ALGORITMA NEWTON RAPHSON DENGAN FUNGSI NON-LINIER

Ukuran: px
Mulai penontonan dengan halaman:

Download "ALGORITMA NEWTON RAPHSON DENGAN FUNGSI NON-LINIER"

Transkripsi

1 ALGORITMA NEWTON RAPHSON DENGAN FUNGSI NON-LINIER I Waya Satiyasa Program Studi Tekik Iformatika, Jurusa Ilmu Komputer Fakultas Matematika da Ilmu Pegetahua Alam Uiversitas Udayaa satiyasa@ilkom.uud.ac.id ABSTRAK Studi tetag karakteristik fugsi o-liier dapat dilakuka secara eksperimetal maupu teoritis. Salah satu bagia dari aalisa teoritis adalah dega melakuka komputasi. Utuk keperlua komputasi ii, metode umerik dapat dipakai dalam meyelesaika persamaa-persamaa yag rumit, misalya persamaa o-liear. Ada sejumlah metode umerik yag dapat diguaka utuk meyelesaika persamaa oliear, adalah metode Newto-Raphso. Kata Kuci : Numerik, Newto Raphso. Abstact Studies o the characteristics of o-liear fuctio ca be either experimetal or theoretical. Oe part of the theoretical aalysis is to perform computatio. For this purpose computatio, umerical methods ca be used i the complete equatios of the complex, such as o-liear equatio. There are a umber of umerical methods that ca be used to complete the o-liear equatio, is the Newto-Raphso method. Key Word : Numeric, Newto Raphso. PENDAHULUAN Dalam permasalaha o-liier, terutama permasalaha yag mempuyai hubuga fugsi ekspoesial dalam pembetuka polaya dapat diaalisis secara eksperimetal maupu teoritis. Salah satu bagia dari aalisa teoritis adalah dega melakuka komputasi dega metode umerik. Metode umerik dalam komputasi aka sagat membatu dalam meyelesaika permasalaha-permasalaha yag rumit diselesaika secara aritmatika. Metode umerik aka sagat membatu setiap peyelesaia permasalaha apabila secara matematis dapat dibetuk suatu pola hubuga atar variabel/parameter. Hal ii aka mejadi lebih baik jika pola hubuga yag terbetuk dapat dijabarka dalam betuk fugsi Ada sejumlah metode umerik yag dapat diguaka utuk meyelesaika persamaa o-liear. Dua diataraya adalah metode Newto-Raphso da metode Secat. Pedekata kedua metode yag berbeda ii dalam meyelesaika persoala yag sama, bisa dikomparasika terhadap solusi akhir yag diperoleh. Kesesuaia ilai yag didapat dalam kedua metode ii, meujukka bahwa hasil perhituga yag diperoleh adalah tepat. Secara komputasi, disampig ketepata ilai akhir dari suatu metode juga aka mempertimbagka kecepata iterasi dalam peroleha hasil akhir. Kombiasi atara ketepata da kecepata iterasi dalam metode umerik merupaka hal yag petig dalam peyelesaia permasalaha secara komputasi. 8

2 PRINSIP-PRINSIP METODE NUMERIK Tidak semua permasalaha matematis atau perhituga dapat diselesaika dega mudah. Bahka dalam prisip matematik, dalam memadag permasalaha yag terlebih dahulu diperhatika apakah permasalaha tersebut mempuyai peyelesaia atau tidak. Hal ii mejelaska bahwa tidak semua permasalaha dapat diselesaika dega megguaka perhituga biasa. Metode umerik diguaka utuk meyelesaika persoala dimaa perhituga secara aalitik tidak dapat diguaka. Metode umerik ii beragkat dari pemikira bahwa permasalaha dapat diselesaika dega megguaka pedekata-pedekata yag dapat dipertaggug-jawabka secara aalitik. Metode umerik ii disajika dalam betuk algoritma-algoritma yag dapat dihitug secara cepat da mudah. Pedekata yag diguaka dalam metode umerik merupaka pedekata aalisis matematis. Sehigga dasar pemikiraya tidak keluar jauh dari dasar pemikira aalitis, haya saja pemakaia grafis da tekik perhituga yag mudah merupaka pertimbaga dalam pemakaia metode umerik. Megigat bahwa algoritma yag dikembagka dalam metode umerik adalah algoritma pedekata maka dalam algoritma tersebut aka mucul istilah iterasi yaitu pegulaga proses perhituga. Dega kata lai perhituga dalam metode umerik adalah perhituga yag dilakuka secara berulag-ulag utuk terus-meerus diperoleh hasil yag mai medekati ilai peyelesaia eksak. Metode Newto Raphso Metode Newto Raphso adalah metode pedekata yag megguaka satu titik awal da medekatiya dega memperhatika slope atau gradie pada titik tersebut. Titik pedekata ke + dituliska dega : Algoritma Metode Newto Raphso :. Defiisika fugsi f(x) da fbb(x) 2. Tetuka tolerasi error (e) da iterasi maksimum () 3. Tetuka ilai pedekata awal xb0b 4. Hitug f(xb0b) da fbb(xb0b) 5. Utuk iterasi I s/d atau f(xi) e Hitug f(xbib) da fbb(xbib) 6.Akar persamaa adalah ilai xi yag terakhir diperoleh. Permasalaha pada pemakaia metode Newto Raphso adalah : 9

3 P (xbib) ±. Metode ii tidak dapat diguaka ketika titik pedekataya berada pada titik ekstrim atau titik pucak, karea pada titik ii ilai FP P(x) 0 sehigga ilai peyebut dari F ( x) sama dega ol, secara grafis dapat dilihat sebagai berikut: F ( x) Gambar. Pedekata pada titik pucak Bila titik pedekata berada pada titik pucak, maka titik selajutya aka berada di tak berhigga. 2. Metode ii mejadi sulit atau lama medapatka peyelesaia ketika titik pedekataya berada di atara dua titik stasioer. Gambar 3. Titik pedekata diatara 2 titik pucak Bila titik pedekata berada pada dua tiitik pucak aka dapat megakibatka hilagya peyelesaia (divergesi). Hal ii disebabka titik selajutya berada pada salah satu titik pucak atau arah pedekataya berbeda. Utuk dapat meyelesaika kedua permasalaha pada metode Newto Raphso ii, maka metode Newto Raphso perlu dimodifikasi dega :. Bila titik pedekata berada pada titik pucak maka titik pedekata tersebut harus di geser sedikit, xbib xbib δ dimaa δadalah kostata yag ditetuka dega demikia FP 0 da metode Newto Raphso tetap dapat berjala. 2. Utuk meghidari titik-titik pedekata yag berada jauh, sebaikya pemakaia metode Newto Raphso ii didahului oleh metode tabel, sehigga dapat di jami kovergesi dari metode Newto Raphso. UAlgoritma Metode Newto Raphso dega modifikasi tabel 0

