ANALISIS POMPA PENDINGIN REAKTOR TRIP PADA REAKTOR TRIGA-2000 MENGGUNAKAN RELAP/SCDAPSIM/MOD3.4. A. R. Antariksawan *)

Ukuran: px
Mulai penontonan dengan halaman:

Download "ANALISIS POMPA PENDINGIN REAKTOR TRIP PADA REAKTOR TRIGA-2000 MENGGUNAKAN RELAP/SCDAPSIM/MOD3.4. A. R. Antariksawan *)"

Transkripsi

1 ANALISIS POMPA PENDINGIN REAKTOR TRIP. (A.R. Antariksawan) ANALISIS POMPA PENDINGIN REAKTOR TRIP PADA REAKTOR TRIGA-2000 MENGGUNAKAN RELAP/SCDAPSIM/MOD3.4 ABSTRAK A. R. Antariksawan *) ANALISIS POMPA PENDINGIN REAKTOR TRIP PADA REAKTOR TRIGA-2000 MENGUNAKAN RELAP/SCDAPSIM/MOD3.4. Program perhitungan RELAP/SCDAPSIM/MOD3.4 telah digunakan untuk melakukan perhitungan termohidraulika reaktor TRIGA Salah satu tujuan perhitungan tersebut adalah untuk memvalidasi program pada reaktor riset. Keseluruhan sistem primer reaktor dimodelkan, termasuk sirkulasi air melalui difuser dan sistem pendinginan teras darurat. Perhitungan dilakukan untuk kondisi tunak pada daya nominal 2000 kw dan satu kondisi transien, yaitu pompa pendingin reaktor trip baik dengan dan tanpa reaktor scram. Model dan input perhitungan telah memberikan hasil perhitungan yang konvergen. Hasil perhitungan kondisi tunak tersebut dibandingkan dengan hasil pengukuran dan nilai dalam LAK. Secara umum, hasil perhitungan memperlihatkan kesesuaian yang baik; untuk parameter termal, perbedaan rata-rata lebih kecil dari 10%. Hasil perhitungan transien memperlihatkan bahwa pada saat pompa pendingin reaktor trip, sirkulasi alam terbentuk di dalam tangki reaktor dan tidak ada kenaikan temperatur bahan bakar yang signifikan. Dalam kasus reaktor gagal scram pun keselamatan melekat dapat mempertahankan temperatur bahan bakar pada batas aman. Dari hasil-hasil tersebut dapat disimpulkan bahwa model, input dan program perhitungan dapat mensimulasikan kondisi termohidraulik reaktor TRIGA-2000 dengan baik. Meskipun demikian, validasi dengan berbagai data ukur masih perlu dilakukan lagi. ABSTRACT ANALYSIS OF REACTOR COOLANT PUMP TRIP AT TRIGA-2000 REACTOR USING RELAP/SCDAPSIM/MOD3.4. RELAP/SCDAPSIM/MOD3.4 has been used to perform the thermal-hydraulic calculation of reactor TRIGA One of the objectives of this calculation is to validate the code for research reactor application. Overall reactor primary system is modeled, including coolant circulation through diffuser, and emergency core cooling. The calculation is conducted for steady state operation at 2000 kw power, and one transient condition, i.e. pump trip, both with and without reactor scram. The model and input developed can show convergence results. The steady state results are compared with the measurement and the values used in SAR. In general, the results show a good agreement; for thermal parameter, the average difference is approximately lower than 10%. As from the transient results, it can be shown that when pump tripped, natural circulation was developed and did not cause significant increase of fuel temperature. Even when the reactor scram failed, the inherent safety feature could keep the fuel temperature in the safety limit. Based on the results, it could be concluded that the model, input developed and the code simulate 99

2 JURNAL TEKNOLOGI REAKTOR NUKLIR-TRI DASA MEGA, Vol. 8, No. 3 Oktober, 2006 : Hal well the thermal-hydraulic condition of reactor TRIGA However, further validation with various experimental data should still be performed. Kata kunci: Termohidraulik, analisis, pompa trip, TRIGA, RELAP5. *) Peneliti PTRKN BATAN PENDAHULUAN Selain aspek neutronik, aspek termohidraulika merupakan aspek penting untuk keselamatan desain dan pengoperasian suatu reaktor riset. Besaran termohidraulika seperti temperatur tekanan dan laju alir pendingin serta temperatur bahan bakar perlu diketahui, misalkan melalui prediksi perhitungan, untuk memastikan bahwa reaktor riset tersebut telah didesain dan dapat dioperasikan dengan selamat sesuai dengan kriteria keselamatan yang berlaku. Perhitungan besaran termohidraulika tersebut dapat dilakukan dengan menggunakan berbagai piranti perhitungan. Khususnya, apabila yang diinginkan adalah perhitungan yang melibatkan kejadian transien, misalkan dalam hal kecelakaan yang diasumsikan, maka diperlukan piranti perhitungan yang andal dan sesuai dengan kejadian itu. Salah satu kejadian yang penting untuk diketahui perilaku dan akibatnya pada suatu reaktor adalah kejadian kehilangan aliran pendingin. Jika diandaikan oleh karena suatu sebab aliran pendinginan ke teras reaktor terhenti, maka sangat penting untuk mengetahui apakah pengambilan panas dari teras reaktor tetap dapat dijamin. Sebagai salah satu penyebab terhentinya aliran adalah terhentinya pompa sirkulasi pendingin reaktor. RELAP/SCDAPSIM [1], adalah program perhitungan komputer yang dirancang untuk memprediksi perilaku termohidraulika sistem reaktor dalam kondisi normal dan kecelakaan, dikembangkan oleh perusahan pengembang piranti lunak Innovative System Software. RELAP/SCDAPSIM telah divalidasi untuk rentang kondisi kejadian dan kecelakaan reaktor daya menggunakan berbagai data eksperimen dan data instalasi, termasuk TMI-2. Akan tetapi, validasi model untuk reaktor riset masih sangat terbatas, sebagai contoh pustaka [2]. Oleh karena itu, kelompok khusus dalam SDTP dibentuk untuk melakukan validasi dengan mengaplikasikan RELAP/SCDAPSIM pada beberapa desain reaktor riset, dan membuat perbaikan model jika diperlukan [3]. Makalah ini menguraikan hasil aplikasi RELAP/SCDAPSIM/MOD3.4 untuk reaktor TRIGA-2000, khususnya untuk menganalisis kejadian pompa pendingin reaktor trip atau yang dapat disebut kecelakaan kehilangan aliran pendingin. Dalam hasil ini diberikan pula perbandingan hasil perhitungan kondisi tunak dengan data pengukuran yang ada. Hal ini ditujukan untuk menilai hasil pemodelan dan validitas program perhitungan serta keterbatasannya. Analisis pompa pendingin reaktor trip ditujukan untuk mengetahui karakteristik pendinginan teras saat tidak ada aliran pendingin secara paksa karena pompa tidak berfungsi. Pemodelan yang digunakan dalam penelitian kali ini merupakan perbaikan dari yang dihasilkan sebelumnya [3]. 100

3 ANALISIS POMPA PENDINGIN REAKTOR TRIP. (A.R. Antariksawan) DESKRIPSI RELAP/SCDAPSIM RELAP/SCDAPSIM adalah program perhitungan termohidraulik satu dimensi - banyak fasa yang dikembangkan untuk menganalisis keseluruhan perilaku termohidraulik sistem pendingin reaktor dan teras dalam kondisi operasi normal atau kondisi kecelakan dasar desain dan bahkan kecelakaan parah. Model RELAP5 menghitung keseluruhan perilaku termohidraulik sistem pendingin primer, sistem kendali, kinetika reaktor dan perilaku komponen sistem reaktor khusus, seperti katup dan pompa. Model kinetika reaktor mencakup model untuk mempertimbangkan efek reaktivitas umpan-balik dan panas peluruhan. Model SCDAP menghitung perilaku teras dan struktur bejana reaktor dalam kondisi normal dan kecelakaan. Bagian model SCDAP mencakup model komponen reaktor yang dapat dipilih oleh pengguna. Model SCDAP juga mencakup model untuk mengolah tahap akhir suatu kecelakaan parah, termasuk pembentukan debris dan kolam lelehan, interaksi debris/bejana, dan kegagalan struktur bejana. Model-model ini secara otomatis akan dipanggil oleh program ketika kerusakan di dalam teras dan bejana diprediksi terjadi. Namun, model ini khusus untuk reaktor daya. DESKRIPSI REAKTOR TRIGA-2000 Reaktor TRIGA-2000 [4] adalah reaktor riset jenis TRIGA MARK II yang dirancang oleh General Atomic bertipe kolam dengan bahan bakar uranium zirkonium hidrida (U-ZrH). Tabel 1 memberikan spesifikasi terpenting reaktor TRIGA Pada awalnya reaktor ini dirancang untuk daya 250 kw, tetapi hingga saat ini telah mengalami dua kali peningkatan daya dan daya maksimum saat ini adalah 2000 kw. Tabel 1. Spesifikasi utama reaktor TRIGA-2000 No. Item Spesifikasi 1. Desain TRIGA MARK II (General Atomic) 2. Jenis Reaktor kolam 3. Daya termal 2000 kw 4. Material Bahan bakar U-ZrH 5. Pendingin Air ringan 6. Pengayaan uranium 20% 7. Kategori pendinginan Alamiah 8. Geometri bahan bakar Silinder 9. Susunan bahan bakar Heksagonal 10. Material kelongsong Baja tahan karat Gambar 1 memperlihatkan potongan vertikal reaktor. Karena salah satu tujuannya adalah untuk penelitian, maka pada reaktor ini terdapat berbagai fasilitas penelitian seperti fasilitas iradiasi di teras, beberapa tabung berkas neutron. Teras reaktor, yang berbentuk silinder, dikelilingi oleh reflektor grafit. Kedua komponen tersebut terendam dalam air di dalam tangki reaktor berbentuk silinder. Di luar tangki terdapat dinding beton tebal yang selain sebagai struktur penyangga tangki reaktor juga berfungsi sebagai perisai radiasi. Pada saat peningkatan daya menjadi 2000 kw, tinggi tangki aluminium ditambah sekitar 75 cm (lihat Gambar 1), penambahan ini sekaligus untuk meningkatkan fungsi perisai radiasi air pendingin. 101

4 JURNAL TEKNOLOGI REAKTOR NUKLIR-TRI DASA MEGA, Vol. 8, No. 3 Oktober, 2006 : Hal Gambar 1. Potongan vertikal tangki reaktor TRIGA-2000 Teras reaktor tersusun dari bahan bakar, batang kendali dan elemen dummy yang tersusun dalam konfigurasi heksagonal seperti diperlihatkan pada Gambar 2. Di bagian atas dan bawah teras, terdapat lempeng kisi sebagai tempat dudukan elemen bahan bakar. Teras dikelilingi reflektor yang ditempatkan di atas tempat dudukan reflektor. Gambar 3 memperlihatkan diagram alir pendingin reaktor TRIGA Pendinginan teras oleh air dirancang secara sirkulasi alamiah. Air masuk ke tangki reaktor dengan ujung pipa masuk berada pada ketinggian kisi bahan bakar bagian bawah. Ketika daya meningkat, aliran air yang bertemperatur lebih rendah bergerak ke bawah, masuk ke teras reaktor dari bagian bawah teras, sedang yang bertemperatur lebih tinggi akan bergerak ke atas. 102

