----- Garis dan Bidang di R 2 dan R

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "----- Garis dan Bidang di R 2 dan R"

Transkripsi

1

2 ----- Garis dan Bidang di R dan R

3 Sifat Operasi Hasil Kali Titik pada Vektor Teorema: Hasil kali titik (dot product) u dan v dapat dinyatakan pula sebagai: A. Pendekatan Geometri: R u v cos ; u, v 0 uv = 0; u= 0 atau v 0 B. Pendekatan Matriks: R v x T uv = uv ux u y u z v y vz u v u v x x y y uz vz R merupakan nilai dari hasil kali titik dari kedua vektor di atas.

4 Sifat Operasi Hasil Kali Titik pada Vektor Contoh: Diberikan vektor u = 0, 0,1 dan = 0,, v, yang membentuk sudut 45º (/4), maka carilah hasil kali titik (dot product) dari keduanya! A. Pendekatan Geometri: R uv = u v cos 1 cos 4 B. Pendekatan Matriks: R u v = uv T perlu norma dan

5 Sifat-sifat Operasi Hasil Kali Silang pada Vektor Teorema: 1. uuv 0. vuv 0 3. uv u v uv u v sin 4. u v u v sin u v 1 cos u v u v cos u v u v cos (identitas Lagrange)

6 Sifat-sifat Operasi Hasil Kali Silang pada Vektor Teorema: Jika u, v dan w adalah vektor-vektor di R 3, dan k sembarang skalar, maka : 1. uv uv. uvw uv uw uv w uw vw k uv ku v = u kv 5. u0 0u 6. uu

7 Sifat-sifat Operasi Hasil Kali Silang pada Vektor Teorema: Jika i = (1,0,0); j = (0,1,0); dan k = (0,0,1) menyatakan vektor-vektor satuan di R 3, maka: i j =,, 0,0,1 k j k =,, 1,0,0 i k i =,, 0,1,0 j j i = k; k j = i; ik = j ii = j j = k k = 0

8 Sifat-sifat Operasi Hasil Kali Silang pada Vektor Teorema: Hasil kali silang u dan v dapat dinyatakan pula sebagai: u u3 u1 u3 u1 u uv = i j k v v3 v1 v3 v1 v i j k u u u v v v Contoh: Diberikan vektor u = 0, 0,1 dan = 0,,, maka carilah hasil kali silang (cross product) dari keduanya! v Jawab: r uv i j k i 0j 0k, 0, 0

9 SOAL Latihan (Ulangan) Soal No. 1 Diberikan dua buah vektor gaya yang sama, masing-masing sebesar 10 N (Newton) dan keduanya saling membentuk sudut 60º seperti pada gambar berikut ini: F 1 F 1 R F 1 F R atau 60º F F Tentukanlah nilai resultan dari kedua vektor tersebut! Pembahasan Resultan untuk dua buah vektor yang diketahui sudutnya adalah: R F F F F cos cos(60 ) Newton

10 SOAL Latihan (Ulangan) Soal No. Dua buah vektor kecepatan u dan v, masing-masing besarnya 0 m s -1 dan 40 m s -1 membentuk sudut 60º seperti gambar berikut: v u u 60º 60º v u v Tentukanlah selisih dari kedua vektor di atas! Pembahasan Selisih dari dua buah vektor dengan sudut 60º seperti di atas adalah: u v u v uvcos(60) (0,5) 100 m s 0 3 m s 1 1

11 SOAL Latihan (ulangan) Soal No. 3 Dua buah vektor gaya, masing-masing besarnya 8 N dan 4 N, saling mengapit dengan sudut 3 (10º). Tentukanlah besar resultan kedua vektor tersebut! Pembahasan F F 1 8 N 4 N membentuk sudut (10 ) 3 Resultan dari dua buah vektor tersebut dengan sudut 3, adalah: 1 F 1 F1 cos( ) 3 F F F F ( 0,5) m s 4 3 ms 1 1 Catatan: cos cos

12 SOAL Latihan (ulangan) Soal No. 4 Perhatikan gambar di bawah ini: F 1 F Jika satu kotak mewakili 10 Newton, tentukanlah resultan dari kedua vektor F 1 dan F tersebut!

13 SOAL Latihan (ulangan) Pembahasan Dari gambar seperti di atas, untuk mencari resultan gaya-gaya yang bekerja pada sumbu-x dan sumbu-y, langkah-langkahnya adalah sebagai berikut: yang pertama, perhatikanlah kotak dari masing-masing vektor F 1 (sumbux: 30 N ke kanan dan sumbu-y: 40 N ke atas) dan F (sumbu-x: 50 N ke kanan dan sumbu-y: 0 N ke atas), kemudian, hitunglah jumlah gaya-gaya yang bekerja pada arah sumbu-x dan sumbu-y, sebagai berikut: F F x y Newton Newton terakhir, hitung resultan keduanya dengan menggunakan rumus di bawah ini, dengan memperhatikan sudut 90 : R F F x y Newton

14 Interpretasi Geometri dari Hasil Kali Silang

15 Iterpretasi Geometri untuk Luas Segitiga Perhatikan Teorema berikut: u v u v sin, adalah LUAS (AREA) dari suatu Jajaran Genjang Perhatikan pula JAJARAN-GENJANG di bawah ini: v v v sin u u Luas dari jajaran genjang = (alas) x (tinggi) = u v sin = u v

16 Contoh Iterpretasi Geometri untuk Luas Area Contoh Carilah LUAS segitiga yang dibentuk oleh titik-titik P 1,,0, P1 1, 0, P 0, 4,3! 1, dan Penyelesaian Dari gambar di bawah, dapat dilihat bahwa LUAS A adalah ½ luas jajaran genjang yang dibentuk oleh vektor PP 1 dan PP 1 3 x z P 1, 0, P 1,,0 P 3 0,4,3 y Dari pelajaran sebelumnya, dihitung: PP 1 3,, PP 1 3,,3 dan PP 1 PP ,5, A P1P P1P3 5 15

17 Hasil Kali Skalar Lipat-3 - [#1] Jika u, v dan w 3 adalah vektor-vektor dalam u v w R, maka disebut hasil kali skalar lipat-3 atau hasil kali skalar ganda-3 (scalar triple product) Hasil kali skalar lipat-3 dari u= u,u,u 1 3, v= v,v,v 1 3 dan w= w,w,w dapat dihitung sebagai berikut: v1 v v3 u v w u u u w w w 1 3 Perhatikan bahwa, hasil kali di atas adalah KOMBINASI antara HASIL KALI SILANG (prioritas dalam kurung) dan HASIL KALI TITIK...!

18 Hasil Kali Skalar Lipat-3 - [#] Rumus hasil kali skalar lipat-3 uvw atas dapat diturunkan dari kombinasi berikut ini: seperti di v v v v v v w w w w w w u v w u i j k v v v v v v u u w w w w3 w1 w u u u u 1 3 v v v w 1 3 w 1 w 3 ingat : minor / kofakator?

