lebih terperinci

COURSE TOPICS 3/7/2014. Energi & METABOLISME. Apa hubungan energi dengan metabolisme?

COURSE TOPICS 3/7/2014. Energi & METABOLISME. Apa hubungan energi dengan metabolisme? Energi & METABOLISME COURSE TOPICS Week Topics Lecturer 1 Introduction (Course Contract) 2 Biological Materials 3 Cell : Structure and Function 4 Energy and Metabolism 5 Pertumbuhan dan Perkembangan sel

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN BIOLOGI BAB XIII METABOLISME. Dra. Ely Rudyatmi, M.Si. Dra. Endah Peniati, M.

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN BIOLOGI BAB XIII METABOLISME. Dra. Ely Rudyatmi, M.Si. Dra. Endah Peniati, M. SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN BIOLOGI BAB XIII METABOLISME Dra. Ely Rudyatmi, M.Si Dra. Endah Peniati, M.Si Dr. Ning Setiati,M.S KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

Lebih terperinci

METABOLISME ASAM LEMAK RUSDIANA. Program Studi Biokimia Fakultas Kedokteran Universitas Sumatera Utara. I. Pendahuluan

METABOLISME ASAM LEMAK RUSDIANA. Program Studi Biokimia Fakultas Kedokteran Universitas Sumatera Utara. I. Pendahuluan METABOLISME ASAM LEMAK RUSDIANA Program Studi Biokimia Fakultas Kedokteran Universitas Sumatera Utara I. Pendahuluan Asam lemak merupakan sekelompok senyawa hidrokarbon yang berantai panjang dengan gugus

Lebih terperinci

BAB I PENDAHULUAN. 1.3 Tujuan Penulisan Dari rumusan masalah diatas, adapun tujuan dari penulisan makalah ini adalah sebagai berikut:

BAB I PENDAHULUAN. 1.3 Tujuan Penulisan Dari rumusan masalah diatas, adapun tujuan dari penulisan makalah ini adalah sebagai berikut: BAB I PENDAHULUAN 1.1 Latar Belakang Sel hidup adalah suatu miniatur industri kimiawi, dimana ribuan reaksi terjadi didalam suatu ruangan mikroskopik. Gula di ubah menjadi asam amino, demikian juga sebaliknya.

Lebih terperinci

2. Komponen piruvat DH terdiri dari 3 enzim yaitu: a. komponen piruvat DH, dihidrolipoil transasetilase, dan dihidrolipoil DH b.? c.?

2. Komponen piruvat DH terdiri dari 3 enzim yaitu: a. komponen piruvat DH, dihidrolipoil transasetilase, dan dihidrolipoil DH b.? c.? 1 BIOKIMIA Prof. Mulyadi, Apt 1. Siklus Krebs: a. merupakan jalur metabolisme bersama untuk oksidasi molekul bahan bakar seperti asam amino, asam lemak, dan karbohidrat b. mempunyai nama lain daur asam

Lebih terperinci

Retikulum Endoplasma (Mader, 2000) Tuti N. dan Sri S., FIK 2009

Retikulum Endoplasma (Mader, 2000) Tuti N. dan Sri S., FIK 2009 Retikulum Endoplasma (Mader, 2000) 1 RETIKULUM ENDOPLASMA Ada dua jenis retikum endoplasma (ER) yang melakukan fungsi yang berbeda di dalam sel: Retikulum Endoplasma kasar (rough ER), yang ditutupi oleh

Lebih terperinci

VIII. GLIKOLISIS Dr. Edy Meiyanto, MSi., Apt.

VIII. GLIKOLISIS Dr. Edy Meiyanto, MSi., Apt. VIII. GLIKOLISIS Dr. Edy Meiyanto, MSi., Apt. Tujuan Instruksional Umum (TIU) Setelah mengikuti kuliah bagian ini diharapkan mahasiswa dapat menyebutkan dan menjelaskan proses reaksi glikolisis Pendahuluan

Lebih terperinci

Karbohidrat. Metabolisme Karbohidrat. Karbohidrat. Karbohidrat. Karbohidrat & energi