5 ANALISIS POMPA PENDINGIN REAKTOR TRIP. (A.R. Antariksawan) Gambar 2. Susunan teras TRIGA-2000 dan geometri bahan bakar Gambar 3. Sketsa tiga dimensi sistem pendingin primer TRIGA-2000 Di bagian atas tangki, sekitar satu meter dari bibir tangki, terdapat pipa hisap yang akan mengalirkan air panas ke penukar panas tipe pelat. Aliran ini dilakukan oleh sebuah pompa sentrifugal. Satu buah pompa lagi digunakan sebagai cadangan. Air yang sudah didinginkan di penukar panas akan kembali ke tangki reaktor. 103

6 JURNAL TEKNOLOGI REAKTOR NUKLIR-TRI DASA MEGA, Vol. 8, No. 3 Oktober, 2006 : Hal PEMODELAN Pemodelan sistem instalasi reaktor TRIGA-2000 hanya dilakukan untuk sistem primer, sedang sistem sekunder dimodelkan sebagai suatu sumber dingin tempat pembuangan panas akhir dari sistem primer dengan karakteristik yang ditentukan. Model sistem primer sendiri dapat dibedakan pada beberapa bagian, yaitu bagian tangki dan teras, bagian sistem perpipaan pendingin primer dan bagian penukar panas. Sistem pendinginan panas darurat dan sistem aliran air melalui difuser telah pula dimodelkan. Sedang, jalur pemurnian air belum diperhitungkan dalam model yang dikembangkan ini. Nodalisasi model TRIGA-2000 diperlihatkan pada Gambar J J J J J-060 J J-101 J J J J J J J J-121 J TMDPJ700 J J-161 J J J J J-164 J-174 J J J-401 CORE J-154 J-179 Gambar 4. Nodalisasi model TRIGA-2000 J-177 J Bagian tangki reaktor dapat dibedakan dalam model teras dan model air tangki reaktor. Dalam model ini, teras akan dibagi dalam tiga daerah, yaitu kanal panas, kanal rerata dan kanal dingin. Kanal panas mewakili satu kanal bahan bakar di ring terdalam, sedang kanal dingin mewakili daerah yang terisi oleh elemen dummy dan sisanya diwakili oleh model kanal rerata. Bahan bakar dimodelkan sebagai struktur sumber panas yang secara radial dibagi dalam tiga daerah, yaitu daerah bahan bakar, celah (berisi gas) dan kelongsong, sedang secara aksial dibagi dalam beberapa nodal dengan distribusi fluks berpola sinusoidal. Air tangki reaktor dibagi dalam beberapa bagian yang mewakili daerah aliran by-pass teras, bawah teras, chimney, daerah pencampuran di atas teras dan permukaan tangki. Baik di dalam teras maupun di tangki digunakan model cross-flow. Adanya beberapa volume di tangki reaktor, dimaksudkan untuk melihat variasi temperatur air sebagai fungsi ketinggian dari atas teras. 104

7 ANALISIS POMPA PENDINGIN REAKTOR TRIP. (A.R. Antariksawan) Untuk aliran di sisi primer, digunakan model pompa dengan nilai kecepatan 151,84 rad/s dan head pompa sebesar 15 m. Nilai ini merupakan optimasi perhitungan untuk memperoleh laju alir sebesar 50,5 kg/s. Sedang laju alir sisi sekunder ditetapkan sebesar 86,18 kg/s. PERHITUNGAN Dalam studi ini dilakukan satu perhitungan tunak dan perhitungan transien pada saat kejadian pompa pendingin reaktor trip. Perhitungan kondisi tunak dilakukan untuk daya nominal reaktor TRIGA-2000, yaitu 2000 kw. Untuk perhitungan ini, beberapa besaran operasi seperti laju pendingin primer dan sekunder serta temperatur air sekunder yang masuk ke penukar panas ditetapkan. Perhitungan acuan menggunakan nilai konduktivitas celah sebesar 0,95 W/mK. Nilai konduktivitas ini dapat menjadi variabel yang sensitivitasnya terhadap hasil perhitungan masih perlu dianalisis. Untuk kanal panas, rod power factor (daya bahan bakar terpanas dibanding daya rerata teras) yang digunakan untuk perhitungan adalah sebesar 1,9 (diambil nilai maksimum dalam LAK untuk alasan konservatisme) dan jumlah bahan bakar 102 elemen ditambah 5 batang kendali. Selain itu, dalam perhitungan ini kehilangan panas dari pemipaan ke udara maupun dari tangki ke dinding beton tangki reaktor tidak diperhitungkan (diangap adiabatis). Perhitungan kondisi transien dilakukan setelah memperoleh hasil perhitungan kondisi tunak yang dianggap dapat merepresentasikan kondisi operasi. Dalam perhitungan transien, diasumsikan karena sesuatu hal, pada saat t = 0 s, pompa sirkulasi pendingin primer kehilangan catu daya, sehingga pompa akan berhenti beroperasi mengakibatkan aliran dalam sistem pendingin primer terhenti. Sistem keselamatan yang dimodelkan adalah reaktor akan scram jika temperatur air keluar tangki mencapai 49 C dengan waktu tunda 0,5 detik. Selanjutnya dilakukan pula analisis untuk kejadian seperti di atas, tetapi diasumsikan sinyal scram dari temperatur pendingin tidak dapat memicu sistem scram yang ada. Pada dua skenario ini, diasumsikan bahwa sisi sekunder tetap beroperasi normal. HASIL DAN PEMBAHASAN Visualisasi 3D sistem yang dimodelkan Sebelum perhitungan dilaksanakan, program RELAP/SCDAPSIM/MOD3.4 memberikan fasilitas pada pengguna untuk memeriksa kembali geometri sistem yang dimodelkan dalam bentuk grafis tiga dimensi (3D). Gambar 5 memperlihatkan luaran tampilan. Fasilitas ini juga memungkinkan pengguna mengikuti secara langsung nilainilai parameter pada nodes yang ada selama perhitungan berlangsung. Dengan cara ini, pengguna akan dapat menilai apakah perhitungan berjalan ke arah yang diinginkan. 105

8 JURNAL TEKNOLOGI REAKTOR NUKLIR-TRI DASA MEGA, Vol. 8, No. 3 Oktober, 2006 : Hal Gambar 5. Tampilan tiga dimensi model TRIGA-2000 Perhitungan tunak Pencapaian kondisi tunak diketahui dari konvergensi hasil perhitungan yang dapat dilihat pula dari kurva beberapa parameter operasi. Gambar 6 memperlihatkan kurva daya termal, masing-masing yang dibangkitkan bahan bakar, baik di kanal panas maupun kanal rerata, dan yang dipindahkan ke sisi sekunder. 1.40E E E+07 daya kanal panas daya kanal rerata daya teras daya ke sekunder daya (watt) 8.00E E E E E waktu (detik) Gambar 6. Daya termal di teras dan yang dipindahkan ke sisi sekunder Daya teras adalah jumlah dari daya yang dibangkitkan dalam kanal panas dan daya dibangkitkan dalam kanal rerata. Terlihat bahwa kondisi tunak sudah dapat dicapai yang ditunjukkan dengan harga yang konstan. Perbedaan nilai antara daya teras dan daya yang dipindahkan ke sistem sekunder diakibatkan adanya pembangkitan panas akibat gesekan air dengan sudu pompa yang berputar. Hal ini juga terlihat dari kenaikan 106

9 ANALISIS POMPA PENDINGIN REAKTOR TRIP. (A.R. Antariksawan) temperatur air di sisi tekan pompa. Jika model pompa diganti dengan model time dependent junction, maka perbedaan tersebut tidak terlihat. Oleh karena itu, pemodelan pompa masih perlu disempurnakan dengan data teknis lebih lengkap seperti dikehendaki dalam input. Untuk perhitungan ini beberapa data masih mempergunakan nilai default. Namun demikian, secara keseluruhan tidak mempengaruhi hasil. Dalam perhitungan ini diperlukan langkah waktu hingga sekitar 3000 detik untuk mencapai kondisi tunak yang diinginkan. Gambar 7 memperlihatkan laju alir pendingin primer, berturut-turut laju alir primer total, laju alir yang melalui samping teras (bypass), laju alir di kanal panas, kanal rerata dan kanal dingin. Dari Gambar 9 tersebut juga telah terlihat konvergensi nilai laju alir. 6.00E E E+01 laju alir (kg/s) 3.00E+01 laju alir primer laju alir kanal panas laju alir bypass laju alir kanal rerata 2.00E+01 laju alir kanal dingin 1.00E E waktu (detik) Gambar 7. Laju alir pendingin primer di beberapa tempat Hasil-hasil perhitungan kondisi tunak untuk parameter penting yang lain diberikan pada Tabel 2. Pada Tabel 2 tersebut juga diberikan nilai parameter dari rancangan seperti yang termuat dalam LAK dan juga beberapa nilai hasil pengukuran yang tersedia. Untuk temperatur pendingin, perbandingan antara hasil perhitungan dengan pengukuran memperlihatkan perbedaan lebih kecil dari 2%, tetapi dengan nilai dalam LAK perbedaan mencapai sekitar 17%. Hal ini dapat terjadi karena nilai temperatur inlet dan perubahan temperatur sisi sekunder yang dipergunakan pada LAK berbeda, baik dengan pengukuran maupun dengan perhitungan. Nilai perhitungan ini lebih mendekati kondisi operasi yang dijadikan acuan perbandingan. Hasil perhitungan temperatur bahan bakar memperlihatkan kesesuaian yang baik dengan hasil pengukuran untuk temperatur di pusat bahan bakar, khususnya pada posisi setengah ketinggian bahan bakar. Pada posisi itu, perbedaan hanya sekitar 0,6%, sedang jika dibandingkan dengan nilai LAK, perbedaan mencapai sekitar 8%. 107

10 JURNAL TEKNOLOGI REAKTOR NUKLIR-TRI DASA MEGA, Vol. 8, No. 3 Oktober, 2006 : Hal Tabel 2. Perbandingan hasil perhitungan dengan pengukuran dan LAK RELAP/ No. Parameter Pengukuran (1) SCDAPSIM/MOD3.4 LAK Beda (%) 1. Temperatur air outlet tangki ( C) 46,96 47, ,47 (u) 12,3 (l) 2. Temperatur air inlet tangki ( C) 37,32 37,73 32,2 1,10 (u) 17,17 (l) 3. Kenaikan temperatur air ( C) 9,64 9,45 9,8 1,97 (u) 3,57 (l) 4. Temperatur inlet HX, sisi 31,40 31,15 (2) 29 sekunder ( C) 5. Temperatur outlet HX, sisi 37,60 37, ,43 (u) sekunder ( C) 6. Temperatur outlet teras ( C) - Kanal panas 80,83 92,65 (3) 79,61 98,94 (3) 1,53 6,35 - Kanal rerata 78,39 79,61 1,53 7. Temperatur pusat bahan bakar maksimum ( C) - FT-1 (di tengah) 612,3 (4) 616,22 569,7 0,64 (u) 8,16 (l) - FT-2 (1 di atas FT-1) 551,7 (4) 609,94 10,56 - FT-3 (1 di bawah FT-1) 540,4 (4) 604,23 11,81 8. Temperatur pusat bahan bakar, 400,15 kanal rerata ( C) 9. Temperatur permukaan dalam kelongsong maksimum ( C) - Kanal panas 143,02 134,7 6,18 - Kanal rerata 135, Temperatur permukaan luar kelongsong maksimum ( C) - Kanal panas 135,22 131,3 2,98 - Kanal rerata 128,69 128,8 0, Fluks panas maksimum (W/m 2 ) 9, , , Laju alir pendingin (kg/s) - total 50,5 50,5 0,00 - ke kanal panas 0,10 0,12 16,67 - ke kanal rerata 10,82 9,6 12,7 - fraksi aliran by-pass 0,76 0,8 5,0 13. Fraksi uap maksimum di teras 3,3 (%) 14. Tekanan di sistem primer (bar) - sisi hisap pompa 0,58 1,14 - sisi tekan pompa 1,6 2,81 Pressure drop total 1,02 1,67 63,72 (1) pengukuran tanggal 4 Juni 2002; (2) ditetapkan; (3) maksimum; (4) rerata; (u) ukur; (l) LAK Perbedaan lebih besar ditunjukkan untuk temperatur bahan bakar pada posisi 1 inci di atas dan di bawah titik tengah tersebut yang mencapai sekitar 12%. Perbedaan besar ini dapat disebabkan oleh perbedaan input distribusi aksial panas dalam batang bahan bakar. Oleh karena itu, pengukuran distribusi daya aksial pada kanal panas perlu dilakukan. 108