4 xb0b xbib + + adalah digeser dari. Defiisika fugsi F(x) 2. ambil rage ilai x [a,b], dega jumlah pembagi 3. Masukka torelasi error (e) da masukka iterasi 4.Guaka algoritma tabel diperoleh titik pedekata awal xb0b F(xBkB). F(xBkB+)<0 maka xb0b xbkb 5. Hitug F(xB0B) da FBB(xB0B) 6.Bila F( abs (FP P(xB0B))) < e, maka pedekata awal xb0b xb0b dx hitug F(xB0B) da F(xB0B) 7. Utuk iterasi I s/d atau F(xi) e : sebesar dx hitug F(xBiB) da FBB(xi) bila FBB(xBiB) < e maka xbib dx hitug F(xBiB) da FBB(xB0B) 8.Akar persamaa adalah x terakhir yag diperoleh. Dega megguaka algoritma Newto Raphso yag dimodifikasika diharapka akar yag diperoleh sesuai dega harapa da bila terdapat lebih dari satu akar dalam rage ditujuk, aka ditampilka semuaya. METODOLOGI KASUS Metode perhituga utuk meetuka tegaga kerja dioda a. Metode Newto Raphso Metode Newto Raphso yag dibahas di sii adalah metode utuk meetuka harga tegaga kerja dioda v pada fugsi f(v) 0. Metode ii diperoleh dari peurua secara geometis seperti gambar 3. Dari gambar diatas gradie garis siggug di vbb m f (vbb) atau Δ ( v) f ( v ) 0 Δv v v Gambar 3. Metode Newto Raphso + : f... (5)

5 - - P dimasukka.. P adalah P ampere f (vbb) f ( v )... (6) v v + Sehigga metode Newto Raphso utuk keperlua iterasi adalah : vb+b f ( v ) vbb... (7) f '( v ) Iterasi dihetika bila v v < ε, dega ε adalah tetapa yag hargaya + ditetuka. b. Metode Secat Permasalah yag mucul dalam metode Newto-raphso adalah evaluasi turua fugsi f (v). Ada beberapa fugsi yag turuaya terlalu sulit dievaluasi terutama fugsi yag betukya rumit. Turua fugsi ii dapat dihilagka dega cara meggatiya dega betuk lai yag lebih mudah dievaluasi. Metode Newto Raphso yag diperbaiki ii diamaka metode Secat. Gradie kurva dapat dihitug sebagai : f (vbb) Δf ( v ) f ( v ) ( ) f v Δv v v Persamaa di atas jika disubstitusika ke persamaa sebelumya aka memberika metode Secat secara iterasi. f ( v vb+b )( v v ) vbb f ( v ) f ( v ) Iterasi dihetika bila v+ v < ε, dimaa ε adalah tetapa yag hargaya ditetuka. -9 Jika pada ragkaia diberika ilai hambata R 50 Ω, arus saturasi Is 0P da tegaga sumber searah V B B,5 Volt, maka perhituga tegaga kerja dioda utuk kedua metode Newto Raphso da metode Secat ii dapat dilakuka. Algoritma Program da Flow Chart Algoritma program yag dimaksud disii adalah geeralisasi lagkah-lagkah prosedural utuk pembuata sebuah program, Sedagka flow chart merupaka implemetasi yag khusus dari algoritma tersebut. Peyelesaia perhituga tegaga kerja dioda megguaka program C. Algoritma program da flowchart masig-masig metode adalah sebagai berikut: UMetode Newto-Raphso Pada metode ii algoritma programya adalah :. Fugsi f(v) didefiisika sebagai 40v f(v) IBsBR(eP ) + v - VBbB, dimaa harga- harga R, IBsB, VBbB berilai tetap (kosta). 2. Fugsi f(v) dituruka yaitu 40v f (v) 40 IBsBR(eP ) + 3. Rage ilai h diguaka sebagai peubah pedekata ilai vbb. 4. Nilai tolerasi error (ε) dimasukka. 5. Tebaka awal vbtb 2

6 da yag da 6. Dega vbkb vbtb vbk+ B (vbtb h), maka masig-masig ilai tersebut dimasukka f(vbkb) da f(vbk+b). 7. Jika ilai f ( vk ) f ( v k + ) 0, lagkah 6 diulagi sampai diperoleh hasil perkalia f ( vk ) f ( v k + ) < 0 (salah satu ilai f(v) egatif). 8. Nilai v yag diperoleh dari lagkah 7 diguaka utuk perhituga ilai f(v) da f (v) sehigga betukya mejadi f(vbkb) da f (vbk+b). 9. Utuk iterasiya, diguaka persamaa : f ( v ) v + v f '( v ) dimaa ilai vbb dipakai adalah vbk+b yag diperoleh dalam lagkah Hitug ilai v+ v < ε, jika hasilya belum memeuhi, ulagi lagkah 9 dega megguaka ilai vb+b. Sehigga betukya mejadi : f ( v+ ) v v Bila lagkah 0 sudah dipeuhi, maka diperoleh sebuah ilai v (tegaga kerja dioda) yag dicari.. Hitug ilai absolut vbb - vb-b, jika ilai ii lebih besar atau sama dega ( ) ilai errorya (ε), maka masukka ilai vb+ B vbb vb-b vbb, kemudia ulagi dari lagkah 3 sampai dega 6. Perulaga ii dihetika saat ilai absolutya kurag (<) dari ilai errorya. 2. Apabila lagkah 6 sudah dilewati dimaa ilai absolutya kurag dari errorya, maka diperoleh ilai tegaga kerja dioda yag dicari. f '( v + ) 3

