TINJAUAN PUSTAKA. (statistik) dinamakan galat baku statistik, yang dinotasikan dengan

Ukuran: px
Mulai penontonan dengan halaman:

Download "TINJAUAN PUSTAKA. (statistik) dinamakan galat baku statistik, yang dinotasikan dengan"

Transkripsi

1 TINJAUAN PUSTAKA Penduga Titik dan Selang Kepercayaan Penduga bagi parameter populasi ada dua jenis, yaitu penduga titik dan penduga selang atau disebut sebagai selang kepercayaan. Penduga titik dari suatu parameter adalah bilangan tunggal yang dapat dianggap sebagai nilai yang paling dekat dengan Penduga titik diperoleh dengan cara memilih statistik yang sesuai dan menghitung nilai statistik tersebut dari data contoh yang diberikan. Statistik yang terpilih disebut sebagai penduga titik dari (Devore 2004). Statistik adalah suatu fungsi peubah acak yang tidak tergantung pada (Casella & Berger 2001). Standar deviasi dari suatu penduga (statistik) dinamakan galat baku statistik, yang dinotasikan dengan (Johnson & Bhattacharyya 1992). Jika galat baku dari statistik melibatkan parameter yang tidak diketahui, maka nilai dari galat baku dapat diduga. Dengan mensubstitusikan nilai dugaan parameter ini ke maka dihasilkan dugaan galat baku statistik (Devore 2004). Galat baku dari statistik ini yang dijadikan sebagai dasar dalam menentukan selang kepercayaan. Selang kepercayaan merupakan penduga parameter yang berupa kisaran nilai. Sebuah selang kepercayaan dengan tingkat kepercayaan sebesar C bagi parameter adalah selang yang dihitung dari data contoh dengan suatu metode tertentu yang memiliki peluang sebesar C untuk menghasilkan selang yang mengandung nilai parameter sesungguhnya (Moore & McCabe 1998). Secara matematis, Casella & Berger (2001) mendefinisikan selang dugaan tertutup bagi parameter yaitu selang tertutup yang ujung bawah dan ujung atasnya masingmasing dan atau untuk anggota ruang sampel X. Jika adalah sampel yang terambil secara acak, maka disebut selang dugaan acak bagi. Jika adalah sampel acak, maka disebut selang penduga (acak) bagi. Sedangkan, peluang dari selang penduga bagi untuk mencakup nilai disebut peluang pencakupan dituliskan sebagai berikut :

2 4 Jika besarnya peluang pencakupan adalah, maka selang ini disebut selang kepercayaan bagi. Misalnya, untuk maka diperoleh selang kepercayaan 95% bagi. Bentuk umum dari selang kepercayaan adalah (Moore & McCabe 1998) : Dugaan titik adalah perkiraan untuk parameter yang tidak diketahui. Batas kesalahan (margin of error) menunjukkan seberapa akurat nilai dugaan tersebut dapat dipercaya, berdasarkan variasi dugaan yang diperoleh. Selanjutnya, Levy & Lemeshow (1999) memaknai selang kepercayaan 95% sebagai berikut : jika kita lakukan pengambilan sampel berukuran dari sebuah populasi yang sama berulangkali, dan untuk setiap sampel dilakukan perhitungan selang kepercayaan, maka 95% dari selang kepercayaan tersebut akan mencakup nilai parameter populasi yang sesungguhnya. Penentuan selang kepercayaan bagi parameter populasi dapat dilakukan dengan pembalikan statistik uji, menggunakan besaran pivot, pivoting fungsi sebaran kumulatif, dan metode bayes. Baik buruknya selang kepercayaan dugaan yang diperoleh dari berbagai metode tersebut, dapat dievaluasi dengan melihat dua aspek, yaitu lebar selang dan peluang pencakupan. Lebar selang didefinisikan sebagai selisih antara batas atas dan batas bawah selang kepercayaan (Casella & Berger 2001). Data Sirkular Data sirkular merupakan salah satu jenis data berarah (directional data). Secara umum, data berarah dibagi menjadi dua, yaitu data berarah dua dimensi dan tiga dimensi. Untuk data berarah dua dimensi disebut data sirkular (circular data) dan untuk tiga dimensi disebut data bola (spherical data) (Jammalamadaka & SenGupta 2001). Banyak cara memperoleh data sirkular, namun yang utama, data sirkular diperoleh dari dua instrumen pengukuran yaitu kompas dan jam. Hasil pengukuran menggunakan kompas adalah data bersatuan arah (derajat/radian) sedangkan hasil pengukuran menggunakan jam adalah waktu (dalam hal ini bisa