19 Contoh: Contoh Hasil Kali Skalar Lipat-3 Rumus hasil kali skalar lipat-3 uvw berikut ini: dengan vektor-vektor u 3i j 5 k; v i 4j 4 k; w 3j k Penyelesaian: u1 u u3 u vw v v v w 1 3 w 1 3 w

20 Iterpretasi GeometriK untuk DETERMINAN Nilai mutlak determinan matriks ordo-: u u u u det v v v v R u,u sama dengan LUAS Jajaran Genjang dalam yang dibentuk oleh vektor-vektor u= 1 dan v= v,v 1 Nilai mutlak determinan matriks ordo-3: u u u u u u det v v v v v v w w w w w w sama dengan VOLUME Paralelepidum dalam R yang dibentuk oleh vektorvektor u= u,u,u, v= v,v,v dan w= w,w,w 1 3.

21 Garis dan Bidang Di dalam R 3

22 Garis dan Bidang dalam Ruang Dimensi 3 In analytic geometry a line in -space can be specified by giving its slope and one of its points. Similarly, one can specify a plane in 3-space by giving its inclination and specifying one of its points. A convenient method for describing the inclination of a plane is to specify a nonzero vector, called a normal, that is perpendicular to the plane. Dalam geometri analitis bidang, sebuah garis dalam R dapat diperoleh dengan menentukan kelandaian dan salah satu titik (posisinya). Demikian pula, sebuah bidang dalam R 3 dapat diperoleh dengan menentukan inklinasi dan salah satu titik posisinya. Sebuah metode yang dapat digunakan untuk menguraikan inklinasi adalah dengan menentukan suatu vektor tak nol (disebut suatu normal) yang tegak lurus dengan bidang tersebut.

23 Garis dan Bidang dalam Ruang Dimensi 3 () Jika diinginkan suatu persamaan bidang yang melalui titik,, memiliki sebuah vektor tak nol n a, b, c berikut ini P x y z dan sebagai normal. Maka dari gambar dapat ditunjukkan dengan jelas, bahwa pada bidang tersebut terdapat titik-titik P x, y, z di mana vektor PP 0 ortogonal terhadap n, yaitu n P P 0 0

24 Garis dan Bidang dalam Ruang Dimensi 3 (3) Seperti diketahui dengan jelas, bahwa pada bidang di atas terdapat titiktitik P x, y, z di mana vektor PP 0 ortogonal terhadap n, yaitu n P0 P 0 P P x x, y y, z z, persamaan di Maka, dengan menggunakan atas dapat ditulis sebagai: x x y y z z a b c Disebut juga sebagai bentuk normal titik dari persamaan sebuah bidang.

25 Contoh Garis/Bidang dalam R3

26

Aljabar Linier & Matriks

Aljabar Linier & Matriks Aljabar Linier & Matriks 1 Vektor Orthogonal Vektor-vektor yang saling tegak lurus juga sering disebut vektor orthogonal. Dua vektor disebut saling tegak lurus jika dan hanya jika hasil perkalian titik-nya

Lebih terperinci

ALJABAR LINEAR DAN MATRIKS VEKTOR

ALJABAR LINEAR DAN MATRIKS VEKTOR ALJABAR LINEAR DAN MATRIKS VEKTOR Definisi Vektor Ada dua besaran yaitu: Vektor mempunyai besar dan arah Skalar mempunyai besar A AB B A : titik awal B : titik akhir Notasi vektor biasanya menggunakan

Lebih terperinci

erkalian Silang, Garis & Bidang dalam Dimensi 3

erkalian Silang, Garis & Bidang dalam Dimensi 3 erkalian Silang, Garis & Bidang dalam Dimensi 3 TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan : Dapat menghitung perkalian silang dari suatu vektor dan mengetahui

Lebih terperinci

a11 a12 x1 b1 Definisi Vektor di R 2 dan R 3

a11 a12 x1 b1 Definisi Vektor di R 2 dan R 3 a11 a12 x1 b1 a a x b 21 22 2 2 Definisi Vektor di R 2 dan R 3 a11 a12 x1 b1 a a x b 21 22 2 2 Pendahuluan Notasi dan Pengertian Dasar Skalar, suatu konstanta yang dituliskan dalam huruf kecil Vektor,

Lebih terperinci

ALJABAR LINEAR DAN MATRIKS

ALJABAR LINEAR DAN MATRIKS ALJABAR LINEAR DAN MATRIKS VEKTOR Definisi Vektor Ada dua besaran yaitu: Vektor mempunyai besar dan arah Skalar mempunyai besar A B A : titik awal B : titik akhir Notasi vektor biasanya menggunakan huruf

Lebih terperinci

BESARAN SKALAR DAN VEKTOR. Besaran Skalar. Besaran Vektor. Sifat besaran fisis : Skalar Vektor

BESARAN SKALAR DAN VEKTOR. Besaran Skalar. Besaran Vektor. Sifat besaran fisis : Skalar Vektor PERTEMUAN II VEKTOR BESARAN SKALAR DAN VEKTOR Sifat besaran fisis : Skalar Vektor Besaran Skalar Besaran yang cukup dinyatakan oleh besarnya saja (besar dinyatakan oleh bilangan dan satuan). Contoh : waktu,

Lebih terperinci

Vektor di ruang dimensi 2 dan ruang dimensi 3

Vektor di ruang dimensi 2 dan ruang dimensi 3 Vektor di ruang dimensi 2 dan ruang dimensi 3 Maulana Malik 1 (maulana.malik@sci.ui.ac.id) 1 Departemen Matematika FMIPA UI Kampus Depok UI, Depok 16424 2014/2015 1/21 maulana.malik@sci.ui.ac.id Vektor

Lebih terperinci

Aljabar Linier Elementer. Kuliah ke-9

Aljabar Linier Elementer. Kuliah ke-9 Aljabar Linier Elementer Kuliah ke-9 Materi kuliah Hasilkali Titik Proyeksi Ortogonal 7/9/2014 Yanita, FMIPA Matematika Unand 2 Hasilkali Titik dari Vektor-Vektor Definisi Jika u dan v adalah vektor-vektor

Lebih terperinci

Matematika Lanjut 1. Sistem Persamaan Linier Transformasi Linier. Matriks Invers. Ruang Vektor Matriks. Determinan. Vektor

Matematika Lanjut 1. Sistem Persamaan Linier Transformasi Linier. Matriks Invers. Ruang Vektor Matriks. Determinan. Vektor Matematika Lanjut 1 Vektor Ruang Vektor Matriks Determinan Matriks Invers Sistem Persamaan Linier Transformasi Linier 1 Dra. D. L. Crispina Pardede, DE. Referensi [1]. Yusuf Yahya, D. Suryadi. H.S., gus

Lebih terperinci

Vektor Ruang 2D dan 3D

Vektor Ruang 2D dan 3D Vektor Ruang 2D dan D Besaran Skalar (Tidak mempunyai arah) Vektor (Mempunyai Arah) Vektor Geometris Skalar (Luas, Panjang, Massa, Waktu dan lain - lain), merupakan suatu besaran yang mempunyai nilai mutlak

Lebih terperinci

BAB II V E K T O R. Untuk menyatakan arah vektor diperlukan sistem koordinat.