7 MULAI Iisialisasi H arga-harga V.5, R50,e0.000, x y Ket.: V : Tegaga sumber (Volt) R : Resistor (ohm) e : batas error x kotrol iterasi y kotrol iterasi Buat sebuah file dg ama ewto.txt sebagai output Ket.: File ewto.txt adalah keluara dari perhituga umerik, sehigga tidak ada tampila pada layar Masukka Tebaka awal Va Va V h fv R *Is*(exp(40*V)-)+V-Vs; fva R *Is*(exp(40*Va)-)+Va-Vs; x fv*fva; V Va; Tidak x > 0? Ya fv R *Is*(exp(40*V)-)+V-Vs; dv 40*R*Is*(exp(40*V))+; Vb V - (fv/dv); y Abs(Vb,V); V Vb; simpa hasil perhituga : dlm file ewto.txt Tidak y > e? Ya SELESAI Gambar 4. Flowchart Program metode Newto-Raphso HASIL DAN PEMBAHASAN Pecaria ilai tegaga kerja dioda sama halya dega mecari titik-titik akar pada persamaa o-liear dimaa diperluka ilai awal utuk kedua metode ii. Apabila ilai v dibuat sedemikia rupa sehigga fugsi f(v) medekati atau sama dega ol, maka pada titik itulah ditemuka tegaga kerja dioda. Hasil pecaria megguaka metode Newto-Raphso dega berbagai ilai awal dapat dilihat pada tabel. Dari hasil perhituga diperoleh bahwa iterasi terheti pada iterasi ke 5. Besarya tegaga kerja dioda pada titik ii adalah v 0,42255 dega ilai f(0,42255) 0, Hasil ii telah memeuhi kedua persyarata yag ditetuka pada persamaa. Peetua ilai awal ditetuka secara coba-coba (trialerror) karea tidak ada atura tertetu yag megatur masalah ii. Tabel. Variasi ilai awal tegaga Dalam 4

8 Metode Newto-Raphso V v N f(v) Karakteristik Tegaga (v) Arus (i) Dioda Karakteristik dioda yaitu bagaimaa hubuga tegaga da arus dioda dalam ragkaia dapat diketahui dega melihat besarya ilai tegaga kerja dioda (v). Tegaga da arus dioda dapat dihitug dega megguaka metode Newto- Raphso (grafik 6) maupu metode secat (grafik 7). Perhituga ii dilakuka utuk memperoleh besarya ilai tegaga kerja dioda (v) yag maa aka mejadi masuka sebagaimaa dijelaska pada persamaa (2). Utuk medapatka tegaga kerja dioda yag bervariasi, ditetuka suatu ilai besara tegaga sumber yag tetap, yaitu Vs.5 V, sedag hambata R diubah secara bertahap. Hubuga Tegaga V da Arus I Arus I (ma) ,42 0,42 0,43 0,43 0,43 0,44 0,44 0,45 0,46 0,48 Tegaga Dioda (V) Gambar 5. Hubuga V-I dega Newto-Raphso Dari grafik di atas dapat dilihat bahwa perubaha tegaga kerja dioda (v) aka meyebabka perubaha arus i yag aik secara ekspoesial. Hal ii sesuai dega karakteristik dari dioda. KESIMPULAN DAN SARAN Kesimpula Dari hasil perhituga megguaka metode Newto-Raphso,dapat disimpulka bahwa :. Pegguaa metode tersebut utuk mecari tegaga kerja dioda pada ragkaia dioda, selai pegguaa jeis metode yag dipakai, solusi akhir dari tegaga kerja dioda yag diperoleh juga aka dipegaruhi oleh ilai awal bagi metode ii. 2. Dega mesimulasika ilai hambata (R) da tegaga sumber (Vs) dalam pecaria hubuga tegaga (v) da arus dioda (i), dapat diperoleh hasil bahwa 5

9 tegaga kerja dioda (v) haya berubah sedikit yag berkisar atara 0,3 ~ 0,4 Volt, sedagka grafik hubuga v-i ii merupaka fugsi ekspoesial. 3. Apabila dioda dipasag dega bias maju (seperti dalam ragkaia dioda ii), maka besarya tegaga kerja dioda secara teoritis aka sagat kecil bila dibadigka dega tegaga hambata (R). Sehigga dalam peerapa praktisya, ragkaia dioda diaggap dihubug sigkat (hambata R dioda sagat kecil/diaggap ol). Sara Meskipu metode ii dapat diguaka utuk meghitug ilai tegaga kerja dioda, amu metode ii masih belum bisa memprediksi tegaga utuk semua jeis dioda (baik dari jeis Germaium maupu Siliko). Hipotesis yag mugki bisa diusulka utuk memperbaiki kelemaha ii adalah melakuka komputasi dega pedekata skala atom. DAFTAR PUSTAKA Chapra, Steve C da Caale, Raymod P, 994, Metode Numerik, Jilid, Erlagga, Jakarta. Neter, J ad Wasserma, W., 973, Applied Liear Statistical Models, Joh Willey& Sos, Califoria. Theraja, B.L., Theraja, A.K, 2004, A Text Book of Electrical Techology, Vol. IV, S.Chad, New Delhi. 6

Penyelesaian Persamaan Non Linier

Penyelesaian Persamaan Non Linier Peyelesaia Persamaa No Liier Metode Iterasi Sederhaa Metode Newto Raphso Permasalaha Titik Kritis pada Newto Raphso Metode Secat Metode Numerik Iterasi/NewtoRaphso/Secat - Metode Iterasi Sederhaa- Metode

Lebih terperinci

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc.