3 5 berupa jam/hari/bulan/tahun) (Mardia & Jupp 2000). Contoh pengamatan yang diukur menggunakan kompas adalah arah angin dan arah migrasi binatang. Sedangkan, contoh pengamatan yang diukur menggunakan jam adalah waktu terjadinya kecelakaan lalu lintas. Pengamatan sirkular dapat dianggap sebagai titik pada lingkaran dengan satu unit jari-jari, atau satu unit vektor pada garis (Mardia & Jupp 2000). Representasi numerik dari data sirkular adalah sudut yang diukur berdasarkan pemilihan titik awal (starting point) dan arah positif rotasinya yaitu searah atau berlawanan arah dengan jarum jam. Pemilihan titik awal ini bersifat sembarang sehingga besarnya sudut untuk sebuah pengamatan bisa berbeda-beda. Meskipun titik awal dan arah rotasinya bersifat sembarang, analisis statistika sirkular tetap memberikan hasil yang sama. Namun, penentuan titik awal yang bersifat sembarang ini, membuat data sirkular tidak dapat dianalisis menggunakan prosedur analisis statistika untuk data linier karena akan memberikan kesimpulan yang tidak tepat (Jammalamadaka & SenGupta 2001). Khusus data sirkular bersatuan waktu, harus dikonversikan menjadi data sirkular bersatuan derajat arah. Misalkan, x adalah data hasil pengamatan bersatuan waktu dan adalah nilai maksimumnya. Rumus konversi data sirkular bersatuan waktu menjadi bersatuan derajat arah adalah : Untuk menganalisis data sirkular ada dua fungsi trigonometri yang digunakan sebagai dasar, yaitu sinus dan cosinus. Kedua fungsi dasar trigonometri ini digunakan untuk membantu menentukan posisi suatu data dan untuk menyelaraskan dua sistem koordinat, yaitu sistem koordinat kartesius (X,Y) dengan titik pusat 0 dan sumbu tegak lurus X dan Y yang melalui pusat, dan sistem koordinat polar (r α) dengan r adalah jarak titik pusat ke keliling lingkaran dan α adalah sudutnya. Misal titik P dengan koordinat polar (r α). Maka koordinat kartesius titik P adalah :, dan. Hal ini diilustrasikan pada Gambar 1. Pada statistika sirkular yang diperhatikan adalah arah, bukan besarnya vektor, sehingga untuk kemudahan diambil vektor-vektor ini menjadi vektor unit

4 6 yaitu vektor yang mempunyai panjang satu, atau r = 1. Setiap arah berhubungan dengan sebuah titik P dalam keliling suatu lingkaran. Kebalikannya, titik ini dalam suatu lingkaran dapat dinyatakan sebagai sudut. Jika titik P terletak dalam keliling lingkaran, perubahan koordinat polar dan koordinat kartesius adalah (1) Gambar 1. Hubungan antara koordinat kartesius dan koordinat polar Ukuran Pemusatan Data Sirkular (Preferred Direction) Ukuran pemusatan data sirkular yang dikaji dalam penelitian ini adalah arah rata-rata dan arah median. Penjelasannya adalah sebagai berikut. a. Arah rata-rata (mean direction) Perhitungan rata-rata yang tepat untuk data sirkular diperoleh dengan memperlakukan data sebagai vektor-vektor unit, kemudian arah rata-rata adalah arah dari vektor resultannya. Misalkan adalah pengamatanpengamatan sirkular dengan sebagai vektor-vektor unit yang berkaitan. Misalkan dan adalah komponen-komponen kartesius dari. Vektor resultan dari didapatkan dari penjumlahan komponen-komponen vector. Dengan menggunakan persamaan (1), vektor resultan dari menjadi : (2) dan arah rata-rata sirkularnya ( adalah dengan dan. Untuk berbagai kemungkinan nilai C dan S, arah rata-rata akan bernilai : 1. jika 2., jika