BAB II V E K T O R. Untuk menyatakan arah vektor diperlukan sistem koordinat. .. esaran Vektor Dan Skalar II V E K T O R da beberapa besaran fisis yang cukup hanya dinyatakan dengan suatu angka dan satuan yang menyatakan besarnya saja. da juga besaran fisis yang tidak cukup hanya

Lebih terperinci

Geometri pada Bidang, Vektor

Geometri pada Bidang, Vektor Jurusan Matematika FMIPA Unsyiah September 9, 2011 Secara geometrik, vektor pada bidang dapat digambarkan sebagai ruas garis berarah (anak panah). Panjang dari anak panah merepresentasikan besaran (magnitude)

Lebih terperinci

BAB 1 BESARAN VEKTOR. A. Representasi Besaran Vektor

BAB 1 BESARAN VEKTOR. A. Representasi Besaran Vektor BAB 1 BESARAN VEKTOR TUJUAN PEMBELAJARAN 1. Menjelaskan definisi vektor, dan representasinya dalam sistem koordinat cartesius 2. Menjumlahan vektor secara grafis dan matematis 3. Melakukan perkalian vektor

Lebih terperinci

Interpretasi Geometri Dari Sebuah Determinan

Interpretasi Geometri Dari Sebuah Determinan Jurnal Sains Matematika dan Statistika Vol No Juli 5 ISSN 46-454 Interpretasi Geometri Dari Sebuah Determinan Riska Yeni Syamsudhuha M D H Gamal 3 Jurusan Matematika Fakultas Mipa Universitas Riau Jl HR

Lebih terperinci

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain BAB III RUANG VEKTOR R DAN R 3 Bab ini membahas pengertian dan operasi ektor-ektor. Selain operasi aljabar dibahas pula operasi hasil kali titik dan hasil kali silang dari ektor-ektor. Tujuan Instruksional

Lebih terperinci

Pengantar Vektor. Besaran. Vektor (Mempunyai Arah) Skalar (Tidak mempunyai arah)

Pengantar Vektor. Besaran. Vektor (Mempunyai Arah) Skalar (Tidak mempunyai arah) Pengantar Vektor Besaran Skalar (Tidak mempunyai arah) Vektor (Mempunyai Arah) Vektor Geometris Skalar (Luas, Panjang, Massa, Waktu dan lain - lain), merupakan suatu besaran yang mempunyai nilai mutlak

Lebih terperinci

Arahnya diwakili oleh sudut yang dibentuk oleh A dengan ketigas umbu koordinat,

Arahnya diwakili oleh sudut yang dibentuk oleh A dengan ketigas umbu koordinat, VEKTOR Dalam mempelajari fisika kita selalu berhubungan dengan besaran, yaitu sesuatu yang dapat diukur dan dioperasikan. da besaran yang cukup dinyatakan dengan nilai (harga magnitude) dan satuannya saja,

Lebih terperinci

fi5080-by-khbasar BAB 1 Analisa Vektor 1.1 Notasi dan Deskripsi

fi5080-by-khbasar BAB 1 Analisa Vektor 1.1 Notasi dan Deskripsi BB 1 nalisa Vektor Vektor, dibedakan dari skalar, adalah suatu besaran yang memiliki besar dan arah. rtinya untuk mendeskripsikan suatu besaran vektor secara lengkap perlu disampaikan informasi tentang

Lebih terperinci

MATRIKS & TRANSFORMASI LINIER

MATRIKS & TRANSFORMASI LINIER MATRIKS & TRANSFORMASI LINIER Oleh : SRI ESTI TRISNO SAMI, ST, MMSI 082334051324 Daftar Referensi : 1. Kreyzig Erwin, Advance Engineering Mathematic, Edisi ke-7, John wiley,1993 2. Spiegel, Murray R, Advanced

Lebih terperinci

Selain besaran pokok dan turunan, besaran fisika masih dapat dibagi atas dua kelompok lain yaitu besaran skalar dan besaran vektor

Selain besaran pokok dan turunan, besaran fisika masih dapat dibagi atas dua kelompok lain yaitu besaran skalar dan besaran vektor Selain besaran pokok dan turunan, besaran fisika masih dapat dibagi atas dua kelompok lain yaitu besaran skalar dan besaran vektor Besaran skalar adalah besaran yang hanya memiliki nilai saja. Contoh :

Lebih terperinci

DIKTAT ALJABAR LINIER DAN MATRIKS VEKTOR. Penyusun Ir. S. Waniwatining Astuti, M.T.I.

DIKTAT ALJABAR LINIER DAN MATRIKS VEKTOR. Penyusun Ir. S. Waniwatining Astuti, M.T.I. DIKTAT ALJABAR LINIER DAN MATRIKS VEKTOR Penyusun Ir. S. Waniwatining Astuti, M.T.I. SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP 24 KATA PENGANTAR Pertama-tama penulis mengucapkan

Lebih terperinci

VEKTOR. Oleh : Musayyanah, S.ST, MT

VEKTOR. Oleh : Musayyanah, S.ST, MT VEKTOR Oleh : Musayyanah, S.ST, MT 1 2.1 ESRN SKLR DN VEKTOR Sifat besaran fisis : esaran Skalar Skalar Vektor esaran yang cukup dinyatakan oleh besarnya saja (besar dinyatakan oleh bilangan dan satuan).

Lebih terperinci

Euclidean n & Vector Spaces. Matrices & Vector Spaces

Euclidean n & Vector Spaces. Matrices & Vector Spaces Lecture 9 Euclidean n & Vector Spaces Delivered by: Filson Maratur Sidjabat fmsidjabat@president.ac.id Matrices & Vector Spaces #4 th June 05 (90%*score / 0% extra points for HW-Q) Retake Quiz. Compute

Lebih terperinci

Matematika II : Vektor. Dadang Amir Hamzah

Matematika II : Vektor. Dadang Amir Hamzah Matematika II : Vektor Dadang Amir Hamzah sumber : http://www.whsd.org/uploaded/faculty/tmm/calc front image.jpg 2016 Dadang Amir Hamzah Matematika II Semester II 2016 1 / 24 Outline 1 Pendahuluan Dadang

Lebih terperinci

Definisi Jumlah Vektor Jumlah dua buah vektor u dan v diperoleh dari aturan jajaran genjang atau aturan segitiga;

Definisi Jumlah Vektor Jumlah dua buah vektor u dan v diperoleh dari aturan jajaran genjang atau aturan segitiga; BAB I VEKTOR A. DEFINISI VEKTOR 1). Pada mulanya vektor adalah objek telaah dalam ilmu fisika. Dalam ilmu fisika vektor didefinisikan sebagai sebuah besaran yang mempunyai besar dan arah seperti gaya,

Lebih terperinci

BESARAN VEKTOR B A B B A B

BESARAN VEKTOR B A B B A B Besaran Vektor 8 B A B B A B BESARAN VEKTOR Sumber : penerbit cv adi perkasa Perhatikan dua anak yang mendorong meja pada gambar di atas. Apakah dua anak tersebut dapat mempermudah dalam mendorong meja?