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc. METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/0 SUGENG00 Copyright 996-98 Dale Caregie & Associates, Ic. Kesalaha ERROR: Selisih atara ilai perkiraa dega ilai eksakilai

Lebih terperinci

BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu:

BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu: 4 BAB II LANDASAN TEORI 2.1 Model matematis da tahapa matematis Secara umum tahapa yag harus ditempuh dalam meyelesaika masalah matematika secara umerik da megguaka alat batu komputer, yaitu: 2.1.1 Tahap

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Defiisi Persamaa diferesial adalah persamaa yag melibatka variabelvariabel tak bebas da derivatif-derivatifya terhadap variabel-variabel bebas. Berikut ii adalah

Lebih terperinci

STUDI TENTANG BEBERAPA MODIFIKASI METODE ITERASI BEBAS TURUNAN

STUDI TENTANG BEBERAPA MODIFIKASI METODE ITERASI BEBAS TURUNAN STUDI TENTANG BEBERAPA MODIFIKASI METODE ITERASI BEBAS TURUNAN Supriadi Putra, M,Si Laboratorium Komputasi Numerik Jurusa Matematika FMIPA Uiversitas Riau e-mail : spoetra@yahoo.co.id ABSTRAK Makalah ii

Lebih terperinci

Persamaan Non-Linear

Persamaan Non-Linear Persamaa No-Liear Peyelesaia persamaa o-liear adalah meghitug akar suatu persamaa o-liear dega satu variabel,, atau secara umum dituliska : = 0 Cotoh: 2 5. 5 4 9 2 0 2 5 5 4 9 2 2. 2 0 2 5. e 0 Metode

Lebih terperinci

Definisi Integral Tentu

Definisi Integral Tentu Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

Bab 7 Penyelesaian Persamaan Differensial

Bab 7 Penyelesaian Persamaan Differensial Bab 7 Peelesaia Persamaa Differesial Persamaa differesial merupaka persamaa ag meghubugka suatu besara dega perubahaa. Persamaa differesial diataka sebagai persamaa ag megadug suatu besara da differesiala

Lebih terperinci

Pendekatan Nilai Logaritma dan Inversnya Secara Manual

Pendekatan Nilai Logaritma dan Inversnya Secara Manual Pedekata Nilai Logaritma da Iversya Secara Maual Moh. Affaf Program Studi Pedidika Matematika, STKIP PGRI BANGKALAN affafs.theorem@yahoo.com Abstrak Pada pegaplikasiaya, bayak peggua yag meggatugka masalah

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN

PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN DALAM SUATU MODEL NON-LINIER Abstrak Nur ei 1 1, Jurusa Matematika FMIPA Uiversitas Tadulako Jl. Sukaro-Hatta Palu,

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

Galat dan Perambatannya

Galat dan Perambatannya Modul 1 Galat da Perambataya Prof. Dr. Bambag Soedijoo P PENDHULUN ada Modul 1 ii dibahas masalah galat atau derajat kesalaha da perambataya, dega demikia para peggua modul ii diharapka telah memahami

Lebih terperinci

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu Secara umum persamaa rekursif liier tigkat-k bisa dituliska dalam betuk: dega C 0 0. C 0 x + C 1 x 1 + C 2 x 2 + + C k x k = b, Jika b = 0 maka persamaa rekursif tersebut diamaka persamaa rekursif liier

Lebih terperinci

PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK. Sutikno

PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK. Sutikno sutiko PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK Sutiko Program Studi Tekik Iformatika Fakultas Sais da Matematika UNDIP tik@udip.ac.id

Lebih terperinci

Bab 3 Metode Interpolasi

Bab 3 Metode Interpolasi Baha Kuliah 03 Bab 3 Metode Iterpolasi Pedahulua Iterpolasi serig diartika sebagai mecari ilai variabel tergatug tertetu, misalya y, pada ilai variabel bebas, misalya, diatara dua atau lebih ilai yag diketahui

Lebih terperinci

METODE SIMPSON TERMODIFIKASI UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA LINEAR JENIS KEDUA. Jonas Lodewyk H 1, Zulkarnain 2 ABSTRACT

METODE SIMPSON TERMODIFIKASI UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA LINEAR JENIS KEDUA. Jonas Lodewyk H 1, Zulkarnain 2 ABSTRACT METODE SIMPSON TERMODIFIKASI UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA LINEAR JENIS KEDUA Joas Lodewyk H 1, Zulkarai 1 Mahasiswa Program Studi S1 Matematika Dose Jurusa Matematika Fakultas Matematika

Lebih terperinci

PENYELESAIAN PERSAMAAN GELOMBANG DENGAN METODE D ALEMBERT

PENYELESAIAN PERSAMAAN GELOMBANG DENGAN METODE D ALEMBERT Buleti Ilmiah Math. Stat. da Terapaya (Bimaster) Volume 02, No. 1(2013), hal 1-6. PENYELESAIAN PERSAMAAN GELOMBANG DENGAN METODE D ALEMBERT Demag, Helmi, Evi Noviai INTISARI Permasalaha di bidag tekik

Lebih terperinci

POSITRON, Vol. II, No. 2 (2012), Hal. 1-5 ISSN : Penentuan Energi Osilator Kuantum Anharmonik Menggunakan Teori Gangguan

POSITRON, Vol. II, No. 2 (2012), Hal. 1-5 ISSN : Penentuan Energi Osilator Kuantum Anharmonik Menggunakan Teori Gangguan POSITRON, Vol. II, No. (0), Hal. -5 ISSN : 30-4970 Peetua Eergi Osilator Kuatum Aharmoik Megguaka Teori Gaggua Iklas Saubary ), Yudha Arma ), Azrul Azwar ) )Program Studi Fisika Fakultas Matematika da

Lebih terperinci

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN Sedagka itegrasi ruas kaa utuk ersamaa (3b) diperoleh ds / = S... (36) Dega demikia pesamaa yag harus dipecahka adalah l 1 1 u u = S (37) Dari ersamaa (37) diperoleh persamaa utuk u u S = exp S 1exp S...