11 ANALISIS POMPA PENDINGIN REAKTOR TRIP. (A.R. Antariksawan) Di sisi lain, prediksi perhitungan untuk temperatur kelongsong juga memperlihatkan kesesuaian yang baik dengan nilai LAK, sedang perbandingan dengan pengukuran tidak dapat dilakukan karena tidak tersedia data. Perbedaan yang relatif lebih besar dengan nilai dalam LAK dapat terjadi karena beberapa kondisi aktual telah mengalami perubahan dari asumsi perhitungan dalam tahap desain. Perhitungan juga memberikan hasil prediksi fraksi uap maksimum di kanal panas sebesar 3,3%. Perlu dicatat bahwa penelitian lain [4] mengindikasikan bahwa korelasi perpindahan panas untuk subcooled boiling pada versi RELAP5 cenderung memberikan nilai yang lebih rendah dari hasil pengukuran. Sehingga, kemungkinan prediksi dalam studi ini juga lebih rendah dari pengukuran di lapangan. Berbeda dengan hasil perhitungan termal, hasil perhitungan hidraulik jika dibandingkan dengan nilai LAK atau hasil pengukuran, pada umumnya memperlihatkan perbedaan lebih besar. Untuk perhitungan laju alir pendingin di dalam teras, estimasi koefisien kerugian tekanan karena friksi dan/atau geometri dan model aliran silang masih perlu divalidasi dengan data pengukuran, meski dalam hal ini agak sulit melakukan pengukuran laju alir di dalam teras. Adanya kemungkinan aliran silang di antara kanal juga menjadi faktor ketidaktentuan. Dalam studi ini, faktor koefisien kerugian tekanan karena friksi dan/atau geometri untuk aliran dalam tangki menjadi variabel yang diatur (adjusted) untuk memperoleh hasil perhitungan parameter termohidraulik yang baik. Sedangkan, perbedaan paling besar yang terjadi untuk prediksi tekanan di sisi primer, khususnya di pompa, memperlihatkan masih perlunya perbaikan dalam pemodelan pompa. Dengan model yang dikembangkan dalam penelitian ini, juga dapat diperoleh hasil hitungan yang memperlihatkan adanya gradien temperatur di dalam air tangki reaktor. Seperti diperlihatkan pada Gambar 8, secara aksial, model membedakan dua daerah, yaitu daerah tengah yang merupakan daerah di atas chminey dan daerah pinggir yang merupakan air di sekeliling daerah tengah tersebut. Hasil perhitungan memperlihatkan gradien temperatur tampak lebih nyata di bagian tengah yang lebih panas dari pada daerah pinggir. Namun, akibat pencampuran air di antara kedua daerah tersebut, temperatur keduanya menjadi sama di bagian atas tangki. Kecuraman perubahan temperatur seperti tampak pada Gambar 8 adalah akibat dari nodalisasi yang masih kasar (pembagian daerah hanya 2 secara radial dan 10 secara aksial). 109

12 JURNAL TEKNOLOGI REAKTOR NUKLIR-TRI DASA MEGA, Vol. 8, No. 3 Oktober, 2006 : Hal tengah ketinggian relatif, x/l x/l = 1 x/l = 0 pinggir pingir pusat chimney teras temperatur ( o C) Gambar 8. Distribusi temperatur air di tangki reaktor Perhitungan Kondisi Transien Pompa trip Salah satu hasil perhitungan yang penting adalah dapat ditunjukkan adanya sirkulasi pendingin secara alamiah di dalam tangki reaktor. Gambar 9 memperlihatkan bahwa, jika saat operasi tunak, ada aliran pendingin dari daerah bypass (celah antara teras dengan tangki) yang bergerak ke atas, maka pada beberapa saat setelah pompa trip, aliran berbalik ke arah bawah. Sirkulasi alamiah ini dapat terjadi karena air panas yang ada di teras bergerak ke atas, melalui chimney dan kemudian bercampur dengan air yang lebih dingin. Sementara itu air dingin akan bergerak ke bawah melalui celah bypass dan masuk ke teras reaktor dari bagian bawah. Dari sisi temperatur bahan bakar, dalam skenario transien ini, setelah temperatur pendingin keluar tangki reaktor mencapai 49 C pada detik ke 108 dan 0,5 detik kemudian reaktor scram, maka temperatur bahan bakar turun karena hanya tinggal panas peluruhan, hingga akhirnya mencapai nilai konstan sekitar 60 C berkat pendinginan dengan sirkulasi alamiah yang terbentuk seperti ditunjukkan pada lihat Gambar

13 ANALISIS POMPA PENDINGIN REAKTOR TRIP. (A.R. Antariksawan) aliran masuk aliran ke bypass aliran ke kanal panas aliran ke kanal rerata aliran ke kanal dingin aliran dari bypass aliran dari chimney aliran keluar laju alir (kg/detik) waktu (detik) Gambar 9. Aliran pendingin dalam tangki reaktor 1.00E E E E E E+02 sumbu bahan bakar kelongsong air pendingin daya reaktor 1.60E E+06 temperatur (K) 6.00E E E E E E E E+05 daya reaktor (watt) 2.00E E E E E E waktu (detik) Gambar 10. Temperatur maksimum bahan bakar, kelongsong, air dan daya reaktor Pompa Trip Tanpa Scram Untuk mengetahui karakteristik keselamatan bahan bakar, dicoba disimulasikan kondisi transien berupa pompa trip tetapi diasumsikan sistem scram tidak berfungsi. Kejadian ini dapat dikategorikan Anticipated Transient Without Scram (ATWS). Terlihat dari Gambar 11, bahwa segera setelah pompa terhenti, daya reaktor meningkat hingga sekitar 2100 kw, tetapi kemudian menurun hingga akhir perhitungan. Perubahan daya reaktor tersebut diikuti oleh perubahan temperatur bahan bakar. Pada jangka waktu 111

14 JURNAL TEKNOLOGI REAKTOR NUKLIR-TRI DASA MEGA, Vol. 8, No. 3 Oktober, 2006 : Hal yang lama, daya reaktor cenderung konstan pada nilai sekitar 20 kw. Hal ini memperlihatkan bahwa kombinasi reaktivitas umpan balik moderator dan bahan bakar yang bernilai negatif dapat menghalangi terjadinya ekskursi daya. Meskipun demikian, nilai reaktivitas umpan balik yang dipergunakan dalam perhitungan ini perlu diverifikasi kembali untuk kondisi fraksi bakar yang sesuai E sumbu bahan bakar kelongsong pendingin daya reaktor 2.00E+06 temperatur (K) E E+06 daya reaktor (watt) E waktu (detik) 0.00E+00 Gambar 11. Temperatur maksimum bahan bakar, kelongsong, air dan daya reaktor KESIMPULAN Program perhitungan RELAP/SCDAPSIM/MOD3.4 telah diaplikasikan untuk analisis termohidraulik reaktor riset TRIGA Hasil perbandingan perhitungan kondisi tunak dengan hasil pengukuran dan data teknis dalam LAK memperlihatkan kesesuaian yang baik. Perbedaan yang ada dimungkinkan karena model yang belum sempurna, keterbatasan data untuk input, misalkan untuk pompa, maupun ketidaktersediaan data pengukuran yang akurat. Perhitungan transien untuk kasus pompa pendingin reaktor trip telah memberikan hasil yang baik dari aspek gambaran fenomena fisis yang terjadi. Saat pompa trip, fenomena sirkulasi alamiah dapat terbukti dalam perhitungan ini. Ketika setelah pompa trip diasumsikan sinyal scram tidak berfungsi, maka hasil perhitungan memperlihatkan adanya efek reaktivitas umpan balik negatif yang mengakibatkan daya reaktor akan kembali turun dan temperatur bahan bakar menurun pula. UCAPAN TERIMA KASIH Kegiatan ini merupakan bagian kerja sama dengan ISS dalam program SDTP tahun Terimakasih kami sampaikan pada Dr. Chris Allison dari ISS yang telah memberikan kesempatan menggunakan RELAP/SCDAPSIM ini Ucapan terimakasih juga tertuju pada Dr. Hadid Subki dan Efrizon Umar, MT yang telah memberikan data dan bantuan dalam penyusunan input deck. 112

15 ANALISIS POMPA PENDINGIN REAKTOR TRIP. (A.R. Antariksawan) DAFTAR PUSTAKA 1. SCDAP/RELAP5 Development Team, SCDAP/RELAP5/MOD3.2 Code Manual, Volume I: SCDAP/RELAP5 Interface Theory, NUREG/CR-6150, INEL-96/0422, Revision 1, HARI S. et al., Analysis of Transient Events without Scram in Research Reactor using the RELAP5/Mod3.2 Computer Code, Nuclear Technology, 130(3), pp , June, A.R. ANTARIKSAWAN et al., Validation of RELAP/SCDAPSIM/MOD3.4 for Research Reactor Applications, ICONE-13, Beijing, China, May 16-20, HARI S. et al., Simulation of a Subcooled Boiling Experiment using RELAP5/MOD3.2 Computer Code, Proc. ASME, NED, vol. 22, p. 45,

ANALISIS KEHILANGAN ALIRAN PENDINGIN PRIMER RSG-GAS MODA SATU JALUR

ANALISIS KEHILANGAN ALIRAN PENDINGIN PRIMER RSG-GAS MODA SATU JALUR ANALISIS KEHILANGAN ALIRAN PENDINGIN PRIMER RSG-GAS MODA SATU JALUR Sukmanto Dibyo sukdibyo@batan.go.id Pusat Teknologi Reaktor dan Keselamatan Nuklir (PTRKN-BATAN) ABSTRAK ANALISIS KEHILANGAN ALIRAN PENDINGIN

Lebih terperinci

ANALISIS LAJU ALIR PENDINGIN DI TERAS REAKTOR KARTINI

ANALISIS LAJU ALIR PENDINGIN DI TERAS REAKTOR KARTINI Analisis Laju Alir Pendingin di Teras Reaktor Kartini ISSN : 0854-2910 Budi Rohman, BAPETEN ANALISIS LAJU ALIR PENDINGIN DI TERAS REAKTOR KARTINI Budi Rohman Pusat Pengkajian Sistem dan Teknologi Pengawasan

Lebih terperinci

APLIKASI PROGRAM RELAP5/MOD3.2 UNTUK SIMULASI BEAM TUBE RUPTURE RSG-GAS Andi Sofrany Ekariansyah, Susyadi, Sukmanto Dibyo *)

APLIKASI PROGRAM RELAP5/MOD3.2 UNTUK SIMULASI BEAM TUBE RUPTURE RSG-GAS Andi Sofrany Ekariansyah, Susyadi, Sukmanto Dibyo *) JURNAL TEKNOLOGI REAKTOR NUKLIR-TRI DASA MEGA, Vol. 8, No. 3, Oktober, 2006 : Hal 114-125 ABSTRAK APLIKASI PROGRAM RELAP5/MOD3.2 UNTUK SIMULASI BEAM TUBE RUPTURE RSG-GAS Andi Sofrany Ekariansyah, Susyadi,