5 7 3. jika 4. jika 5. tidak terdefinisi, jika. (Fisher 1995; Jammalamadaka & SenGupta 2001; Mardia & Jupp 2000). b. Arah Median (Median Direction) Arah median contoh diperkenalkan oleh Mardia pada tahun 1972 dan dikenal dengan Mardia median. Untuk sekumpulan sudut atau titik data, arah median didefinisikan sebagai sebuah sudut (atau titik tengah dari dua sudut yang berdekatan jika ukuran contohnya genap) yang memenuhi : (i) setengah dari titik-titik data terletak pada busur dan (ii) mayoritas dari titik-titik data tersebut lebih dekat ke daripada. (iii) Simpangan rata-rata sirkular dari, yaitu adalah minimum (Mardia & Jupp 2000; Fisher 1995; Ratanaruamkarn 2009). Ukuran Konsentrasi dan Penyebaran Ukuran konsentrasi data dapat dilihat dari panjang rata-rata resultan dan ukuran penyebaran data dapat dilihat dari ragam sirkular. Dari persamaan (2) dapat dihitung panjang dari vektor resultan, yaitu : ; dan panjang rata-rata resultan (mean resultant length), yaitu : Jika data cenderung mengumpul disekitar rata-ratanya, maka akan bernilai 1. Namun, jika data cenderung menyebar di sekeliling lingkaran maka bernilai 0. Untuk keperluan deskriptif dan inferensia, penggunaan panjang rata-rata resultan lebih baik dari pada ukuran penyebaran data. Namun, untuk tujuan pembandingan dengan data pada garis, terkadang lebih baik menggunakan ragam sirkular sebagai ukuran penyebaran data (Mardia & Jupp 2000), yaitu :

6 8 Titik sudut dalam arah yang sama mengindikasikan pemusatan yang besar, nilai R dapat sebesar n. Sebaliknya data yang menyebar merata pada sekeliling lingkaran mengindikasikan tidak adanya pemusatan, R dapat mendekati nilai 0. Artinya, semakin besar ragam sirkular maka semakin besar pula sebaran data dan semakin kecil konsentrasi data terhadap arah rata-ratanya (Jammalamadaka & SenGupta 2001). Sebaran von Mises dan Parameter Konsentrasi Sebaran von Mises diperkenalkan oleh von Mises pada Tahun Parameter pada sebaran ini adalah arah rata-rata ( ) dan parameter konsentrasi ( ). Fungsi kepekatan peluang dari sebaran von Mises adalah : dengan yang merupakan fungsi Bessel orde nol. Parameter konsentrasi menunjukkan seberapa besar data menuju suatu arah tertentu. Parameter konsentrasi dilambangkan dengan. Pendugaan pada sebaran von Mises dilakukan menggunakan metode kemungkinan maksimum. Hasil dugaannya adalah (Fisher 1995) :... untuk untuk untuk Jika berarti sebaran data mendekati sebaran seragam dan jika berarti sebaran data terkonsentrasi pada arah rata-ratanya. Metode Bootstrap Bootstrap adalah prosedur statistika berbasis komputer menggunakan teknik pengambilan contoh ulang dengan pengembalian (resampling with replacement). Metode yang diperkenalkan oleh Efron (1979) ini merupakan salah