Karbohidrat. Metabolisme Karbohidrat. Karbohidrat. Karbohidrat. Karbohidrat & energi Karbohidrat Metabolisme Karbohidrat Oleh: dr dini Penting utk makhluk hidup sbg bahan nutrisi utama & sbg struktur dasar MH. tanaman: menghasilkan KH (glukosa) mll fotosintesis. Hewan/manusia: konsumen

Lebih terperinci

METABOLISME SEL; Dr. Refli., MSc Jurusan Biologi FST UNDANA Kupang, 2015

METABOLISME SEL; Dr. Refli., MSc Jurusan Biologi FST UNDANA Kupang, 2015 Fotosintesis & Respirasi Dr. Refli., MSc Jurusan Biologi FST UNDANA Kupang, 2015 Materi Kuliah Biologi Dasar. Jurusan Biologi FST Universitas Nusa Cendana. 2015 Pengertian METABOLISME SEL; Fotosintesis

Lebih terperinci

ENZIM. Ir. Niken Astuti, MP. Prodi Peternakan, Fak. Agroindustri, UMB YOGYA

ENZIM. Ir. Niken Astuti, MP. Prodi Peternakan, Fak. Agroindustri, UMB YOGYA ENZIM Ir. Niken Astuti, MP. Prodi Peternakan, Fak. Agroindustri, UMB YOGYA ENZIM ENZIM ADALAH PROTEIN YG SANGAT KHUSUS YG MEMILIKI AKTIVITAS KATALITIK. SPESIFITAS ENZIM SANGAT TINGGI TERHADAP SUBSTRAT

Lebih terperinci

REAKSI KIMIA : ENZIM BAGIAN ENZIM 7 ENZIM MENGHASILKAN ENERGI (EKSERGONIK) MEMBUTUHKAN ENERGI (ENERGONIK) KEDUANYA MEMERLUKAN ENERGI PENGAKTIF

REAKSI KIMIA : ENZIM BAGIAN ENZIM 7 ENZIM MENGHASILKAN ENERGI (EKSERGONIK) MEMBUTUHKAN ENERGI (ENERGONIK) KEDUANYA MEMERLUKAN ENERGI PENGAKTIF 7 : - PROTEIN - KATALIASATOR BIOKIMIA REAKSI KIMIA : MENGHASILKAN ENERGI (EKSERGONIK) MEMBUTUHKAN ENERGI (ENERGONIK) KEDUANYA MEMERLUKAN ENERGI PENGAKTIF BAGIAN KATALISATOR : MEMPECEPAT REAKSI TANPA IKUT

Lebih terperinci

Pencernaan, penyerapan dan transpot lemak -oksidasi asam lemak

Pencernaan, penyerapan dan transpot lemak -oksidasi asam lemak Metabolisme Lipid Metabolisme LIPID Metabolisme LIPID Degradasi Lipid Oksidasi asam lemak Pencernaan, penyerapan dan transpot lemak -oksidasi asam lemak Biosintesis Lipid Biosintesis asam lemak Biosintesis

Lebih terperinci

Metabolisme ada 2: yg diperoleh dr lingkungannya membutuhkan energi = biosintesa

Metabolisme ada 2: yg diperoleh dr lingkungannya membutuhkan energi = biosintesa Metabolisme ada 2: 1. Anabolisme = proses pembentukan komponen sel dr nutrien sederhana yg diperoleh dr lingkungannya membutuhkan energi = biosintesa 2. Katabolisme = pemecahan bahan kimia (nutrien dr

Lebih terperinci

V. BIOENERGETIK MIKROBA

V. BIOENERGETIK MIKROBA V. BIOENERGETIK MIKROBA Bioenergetik mikroba mempelajari penghasilan dan penggunaan energi oleh mikroba. Mikroba melakukan proses metabolisme yang merupakan serangkaian reaksi kimia yang luar biasa banyaknya.

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Mitokondria merupakan organel yang terdapat di dalam sitoplasma.