Lebih terperinci

VERIFIKASI PERHITUNGAN TEMPERATUR ELEMEN BAKAR REAKTOR KARTINI

VERIFIKASI PERHITUNGAN TEMPERATUR ELEMEN BAKAR REAKTOR KARTINI VERIFIKASI PERHITUNGAN TEMPERATUR ELEMEN BAKAR REAKTOR KARTINI Budi Rohman Pusat Pengkajian Sistem dan Teknologi Pengawasan Instalasi dan Bahan Nuklir Badan Pengawas Tenaga Nuklir (BAPETEN) ABSTRAK Verifikasi

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Reaktor Kartini merupakan reaktor nuklir tipe TRIGA Mark II (Training Research and Isotop Production by General Atomic) yang mempunyai daya maksimum 250 kw dan beroperasi

Lebih terperinci

ANALISIS KARAKTERISTIKA FRAKSI VOID PADA KONDISI RE-FLOODING POST LOCA MENGGUNAKAN RELAP5

ANALISIS KARAKTERISTIKA FRAKSI VOID PADA KONDISI RE-FLOODING POST LOCA MENGGUNAKAN RELAP5 Sukmanto Dibyo ISSN 0216-3128 197 ANALISIS KARAKTERISTIKA FRAKSI VOID PADA KONDISI RE-FLOODING POST LOCA MENGGUNAKAN RELAP5 Sukmanto Dibyo PTRKN- BATAN, E-mail : sukdibyo@batan.go.id ABSTRAK ANALISIS KARAKTERISTIKA

Lebih terperinci

REAKTOR PEMBIAK CEPAT

REAKTOR PEMBIAK CEPAT REAKTOR PEMBIAK CEPAT RINGKASAN Elemen bakar yang telah digunakan pada reaktor termal masih dapat digunakan lagi di reaktor pembiak cepat, dan oleh karenanya reaktor ini dikembangkan untuk menaikkan rasio

Lebih terperinci

RISET KECELAKAAN KEHILANGAN AIR PENDINGIN: KARAKTERISTIK TERMOHIDRAULIK

RISET KECELAKAAN KEHILANGAN AIR PENDINGIN: KARAKTERISTIK TERMOHIDRAULIK RISET KECELAKAAN KEHILANGAN AIR PENDINGIN: KARAKTERISTIK TERMOHIDRAULIK RINGKASAN Apabila ada sistem perpipaan reaktor pecah, sehingga pendingin reaktor mengalir keluar, maka kondisi ini disebut kecelakaan

Lebih terperinci

ANALISIS TRANSIEN AKIBAT KEHILANGAN ALIRAN PENDINGIN PADA TERAS SILISIDA RSG-GAS MENGGUNAKAN KODE EUREKA-2/RR

ANALISIS TRANSIEN AKIBAT KEHILANGAN ALIRAN PENDINGIN PADA TERAS SILISIDA RSG-GAS MENGGUNAKAN KODE EUREKA-2/RR ANALISIS TRANSIEN AKIBAT KEHILANGAN ALIRAN PENDINGIN PADA TERAS SILISIDA RSG-GAS MENGGUNAKAN KODE EUREKA-2/RR Oleh Muh. Darwis Isnaini Pusat Teknologi Reaktor dan Keselamatan Nuklir - BATAN ABSTRAK ANALISIS

Lebih terperinci

APLlKASI PROGRAM RELAP/SCDAPSIM/MOD3.4 UNTUK PERHITUNGAN TERMOHIDROLIKA REAKTOR KARTINI

APLlKASI PROGRAM RELAP/SCDAPSIM/MOD3.4 UNTUK PERHITUNGAN TERMOHIDROLIKA REAKTOR KARTINI Anhar R Antarikmwan, dkk ISSN 0216-3128 2/5 APLlKASI PROGRAM RELAP/SCDAPSIM/MOD34 UNTUK PERHITUNGAN TERMOHIDROLIKA REAKTOR KARTINI Anhar R Antariksawan, Mulya Juarsa Pusat Teknologi Reaktor dan Keselamatan

Lebih terperinci

EVALUASI KESELAMATAN REAKTOR TIPE PWR PADA KECELAKAAN PUTUSNYA JALUR UAP UTAMA

EVALUASI KESELAMATAN REAKTOR TIPE PWR PADA KECELAKAAN PUTUSNYA JALUR UAP UTAMA EVALUASI KESELAMATAN REAKTOR TIPE PWR PADA KECELAKAAN PUTUSNYA JALUR UAP UTAMA Oleh Andi Sofrany Ekariansyah Pusat Teknologi Reaktor Keselamatan Nuklir BATAN ABSTRAK EVALUASI KESELAMATAN REAKTOR TIPE PWR

Lebih terperinci

PARAMETER YANG DIPERTIMBANGKAN SEBAGAI KONDISI BATAS UNTUK OPERASI NORMAL

PARAMETER YANG DIPERTIMBANGKAN SEBAGAI KONDISI BATAS UNTUK OPERASI NORMAL LAMPIRAN III PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR... TAHUN... TENTANG BATASAN DAN KONDISI OPERASI REAKTOR NONDAYA PARAMETER YANG DIPERTIMBANGKAN SEBAGAI KONDISI BATAS UNTUK OPERASI NORMAL

Lebih terperinci

Efek Kebocoran Beamtube dan Pipa Primer Penukar Panas Pada Suatu Model Reaktor Riset 1 MW Berbahan Bakar Tipe Silinder (Reinaldy Nazar)

Efek Kebocoran Beamtube dan Pipa Primer Penukar Panas Pada Suatu Model Reaktor Riset 1 MW Berbahan Bakar Tipe Silinder (Reinaldy Nazar) EFEK KEBOCORAN BEAMTUBE DAN PIPA PRIMER PENUKAR PANAS PADA SUATU MODEL REAKTOR RISET 1 MW BERBAHAN BAKAR TIPE SILINDER THE LEAKAGE EFFECT OF BEAMTUBE AND PRIMARY PIPE OF HEAT EXCHANGER ON A 1 MW RESEARCH

Lebih terperinci

Kata kunci: analisis transient aliran, SSSR, aliran sirkulasi alam, loop primer, kondisi normal.

Kata kunci: analisis transient aliran, SSSR, aliran sirkulasi alam, loop primer, kondisi normal. J. Tek. Reaktor. Nukl. Vol. 10 No. 3, Oktober 2008, Hal. 126-135 ISSN 1411 240X ANALISIS TRANSIEN ALIRAN PENDINGIN SMALL SIMPLE AND SAFE REACTOR TANPA POSTULASI KECELAKAAN Enjang Ruhiat, Andang Widi Harto,

Lebih terperinci

REACTOR SAFETY SYSTEMS AND SAFETY CLASSIFICATION

REACTOR SAFETY SYSTEMS AND SAFETY CLASSIFICATION REACTOR SAFETY SYSTEMS AND SAFETY CLASSIFICATION Puradwi I.W. Bidang Analisis Risiko dan Mitigasi Sistem P2TKN-BATAN NATIONAL BASIC PROFESSIONAL TRAINING COURSE ON NUCLEAR SAFETY PUSAT PENDIDIKAN DAN PELATIHAN

Lebih terperinci

PEMODELAN TERMOHIDROLIKA SUB-KANAL ELEMEN BAKAR AP-1000 MENGGUNAKAN RELAP5

PEMODELAN TERMOHIDROLIKA SUB-KANAL ELEMEN BAKAR AP-1000 MENGGUNAKAN RELAP5 Urania Vol. 16 No. 4, Oktober 2010 : 145-205 PEMODELAN TERMOHIDROLIKA SUB-KANAL ELEMEN BAKAR AP-1000 MENGGUNAKAN RELAP5 ABSTRAK Suroso (1) dan Sukmanto Dibyo (1) Pusat Teknologi Rekayasa dan Keselamatan

Lebih terperinci

REAKTOR GRAFIT BERPENDINGIN GAS (GAS COOLED REACTOR)

REAKTOR GRAFIT BERPENDINGIN GAS (GAS COOLED REACTOR) REAKTOR GRAFIT BERPENDINGIN GAS (GAS COOLED REACTOR) RINGKASAN Reaktor Grafit Berpendingin Gas (Gas Cooled Reactor, GCR) adalah reaktor berbahan bakar uranium alam dengan moderator grafit dan berpendingin

Lebih terperinci

Diterima editor 14 September 2009 Disetujui untuk dipublikasi 11 Januari 2010

Diterima editor 14 September 2009 Disetujui untuk dipublikasi 11 Januari 2010 I VERIFIKASI MODEL KONDENSASI PADA RELAP5/SCDAPSIM/MOD 3.4 Surip Widodo Pusat Teknologi Reaktor dan Keselamatan Nuklir - Badan Tenaga Nuklir Nasional Kawasan Puspiptek Serpong, Gedung 80, Tangerang, 15310

Lebih terperinci

FORMAT DAN ISI LAPORAN ANALISIS KESELAMATAN REAKTOR NONDAYA. I. Kerangka Format Laporan Analisis Keselamatan Reaktor Nondaya

FORMAT DAN ISI LAPORAN ANALISIS KESELAMATAN REAKTOR NONDAYA. I. Kerangka Format Laporan Analisis Keselamatan Reaktor Nondaya SALINAN KEPALA BADAN PENGAWAS TENAGA NUKLIR REPUBLIK INDONESIA LAMPIRAN PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 8 TAHUN 2012 TENTANG PENYUSUNAN LAPORAN ANALISIS KESELAMATAN REAKTOR NONDAYA

Lebih terperinci

ANALISIS PERBANDINGAN KINERJA PERANGKAT BAHAN BAKAR PLTN TIPE PWR AP 1000 DAN PWR 1000 MWe TIPIKAL DENGAN MENGGUNAKAN PROGRAM KOMPUTER

ANALISIS PERBANDINGAN KINERJA PERANGKAT BAHAN BAKAR PLTN TIPE PWR AP 1000 DAN PWR 1000 MWe TIPIKAL DENGAN MENGGUNAKAN PROGRAM KOMPUTER ANALISIS PERBANDINGAN KINERJA PERANGKAT BAHAN BAKAR PLTN TIPE PWR AP 1000 DAN PWR 1000 MWe TIPIKAL DENGAN MENGGUNAKAN PROGRAM KOMPUTER Arif Nurmawan 1), Suroso 2) dan Harto Tanujaya 1) 1) Program Studi

Lebih terperinci

PERHITUNGAN BURN UP BAHAN BAKAR REAKTOR RSG-GAS MENGGUNAKAN PAKET PROGRAM BATAN-FUEL. Mochamad Imron, Ariyawan Sunardi

PERHITUNGAN BURN UP BAHAN BAKAR REAKTOR RSG-GAS MENGGUNAKAN PAKET PROGRAM BATAN-FUEL. Mochamad Imron, Ariyawan Sunardi Prosiding Seminar Nasional Teknologi dan Aplikasi Reaktor Nuklir PRSG Tahun 2012 ISBN 978-979-17109-7-8 PERHITUNGAN BURN UP BAHAN BAKAR REAKTOR RSG-GAS MENGGUNAKAN PAKET PROGRAM BATAN-FUEL Mochamad Imron,

Lebih terperinci

PENGUJIAN IRADIASI KELONGSONG PIN PRTF DENGAN LAJU ALIR SEKUNDER 750 l/jam. Sutrisno, Saleh Hartaman, Asnul Sufmawan, Pardi dan Sapto Prayogo