7 9 satu alternatif metode untuk menduga sebaran statistik, galat baku statistik, bias, selang kepercayaan, dan beberapa parameter lain selain rata-rata (Efron 1981; Efron & Tibsirani 1993). Efron memberikan dua pendekatan bootstrap, yaitu bootstrap non parametrik dan bootstrap parametrik. Berikut akan dijelaskan bagaimana konsep kedua pendekatan ini dan kapan pendekatan tersebut cocok digunakan. a. Bootstrap non parametrik Pada pendekatan bootstrap non parametrik, sebaran peluang populasi tidak diketahui. Metode ini bertujuan untuk memperoleh dugaan parameter dan sebaran populasi. Asumsikan adalah contoh acak dari sebaran peluang populasi F yang tidak diketahui dan adalah parameter yang ingin diduga. Prinsip pembangkitan contoh bootstrap adalah sebagai berikut. Ambil contoh berukuran n secara acak dengan pengembalian dari fungsi sebaran empiris. adalah sebaran diskret yang menentukan peluang untuk stiap pengamatan, untuk. Lakukan sebanyak B kali. Untuk setiap contoh bootstrap dihitung dugaan, sehingga diperoleh gugus data. Sebaran dari B buah dapat digunakan untuk menduga sebaran dari. Nilai rata rata dari B buah adalah penduga bootstrap. Pada umumnya, ukuran B antara untuk menduga galat baku, dan paling sedikit 500 untuk menduga selang kepercayaan (Efron & Tibsirani 1993). b. Bootstrap Parametrik Pada bootstrap parametrik, sebaran populasi data asli diketahui, tetapi sebaran statistiknya tidak diketahui (Otieno 2002). Pendekatan bootstrap parametrik membangkitan contoh bootstrap dengan sebaran parametrik (Amiri et al. 2008). Berikut adalah prosedur dari pendekatan ini. Misalkan adalah contoh dari pengamatan yang berasal dari populasi dengan fungsi sebaran. adalah parameter yang tidak diketahui. Dari data tersebut, dihitung dugaan. Ambil contoh bootstrap,, berukuran n dari sebaran. Hitung penduga dari setiap contoh bootstrap,. Ulangi proses ini sebanyak B kali, sehingga diperoleh. Sebaran penarikan contoh dari

8 10 dapat didekati dengan frekuensi sebaran dari. (Benton & Krishnamoorthy 2002). Efron (1993) memberikan ilustrasi bootstrap parametrik untuk menghitung galat baku dari koefisien korelasi. Bootstrap parametrik cenderung memberikan dugaan yang lebih halus mengenai sebaran dari data dengan ukuran contoh kecil dan untuk parameter yang hanya melibatkan sedikit nilai numerik dari data contoh, misalnya median, nilai minimum, dan nilai maksimum (Otieno 2002). Selang Kepercayaan Boostrap untuk Data Sirkular Metode pendugaan selang kepercayaan bootstrap untuk data sirkular pertama kali diusulkan oleh Ducharme (1985) menggunakan metode busur simetri (syimmetric arc). Kemudian, Fisher & Hall (1989) mengembangkannya menjadi tiga metode, yaitu metode busur ekor sama (equal-tailed arc), metode busur simetri (syimmetric arc) dan metode busur berbasis kemungkinan (likelihood based arc). a. Busur Ekor Sama (Equal-Tailed Arc) Metode busur ekor sama menggunakan dugaan titik dari ukuran pemusatan (Preferred Direction, PD) sebagai pengamatan tengah. Titik ujung selang kepercayaan didefinisikan sebagai lokasi dimana dari nilai bootstrap terletak antara ujung selang dan PD. Ilustrasi mengenai metode ini dapat dilihat pada Gambar 2a. Metode ini cukup baik untuk mengatasi sebaran miring. Fisher (1995) menyebut metode ini sebagai metode dasar. Prosedur penentuan selang kepercayaan 100% bagi ukuran pemusatan populasi adalah menghitung perbedaan antara ukuran pemusatan dari data asli dan ukuran pemusatan dari contoh bootstrap ke-b, yaitu : adalah ukuran pemusatan contoh bootstrap ke-b. Kemudian, nilai-nilai diurutkan dari yang terkecil hingga terbesar. Misalkan, adalah bilangan bulat terbesar yang lebih kecil atau sama dengan dan. Selang kepercayaan 100% bagi ukuran pemusatan populasi adalah