Lebih terperinci

Rudi Susanto, M.Si VEKTOR

Rudi Susanto, M.Si VEKTOR Rudi Susanto, M.Si VEKTOR ESRN SKLR DN VEKTOR esaran Skalar esaran yang cukup dinyatakan oleh besarnya saja (besar dinyatakan oleh bilangan dan satuan). Contoh Catatan : waktu, suhu, volume, laju, energi

Lebih terperinci

Outline Vektor dan Garis Koordinat Norma Vektor Hasil Kali Titik dan Proyeksi Hasil Kali Silang. Geometri Vektor. Kusbudiono. Jurusan Matematika

Outline Vektor dan Garis Koordinat Norma Vektor Hasil Kali Titik dan Proyeksi Hasil Kali Silang. Geometri Vektor. Kusbudiono. Jurusan Matematika Jurusan Matematika 1 Nopember 2011 1 Vektor dan Garis 2 Koordinat 3 Norma Vektor 4 Hasil Kali Titik dan Proyeksi 5 Hasil Kali Silang Definisi Vektor Definisi Jika AB dan CD ruas garis berarah, keduanya

Lebih terperinci

BESARAN, SATUAN & DIMENSI

BESARAN, SATUAN & DIMENSI BESARAN, SATUAN & DIMENSI Defenisi Apakah yang dimaksud dengan besaran? Besaran : segala sesuatu yang dapat diukur dan dinyatakan dengan angka (kuantitatif). Apakah yang dimaksud dengan satuan? Satuan

Lebih terperinci

VEKTOR. Notasi Vektor. Panjang Vektor. Penjumlahan dan Pengurangan Vektor (,, ) (,, ) di atas dapat dinyatakan dengan: Matriks = Maka = =

VEKTOR. Notasi Vektor. Panjang Vektor. Penjumlahan dan Pengurangan Vektor (,, ) (,, ) di atas dapat dinyatakan dengan: Matriks = Maka = = VEKTOR Notasi Vektor (,, ) (,, ) Vektor atau Matriks Maka di atas dapat dinyatakan dengan: Kombinasi linear vektor basis maka; ( ) + ( ) + ( ) + + (,, ) Panjang Vektor Misalkan + + (,, ), maka panjang

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUH1G3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 4 Vektor di Bidang dan di Ruang Vektor di Bidang dan Ruang Sub Pokok Bahasan Notasi dan Operasi Vektor Perkalian titik Perkalian silang Beberapa Aplikasi Proses

Lebih terperinci

Ruang Vektor Euclid R 2 dan R 3

Ruang Vektor Euclid R 2 dan R 3 Ruang Vektor Euclid R 2 dan R 3 Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U September 2015 MZI (FIF Tel-U) Ruang Vektor R 2 dan R 3 September 2015

Lebih terperinci

Analisis Vektor. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY

Analisis Vektor. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Analisis Vektor Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Analisis Vektor Analisis vektor meliputi bidang matematika dan fisika sekaligus dalam pembahasannya Skalar dan Vektor Skalar Skalar ialah

Lebih terperinci

Geometri pada Bidang, Vektor

Geometri pada Bidang, Vektor Prodi Matematika FMIPA Unsyiah September 9, 2011 Melalui pendekatan aljabar, vektor u dinyatakan oleh pasangan berurutan u 1, u 2. Disini digunakan notasi u 1, u 2 bukan (u 1, u 2 ) karena notasi (u 1,

Lebih terperinci

01-Pengenalan Vektor. Dosen: Anny Yuniarti, M.Comp.Sc Gasal Anny2011 1

01-Pengenalan Vektor. Dosen: Anny Yuniarti, M.Comp.Sc Gasal Anny2011 1 01-Pengenalan Vektor Dosen: Anny Yuniarti, M.Comp.Sc Gasal 2011-2012 Anny2011 1 Agenda Bagian 1: Vektor dan Kombinasi Linier Bagian 2: Panjang Vektor dan Perkalian Titik (Dot Products) Bagian 3: Matriks

Lebih terperinci

Bab 1 Vektor. A. Pendahuluan

Bab 1 Vektor. A. Pendahuluan Bab 1 Vektor A. Pendahuluan Dalam mata kuliah Listrik Magnet A, maupun mata kuliah Listrik Magnet B sebagaii lanjutannya, penyajian konsep dan pemecahan masalah akan banyak memerlukan pengetahuan tentang

Lebih terperinci

Chapter 5 GENERAL VECTOR SPACE 5.1. REAL VECTOR SPACES 5.2. SUB SPACES

Chapter 5 GENERAL VECTOR SPACE 5.1. REAL VECTOR SPACES 5.2. SUB SPACES Chapter 5 GENERAL VECTOR SPACE 5.1. REAL VECTOR SPACES 5.2. SUB SPACES Definisi : VECTOR SPACE Jika V adalah ruang vektor dimana u,v,w merupakan objek dalam V sebagai vektor, dan terdapat skalar k dan

Lebih terperinci

18. VEKTOR. 2. Sudut antara dua vektor adalah. a = a 1 i + a 2 j + a 3 k; a = 2. Penjumlahan, pengurangan, dan perkalian vektor dengan bilangan real:

18. VEKTOR. 2. Sudut antara dua vektor adalah. a = a 1 i + a 2 j + a 3 k; a = 2. Penjumlahan, pengurangan, dan perkalian vektor dengan bilangan real: 8. VEKTOR A. Vektor Secara Geometri. Ruas garis berarah AB = b a. Sudut antara dua vektor adalah. Bila AP : PB = m : n, maka: B. Vektor Secara Aljabar a. Komponen dan panjang vektor: a = a a a = a = a

Lebih terperinci

19. VEKTOR. 2. Sudut antara dua vektor adalah θ. = a 1 i + a 2 j + a 3 k; a. a =

19. VEKTOR. 2. Sudut antara dua vektor adalah θ. = a 1 i + a 2 j + a 3 k; a. a = 19. VEKTOR A. Vektor Secara Geometri 1. Ruas garis berarah AB = b a. Sudut antara dua vektor adalah θ 3. Bila AP : PB = m : n, maka: B. Vektor Secara Aljabar a1 1. Komponen dan panjang vektor: a = a =

Lebih terperinci

BAB II VEKTOR DAN GERAK DALAM RUANG

BAB II VEKTOR DAN GERAK DALAM RUANG BAB II VEKTOR DAN GERAK DALAM RUANG 1. KOORDINAT CARTESIUS DALAM RUANG DIMENSI TIGA SISTEM TANGAN KANAN SISTEM TANGAN KIRI RUMUS JARAK,,,, 16 Contoh : Carilah jarak antara titik,, dan,,. Solusi :, Persamaan

Lebih terperinci

VEKTOR. Gambar 1.1 Gambar 1.2 Gambar 1.3. Liduina Asih Primandari, S.Si., M.Si.