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 SUKU BANYAK A Pegertia: f(x) x + a 1 x 1 + a 2 x 2 + + a 2 +a 1 adalah suku bayak (poliom) dega : - a, a 1, a 2,.,a 2, a 1, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

Perhitungan Gangguan Simultan Hubungan Seri-Seri Pada Sistem Tenaga Listrik

Perhitungan Gangguan Simultan Hubungan Seri-Seri Pada Sistem Tenaga Listrik Perhituga Gaggua Simulta Hubuga SeriSeri Pada Sistem Teaga Listrik Triwahju Hardiato Jurusa Tekik Elektro, Fakultas Tekik, Uiversitas Jember Jl.Slamet Riyadi No.6 Jember 68 No. Fax / Telp. : 033484977

Lebih terperinci

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy BAB III PEMBAHASAN Pada BAB III ii aka dibahas megeai betuk program liear fuzzy dega koefisie tekis kedala berbetuk bilaga fuzzy da pembahasa peyelesaia masalah optimasi studi kasus pada UD FIRDAUS Magelag

Lebih terperinci

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah III PEMBAHASAN Pada bagia ii aka diformulasika masalah yag aka dibahas. Solusi masalah aka diselesaika dega Metode Dekomposisi Adomia. Selajutya metode ii aka diguaka utuk meyelesaika model yag diyataka

Lebih terperinci

METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT

METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT METODE NUMERIK TKM4104 Kuliah ke- DERET TAYLOR DAN ANALISIS GALAT DERET TAYLOR o Deret Taylor adalah alat yag utama utuk meuruka suatu metode umerik. o Deret Taylor bergua utuk meghampiri ugsi ke dalam

Lebih terperinci

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP Permasalaha dalam tugas akhir ii dibatasi haya pada peaksira besarya koefisie korelasi polychoric da tidak dilakuka peguia terhadap koefisie korelasi

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

Bab IV. Penderetan Fungsi Kompleks

Bab IV. Penderetan Fungsi Kompleks Bab IV Pedereta Fugsi Kompleks Sebagaimaa pada fugsi real, fugsi kompleks juga dapat dideretka pada daerah kovergesiya. Semua watak kajia kovergesi pada fugsi real berlaku pula pada fugsi kompleks. Secara

Lebih terperinci

Aji Wiratama, Yuni Yulida, Thresye Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. Jend. A. Yani km 36 Banjarbaru

Aji Wiratama, Yuni Yulida, Thresye Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. Jend. A. Yani km 36 Banjarbaru Jural Matematika Muri da Terapa εpsilo Vol.8 No.2 (24) Hal. 39-45 APLIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENENTUKAN FORMULA TRANSFORMASI LAPLACE Aji Wiratama, Yui Yulida, Thresye Program Studi Matematika

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Vol. 6. No., 97-09, Agustus 003, ISSN : 40-858 METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak Tulisa ii membahas peetua persamaa ruag

Lebih terperinci

Studi Komparatif Metode Newton dan Metode Tali Busur untuk Menghampiri Akar Persamaan f(x)=0

Studi Komparatif Metode Newton dan Metode Tali Busur untuk Menghampiri Akar Persamaan f(x)=0 Lapora Peelitia Studi Komparatif Metode Newto da Metode Tali Busur utuk Meghampiri Akar Persamaa f()= Peeliti: Drs. Sahid, MSc. Jurusa Pedidika Matematika Fakultas Matematika da Ilmu Pebetahua Alam Uiversitas

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan Istitut Tekologi Sepuluh Nopember Surabaya Model Sistem dalam Persamaa Keadaa Pegatar Materi Cotoh Soal Rigkasa Latiha Pegatar Materi Cotoh Soal Rigkasa Istilah-istilah Dalam Persamaa Keadaa Aalisis Sistem

Lebih terperinci

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi 6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 31-41, April 2004, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 31-41, April 2004, ISSN : Vol. 7. No. 1, 31-41, April 24, ISSN : 141-8518 Peetua Kestabila Sistem Kotrol Lup Tertutup Waktu Kotiu dega Metode Trasformasi ke Betuk Kaoik Terkotrol Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakag Dalam keadaa dimaa meghadapi persoala program liier yag besar, maka aka berusaha utuk mecari peyelesaia optimal dega megguaka algoritma komputasi, seperti algoritma

Lebih terperinci

BAB 6. DERET TAYLOR DAN DERET LAURENT Deret Taylor

BAB 6. DERET TAYLOR DAN DERET LAURENT Deret Taylor Bab 6 Deret Taylor da Deret Lauret BAB 6 DERET TAYLOR DAN DERET LAURENT 6 Deret Taylor Misal fugsi f aalitik pada - < R ligkara dega pusat di da jari-jari R Maka utuk setiap titik pada ligkara itu f dapat

Lebih terperinci

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN ARTIKEL Meetuka rumus Jumlah Suatu Deret dega Operator Beda Markaba 191115198801005 Maret 015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN

Lebih terperinci

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Itegral adalah salah satu kosep petig dalam Matematika yag dikemukaka pertama kali oleh Isac Newto da Gottfried Wilhelm Leibiz pada akhir abad ke-17. Selajutya

Lebih terperinci

Kestabilan Rangkaian Tertutup Waktu Kontinu Menggunakan Metode Transformasi Ke Bentuk Kanonik Terkendali

Kestabilan Rangkaian Tertutup Waktu Kontinu Menggunakan Metode Transformasi Ke Bentuk Kanonik Terkendali Jural Tekika ISSN : 285-859 Fakultas Tekik Uiversitas Islam Lamoga Volume No.2 Tahu 29 Kestabila Ragkaia Tertutup Waktu Kotiu Megguaka Metode Trasformasi Ke Betuk Kaoik Terkedali Suhariyato ) Dose Fakultas

Lebih terperinci

Kompleksitas dari Algoritma-Algoritma untuk Menghitung Bilangan Fibonacci

Kompleksitas dari Algoritma-Algoritma untuk Menghitung Bilangan Fibonacci Kompleksitas dari Algoritma-Algoritma utuk Meghitug Bilaga Fiboacci Gregorius Roy Kaluge NIM : 358 Program Studi Tekik Iformatika, Istitut Tekologi Badug Jala Gaesha, Badug e-mail: if8@studets.if.itb.ac.id,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

BAB III ECONOMIC ORDER QUANTITY MULTIITEM DENGAN MEMPERTIMBANGKAN WAKTU KADALUARSA DAN FAKTOR DISKON

BAB III ECONOMIC ORDER QUANTITY MULTIITEM DENGAN MEMPERTIMBANGKAN WAKTU KADALUARSA DAN FAKTOR DISKON BAB III ECONOMIC ORDER QUANTITY MULTIITEM DENGAN MEMPERTIMBANGKAN WAKTU KADALUARA DAN FAKTOR DIKON 3.1 Ecoomic Order Quatity Ecoomic Order Quatity (EOQ) merupaka suatu metode yag diguaka utuk megedalika