9 11, dengan adalah nilai pada posisi ke- dan adalah nilai pada posisi ke-. b. Metode Busur Simetri (Symmetric-Arc Method) Metode busur simetri menggunakan dugaan titik dari ukuran pemusatan sebagai titik tengah interval dan memilih sudut D*, sedemikian rupa sehingga dari nilai-nilai terletak dalam selang. Besar D* di atas dan bawah dugaan titik adalah sama. Ilustrasi untuk metode ini dapat dilihat pada Gambar 2b. Metode ini dirancang untuk menduga selang dengan asumsi sebaran simetri. Fisher (1995) menyebut metode ini sebagai metode sebaran simetris. Prosedur penentuan selang kepercayaan 100% bagi ukuran pemusatan populasi adalah menghitung perbedaan mutlak antara ukuran pemusatan data asli dan contoh bootstrap ke-b, yaitu :, b = 1,.., B Kemudian, nilai-nilai diurutkan dari yang terkecil hingga terbesar. Misalkan adalah bilangan bulat yang lebih kecil atau sama dengan dan. Selang kepercayaan 100% untuk ukuran pemusatan populasi adalah. c. Busur Berbasis Kemungkinan (Likelihood Based Arc) Metode busur berbasis kemungkinan adalah metode yang paling fleksibel. Melalui metode ini, dimungkinkan untuk menemukan selang sempit yang memenuhi persyaratan dari selang kepercayaan 100%. Caranya adalah dengan memilih busur terpendek yang mengandung dari nilai-nilai. D** adalah lebar selang kepercayaan. Gambaran mengenai metode ini diilustrasikan pada Gambar 2c. (a) (b) (c) Gambar 2. Selang kepercayaan busur ekor sama, busur simetri, dan busur berbasis kemungkinan

BAB II TINJAUAN PUSTAKA. pembahasan pada bab selanjutnya. Pembahasan teori meliputi pengertian data

BAB II TINJAUAN PUSTAKA. pembahasan pada bab selanjutnya. Pembahasan teori meliputi pengertian data BAB II TINJAUAN PUSTAKA Bab ini membahas teori-teori dasar yang digunakan sebagai landasan pembahasan pada bab selanjutnya. Pembahasan teori meliputi pengertian data secara umum dan data sirkular, ukuran

Lebih terperinci

HASIL DAN PEMBAHASAN. Selang Kepercayaan Bootstrap bagi Arah Rata-rata dan Arah Median

HASIL DAN PEMBAHASAN. Selang Kepercayaan Bootstrap bagi Arah Rata-rata dan Arah Median HASIL DAN PEMBAHASAN Sebelum dilakukan pendugaan selang kepercayaan, terlebih dahulu dilihat ketakbiasan dari penduga titik. Caranya adalah dengan menghitung nilai harapan dari arah rata-rata dan arah

Lebih terperinci

Forum Statistika dan Komputasi : Indonesian Journal of Statistics. journal.ipb.ac.id/index.php/statistika

Forum Statistika dan Komputasi : Indonesian Journal of Statistics. journal.ipb.ac.id/index.php/statistika Forum Statistika dan Komputasi : Indonesian Journal of Statistics ISSN : 85-85 Vol. 7 No., Oktober, p: -8 available online at: journal.ipb.ac.id/index.php/statistika PENDUGAAN SELANG KEPERCAYAAN BOOTSTRAP

Lebih terperinci

KAJIAN PERBANDINGAN ARAH RATA-RATA DATA SIRKULAR (STUDI KASUS: DATA WAKTU KEDATANGAN PASIEN IGD)

KAJIAN PERBANDINGAN ARAH RATA-RATA DATA SIRKULAR (STUDI KASUS: DATA WAKTU KEDATANGAN PASIEN IGD) KAJIAN PERBANDINGAN ARAH RATA-RATA DATA SIRKULAR (STUDI KASUS: DATA WAKTU KEDATANGAN PASIEN IGD) EKA PUTRI NUR UTAMI DEPARTEMEN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN

Lebih terperinci

Tabel 1 Sudut terjadinya jarak terdekat dan terjauh pada berbagai kombinasi pemilihan arah acuan 0 o dan arah rotasi HASIL DAN PEMBAHASAN

Tabel 1 Sudut terjadinya jarak terdekat dan terjauh pada berbagai kombinasi pemilihan arah acuan 0 o dan arah rotasi HASIL DAN PEMBAHASAN sudut pada langkah sehingga diperoleh (α i, x i ).. Mentransformasi x i ke jarak sebenarnya melalui informasi jarak pada peta.. Melakukan analisis korelasi linier sirkular antara x dan α untuk masingmasing

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini akan dibahas tinjauan pustaka yang akan digunakan untuk tesis ini, yang selanjutnya akan diperlukan pada bab 3. Yang akan dibahas dalam bab ini adalah metode bootstrap

Lebih terperinci

BAB III UJI STATISTIK DAN SIMULASI. Menggunakan karakteristik dari distribusi tersebut dan transformasi / = ( ) (3.1.1) / = ( ) (3.1.