PENGUJIAN IRADIASI KELONGSONG PIN PRTF DENGAN LAJU ALIR SEKUNDER 750 l/jam. Sutrisno, Saleh Hartaman, Asnul Sufmawan, Pardi dan Sapto Prayogo PENGUJIAN IRADIASI KELONGSONG PIN PRTF DENGAN LAJU ALIR SEKUNDER 750 l/jam Sutrisno, Saleh Hartaman, Asnul Sufmawan, Pardi dan Sapto Prayogo ABSTRAK PENGUJIAN IRADIASI KELONGSONG PIN PRTF DENGAN LAJU ALIR

Lebih terperinci

STUDI TEORITIK KARAKTERISTIK ALIRAN PENDINGIN DI SEKITAR TERAS REAKTOR TRIGA 2000 MENGGUNAKAN CFD. Mahasiswa Pascasarjana Institut Teknologi Bandung 2

STUDI TEORITIK KARAKTERISTIK ALIRAN PENDINGIN DI SEKITAR TERAS REAKTOR TRIGA 2000 MENGGUNAKAN CFD. Mahasiswa Pascasarjana Institut Teknologi Bandung 2 STUDI TEORITIK KARAKTERISTIK ALIRAN PENDINGIN DI SEKITAR TERAS REAKTOR TRIGA 2000 MENGGUNAKAN CFD Oleh E.Umar1, N.P.Tandian2, T.Hardianto2, A.Suwono2 dan A.D.Pasek2 1 Mahasiswa Pascasarjana Institut Teknologi

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Reaktor nuklir membutuhkan suatu sistem pendingin yang sangat penting dalam aspek keselamatan pada saat pengoperasian reaktor. Pada umumnya suatu reaktor menggunakan

Lebih terperinci

STUDI PERPINDAHAN PANAS KONVEKSI PADA SUSUNAN SILINDER VERTIKAL DALAM REAKTOR NUKLIR ATAU PENUKAR PANAS MENGGUNAKAN PROGAM CFD

STUDI PERPINDAHAN PANAS KONVEKSI PADA SUSUNAN SILINDER VERTIKAL DALAM REAKTOR NUKLIR ATAU PENUKAR PANAS MENGGUNAKAN PROGAM CFD STUDI PERPINDAHAN PANAS KONVEKSI PADA SUSUNAN SILINDER VERTIKAL DALAM REAKTOR NUKLIR ATAU PENUKAR PANAS MENGGUNAKAN PROGAM CFD Agus Waluyo 1, Nathanel P. Tandian 2 dan Efrizon Umar 3 1 Magister Rekayasa

Lebih terperinci

REAKTOR PIPA TEKAN PENDINGIN AIR DIDIH MODERATOR GRAFIT (RBMK)

REAKTOR PIPA TEKAN PENDINGIN AIR DIDIH MODERATOR GRAFIT (RBMK) REAKTOR PIPA TEKAN PENDINGIN AIR DIDIH MODERATOR GRAFIT (RBMK) RINGKASAN RBMK berasal dari bahasa Rusia "Reaktory Bolshoi Moshchnosti Kanalynye" (hi-power pressure-tube reactors: Reaktor pipa tekan berdaya

Lebih terperinci

STUDI PENGEMBANGAN DESAIN TERAS REAKTOR NUKLIR RISET 2 MWTH DENGAN ELEMEN BAKAR PLAT DI INDONESIA

STUDI PENGEMBANGAN DESAIN TERAS REAKTOR NUKLIR RISET 2 MWTH DENGAN ELEMEN BAKAR PLAT DI INDONESIA STUDI PENGEMBANGAN DESAIN TERAS REAKTOR NUKLIR RISET 2 MWTH DENGAN ELEMEN BAKAR PLAT DI INDONESIA Anwar Ilmar Ramadhan 1*, Aryadi Suwono 1, Nathanael P. Tandian 1, Efrizon Umar 2 1 Kelompok Keahlian Konversi

Lebih terperinci

PENGARUH PENAMBAHAN ALIRAN DARI BAWAH KE ATAS (BOTTOM-UP) TERHADAP KARAKTERISTIK PENDINGINAN TERAS REAKTOR TRIGA 2000 BANDUNG

PENGARUH PENAMBAHAN ALIRAN DARI BAWAH KE ATAS (BOTTOM-UP) TERHADAP KARAKTERISTIK PENDINGINAN TERAS REAKTOR TRIGA 2000 BANDUNG PENGARUH PENAMBAHAN ALIRAN DARI BAWAH KE ATAS (BOTTOM-UP) TERHADAP KARAKTERISTIK PENDINGINAN TERAS REAKTOR TRIGA 2000 BANDUNG V. Indriati Sri Wardhani vero@batan-bdg.go.id Pusat Teknologi Nuklir Bahan

Lebih terperinci

CONTOH KEJADIAN AWAL TERPOSTULASI. Kejadian Awal Terpostulasi. No. Kelompok Kejadian Kejadian Awal

CONTOH KEJADIAN AWAL TERPOSTULASI. Kejadian Awal Terpostulasi. No. Kelompok Kejadian Kejadian Awal LAMPIRAN I PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 1 TAHUN 2011 TENTANG KETENTUAN KESELAMATAN DESAIN REAKTOR NONDAYA CONTOH KEJADIAN AWAL TERPOSTULASI Kejadian Awal Terpostulasi No. Kelompok

Lebih terperinci

LAMPIRAN I PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 1 TAHUN 2011 TENTANG KETENTUAN KESELAMATAN DESAIN REAKTOR NONDAYA

LAMPIRAN I PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 1 TAHUN 2011 TENTANG KETENTUAN KESELAMATAN DESAIN REAKTOR NONDAYA LAMPIRAN I PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 1 TAHUN 2011 TENTANG KETENTUAN KESELAMATAN DESAIN REAKTOR NONDAYA - 2 - CONTOH KEJADIAN AWAL TERPOSTULASI Kejadian Awal Terpostulasi No. Kelompok

Lebih terperinci

PEMODELAN SISTEM KONVERSI ENERGI RGTT200K UNTUK MEMPEROLEH KINERJA YANG OPTIMUM ABSTRAK

PEMODELAN SISTEM KONVERSI ENERGI RGTT200K UNTUK MEMPEROLEH KINERJA YANG OPTIMUM ABSTRAK PEMODELAN SISTEM KONVERSI ENERGI RGTT200K UNTUK MEMPEROLEH KINERJA YANG OPTIMUM Ign. Djoko Irianto Pusat Teknologi Reaktor dan Keselamatan Nuklir (PTRKN) BATAN ABSTRAK PEMODELAN SISTEM KONVERSI ENERGI

Lebih terperinci

FORMAT DAN ISI LAPORAN ANALISIS KESELAMATAN REAKTOR NONDAYA

FORMAT DAN ISI LAPORAN ANALISIS KESELAMATAN REAKTOR NONDAYA 2012, No.758 6 LAMPIRAN PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR REPUBLIK INDONESIA NOMOR 8 TAHUN 2012 TENTANG PENYUSUNAN LAPORAN ANALISIS KESELAMATAN REAKTOR NONDAYA FORMAT DAN ISI LAPORAN ANALISIS

Lebih terperinci

REAKTOR AIR BERAT KANADA (CANDU)

REAKTOR AIR BERAT KANADA (CANDU) REAKTOR AIR BERAT KANADA (CANDU) RINGKASAN Setelah perang dunia kedua berakhir, Kanada mulai mengembangkan PLTN tipe reaktor air berat (air berat: D 2 O, D: deuterium) berbahan bakar uranium alam. Reaktor

Lebih terperinci

CONTOH BATASAN DAN KONDISI OPERASI REAKTOR NONDAYA

CONTOH BATASAN DAN KONDISI OPERASI REAKTOR NONDAYA KEPALA BADAN PENGAWAS TENAGA NUKLIR REPUBLIK INDONESIA LAMPIRAN II PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 9 TAHUN 2013 TENTANG BATASAN DAN KONDISI OPERASI REAKTOR NONDAYA CONTOH BATASAN DAN

Lebih terperinci

REAKTOR PIPA TEKAN PENDINGIN AIR DIDIH MODERATOR GRAFIT (RBMK)

REAKTOR PIPA TEKAN PENDINGIN AIR DIDIH MODERATOR GRAFIT (RBMK) REAKTOR PIPA TEKAN PENDINGIN AIR DIDIH MODERATOR GRAFIT (RBMK) RINGKASAN RBMK berasal dari bahasa Rusia "Reaktory Bolshoi Moshchnosti Kanalynye" (hi-power pressure-tube reactors: Reaktor pipa tekan berdaya

Lebih terperinci

BAB III KARAKTERISTIK DESAIN HTTR DAN PENDINGIN Pb-Bi

BAB III KARAKTERISTIK DESAIN HTTR DAN PENDINGIN Pb-Bi BAB III KARAKTERISTIK DESAIN HTTR BAB III KARAKTERISTIK DESAIN HTTR DAN PENDINGIN Pb-Bi 3.1 Konfigurasi Teras Reaktor Spesifikasi utama dari HTTR diberikan pada tabel 3.1 di bawah ini. Reaktor terdiri

Lebih terperinci

PENGEMBANGAN SOFTWARE CPEM SEBAGAI SARANA PENDIDIKAN EKSPERIMEN FISIKA REAKTOR PADA REAKTOR KARTINI

PENGEMBANGAN SOFTWARE CPEM SEBAGAI SARANA PENDIDIKAN EKSPERIMEN FISIKA REAKTOR PADA REAKTOR KARTINI PENGEMBANGAN SOFTWARE CPEM SEBAGAI SARANA PENDIDIKAN EKSPERIMEN FISIKA REAKTOR PADA REAKTOR KARTINI Tegas Sutondo dan Syarip Pusat Teknologi Akselerator dan Proses Bahan, Badan Tenaga Nuklir Nasional JL.

Lebih terperinci

ANALISIS SUDU KOMPRESOR AKSIAL UNTUK SISTEM TURBIN HELIUM RGTT200K ABSTRAK ABSTRACT

ANALISIS SUDU KOMPRESOR AKSIAL UNTUK SISTEM TURBIN HELIUM RGTT200K ABSTRAK ABSTRACT ANALISIS SUDU KOMPRESOR AKSIAL UNTUK SISTEM TURBIN HELIUM RGTT200K Sri Sudadiyo Pusat Teknologi Reaktor dan Keselamatan Nuklir ABSTRAK ANALISIS SUDU KOMPRESOR AKSIAL UNTUK SISTEM TURBIN HELIUM RGTT200K.