VEKTOR. Gambar 1.1 Gambar 1.2 Gambar 1.3. Liduina Asih Primandari, S.Si., M.Si. VEKTOR 1 A. Definisi vektor Beberapa besaran Fisika dapat dinyatakan dengan sebuah bilangan dan sebuah satuan untuk menyatakan nilai besaran tersebut. Misal, massa, waktu, suhu, dan lain lain. Namun, ada

Lebih terperinci

KS KALKULUS DAN ALJABAR LINEAR Vektor di Ruang N TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Vektor di Ruang N TIM KALIN KS091206 KALKULUS DAN ALJABAR LINEAR Vektor di Ruang N TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat mengetahui definisi dan dapat menghitung perkalian

Lebih terperinci

BAB II V E K T O R. Drs. Pristiadi Utomo, M.Pd. FISIKA KELAS X Drs. Pristiadi Utomo, M.Pd. Drs. Pristiadi Utomo, M.Pd. 52

BAB II V E K T O R. Drs. Pristiadi Utomo, M.Pd. FISIKA KELAS X Drs. Pristiadi Utomo, M.Pd. Drs. Pristiadi Utomo, M.Pd. 52 FISIKA KELAS X Drs. Pristiadi Utomo, M.Pd. BAB II V E K T O R Pernahkah Kamu naik pesawat terbang? Antara penumpang dan pilot dan copilot di ruang kemudi dipisah dengan sekat. Tujuannya agar pilot dapat

Lebih terperinci

GESERAN atau TRANSLASI

GESERAN atau TRANSLASI GESERAN atau TRANSLASI Makalah ini disusun untuk memenuhi Tugas Geometri Transformasi Dosen Pembimbing : Havid Risyanto, S.Si., M.Sc. D I S U S U N O L E H 1. AMILIA 1111050031 2. HAIRUDIN 1111050153 3.

Lebih terperinci

Perkalian Titik dan Silang

Perkalian Titik dan Silang PERKALIAN TITIK DAN SILANG Materi pokok pertemuan ke 3: 1. Perkalian titik URAIAN MATERI Perkalian Titik Perkalian titik dari dua buah vektor dan dinyatakan oleh (baca: titik ). Untuk lebih jelas, berikut

Lebih terperinci

BAB II BESARAN VEKTOR

BAB II BESARAN VEKTOR BAB II BESARAN VEKTOR.1. Besaran Skalar Dan Vektor Dalam fisika, besaran dapat dibedakan menjadi dua kelompok yaitu besaran skalar dan besaran vektor. Besaran skalar adalah besaran yang dinyatakan dengan

Lebih terperinci

B.1. Menjumlah Beberapa Gaya Sebidang Dengan Cara Grafis

B.1. Menjumlah Beberapa Gaya Sebidang Dengan Cara Grafis BAB II RESULTAN (JUMLAH) DAN URAIAN GAYA A. Pendahuluan Pada bab ini, anda akan mempelajari bagaimana kita bekerja dengan besaran vektor. Kita dapat menjumlah dua vektor atau lebih dengan beberapa cara,

Lebih terperinci

KEDUDUKAN DUA GARIS LURUS, SUDUT DAN JARAK

KEDUDUKAN DUA GARIS LURUS, SUDUT DAN JARAK 1 KEGIATAN BELAJAR 4 KEDUDUKAN DUA GARIS LURUS, SUDUT DAN JARAK Setelah mempelajari kegiatan belajar 4 ini, mahasiswa diharapkan mampu: 1. Menentukan kedudukan dua garis lurus di bidang dan di ruang 2.

Lebih terperinci

A x pada sumbu x dan. Pembina Olimpiade Fisika davitsipayung.com. 2. Vektor. 2.1 Representasi grafis sebuah vektor

A x pada sumbu x dan. Pembina Olimpiade Fisika davitsipayung.com. 2. Vektor. 2.1 Representasi grafis sebuah vektor . Vektor.1 Representasi grafis sebuah vektor erdasarkan nilai dan arah, besaran dibagi menjadi dua bagian aitu besaran skalar dan besaran vektor. esaran skalar adalah besaran ang memiliki nilai dan tidak

Lebih terperinci

a menunjukkan jumlah satuan skala relatif terhadap nol pada sumbu X Gambar 1

a menunjukkan jumlah satuan skala relatif terhadap nol pada sumbu X Gambar 1 1. Koordinat Cartesius Sistem koordinat Cartesius terdiri dari dua garis yang saling tegak lurus yang disebut sumbu Sumbu horizontal disebut sumbu X dan sumbu vertikal disebut sumbu Y Tiap sumbu mempunyai

Lebih terperinci

VEKTOR. Besaran skalar (scalar quantities) : besaran yang hanya mempunyai nilai saja. Contoh: jarak, luas, isi dan waktu.

VEKTOR. Besaran skalar (scalar quantities) : besaran yang hanya mempunyai nilai saja. Contoh: jarak, luas, isi dan waktu. VEKTOR Kata vektor berasal dari bahasa Latin yang berarti "pembawa" (carrier), yang ada hubungannya dengan "pergeseran" (diplacement). Vektor biasanya digunakan untuk menggambarkan perpindahan suatu partikel

Lebih terperinci

BAB 1 Vektor. Fisika. Tim Dosen Fisika 1, Ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom

BAB 1 Vektor. Fisika. Tim Dosen Fisika 1, Ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom A 1 Vektor Fisika Tim Dosen Fisika 1, Ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom Sub Pokok ahasan Definisi Vektor Penjumlahan Vektor Vektor Satuan

Lebih terperinci

CHAPTER 6. Ruang Hasil Kali Dalam

CHAPTER 6. Ruang Hasil Kali Dalam CHAPTER 6. Ruang Hasil Kali Dalam Hasil Kali Dalam Sudut dan Ortogonal dalam Ruang Hasil Kali Dalam Orthonormal Bases; Gram-Schmidt Process; QR-Decomposition Best Approximation; Least Squares Orthogonal

Lebih terperinci

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR VEKTOR DAN SKALAR Materi pokok pertemuan ke I: 1. Vektor dan skalar 2. Komponen vektor 3. Operasi dasar aljabar vektor URAIAN MATERI Masih ingatkah Anda tentang vektor? Apa beda vektor dengan skalar? Ya,

Lebih terperinci

DIKTAT MATEMATIKA II

DIKTAT MATEMATIKA II DIKTT MTEMTIK II (VEKTOR) Drs.. NN PURNWN, M.T JURUSN PENDIDIKN TEKNIK MESIN FKULTS PENDIDIKN TEKNOLOGI DN KEJURUN UNIVERSITS PENDIDIKN INDONESI 004 VEKTOR I. PENDHULUN 1.1. PENGERTIN Sepotong garis berarah