BAB III UJI STATISTIK DAN SIMULASI. Menggunakan karakteristik dari distribusi tersebut dan transformasi / = ( ) (3.1.1) / = ( ) (3.1. 11 BAB III UJI STATISTIK DAN SIMULASI 3.1 Interval Kepercayaan Sebuah interval kepercayaan terdiri dari berbagai nilai-nilai bersama-sama dengan persentase yang menentukan seberapa yakin bahwa parameter

Lebih terperinci

BAB I PENDAHULUAN. pengukuran terhadap data yang bersatuan waktu atau derajat arah yang nilainilainya

BAB I PENDAHULUAN. pengukuran terhadap data yang bersatuan waktu atau derajat arah yang nilainilainya BAB I PENDAHULUAN 1.1 Latar Belakang Dalam beberapa kasus penelitian, peneliti terkadang harus melakukan pengukuran terhadap data yang bersatuan waktu atau derajat arah yang nilainilainya berulang secara

Lebih terperinci

BAB III REGRESI PADA DATA SIRKULAR

BAB III REGRESI PADA DATA SIRKULAR BAB III REGRESI PADA DATA SIRKULAR Variabel dalam suatu regresi secara umum terdiri atas variabel bebas (independent variable dan variabel terikat (dependent variable. Jenis data pada variabel-variabel

Lebih terperinci

ANALISIS ESTIMASI PARAMETER REGRESI KUANTIL DENGAN METODE BOOTSTRAP

ANALISIS ESTIMASI PARAMETER REGRESI KUANTIL DENGAN METODE BOOTSTRAP Jurnal Matematika UNAND Vol. 5 No. 1 Hal. 125 130 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND ANALISIS ESTIMASI PARAMETER REGRESI KUANTIL DENGAN METODE BOOTSTRAP MESI OKTAFIA, FERRA YANUAR, MAIYASTRI

Lebih terperinci

TINJAUAN PUSTAKA. Dalam proses pengumpulan data, peneliti sering menemukan nilai pengamatan

TINJAUAN PUSTAKA. Dalam proses pengumpulan data, peneliti sering menemukan nilai pengamatan 4 II. TINJAUAN PUSTAKA 2.1 Definisi Pencilan Dalam proses pengumpulan data, peneliti sering menemukan nilai pengamatan yang bervariasi (beragam). Keberagaman data ini, di satu sisi sangat dibutuhkan dalam

Lebih terperinci

BAB 1 PENDAHULUAN. awal peradaban manusia. Pada awal zaman Masehi, bangsa-bangsa

BAB 1 PENDAHULUAN. awal peradaban manusia. Pada awal zaman Masehi, bangsa-bangsa BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Pengolahan informasi statistik mempunyai sejarah jauh ke belakang sejak awal peradaban manusia. Pada awal zaman Masehi, bangsa-bangsa mengumpulkan data statistik

Lebih terperinci

Abdul Aziz Nurussadad 1, Made Sumertajaya 2, Ahmad Ansori Mattjik 2 1 Mahasiswa Departemen Statistika, FMIPA IPB 2 Departemen Statistika, FMIPA-IPB

Abdul Aziz Nurussadad 1, Made Sumertajaya 2, Ahmad Ansori Mattjik 2 1 Mahasiswa Departemen Statistika, FMIPA IPB 2 Departemen Statistika, FMIPA-IPB , April 211 p : 27-34 ISSN : 83-811 Vol16 No.1 PENGARUH PEMILIHAN ARAH ACUAN DAN ARAH ROTASI PADA ANALISIS KORELASI DAN REGRESI LINIER-SIRKULAR (STUDI KASUS: PETA KAWASAN RAWAN BENCANA LETUSAN GUNUNG API

Lebih terperinci

BAB I PENDAHULUAN. Statistika adalah salah satu cabang ilmu yang mempelajari prosedur-prosedur

BAB I PENDAHULUAN. Statistika adalah salah satu cabang ilmu yang mempelajari prosedur-prosedur BAB I PENDAHULUAN 1.1 Latar Belakang Statistika adalah salah satu cabang ilmu yang mempelajari prosedur-prosedur yang digunakan dalam pengumpulan, penyajian, analisis dan interpretasi data. Statistika