Lebih terperinci

ANALISIS KECELAKAAN KEHILANGAN PENDINGIN SEKUNDER REAKTOR TIPE PIUS MENGGUNAKAN RELAP5/MOD2. Ign. Djoko Irianto*

ANALISIS KECELAKAAN KEHILANGAN PENDINGIN SEKUNDER REAKTOR TIPE PIUS MENGGUNAKAN RELAP5/MOD2. Ign. Djoko Irianto* ANALISIS KECELAKAAN KEHILANGAN PENDINGIN SEKUNDER REAKTOR TIPE PIUS MENGGUNAKAN RELAP5/MOD2 Ign. Djoko Irianto* ABSTRACT ID990000033 LOSS OF SECONDARY COOLANT ACCIDENT ANALYSIS FOR PIUS TYPE REACTOR USING

Lebih terperinci

LAMPIRAN FAKTOR-FAKTOR YANG HARUS DIPERTIMBANGKAN UNTUK MENETAPKAN KONDISI-KONDISI BATAS UNTUK OPERASI YANG AMAN

LAMPIRAN FAKTOR-FAKTOR YANG HARUS DIPERTIMBANGKAN UNTUK MENETAPKAN KONDISI-KONDISI BATAS UNTUK OPERASI YANG AMAN LAMPIRAN FAKTOR-FAKTOR YANG HARUS DIPERTIMBANGKAN UNTUK MENETAPKAN KONDISI-KONDISI BATAS UNTUK OPERASI YANG AMAN A.1. Daftar parameter operasi dan peralatan berikut hendaknya dipertimbangkan dalam menetapkan

Lebih terperinci

ANALISIS KESELAMATAN DETERMINISTIK

ANALISIS KESELAMATAN DETERMINISTIK BASIC PROFESSIONAL TRAINING COURSE ON NUCLEAR SAFETY JULY 19 30, 2004 ANALISIS KESELAMATAN DETERMINISTIK Anhar R. Antariksawan Bidang Analisis Risiko dan Mitigasi Kecelakaan P2TKN E-mail: anharra@centrin.net.id

Lebih terperinci

PENGARUH DAYA TERHADAP UNJUK KERJA PIN BAHAN BAKAR NUKLIR TIPE PWR PADA KONDISI STEADY STATE

PENGARUH DAYA TERHADAP UNJUK KERJA PIN BAHAN BAKAR NUKLIR TIPE PWR PADA KONDISI STEADY STATE PENGARUH DAYA TERHADAP UNJUK KERJA PIN BAHAN BAKAR NUKLIR TIPE PWR PADA KONDISI STEADY STATE EDY SULISTYONO PUSAT TEKNOLOGI BAHAN BAKAR NUKLIR ( PTBN ), BATAN e-mail: edysulis@batan.go.id ABSTRAK PENGARUH

Lebih terperinci

EVALUASI TINGKAT KESELAMATAN HIGH TEMPERATURE REACTOR 10 MW DITINJAU DARI NILAI SHUTDOWN MARGIN.

EVALUASI TINGKAT KESELAMATAN HIGH TEMPERATURE REACTOR 10 MW DITINJAU DARI NILAI SHUTDOWN MARGIN. EVALUASI TINGKAT KESELAMATAN HIGH TEMPERATURE REACTOR 10 MW DITINJAU DARI NILAI SHUTDOWN MARGIN Rizki Budi Rahayu 1, Riyatun 1, Azizul Khakim 2 1 Prodi Fisika, FMIPA, Universitas Sebelas Maret, Surakarta

Lebih terperinci

Diterima editor 10 Agustus 2010 Disetujui untuk dipublikasi 28 September 2010

Diterima editor 10 Agustus 2010 Disetujui untuk dipublikasi 28 September 2010 Vol. No. Oktober 00, Hal. - ISSN 0X Nomor : /AU/PMI/0/00 ANALISIS PARAMETER KINETIK DAN TRANSIEN TERAS KOMPAK REAKTOR G-GAS Iman Kuntoro ), Surian Pinem ), Tagor Malem Sembiring. Pusat Teknologi ahan Industri

Lebih terperinci

KARAKTERISTIK TERMOHIDROLIK REAKTOR TRIGA 2000 UNTUK KONDISI 110 PERSEN DAYA NORMAL

KARAKTERISTIK TERMOHIDROLIK REAKTOR TRIGA 2000 UNTUK KONDISI 110 PERSEN DAYA NORMAL KARAKTERISTIK TERMOHIDROLIK REAKTOR TRIGA 2000 UNTUK KONDISI 110 PERSEN DAYA NORMAL Rosalina Fiantini dan Efrizon Umar Pusat Teknologi Nuklir Bahan dan Radiometri, BATAN, Jl. Tamansari No.71, Bandung 40132

Lebih terperinci

ANALISIS FAKTOR PUNCAK DAYA TERAS RSG-GAS BERBAHAN BAKAR U 3 SI 2 -AL. Jati Susilo, Endiah Pudjihastuti Pusat Teknologi Reaktor Dan Keselamatan Nuklir

ANALISIS FAKTOR PUNCAK DAYA TERAS RSG-GAS BERBAHAN BAKAR U 3 SI 2 -AL. Jati Susilo, Endiah Pudjihastuti Pusat Teknologi Reaktor Dan Keselamatan Nuklir ANALISIS FAKTOR PUNCAK DAYA TERAS RSG-GAS BERBAHAN BAKAR U 3 Si 2 -Al 4,8 gu/cc DENGAN KAWAT KADMIUM Jati Susilo, Endiah Pudjihastuti Pusat Teknologi Reaktor Dan Keselamatan Nuklir Diterima editor 02 September

Lebih terperinci

PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 3 TAHUN 2009 TENTANG BATASAN DAN KONDISI OPERASI DAN PROSEDUR OPERASI REAKTOR DAYA

PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 3 TAHUN 2009 TENTANG BATASAN DAN KONDISI OPERASI DAN PROSEDUR OPERASI REAKTOR DAYA PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 3 TAHUN 2009 TENTANG BATASAN DAN KONDISI OPERASI DAN PROSEDUR OPERASI REAKTOR DAYA DENGAN RAHMAT TUHAN YANG MAHA ESA KEPALA BADAN PENGAWAS TENAGA NUKLIR,

Lebih terperinci

STUDI KARAKTERISTIK ALIRAN PADA TUJUH SILINDER VERTIKAL DENGAN SUSUNAN HEKSAGONAL DALAM REAKTOR NUKLIR MENGGUNAKAN PAKET PROGRAM FLUENT

STUDI KARAKTERISTIK ALIRAN PADA TUJUH SILINDER VERTIKAL DENGAN SUSUNAN HEKSAGONAL DALAM REAKTOR NUKLIR MENGGUNAKAN PAKET PROGRAM FLUENT Studi Karakteristik Aliran pada Tujuh Silinder Vertika dengan Susunan Heksagonal (A. Septilarso, et al) STUDI KARAKTERISTIK ALIRAN PADA TUJUH SILINDER VERTIKAL DENGAN SUSUNAN HEKSAGONAL DALAM REAKTOR NUKLIR

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Pembangkit Listrik Tenaga Nuklir (PLTN) didesain berdasarkan 3 (tiga) prinsip yaitu mampu dipadamkan dengan aman (safe shutdown), didinginkan serta mengungkung produk

Lebih terperinci

BAB I PENDAHULUAN I. 1. Latar Belakang

BAB I PENDAHULUAN I. 1. Latar Belakang BAB I PENDAHULUAN I. 1. Latar Belakang Pengembangan pemanfaatan energi nuklir dalam berbagai sektor saat ini kian pesat. Hal ini dikarenakan energi nuklir dapat menghasilkan daya dalam jumlah besar secara

Lebih terperinci

Analisis Karakteristik Rewetting Dalam Celah Sempit Vertikal Untuk Kasus Bilateral Heating Berdasarkan Perubahan Temperatur Awal Plat

Analisis Karakteristik Rewetting Dalam Celah Sempit Vertikal Untuk Kasus Bilateral Heating Berdasarkan Perubahan Temperatur Awal Plat Jurnal Ilmiah Teknik Mesin Analisis Karakteristik Rewetting Dalam Celah Sempit Vertikal Untuk Kasus Bilateral Heating Berdasarkan Perubahan Temperatur Awal Plat IGN. Bagus Catrawedarma (1)(2), Indarto

Lebih terperinci

REAKTOR AIR DIDIH (BOILING WATER REACTOR, BWR)

REAKTOR AIR DIDIH (BOILING WATER REACTOR, BWR) REAKTOR AIR DIDIH (BOILING WATER REACTOR, BWR) RINGKASAN Reaktor Air Didih adalah salah satu tipe reaktor nuklir yang digunakan dalam Pembangkit Listrik Tenaga Nuklir (PLTN). Reaktor tipe ini menggunakan

Lebih terperinci

LAMPIRAN III PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 4 TAHUN 2014 TENTANG BATASAN DAN KONDISI OPERASI INSTALASI NUKLIR NONREAKTOR

LAMPIRAN III PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 4 TAHUN 2014 TENTANG BATASAN DAN KONDISI OPERASI INSTALASI NUKLIR NONREAKTOR KEPALA BADAN PENGAWAS TENAGA NUKLIR REPUBLIK INDONESIA LAMPIRAN III PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 4 TAHUN 2014 TENTANG BATASAN DAN KONDISI OPERASI INSTALASI NUKLIR NONREAKTOR PARAMETER

Lebih terperinci

ANALISIS PERPINDAHAN PANAS PADA COOLER TANK FASSIP - 01

ANALISIS PERPINDAHAN PANAS PADA COOLER TANK FASSIP - 01 ANALISIS PERPINDAHAN PANAS PADA COOLER TANK FASSIP - 01 Oleh : Aprianto Tangkesalu Dosen Pembimbing : Prof.Dr.Ir.I Gusti Bagus Wijaya Kusuma : Ir.I Nengah Suarnadwipa, MT ABSTRAKSI FASSIP-01 merupakan

Lebih terperinci

PENGARUH VARIASI BAHAN PENDINGIN JENIS LOGAM CAIR TERHADAP KINERJA TERMALHIDROLIK PADA REAKTOR CEPAT

PENGARUH VARIASI BAHAN PENDINGIN JENIS LOGAM CAIR TERHADAP KINERJA TERMALHIDROLIK PADA REAKTOR CEPAT PENGARUH VARIASI BAHAN PENDINGIN JENIS LOGAM CAIR TERHADAP KINERJA TERMALHIDROLIK PADA REAKTOR CEPAT Nevi Haryani, Dian Fitriyani Jurusan Fisika FMIPA Universitas Andalas e-mail: neviharya31@gmail.com

Lebih terperinci

ANALISIS VISUAL PENDINGINAN ALIRAN DUA FASA MENGGUNAKAN KAMERA KECEPATAN TINGGI ABSTRAK ABSTRACT

ANALISIS VISUAL PENDINGINAN ALIRAN DUA FASA MENGGUNAKAN KAMERA KECEPATAN TINGGI ABSTRAK ABSTRACT ANALISIS VISUAL PENDINGINAN ALIRAN DUA FASA MENGGUNAKAN KAMERA KECEPATAN TINGGI Ainur Rosidi, G. Bambang Heru, Kiswanta Pusat Teknologi Reaktor dan Keselamatan Nuklir ABSTRAK ANALISIS VISUAL PENDINGINAN

Lebih terperinci

DEFINISI. Definisi-definisi berikut berlaku untuk maksud-maksud dari publikasi yang sekarang.