Lebih terperinci

PETA KONSEP RETURN dan RISIKO PORTOFOLIO

PETA KONSEP RETURN dan RISIKO PORTOFOLIO PETA KONSEP RETURN da RISIKO PORTOFOLIO RETURN PORTOFOLIO RISIKO PORTOFOLIO RISIKO TOTAL DIVERSIFIKASI PORTOFOLIO DENGAN DUA AKTIVA PORTOFOLIO DENGAN BANYAK AKTIVA DEVERSIFIKASI DENGAN BANYAK AKTIVA DEVERSIFIKASI

Lebih terperinci

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real:

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real: BARISAN TAK HINGGA Secara umum, suatu barisa dapat diyataka sebagai susua terurut dari bilaga-bilaga real: u 1, u 2, u 3, Barisa tak higga merupaka suatu fugsi dega domai berupa himpua bilaga bulat positif

Lebih terperinci

Pengendalian Proses Menggunakan Diagram Kendali Median Absolute Deviation (MAD)

Pengendalian Proses Menggunakan Diagram Kendali Median Absolute Deviation (MAD) Prosidig Statistika ISSN: 2460-6456 Pegedalia Proses Megguaka Diagram Kedali Media Absolute Deviatio () 1 Haida Lestari, 2 Suliadi, 3 Lisur Wachidah 1,2,3 Prodi Statistika, Fakultas Matematika da Ilmu

Lebih terperinci

Modul 7. METODE NEWTON-RAPHSON (Tangent) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL

Modul 7. METODE NEWTON-RAPHSON (Tangent) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL Modul 7 METODE NEWTON-RAPHSON (Taget utuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL A. Pedahulua Pada modul terdahulu, walaupu kecepata kovergesi telah dapat ditigkatka secara lumaya berarti pada

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 BAB XII. SUKU BANYAK A = a Pegertia: f(x) = a x + a x + a x + + a x +a adalah suku bayak (poliom) dega : - a, a, a,.,a, a, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Prosidig Semiar Nasioal Matematika da Terapaya 06 p-issn : 0-0384; e-issn : 0-039 PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Liatus

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Optimasi 2.1.1. Pegertia Optimasi Optimasi (Optimizatio) adalah aktivitas utuk medapatka hasil terbaik di bawah keadaa yag diberika. Tujua akhir dari semua aktivitas tersebut

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 30 BAB III METODE PENELITIAN Peelitia pejadwala pembagkit termal ii adalah utuk membadigka metode Lagragia Relaxatio yag diajuka peulis dega metode yag diguaka PLN. Di sii aka diuji metode maa yag peramalaya

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu

Lebih terperinci

Laboratorium Ilmu dan Rekayasa Komputasi Departemen Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 10, Bandung

Laboratorium Ilmu dan Rekayasa Komputasi Departemen Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 10, Bandung Eksplorasi Algoritma Mass, Profit,, Profit / Mass, atau Profit / utuk Persoala Iteger Kapsack yag Bedaya Berupa Zat Kimia dega Jeisya Terdefiisi Abstrak Riyai Mardikaigrum 1, Nurshati 2, Vaia Karimah 3

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci

Deret Fourier. Modul 1 PENDAHULUAN

Deret Fourier. Modul 1 PENDAHULUAN Modul Deret Fourier Prof. Dr. Bambag Soedijoo P PENDAHULUAN ada modul ii dibahas masalah ekspasi deret Fourier Sius osius utuk suatu fugsi periodik ataupu yag diaggap periodik, da dibahas pula trasformasi

Lebih terperinci

PROSIDING ISBN:

PROSIDING ISBN: S-6 Perlukah Cross Validatio dilakuka? Perbadiga atara Mea Square Predictio Error da Mea Square Error sebagai Peaksir Harapa Kuadrat Kekelirua Model Yusep Suparma (yusep.suparma@ upad.ac.id) Uiversitas

Lebih terperinci

PENGARUH JARI-JARI LINGKARAN SYARAT BATAS PADA PENDEKATAN POLAR UNTUK SISTEM POTENSIAL LISTRIK GEOMETRI KARTESIAN

PENGARUH JARI-JARI LINGKARAN SYARAT BATAS PADA PENDEKATAN POLAR UNTUK SISTEM POTENSIAL LISTRIK GEOMETRI KARTESIAN PENGARUH JARIJARI LINGKARAN SYARAT BATAS PADA PENDEKATAN POLAR UNTUK SISTEM POTENSIAL LISTRIK GEOMETRI KARTESIAN Aji Wira Tama, M. Arief Bustomi, M.Si. Jurusa Fisika Fakultas Matematika da Ilmu Pegetahua

Lebih terperinci

Kekeliruan dalam Perhitungan Numerik dan Selisih Terhingga Biasa

Kekeliruan dalam Perhitungan Numerik dan Selisih Terhingga Biasa Modul 1 Kekelirua dalam Perhituga Numerik da Selisih Terhigga Biasa D PENDAHULUAN Dr. Wahyudi, M.Pd. i dalam pemakaia praktis, peyelesaia akhir yag diigika dari solusi suatu permasalaha (soal) dalam matematika

Lebih terperinci

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2 Bab Bilaga kompleks BAB BILANGAN KOMPLEKS Defiisi Bilaga Kompleks Sebelum medefiisika bilaga kompleks, pembaca diigatka kembali pada permasalah dalam sistem bilaga yag telah dikeal sebelumya Yag pertama

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Permasalaha peugasa atau assigmet problem adalah suatu persoala dimaa harus melakuka peugasa terhadap sekumpula orag yag kepada sekumpula job yag ada, sehigga tepat satu

Lebih terperinci

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya.