Lebih terperinci

VEKTOR II. Tujuan Pembelajaran

VEKTOR II. Tujuan Pembelajaran Kurikulum 03 Kelas X matematika PEMINATAN VEKTOR II Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami tentang pembagian vektor.. Memahami tentang

Lebih terperinci

VEKTOR 2 SMA SANTA ANGELA. A. Pengertian Vektor Vektor adalah besaran yang memiliki besar dan arah. Dilambangkan dengan :

VEKTOR 2 SMA SANTA ANGELA. A. Pengertian Vektor Vektor adalah besaran yang memiliki besar dan arah. Dilambangkan dengan : 1 SMA SANTA ANGELA VEKTOR A. Pengertian Vektor Vektor adalah besaran yang memiliki besar dan arah. Dilambangkan dengan : A B Keterangan : Titik A disebut titik Pangkal Titik B disebut titik Ujung Dinotasikan

Lebih terperinci

Aljabar Linear dan Matriks (Persamaan Linear dan Vektor) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

Aljabar Linear dan Matriks (Persamaan Linear dan Vektor) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Aljabar Linear dan Matriks (Persamaan Linear dan Vektor) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. . Matriks dan Sistem Persamaan Linear Definisi Persamaan dalam variabel dan y dapat ditulis dalam

Lebih terperinci

Pengantar Teknologi dan Aplikasi Elektromagnetik. Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY

Pengantar Teknologi dan Aplikasi Elektromagnetik. Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Pengantar Teknologi dan Aplikasi Elektromagnetik Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Kelistrikan dan Kemagnetan Tanpa listrik dan magnet, maka dalam kehidupan jaman sekarang: tanpa motor

Lebih terperinci

IKIP BUDI UTOMO MALANG. Analytic Geometry TEXT BOOK. Alfiani Athma Putri Rosyadi, M.Pd

IKIP BUDI UTOMO MALANG. Analytic Geometry TEXT BOOK. Alfiani Athma Putri Rosyadi, M.Pd IKIP BUDI UTOMO MALANG Analytic Geometry TEXT BOOK Alfiani Athma Putri Rosyadi, M.Pd 2012 DAFTAR ISI 1 VEKTOR 1.1 Vektor Pada Bidang... 4 1.2 Vektor Pada Ruang... 6 1.3 Operasi Vektor.. 8 1.4 Perkalian

Lebih terperinci

BAB 2 ANALISIS VEKTOR

BAB 2 ANALISIS VEKTOR BAB ANALISIS VEKTOR A. Tujuan Umum Mahasiswa memahami pengertian vektor, operasi vektor, penjumlahan, pengurangan, perkalian dan kaedah aljabar vektor. B. Tujuan Khusus Mahasiswa dapat memahami konsep

Lebih terperinci

VEKTOR GAYA. Gambar 1. Perkalian dan pembagian vektor

VEKTOR GAYA. Gambar 1. Perkalian dan pembagian vektor VEKTOR GAYA Perkalian dan Pembagian vektor dengan scalar Jika vektor dikalikan dengan nilai positif maka besarnya meningkat sesuai jumlah pengalinya. Perkalian dengan bilangan negatif akan mengubah besar

Lebih terperinci

BAB 4 RUANG VEKTOR EUCLID. Dr. Ir. Abdul Wahid Surhim, MT.

BAB 4 RUANG VEKTOR EUCLID. Dr. Ir. Abdul Wahid Surhim, MT. BAB 4 RUANG VEKTOR EUCLID Dr. Ir. Abdul Wahid Surhim, MT. KERANGKA PEMBAHASAN 1. Ruang n Euclid 2. Transformasi Linier dari R n dan R m 3. Sifat-sifat Transformasi Linier 4.1 RUANG N EUCLID Jika di bab

Lebih terperinci

MODUL 2 GARIS LURUS. Mesin Antrian Bank

MODUL 2 GARIS LURUS. Mesin Antrian Bank 1 MODUL 2 GARIS LURUS Gambar 4. 4 Mesin Antrian Bank Persamaan garis lurus sangat berperan penting terhadap kemajuan teknologi sekarang ini. Bagi programmer handal, banyak aplikasi yang membutuhkan persamaan

Lebih terperinci

BAB I BESARAN DAN SATUAN

BAB I BESARAN DAN SATUAN BAB I BESARAN DAN SATUAN A. STANDAR KOMPETENSI :. Menerapkan konsep besaran fisika, menuliskan dan menyatakannya dalam satuan dengan baik dan benar (meliputi lambang, nilai dan satuan). B. Kompetensi Dasar

Lebih terperinci

9.1. Skalar dan Vektor

9.1. Skalar dan Vektor ANALISIS VEKTOR 9.1. Skalar dan Vektor Skalar Satuan yang ditentukan oleh besaran Contoh: panjang, voltase, temperatur Vektor Satuan yang ditentukan oleh besaran dan arah Contoh: gaya, velocity Vektor

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 5 BAB II LANDASAN TEORI 2.1 Matriks Matriks (matrix) adalah jajaran empat persegi panjang dan bilanganbilangan. Bilangan-bilangan dalam jajaran tersebut disebut entri dari matriks. Berikut ini beberapa

Lebih terperinci

Aljabar Linear Elementer Part IV. Oleh : Yeni Susanti

Aljabar Linear Elementer Part IV. Oleh : Yeni Susanti Aljabar Linear Elementer Part IV Vektor di Ruang R 2, R 3 dan R n Oleh : Yeni Susanti Vektor di Ruang R 2, R 3 dan R n Vektor: besaran yang mempunyai besar dan arah. Vektor secara geometris bisa digambarkan

Lebih terperinci

Soal Latihan 2. Vektor. 1. Perhatikan gambar di bawah ini!

Soal Latihan 2. Vektor. 1. Perhatikan gambar di bawah ini! Soal Latihan Vektor 1. Perhatikan gambar di bawah ini! Tiga buah gaya F1, F, dan F3 memiliki arah dan besar seperti pada gambar berikut ini. Hubungan yang benar untuk ketiga gaya tersebut adalah... a.