DEFINISI. Definisi-definisi berikut berlaku untuk maksud-maksud dari publikasi yang sekarang. DEFINISI Definisi-definisi berikut berlaku untuk maksud-maksud dari publikasi yang sekarang. Batas-batas Yang Dapat Diterima (Acceptable limits) Batas-batas yang dapat diterima oleh badan pengaturan. Kondisi

Lebih terperinci

MODUL 2 ANALISIS KESELAMATAN PLTN

MODUL 2 ANALISIS KESELAMATAN PLTN MODUL 2 ANALISIS KESELAMATAN PLTN Muhammad Ilham, Annisa Khair, Mohamad Yusup, Praba Fitra Perdana, Nata Adriya, Rizki Budiman 121178, 12115, 121177, 121118, 12116, 12114 Program Studi Fisika, Institut

Lebih terperinci

Analisis Termal Hidrolik Gas Cooled Fast Reactor (GCFR)

Analisis Termal Hidrolik Gas Cooled Fast Reactor (GCFR) Bab 2 Analisis Termal Hidrolik Gas Cooled Fast Reactor (GCFR) 2.1 Pembangkit Listrik Tenaga Nuklir Prinsip kerja dari pembangkit listrik tenaga nuklir secara umum tidak berbeda dengan pembangkit listrik

Lebih terperinci

PENELITIAN KECELAKAAN KEHILANGAN PENDINGIN DI KAKI DINGIN REAKTOR PADA UNTAI UJI TERMOHIDROLIKA REAKTOR

PENELITIAN KECELAKAAN KEHILANGAN PENDINGIN DI KAKI DINGIN REAKTOR PADA UNTAI UJI TERMOHIDROLIKA REAKTOR PENELITIAN KECELAKAAN KEHILANGAN PENDINGIN DI KAKI DINGIN REAKTOR PADA UNTAI UJI TERMOHIDROLIKA REAKTOR T 621.483 SET Abstrak Kecelakaan kehilangan pendingin (LOCA) merupakan kecelakaan besar yang dipostulasikan

Lebih terperinci

DISTRIBUSI TEMPERATUR SAAT PEMANASAN DAN PENDINGINAN PER- MUKAAN SEMI-SPHERE HeaTING-03 BERDASARKAN TEMPERATUR AWAL

DISTRIBUSI TEMPERATUR SAAT PEMANASAN DAN PENDINGINAN PER- MUKAAN SEMI-SPHERE HeaTING-03 BERDASARKAN TEMPERATUR AWAL DISTRIBUSI TEMPERATUR SAAT PEMANASAN DAN PENDINGINAN PER- MUKAAN SEMI-SPHERE HeaTING-03 BERDASARKAN TEMPERATUR AWAL Keis Jury Pribadi 1, G. Bambang Heru 2, Ainur Rosidi 2, Mulya Juarsa 1,2 1 Laboratorium

Lebih terperinci

SYNOPSIS REAKTOR NUKLIR DAN APLIKASINYA

SYNOPSIS REAKTOR NUKLIR DAN APLIKASINYA SYNOPSIS REAKTOR NUKLIR DAN APLIKASINYA PENDAHULUAN Disamping sebagai senjata nuklir, manusia juga memanfaatkan energi nuklir untuk kesejahteraan umat manusia. Salah satu pemanfaatan energi nuklir secara

Lebih terperinci

SIMULASI PEMODELAN TERMOHIDROLIKA SISTEM PENDINGIN KOLAM RSG-GAS. Sukmanto Dibyo *

SIMULASI PEMODELAN TERMOHIDROLIKA SISTEM PENDINGIN KOLAM RSG-GAS. Sukmanto Dibyo * Simulasi Pemodelan Termohidrolika Sistem Pendingin Kolam RSG-GAS (Sukmanto Dibyo) SIMULASI PEMODELAN TERMOHIDROLIKA SISTEM PENDINGIN KOLAM RSG-GAS Sukmanto Dibyo * ABSTRAK SIMULASI DAN PEMODELAN TERMOHIDROLIKA

Lebih terperinci

RANCANG BANGUN PERANGKAT LUNAK SIMULATOR REAKTOR NUKLIR

RANCANG BANGUN PERANGKAT LUNAK SIMULATOR REAKTOR NUKLIR RANCANG BANGUN PERANGKAT LUNAK SIMULATOR REAKTOR NUKLIR Demon Handoyo 1, Agus Cahyono 2, Khairul Handono 3 dan Sapta Teguh P 4 1, 2, 3, 4 Pusat Rekayasa Perangkat Nuklir, Kawasan PUSPIPTEK Serpong, Gedung

Lebih terperinci

STUDI EKSPERIMENTAL PERPINDAHAN KALOR DI CELAH SEMPIT ANULUS SELAMA BOTTOM FLOODING BERDASARKAN VARIASI TEMPERATUR AWAL BATANG PANAS

STUDI EKSPERIMENTAL PERPINDAHAN KALOR DI CELAH SEMPIT ANULUS SELAMA BOTTOM FLOODING BERDASARKAN VARIASI TEMPERATUR AWAL BATANG PANAS TUGAS AKHIR TF 091381 STUDI EKSPERIMENTAL PERPINDAHAN KALOR DI CELAH SEMPIT ANULUS SELAMA BOTTOM FLOODING BERDASARKAN VARIASI TEMPERATUR AWAL BATANG PANAS Disusun Oleh : Choirul Muheimin NRP. 2408 100

Lebih terperinci

2014, No MANAJEMEN TERAS. Langkah-langkah Manajemen Teras terdiri atas:

2014, No MANAJEMEN TERAS. Langkah-langkah Manajemen Teras terdiri atas: 8 LAMPIRAN I PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 2 TAHUN 2014 TENTANG MANAJEMEN TERAS SERTA PENANGANAN DAN PENYIMPANAN BAHAN BAKAR NUKLIR PADA REAKTOR NONDAYA MANAJEMEN TERAS Langkah-langkah

Lebih terperinci

BAB IV PEMILIHAN SISTEM PEMANASAN AIR

BAB IV PEMILIHAN SISTEM PEMANASAN AIR 27 BAB IV PEMILIHAN SISTEM PEMANASAN AIR 4.1 Pemilihan Sistem Pemanasan Air Terdapat beberapa alternatif sistem pemanasan air yang dapat dilakukan, seperti yang telah dijelaskan dalam subbab 2.2.1 mengenai

Lebih terperinci

ANALISIS TERMOHIDROLIK TEMPAT PENYIMPANAN BAHAN BAKAR DI BULK SHIELDING MENGGUNAKAN CFD FLUENT

ANALISIS TERMOHIDROLIK TEMPAT PENYIMPANAN BAHAN BAKAR DI BULK SHIELDING MENGGUNAKAN CFD FLUENT ANALISIS TERMOHIDROLIK TEMPAT PENYIMPANAN BAHAN BAKAR DI BULK SHIELDING MENGGUNAKAN CFD FLUENT Tri Nugroho Hadi Susanto, Sigit Pramana -BATAN, Yogyakarta Email : ptapb@batan.go.id ABSTRAK ANALISIS TERMOHIDROLIK

Lebih terperinci

RANCANG BANGUN PERANGKAT LUNAK SIMULATOR REAKTOR NUKLIR

RANCANG BANGUN PERANGKAT LUNAK SIMULATOR REAKTOR NUKLIR RANCANG BANGUN PERANGKAT LUNAK SIMULATOR REAKTOR NUKLIR Demon Handoyo 1, Agus Cahyono 1, Khairul Handono 1, Sapta Teguh P 1 1 PRPN-BATAN, Komplek Puspiptek Gd.71 Serpong, Tangerang 15310 ABSTRAK RANCANG

Lebih terperinci

Desain Reaktor Air Superkritis (Supercritical Cooled Water Reactor) dengan Menggunakan Bahan Bakar Uranium-horium Model Teras Silinder

Desain Reaktor Air Superkritis (Supercritical Cooled Water Reactor) dengan Menggunakan Bahan Bakar Uranium-horium Model Teras Silinder JURNAL Teori dan Aplikasi Fisika Vol. 04, No.01, Januari Tahun 2016 Desain Reaktor Air Superkritis (Supercritical Cooled Water Reactor) dengan Menggunakan Bahan Bakar Uranium-horium Model Teras Silinder

Lebih terperinci

BADAN TENAGA NUKLIR NASIONAL

BADAN TENAGA NUKLIR NASIONAL BADAN TENAGA NUKLIR NASIONAL PUSAT TEKNOLOGI AKSELERATOR DAN PROSES BAHAN Jl. Babarsari Kotak Pos 6101 Ykbb, Yogyakarta 55281, Tel (62)(0274) 488435 Ringkasan Laporan Pelaksanaan Kegiatan Tahap Pertama

Lebih terperinci

Analisis Neutronik pada Gas Cooled Fast Reactor (GCFR) dengan Variasi Bahan Pendingin (He, CO 2, N 2 )

Analisis Neutronik pada Gas Cooled Fast Reactor (GCFR) dengan Variasi Bahan Pendingin (He, CO 2, N 2 ) Analisis Neutronik pada Gas Cooled Fast Reactor (GCFR) dengan Variasi Bahan Pendingin (He, CO 2, N 2 ) Riska*, Dian Fitriyani, Feriska Handayani Irka Jurusan Fisika Universitas Andalas *riska_fya@yahoo.com

Lebih terperinci

Simulasi Efek Ukuran dan Lokasi Kebocoran Pipa Pendingin Reaktor Nuklir Menggunakan Fasilitas Eksperimen UUTR.Mod-l

Simulasi Efek Ukuran dan Lokasi Kebocoran Pipa Pendingin Reaktor Nuklir Menggunakan Fasilitas Eksperimen UUTR.Mod-l Simulasi Efek Ukuran dan Lokasi Kebocoran Pipa Pendingin Reaktor Nuklir Menggunakan Fasilitas Eksperimen UUTR.Mod-l Anhar R. Antariksawan, Mulya Juarsa, Joko Prasctyo, Edy Sumarno, Kiswanta, dan Ismu Handoyo

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. BAB I PENDAHULUAN I.1. Latar Belakang Penggunaan energi surya dalam berbagai bidang telah lama dikembangkan di dunia. Berbagai teknologi terkait pemanfaatan energi surya mulai diterapkan pada berbagai

Lebih terperinci

BAB I. PENDAHULUAN Latar Belakang

BAB I. PENDAHULUAN Latar Belakang BAB I. PENDAHULUAN 1.1. Latar Belakang Aliran dua fasa berlawanan arah, banyak dijumpai pada aplikasi reaktor nuklir, jaringan pipa, minyak dan gas. Aliran dua fasa ini juga memiliki karakteristik yang

Lebih terperinci

ANALISA KESELAMATAN REAKTOR CEPAT DENGAN DAUR ULANG AKTINIDA. Mohammad Taufik *

ANALISA KESELAMATAN REAKTOR CEPAT DENGAN DAUR ULANG AKTINIDA. Mohammad Taufik * ANALISA KESELAMATAN REAKTOR CEPAT DENGAN DAUR ULANG AKTINIDA Mohammad Taufik * ABSTRAK ANALISA KESELAMATAN REAKTOR CEPAT DENGAN DAUR ULANG AKTINIDA. Telah dilakukan simulasi untuk melakukan analisa keselamatan

Lebih terperinci

EVALUASI PARAMETER DESAIN TERMOHIDROLIKA TERAS DAN SUB KANAL PLTN AP1000 PADA KONDISI TUNAK

EVALUASI PARAMETER DESAIN TERMOHIDROLIKA TERAS DAN SUB KANAL PLTN AP1000 PADA KONDISI TUNAK EVALUASI PARAMETER DESAIN TERMOHIDROLIKA TERAS DAN SUB KANAL PLTN AP1000 PADA KONDISI TUNAK Muh. Darwis Isnaini, Sukmanto Dibyo, Suroso, Geni Rina S, Endiah P. Hastuti, Muh. Subekti Email : darwis@batan.go.id

Lebih terperinci

Fakultas Teknik Universitas Ibn Khaldun Bogor Jl. KH. Soleh Iskandar KM.2 Bogor 16162

Fakultas Teknik Universitas Ibn Khaldun Bogor Jl. KH. Soleh Iskandar KM.2 Bogor 16162 PENGARUH DEBIT ALIRAN AIR SISI PRIMER UNTAI UJI BETA TERHADAP EFEKTIVITAS ALAT PENUKAR KALOR Suhendra 1,2, Mulya Juarsa,3, M. Hadi Kusuma 3 Hendro Tjahjono 3, Yogi Sirodz Gaos 2, G. Bambang Heru 3 1 Mahasiswa

Lebih terperinci

PERPINDAHAN PANAS PIPA KALOR SUDUT KEMIRINGAN

PERPINDAHAN PANAS PIPA KALOR SUDUT KEMIRINGAN PERPINDAHAN PANAS PIPA KALOR SUDUT KEMIRINGAN 0 o, 30 o, 45 o, 60 o, 90 o I Wayan Sugita Jurusan Teknik Mesin, Fakultas Teknik, Universitas Negeri Jakarta e-mail : wayan_su@yahoo.com ABSTRAK Pipa kalor

Lebih terperinci

LAMPIRAN I PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 3 TAHUN 2011 TENTANG KETENTUAN KESELAMATAN DESAIN REAKTOR DAYA