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya. BAB 1 PENDAHULUAN 1.1 Latar Belakag Aalisis regresi mejadi salah satu bagia statistika yag palig bayak aplikasiya. Aalisis regresi memberika keleluasaa kepada peeliti utuk meyusu model hubuga atau pegaruh

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Aalisis Regresi Istilah regresi pertama kali diperkealka oleh seorag ahli yag berama Facis Galto pada tahu 1886. Meurut Galto, aalisis regresi berkeaa dega studi ketergatuga dari suatu

Lebih terperinci

Solusi Numerik PDP. ( Metode Beda Hingga ) December 9, 2013. Solusi Numerik PDP

Solusi Numerik PDP. ( Metode Beda Hingga ) December 9, 2013. Solusi Numerik PDP ( Metode Beda Higga ) December 9, 2013 Sebuah persamaa differesial apabila didiskritisasi dega metode beda higga aka mejadi sebuah persamaa beda. Jika persamaa differesial parsial mempuyai solusi eksak

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah:

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah: BAB III METODOLOGI PENELITIAN 3. Variabel da Defiisi Operasioal Variabel-variabel yag diguaka pada peelitia ii adalah: a. Teaga kerja, yaitu kotribusi terhadap aktivitas produksi yag diberika oleh para

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 36 BAB III METODE PENELITIAN A. Racaga Peelitia 1. Pedekata Peelitia Peelitia ii megguaka pedekata kuatitatif karea data yag diguaka dalam peelitia ii berupa data agka sebagai alat meetuka suatu keteraga.

Lebih terperinci

4.7 TRANSFORMASI UNTUK MENDEKATI KENORMALAN

4.7 TRANSFORMASI UNTUK MENDEKATI KENORMALAN 4.7 TRANSFORMASI UNTUK MENDEKATI KENORMALAN Saat asumsi keormala tidak dipuhi maka kesimpula yag kita buat berdasarka suatu metod statistik yag mesyaratka asumsi keormala meadi tidak baik, sehigga mucul

Lebih terperinci

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL)

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) Setiap peelitia selalu berkeaa dega sekelompok data. Yag dimaksud kelompok disii adalah: Satu orag mempuyai sekelompok data, atau sekelompok orag mempuyai satu

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Sebelum melakukan deteksi dan tracking obyek dibutuhkan perangkat

BAB IV HASIL DAN PEMBAHASAN. Sebelum melakukan deteksi dan tracking obyek dibutuhkan perangkat BAB IV HASIL DAN PEMBAHASAN 4.1 Kebutuha Sistem Sebelum melakuka deteksi da trackig obyek dibutuhka peragkat luak yag dapat meujag peelitia. Peragkat keras da luak yag diguaka dapat dilihat pada Tabel

Lebih terperinci

Penerapan Metode Bagi-Dua (Bisection) pada Analisis Pulang-Pokok (Break Even)

Penerapan Metode Bagi-Dua (Bisection) pada Analisis Pulang-Pokok (Break Even) Peerapa Metode Bagi-Dua (Bisectio) pada Aalisis Pulag-Pokok (Break Eve) Oleh: Nur Isai Jurusa Pedidika Matematika FMIPA UNY Yogyakarta Email: urisai001@yahoo.com Abstrak Persoala dalam mecari akar persamaa

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

METODE DEKOMPOSISI LAPLACE UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL PARSIAL NONLINIER

METODE DEKOMPOSISI LAPLACE UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL PARSIAL NONLINIER Vol.1 No.1 (16) Hal. 38-45 METODE DEKOMPOSISI LAPLACE UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL PARSIAL NONLINIER Siar Ismaya, Yui Yulida *, Na imah Hijriati Program Studi Matematika Fakultas MIPA

Lebih terperinci

Analisa Komputasi Metode Dua Langkah Bebas Turunan Untuk Menyelesaikan Persamaan Nonlinear

Analisa Komputasi Metode Dua Langkah Bebas Turunan Untuk Menyelesaikan Persamaan Nonlinear Prosidig Semirata FMIPA Uiversitas Lampug 03 Aalisa Komputasi Metode Dua Lagkah Bebas Turua Utuk Meelesaika Persamaa Noliear Supriadi Putra MSi Jurusa Matematika FMIPA Uiversitas Riau E-mail:sputra@uriacid

Lebih terperinci

METODE TRAPESIUM NONLINEAR UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL ORDE SATU ABSTRACT

METODE TRAPESIUM NONLINEAR UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL ORDE SATU ABSTRACT METODE TRAPESIUM NONLINEAR UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL ORDE SATU Rahma Dodi 1, Musraii M 1 Mahasiswa Program Studi S1 Matematika Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua

Lebih terperinci

BAB III METODOLOGI START. Baca Input Data γ, c, φ, x 1, y 1, x 2, y 2, x 3, y 3, x 4, y 4, D. Menghitung FK Manual. Tidak.

BAB III METODOLOGI START. Baca Input Data γ, c, φ, x 1, y 1, x 2, y 2, x 3, y 3, x 4, y 4, D. Menghitung FK Manual. Tidak. BAB III METODOLOGI 3.. ALUR PROGRAM (FLOW CHART) Seerti telah dijelaska sebelumya, bahwa tujua dari eelitia ii adalah utuk megaalisis suatu kasus stabilitas lereg. Aalisis stabilitas lereg tergatug ada

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

BAB 4 LIMIT FUNGSI Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah

BAB 4 LIMIT FUNGSI Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah BAB LIMIT FUNGSI Stadar Kompetesi Megguaka kosep it ugsi da turua ugsi dalam pemecaha masalah Kompetesi Dasar. Meghitug it ugsi aljabar sederhaa di suatu titik. Megguaka siat it ugsi utuk meghitug betuk

Lebih terperinci

PENYAJIAN ISI DAFTAR MATEMATIKA SEBAGAI NILAI FUNGSI POLINOM

PENYAJIAN ISI DAFTAR MATEMATIKA SEBAGAI NILAI FUNGSI POLINOM PENYAJIAN ISI DAFTAR MATEMATIKA SEBAGAI NILAI FUNGSI POLINOM PENDAHULUAN Abdul Hamid ) Email: abdulhamid@yahooom FKIP Uiversitas Tadulako Dalam pelajara matematika maupu terapaya, telah dikeal dua ara