Lebih terperinci

Pesawat Terbang. gaya angkat. gaya berat

Pesawat Terbang. gaya angkat. gaya berat Sumber: www.staralliance.com Pesawat Terbang Terbayangkah kalian dengan teknologi pesawat terbang? Alat transportasi ini diciptakan dengan teknologi yang canggih. Salah satunya adalah saat merancang konstruksi

Lebih terperinci

MATEMATIKA. Sesi VEKTOR 2 CONTOH SOAL A. DEFINISI PERKALIAN TITIK

MATEMATIKA. Sesi VEKTOR 2 CONTOH SOAL A. DEFINISI PERKALIAN TITIK MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN Sesi NGAN VEKTOR A. DEFINISI PERKALIAN TITIK Misal a a a a dan b b b b dua vektor di R. Perkalian titik dari a dan b, dinotasikan a badalah a b ab + ab + ab

Lebih terperinci

Bab 1 : Skalar dan Vektor

Bab 1 : Skalar dan Vektor Bab 1 : Skalar dan Vektor 1.1 Skalar dan Vektor Istilah skalar mengacu pada kuantitas yang nilainya dapat diwakili oleh bilangan real tunggal (positif atau negatif). x, y dan z kita gunakan dalam aljabar

Lebih terperinci

1. Besaran-besaran di bawah ini yang bukan termasuk besaran vektor adalah...

1. Besaran-besaran di bawah ini yang bukan termasuk besaran vektor adalah... Jawaban 1 A 11 C 21 D 31 D 2 D 12 D 22 B 32 C 3 E 13 E 23 C 33 D 4 E 14 B 24 E 34 B 5 C 15 E 25 C 35 B 6 D 16 A 26 D 36 C 7 D 17 B 27 A 37 E 8 B 18 B 28 D 38 B 9 D 19 E 29 E 39 C 10 A 20 B 30 D 40 E 1.

Lebih terperinci

BAB 6 RUANG HASIL KALI DALAM. Dr. Ir. Abdul Wahid Surhim, MT.

BAB 6 RUANG HASIL KALI DALAM. Dr. Ir. Abdul Wahid Surhim, MT. BAB 6 RUANG HASIL KALI DALAM Dr. Ir. Abdul Wahid Surhim, MT. KERANGKA PEMBAHASAN 1. Hasil Kali Dalam 2. Sudut dan Keortogonalan pada Ruang Hasil Kali Dalam 3.Basis Ortogonal, Proses Gram-Schmidt 4.Perubahan

Lebih terperinci

PENGANTAR KALKULUS PEUBAH BANYAK. 1. Pengertian Vektor pada Bidang Datar

PENGANTAR KALKULUS PEUBAH BANYAK. 1. Pengertian Vektor pada Bidang Datar PENGANTAR KALKULUS PEUBAH BANYAK ERIDANI 1. Pengertian Vektor pada Bidang Datar Misalkan R menyatakan sistem bilangan real, yaitu himpunan bilangan real yang dilengkapi dengan empat operasi baku (tambah,

Lebih terperinci

PENGAJARAN HASIL KALI TITIK DAN HASIL KALI SILANG PADA VEKTOR SERTA BEBERAPA PENGEMBANGANNYA. Suwandi 1.

PENGAJARAN HASIL KALI TITIK DAN HASIL KALI SILANG PADA VEKTOR SERTA BEBERAPA PENGEMBANGANNYA. Suwandi 1. PENGAJARAN HASIL KALI TITIK DAN HASIL KALI SILANG PADA VEKTOR Suwandi 1 1 Mahasiswa Pasca Sarjana Matematika FMIPA Universitas Riau e-mail: suwandiwandi2323@gmail.com ABSTRACT Dot product and cross product

Lebih terperinci

Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 7-8

Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 7-8 Aljabar Linear & Matriks Pert. 7-8 Evangs Mailoa Yang dipelajari hari ini: Aritmatika Vektor Konsep Geometrik Titik, Garis dan Bidang Perkalian Titik Euclidean Vector Spaces I There are two major topics

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang

Lebih terperinci

DIKTAT MATEMATIKA II

DIKTAT MATEMATIKA II DIKTAT MATEMATIKA II (PERKALIAN TIGA VEKTOR ATAU LEBIH) Drs. A. NABABAN PURNAWAN, M.T JURUSAN PENDIDIKAN TEKNIK MESIN FAKULTAS PENDIDIKAN TEKNOLOGI DAN KEJURUAN UNIVERSITAS PENDIDIKAN INDONESIA 004 PERKALIAN

Lebih terperinci

Pertemuan 3 & 4 INTERPRETASI GEOMETRI DAN GENERALISASI VARIANS. Interpretasi Geometri pada Sampel. Generalisasi varians

Pertemuan 3 & 4 INTERPRETASI GEOMETRI DAN GENERALISASI VARIANS. Interpretasi Geometri pada Sampel. Generalisasi varians Pertemuan 3 & 4 INTERPRETASI GEOMETRI DAN GENERALISASI VARIANS Interpretasi Geometri pada Sampel Generalisasi varians , Interpretasi Geometri pada Sampel Sample Geometry and Random Sampling Data sampel

Lebih terperinci

II. TINJAUAN PUSTAKA. nyata (fenomena-fenomena alam) ke dalam bagian-bagian matematika yang. disebut dunia matematika (mathematical world).

II. TINJAUAN PUSTAKA. nyata (fenomena-fenomena alam) ke dalam bagian-bagian matematika yang. disebut dunia matematika (mathematical world). 5 II. TINJAUAN PUSTAKA 2.1. Pemodelan Matematika Definisi pemodelan matematika : Pemodelan matematika adalah suatu deskripsi dari beberapa perilaku dunia nyata (fenomena-fenomena alam) ke dalam bagian-bagian

Lebih terperinci

MODUL PEMBELAJARAN KALKULUS II. ALFIANI ATHMA PUTRI ROSYADI, M.Pd

MODUL PEMBELAJARAN KALKULUS II. ALFIANI ATHMA PUTRI ROSYADI, M.Pd MODUL PEMBELAJARAN KALKULUS II ALFIANI ATHMA PUTRI ROSYADI, M.Pd IDENTITAS MAHASISWA NAMA : KLS/NIM :. KELOMPOK:. Daftar Isi Kata Pengantar Peta Konsep Materi. BAB I Analisis Vektor a. Vektor Pada Bidang.6

Lebih terperinci

Matematika Teknik Dasar-2 5 Perkalian Antar Vektor. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya

Matematika Teknik Dasar-2 5 Perkalian Antar Vektor. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Matematika Teknik Dasar-2 5 Perkalian Antar Vektor Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Komponen-Komponen Vektor dalam Suku-Suku Vektor Satuan Artinya, OP = a (di sepanjang

Lebih terperinci

SATUAN ACARA PERKULIAHAN (SAP)

SATUAN ACARA PERKULIAHAN (SAP) SATUAN ACARA PERKULIAHAN (SAP) 1. Identitas Mata Kuliah Nama Mata Kuliah : Mekanika Teknik Jurusan/Prodi : Pendidikan Teknik Elektro/ Pendidikan Teknik Mekatronika Semester : 3 (tiga) Minggu ke : 3 (tiga)

Lebih terperinci

KALKULUS TINGKAT LANJUT, oleh A.B. Panggabean Hak Cipta 2014 pada penulis

KALKULUS TINGKAT LANJUT, oleh A.B. Panggabean Hak Cipta 2014 pada penulis KALKULUS TINGKAT LANJUT, oleh A.B. Panggabean Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283 Telp: 0274-882262; 0274-889398; Fax: 0274-889057; E-mail: info@grahailmu.co.id Hak