LAMPIRAN I PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 3 TAHUN 2011 TENTANG KETENTUAN KESELAMATAN DESAIN REAKTOR DAYA LAMPIRAN I PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 3 TAHUN 2011 TENTANG KETENTUAN KESELAMATAN DESAIN REAKTOR DAYA - 2 - KEJADIAN AWAL TERPOSTULASI (PIE) 1.1. Lampiran ini menjelaskan definisi

Lebih terperinci

PENENTUAN FRAKSI BAKAR PELAT ELEMEN BAKAR UJI DENGAN ORIGEN2. Kadarusmanto, Purwadi, Endang Susilowati

PENENTUAN FRAKSI BAKAR PELAT ELEMEN BAKAR UJI DENGAN ORIGEN2. Kadarusmanto, Purwadi, Endang Susilowati PENENTUAN FRAKSI BAKAR PELAT ELEMEN BAKAR UJI DENGAN ORIGEN2 Kadarusmanto, Purwadi, Endang Susilowati ABSTRAK PENENTUAN FRAKSI BAKAR PELAT ELEMEN BAKAR UJI DENGAN ORIGEN2. Elemen bakar merupakan salah

Lebih terperinci

MODEL AUTOMATA PENGOPERASIAN DAN PERSIAPAN UNTAI UJI TERMOHIDRAULIKA BETA

MODEL AUTOMATA PENGOPERASIAN DAN PERSIAPAN UNTAI UJI TERMOHIDRAULIKA BETA MODEL AUTOMATA PENGOPERASIAN DAN PERSIAPAN UNTAI UJI TERMOHIDRAULIKA BETA Pusat Teknologi Reaktor dan Keselamatan Nuklir-BATAN, PUSPIPTEK Serpong, Tangerang, 15310 E-mail : kussigit@batan.go.id ABSTRAK

Lebih terperinci

EVALUASI KESELAMATAN REAKTOR AIR MENDIDIH (BWR) DALAM PENGAWASAN REAKTOR DAYA

EVALUASI KESELAMATAN REAKTOR AIR MENDIDIH (BWR) DALAM PENGAWASAN REAKTOR DAYA EVALUASI KESELAMATAN REAKTOR AIR MENDIDIH (BWR) DALAM PENGAWASAN REAKTOR DAYA Oleh: Budi Rohman Pusat Pengkajian Sistem dan Teknologi Pengawasan Instalasi dan Bahan Nuklir Badan Pengawas Tenaga Nuklir

Lebih terperinci

PEMBUATAN KODE KOMPUTER UNTUK ANALISIS AWAL TERMOHIDROLIK SUBKANAL PENDINGIN REAKTOR LWR

PEMBUATAN KODE KOMPUTER UNTUK ANALISIS AWAL TERMOHIDROLIK SUBKANAL PENDINGIN REAKTOR LWR PEMBUATAN KODE KOMPUTER UNTUK ANALISIS AWAL TERMOHIDROLIK SUBKANAL PENDINGIN REAKTOR LWR Muhammad Khoiri 1, Tri Wulan Tjiptono 2, Adhi Prihastomo 3 1.Sekolah Tinggi Teknologi Nuklir-Badan Tenaga Nuklir

Lebih terperinci

Diterima editor 12 Maret 2012 Disetujui untuk publikasi 02 Mei 2012

Diterima editor 12 Maret 2012 Disetujui untuk publikasi 02 Mei 2012 VERIFIKASI KECELAKAAN HILANGNYA ALIRAN AIR UMPAN PADA REAKTOR DAYA PWR MAJU Andi Sofrany Ekariansyah, Surip Widodo, Susyadi, D.T. Sony Tjahyani, Hendro Tjahjono Pusat Teknologi Reaktor dan Keselamatan

Lebih terperinci

PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 8 TAHUN 2008 TENTANG KETENTUAN KESELAMATAN MANAJEMEN PENUAAN REAKTOR NONDAYA

PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 8 TAHUN 2008 TENTANG KETENTUAN KESELAMATAN MANAJEMEN PENUAAN REAKTOR NONDAYA PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 8 TAHUN 2008 TENTANG KETENTUAN KESELAMATAN MANAJEMEN PENUAAN REAKTOR NONDAYA DENGAN RAHMAT TUHAN YANG MAHA ESA KEPALA BADAN PENGAWAS TENAGA NUKLIR, Menimbang

Lebih terperinci

ABSTRAK ABSTRACT KATA PENGANTAR

ABSTRAK ABSTRACT KATA PENGANTAR DAFTAR ISI Halaman LEMBAR PENGESAHAN... i LEMBAR PERSETUJUAN.... ii ABSTRAK... iii ABSTRACT... iv KATA PENGANTAR... v DAFTAR ISI... vi DAFTAR GAMBAR... viii DAFTAR TABEL... ix DAFTAR RUMUS... x BAB I PENDAHULUAN...

Lebih terperinci

ANALISIS DAN KRITERIA PENERIMAAN

ANALISIS DAN KRITERIA PENERIMAAN SALINAN KEPALA BADAN PENGAWAS TENAGA NUKLIR REPUBLIK INDONESIA LAMPIRAN III PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 2 TAHUN 2012 TENTANG DESAIN PROTEKSI BAHAYA INTERNAL SELAIN KEBAKARAN DAN

Lebih terperinci

STUDI PERPINDAHAN PANAS SELAMA REWETTING PADA SIMULASI PENDINGINAN PASCA LOCA*

STUDI PERPINDAHAN PANAS SELAMA REWETTING PADA SIMULASI PENDINGINAN PASCA LOCA* STUDI PERPINDAHAN PANAS SELAMA REWETTING PADA SIMULASI PENDINGINAN PASCA LOCA* Mulya JUARSA, Anhar R. ANTARIKSAWAN PUSAT TEKNOLOGI REAKTOR DAN KESELAMATAN NUKLIR PTRKN Gedung80 Kawasan PUSPIPTEK Serpong,

Lebih terperinci

SIMULASI KECELAKAAN KEHILANGAN PENDINGIN DI KAKI PANAS REAKTOR PADA UNTAI UJI TERMOHIDROLIKA REAKTOR

SIMULASI KECELAKAAN KEHILANGAN PENDINGIN DI KAKI PANAS REAKTOR PADA UNTAI UJI TERMOHIDROLIKA REAKTOR SIMULASI KECELAKAAN KEHILANGAN PENDINGIN DI KAKI PANAS REAKTOR PADA UNTAI UJI TERMOHIDROLIKA REAKTOR T 621.483 PUD SIMULASI KECELAKAAN KEHILANGAN PENDINGIN DI KAKI PANAS REAKTOR PADA UNTAI UJI TERMOHIDROLIKA

Lebih terperinci

PRINSIP DASAR KESELAMATAN NUKLIR (II)

PRINSIP DASAR KESELAMATAN NUKLIR (II) PRINSIP DASAR KESELAMATAN NUKLIR (II) Khoirul Huda Badan Pengawas Tenaga Nuklir Jl. Gajah Mada 8, Jakarta 1 DESAIN KEANDALAN (1/8) Batas maksimum tidak berfungsinya (unavailability) suatu sistem atau komponen

Lebih terperinci

KEPALA BADAN PENGAWAS TENAGA NUKLIR REPUBLIK INDONESIA

KEPALA BADAN PENGAWAS TENAGA NUKLIR REPUBLIK INDONESIA KEPALA BADAN PENGAWAS TENAGA NUKLIR REPUBLIK INDONESIA PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 2 TAHUN 2014 TENTANG MANAJEMEN TERAS SERTA PENANGANAN DAN PENYIMPANAN BAHAN BAKAR NUKLIR PADA

Lebih terperinci

Reactor Safety System and Safety Classification BAB I PENDAHULUAN

Reactor Safety System and Safety Classification BAB I PENDAHULUAN DAFTAR ISI BAB I PENDAHULUAN... 1 1.1. Tujuan Keselamatan... 3 1.2. Fungsi Keselamatan Dasar... 3 1.3. Konsep Pertahanan Berlapis... 6 BAB II SISTEM KESELAMATAN REAKTOR DAYA PWR DAN BWR... 1 2.1. Pendahuluan...

Lebih terperinci

BAB I PENDAHULUAN BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pada masa mendatang penggunaan bahan bakar berbasis minyak bumi harus dikurangi karena semakin menipisnya cadangan minyak bumi dan dampak

Lebih terperinci

Konduksi Mantap 2-D. Shinta Rosalia Dewi

Konduksi Mantap 2-D. Shinta Rosalia Dewi Konduksi Mantap 2-D Shinta Rosalia Dewi SILABUS Pendahuluan (Mekanisme perpindahan panas, konduksi, konveksi, radiasi) Pengenalan Konduksi (Hukum Fourier) Pengenalan Konduksi (Resistensi ermal) Konduksi

Lebih terperinci

OPTIMASI UKURAN TERAS DAN DAYA TERMAL TERHADAP TINGKAT SIRKULASI ALAMIAH BAHAN PENDINGIN Pb-Bi PADA REAKTOR CEPAT

OPTIMASI UKURAN TERAS DAN DAYA TERMAL TERHADAP TINGKAT SIRKULASI ALAMIAH BAHAN PENDINGIN Pb-Bi PADA REAKTOR CEPAT OPTIMASI UKURAN TERAS DAN DAYA TERMAL TERHADAP TINGKAT SIRKULASI ALAMIAH BAHAN PENDINGIN Pb-Bi PADA REAKTOR CEPAT Sri Oktamuliani dan Dian itriyani Jurusan isika Universitas Andalas Kampus Limau Manis

Lebih terperinci

PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 1 TAHUN 2011 TENTANG KETENTUAN KESELAMATAN DESAIN REAKTOR NONDAYA

PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 1 TAHUN 2011 TENTANG KETENTUAN KESELAMATAN DESAIN REAKTOR NONDAYA PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 1 TAHUN 2011 TENTANG KETENTUAN KESELAMATAN DESAIN REAKTOR NONDAYA DENGAN RAHMAT TUHAN YANG MAHA ESA KEPALA BADAN PENGAWAS TENAGA NUKLIR, Menimbang :

Lebih terperinci

DISTRIBUSI FLUKS NEUTRON SEBAGAI FUNGSI BURN-UP BAHAN BAKAR PADA REAKTOR KARTINI

DISTRIBUSI FLUKS NEUTRON SEBAGAI FUNGSI BURN-UP BAHAN BAKAR PADA REAKTOR KARTINI Youngster Physics Journal ISSN : 2303-7371 Vol. 3, No. 2, April 2014, Hal 107-112 DISTRIBUSI FLUKS NEUTRON SEBAGAI FUNGSI BURN-UP BAHAN BAKAR PADA REAKTOR KARTINI Fatkhiyatul Athiqoh 1), Wahyu Setia Budi

Lebih terperinci

REAKTOR PENDINGIN GAS MAJU

REAKTOR PENDINGIN GAS MAJU REAKTOR PENDINGIN GAS MAJU RINGKASAN Reaktor Pendingin Gas Maju (Advanced Gas-cooled Reactor, AGR) adalah reaktor berbahan bakar uranium dengan pengkayaan rendah, moderator grafit dan pendingin gas yang

Lebih terperinci

Website : jurnal.ftumj.ac.id/index.php/semnastek

Website : jurnal.ftumj.ac.id/index.php/semnastek ANALISIS PENGARUH FRAKSI VOLUME NANOPARTIKEL Al 2 O 3 TERHADAP KOEFISIEN PERPINDAHAN KALOR KONVEKSI PAKSA DI TERAS REAKTOR NUKLIR BERBAHAN BAKAR SILINDER DENGAN SUSUNAN SUB BULUH SEGI ENAM Anwar Ilmar

Lebih terperinci