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakag Maajeme risiko merupaka salah satu eleme petig dalam mejalaka bisis perusahaa karea semaki berkembagya duia perusahaa serta meigkatya kompleksitas aktivitas perusahaa

Lebih terperinci

Solusi Numerik Persamaan Transport

Solusi Numerik Persamaan Transport Solusi Numerik Persamaa Trasport M. Jamhuri December 16, 2013 Diberika persamaa Trasport u t + 2u x = 0 1) Diberika persamaa Trasport u t + 2u x = 0 1) Diskretka persamaa trasport 1) dega megguaka persamaa

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1 Lokasi da Waktu peelitia Peelitia dilakuka pada budidaya jamur tiram putih yag dimiliki oleh usaha Yayasa Paguyuba Ikhlas yag berada di Jl. Thamri No 1 Desa Cibeig, Kecamata Pamijaha,

Lebih terperinci

Model Pertumbuhan BenefitAsuransi Jiwa Berjangka Menggunakan Deret Matematika

Model Pertumbuhan BenefitAsuransi Jiwa Berjangka Menggunakan Deret Matematika Prosidig Semirata FMIPA Uiversitas Lampug, 0 Model Pertumbuha BeefitAsurasi Jiwa Berjagka Megguaka Deret Matematika Edag Sri Kresawati Jurusa Matematika FMIPA Uiversitas Sriwijaya edagsrikresawati@yahoocoid

Lebih terperinci

BAB III METODE PENELITIAN. Jenis penelitian ini adalah penelitian pengembangan (research and

BAB III METODE PENELITIAN. Jenis penelitian ini adalah penelitian pengembangan (research and BAB III METODE PENELITIAN A. Jeis Peelitia Jeis peelitia ii adalah peelitia pegembaga (research ad developmet), yaitu suatu proses peelitia utuk megembagka suatu produk. Produk yag dikembagka dalam peelitia

Lebih terperinci

BAB II PENCARIAN AKAR PERSAMAAN NON LINIER

BAB II PENCARIAN AKAR PERSAMAAN NON LINIER BAB II PENCARIAN AKAR PERSAMAAN NON LINIER PENDAHULUAN Dalam bab ii, kita aka membahas tetag beberapa metode umerik yag dapat diguaka utuk meemuka akar-akar persamaa o-liier. Masalah yag aka kita bahas

Lebih terperinci

BARISAN DAN DERET. Nurdinintya Athari (NDT)

BARISAN DAN DERET. Nurdinintya Athari (NDT) BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga

Lebih terperinci

BAB VI DERET TAYLOR DAN DERET LAURENT

BAB VI DERET TAYLOR DAN DERET LAURENT BAB VI DERET TAYLOR DAN DERET LAURENT. Deret Taylor Misal fugsi f() aalitik pada - < R ( ligkara dega pusat di da jari-jari R ). Maka utuk setiap titik pada ligkara itu, f() dapat diyataka sebagai : f

Lebih terperinci

BAB 1 PENDAHULUAN. dimana f(x) adalah fungsi tujuan dan h(x) adalah fungsi pembatas.

BAB 1 PENDAHULUAN. dimana f(x) adalah fungsi tujuan dan h(x) adalah fungsi pembatas. BAB 1 PENDAHUUAN 1.1 atar Belakag Pada dasarya masalah optimisasi adalah suatu masalah utuk membuat ilai fugsi tujua mejadi maksimum atau miimum dega memperhatika pembatas pembatas yag ada. Dalam aplikasi

Lebih terperinci

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

Outline. Pengukuran Listrik II. Kesalahan dlm Pengukuran 25/09/2012. Anhar, ST. MT. Lab. Jaringan Komputer

Outline. Pengukuran Listrik II. Kesalahan dlm Pengukuran 25/09/2012. Anhar, ST. MT. Lab. Jaringan Komputer 5/09/0 II. Kesalaha dlm Pegukura Ahar, ST. MT. Lab. Jariga Komputer Outlie Kosep pegukura Kesalaha Pegukura Istilah Tekik Pegukura Aalisis statistik 5/09/0 Kosep Pegukura Meetuka ilai kuatitatif atau besar

Lebih terperinci

3 METODE PENELITIAN 3.1 Kerangka Pemikiran 3.2 Lokasi dan Waktu Penelitian

3 METODE PENELITIAN 3.1 Kerangka Pemikiran 3.2 Lokasi dan Waktu Penelitian 19 3 METODE PENELITIAN 3.1 Keragka Pemikira Secara rigkas, peelitia ii dilakuka dega tiga tahap aalisis. Aalisis pertama adalah megaalisis proses keputusa yag dilakuka kosume dega megguaka aalisis deskriptif.

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

Karakteristik Dinamik Elemen Sistem Pengukuran

Karakteristik Dinamik Elemen Sistem Pengukuran Karakteristik Diamik Eleme Sistem Pegukura Kompetesi, RP, Materi Kompetesi yag diharapka: Mahasiswa mampu merumuskaka karakteristik diamik eleme sistem pegukura Racaga Pembelajara: Miggu ke Kemampua Akhir

Lebih terperinci

Bab III Metoda Taguchi

Bab III Metoda Taguchi Bab III Metoda Taguchi 3.1 Pedahulua [2][3] Metoda Taguchi meitikberatka pada pecapaia suatu target tertetu da meguragi variasi suatu produk atau proses. Pecapaia tersebut dilakuka dega megguaka ilmu statistika.

Lebih terperinci

PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart

PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA, Fakultas MIPA, Uiversitas Negeri Yogyakarta, 2 Jui 2012 PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart Adi Setiawa

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakag Dalam duia iformatika, assigmet Problem yag biasa dibetuk dega matriks berbobot merupaka salah satu masalah terbesar, dimaa masalah ii merupaka masalah yag metode peyelesaiaya

Lebih terperinci

BAB I PENDAHULUAN. X Y X Y X Y sampel

BAB I PENDAHULUAN. X Y X Y X Y sampel BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Aalisis regresi merupaka metode aalisis data yag meggambarka hubuga atara variabel respo dega satu atau beberapa variabel prediktor. Aalisis regresi tersebut

Lebih terperinci