Lebih terperinci

BAB I VEKTOR DALAM BIDANG

BAB I VEKTOR DALAM BIDANG BAB I VEKTOR DALAM BIDANG I. KURVA BIDANG : Penyajian secara parameter Suatu kurva bidang ditentukan oleh sepasang persamaan parameter. ; dalam I dan kontinue pada selang I, yang pada umumnya sebuah selang

Lebih terperinci

Materi Aljabar Linear Lanjut

Materi Aljabar Linear Lanjut Materi Aljabar Linear Lanjut TRANSFORMASI LINIER DARI R n KE R m ; GEOMETRI TRANSFORMASI LINIER DARI R 2 KE R 2 Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA

Lebih terperinci

Biomekanika. Course Outline B2.1 BAB 2. Dr. Horasdia SARAGIH

Biomekanika. Course Outline B2.1 BAB 2. Dr. Horasdia SARAGIH BAB 2 Biomekanika 2.1. Pengertian Biomekanika Mekanika adalah cabang ilmu yang mempelajari tentang gerak benda-benda. Jika kita membahas gerak maka kita berhadapan dengan bagian dari mekanika yang disebut

Lebih terperinci

Yang dibahas : Ortogonal Basis ortogonal Ortonormal Matrik ortogonal Komplemen ortogonal Proyeksi ortogonal Faktorisasi QR

Yang dibahas : Ortogonal Basis ortogonal Ortonormal Matrik ortogonal Komplemen ortogonal Proyeksi ortogonal Faktorisasi QR Ortogonal Yang dibahas : Ortogonal Basis ortogonal Ortonormal Matrik ortogonal Komplemen ortogonal Proyeksi ortogonal Faktorisasi QR Ortogonal Himpunan vektor {v, v,.., v k } dalam R n disebut himpunan

Lebih terperinci

VEKTOR A. Vektor Vektor B. Penjumlahan Vektor R = A + B

VEKTOR A. Vektor Vektor B. Penjumlahan Vektor R = A + B Amran Shidik MATERI FISIKA KELAS X 11/13/2016 VEKTOR A. Vektor Vektor adalah jenis besaran yang mempunyai nilai dan arah. Besaran yang termasuk besaran vektor antara lain perpindahan, gaya, kecepatan,

Lebih terperinci

KATA SAMBUTAN. Jakarta, 17 Agustus 2008 Direktur Pembinaan SMK. iii

KATA SAMBUTAN. Jakarta, 17 Agustus 2008 Direktur Pembinaan SMK. iii KATA SAMBUTAN Puji syukur kami panjatkan kehadirat Allah SWT., berkat rahmat dan karunia Nya, Pemerintah, dalam hal ini, Direktorat Pembinaan Sekolah Menengah Kejuruan Direktorat Jenderal Manajemen Pendidikan

Lebih terperinci

Hand-Out Geometri Transformasi. Bab I. Pendahuluan

Hand-Out Geometri Transformasi. Bab I. Pendahuluan Hand-Out Geometri Transformasi Bab I. Pendahuluan 1.1 Vektor dalam R 2 Misalkan u = (x 1,y 1 ), v = (x 2,y 2 ) dan w = (x 3,y 3 ) serta k skalar (bilangan real) Definisi 1. : Penjumlahan vektor u + v =

Lebih terperinci

Program Studi Teknik Mesin S1

Program Studi Teknik Mesin S1 SATUAN ACARA PERKULIAHAN MATA KULIAH : MATEMATIKA TEKNIK 2 KODE/SKS : IT042227 / 2 SKS Pertemuan Pokok Bahasan dan TIU 1 Pendahuluan Mahasiswa mengerti tentang mata kuliah Matematika Teknik 2 : bahan ajar,

Lebih terperinci

TRANSFORMASI LINIER (Kajian Fungsi antar Ruang Vektor)

TRANSFORMASI LINIER (Kajian Fungsi antar Ruang Vektor) Outline TRANSFORMASI LINIER (Kajian Fungsi antar Ruang Vektor) Drs. Antonius Cahya Prihandoko, M.App.Sc PS. Pendidikan Matematika PS. Sistem Informasi University of Jember Indonesia Jember, 2009 Outline

Lebih terperinci

PENGUKURAN BESARAN. x = ½ skala terkecil. Jadi ketelitian atau ketidakpastian pada mistar adalah: x = ½ x 1 mm = 0,5 mm =0,05 cm

PENGUKURAN BESARAN. x = ½ skala terkecil. Jadi ketelitian atau ketidakpastian pada mistar adalah: x = ½ x 1 mm = 0,5 mm =0,05 cm PENGUKURAN BESARAN A. Pengertian Mengukur Mengukur adalahmembandingkan suatu besaran dengan besaran lain yang dijadikan standar satuan. Misalnya kita mengukur panjang benda, dan ternyata panjang benda

Lebih terperinci

Jika titik O bertindak sebagai titik pangkal, maka ruas-ruas garis searah mewakili

Jika titik O bertindak sebagai titik pangkal, maka ruas-ruas garis searah mewakili 4.5. RUMUS PERBANDINGAN VEKTOR DAN KOORDINAT A. Pengertian Vektor Posisi dari Suatu Titik Misalnya titik A, B, C Dan D. adalah titik sebarang di bidang atau di ruang. Jika titik O bertindak sebagai titik

Lebih terperinci

Standar Kompetensi Lulusan. Memahami prinsip-prinsip pengukuran besaran fisika secara langsung dan tidak langsung secara cermat, teliti dan objektif

Standar Kompetensi Lulusan. Memahami prinsip-prinsip pengukuran besaran fisika secara langsung dan tidak langsung secara cermat, teliti dan objektif Standar Kompetensi Lulusan 1 Standar Kompetensi Lulusan Memahami prinsip-prinsip pengukuran besaran fisika secara langsung dan tidak langsung secara cermat, teliti dan objektif Indikator Membaca hasil

Lebih terperinci

MENJUMLAH VEKTOR. No Besaran Skalar Besaran Vektor

MENJUMLAH VEKTOR. No Besaran Skalar Besaran Vektor MENJUMLAH VEKTOR Kompetensi Siswa 1. Menghayati dan mengamalkan ajaran agama yang dianutnya 2. Mengembangkan perilaku (jujur, disiplin, tanggung jawab, peduli, santun, ramah lingkungan, gotong royong,

Lebih terperinci

KISI-KISI SOAL UJIAN SEKOLAH TAHUN PELAJARAN 2014/2015

KISI-KISI SOAL UJIAN SEKOLAH TAHUN PELAJARAN 2014/2015 KISI-KISI SOAL UJIAN SEKOLAH TAHUN PELAJARAN 2014/2015 Mata Pelajaran : Matematika Alokasi Waktu : 120 menit Kelas : XII IPA Penyusun Standar Kompetensi Kompetensi Dasar Indikator Materi No Soal Menggunakan

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUH1G3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 5 Ruang Vektor Ruang Vektor Sub Pokok Bahasan Ruang Vektor Umum Subruang Basis dan Dimensi Beberapa Aplikasi Ruang Vektor Beberapa metode optimasi Sistem Kontrol

Lebih terperinci