BAB II TINJAUAN PUSTAKA. Mitokondria merupakan organel yang terdapat di dalam sitoplasma. BAB II TINJAUAN PUSTAKA 2.1. Fungsi dan Struktur Mitokondria Mitokondria merupakan organel yang terdapat di dalam sitoplasma. Mitokondria berfungsi sebagai organ respirasi dan pembangkit energi dengan

Lebih terperinci

5. Kerja enzim dipengaruhi oleh faktor-faktor berikut, kecuali. a. karbohidrat b. suhu c. inhibitor d. ph e. kofaktor

5. Kerja enzim dipengaruhi oleh faktor-faktor berikut, kecuali. a. karbohidrat b. suhu c. inhibitor d. ph e. kofaktor 1. Faktor internal yang memengaruhi pertumbuhan dan perkembangan pada tumbuhan adalah. a. suhu b. cahaya c. hormon d. makanan e. ph 2. Hormon yang termasuk ke dalam jenis hormon penghambat pertumbuhan

Lebih terperinci

KOENZIM, KOFAKTOR DAN VITAMIN

KOENZIM, KOFAKTOR DAN VITAMIN KOENZIM, KOFAKTOR DAN VITAMIN KOENZIM Bagian bukan protein dari enzim yang terbuat dari bahan organik seperti vitamin. KOFAKTOR Bagian bukan protein dari enzim yang berasal dari molekul anorganik VITAMIN

Lebih terperinci

Metabolisme karbohidrat - 4

Metabolisme karbohidrat - 4 Glukoneogenesis Uronic acid pathway Metabolisme fruktosa Metabolisme galaktosa Metabolisme gula amino (glucoseamine) Pengaturan metabolisme karbohidrat Pengaturan kadar glukosa darah Metabolisme karbohidrat

Lebih terperinci

Antiremed Kelas 12 Biologi

Antiremed Kelas 12 Biologi Antiremed Kelas 12 Biologi UTS BIOLOGI latihan 1 Doc Name : AR12BIO01UTS Version : 2014-10 halaman 1 01. Perhatikan grafik hasil percobaan pertumbuhan kecambah di tempat gelap, teduh, dan terang berikut:

Lebih terperinci

Kontraksi otot membutuhkan energi, dan otot disebut sebagai mesin. pengubah energi kimia menjadi kerja mekanis. sumber energi yang dapat

Kontraksi otot membutuhkan energi, dan otot disebut sebagai mesin. pengubah energi kimia menjadi kerja mekanis. sumber energi yang dapat SUMBER-SUMBER ENERGI DAN METABOLISME Kontraksi otot membutuhkan energi, dan otot disebut sebagai mesin pengubah energi kimia menjadi kerja mekanis. sumber energi yang dapat segera digunakan adalah derivat

Lebih terperinci

Energi Bebas Reaksi. G o ' = perubahan energi bebas standard ( pada ph 7, reakatan dan produk 1M ); R = tetapan gas; T = suhu

Energi Bebas Reaksi. G o ' = perubahan energi bebas standard ( pada ph 7, reakatan dan produk 1M ); R = tetapan gas; T = suhu Energetika Biokimia Energi Bebas Reaksi Perubahan energi bebas ( G) reaksi menentukan spontanitasnya. Reaksi spontan jika G negatif (jika enrgi babas produk kurang daripada rekatan). For a reaction A +

Lebih terperinci

VI. KONSEP DASAR ENZIM DR. EDY MEIYANTO MSI APT

VI. KONSEP DASAR ENZIM DR. EDY MEIYANTO MSI APT VI. KONSEP DASAR ENZIM DR. EDY MEIYANTO MSI APT Tujuan Instruksional Khusus (TIK) Mahasiswa setelah mengikuti kuliah bagian ini mampu menyebut sifat dan jenis-jenis enzim serta menjelaskan konsep dasar

Lebih terperinci

TINJAUAN PUSTAKA Struktur Anatomi Otot Rangka

TINJAUAN PUSTAKA Struktur Anatomi Otot Rangka 3 TINJAUAN PUSTAKA Struktur Anatomi Otot Rangka Otot rangka (skeletal muscle) bertanggung jawab atas pergerakan tubuh secara sadar. Otot rangka disebut juga otot lurik (striated muscle) karena pengaturan

Lebih terperinci