Lebih terperinci

Matematika Semester IV

Matematika Semester IV F U N G S I KOMPETENSI DASAR Mendeskripsikan perbedaan konsep relasi dan fungsi Menerapkan konsep fungsi linear Menggambar fungsi kuadrat Menerapkan konsep fungsi kuadrat Menerapkan konsep fungsi trigonometri

Lebih terperinci

BAB I VEKTOR DALAM BIDANG

BAB I VEKTOR DALAM BIDANG BAB I VEKTOR DALAM BIDANG I. KURVA BIDANG : Penyajian secara parameter Suatu kurva bidang ditentukan oleh sepasang persamaan parameter. ; dalam I dan kontinue pada selang I, yang pada umumnya sebuah selang

Lebih terperinci

Forum Statistika dan Komputasi, April 2011 p : ISSN :

Forum Statistika dan Komputasi, April 2011 p : ISSN : , April 11 p : 7-34 ISSN : 83-811 Vol16 No.1 PENGARUH PEMILIHAN ARAH ACUAN DAN ARAH ROTASI PADA ANALISIS KORELASI DAN REGRESI LINIER-SIRKULAR (STUDI KASUS: PETA KAWASAN RAWAN BENCANA LETUSAN GUNUNG API

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 21 Analisis Regresi Perubahan nilai suatu variabel tidak selalu terjadi dengan sendirinya, namun perubahan nilai variabel itu dapat disebabkan oleh berubahnya variabel lain yang berhubungan

Lebih terperinci

ANALISIS MODEL REGRESI NONPARAMETRIK SIRKULAR-LINEAR BERGANDA

ANALISIS MODEL REGRESI NONPARAMETRIK SIRKULAR-LINEAR BERGANDA E-Jurnal Matematika Vol. 5 (2), Mei 216, pp. 52-58 ISSN: 233-1751 ANALISIS MODEL REGRESI NONPARAMETRIK SIRKULAR-LINEAR BERGANDA Komang Candra Ivan 1, I Wayan Sumarjaya 2, Made Susilawati 3 1 Jurusan Matematika,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. satu peubah prediktor dengan satu peubah respon disebut analisis regresi linier

BAB II TINJAUAN PUSTAKA. satu peubah prediktor dengan satu peubah respon disebut analisis regresi linier BAB II TINJAUAN PUSTAKA 2.1 Analisis Regresi Linier Berganda Analisis regresi pertama kali dikembangkan oleh Sir Francis Galton pada abad ke-19. Analisis regresi dengan satu peubah prediktor dan satu peubah

Lebih terperinci

Selain besaran pokok dan turunan, besaran fisika masih dapat dibagi atas dua kelompok lain yaitu besaran skalar dan besaran vektor

Selain besaran pokok dan turunan, besaran fisika masih dapat dibagi atas dua kelompok lain yaitu besaran skalar dan besaran vektor Selain besaran pokok dan turunan, besaran fisika masih dapat dibagi atas dua kelompok lain yaitu besaran skalar dan besaran vektor Besaran skalar adalah besaran yang hanya memiliki nilai saja. Contoh :

Lebih terperinci

VEKTOR A. Vektor Vektor B. Penjumlahan Vektor R = A + B

VEKTOR A. Vektor Vektor B. Penjumlahan Vektor R = A + B Amran Shidik MATERI FISIKA KELAS X 11/13/2016 VEKTOR A. Vektor Vektor adalah jenis besaran yang mempunyai nilai dan arah. Besaran yang termasuk besaran vektor antara lain perpindahan, gaya, kecepatan,

Lebih terperinci

II. TINJAUAN PUSTAKA. Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E

II. TINJAUAN PUSTAKA. Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E 5 II. TINJAUAN PUSTAKA 2.1 Konsep Dasar Peluang Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E adalah himpunan bagian dari ruang sampel. Peluang suatu kejadian P(E) adalah

Lebih terperinci

BAB III METODE THEIL. menganalisis hubungan antara variabel bebas dan variabel terikat yang dinyatakan

BAB III METODE THEIL. menganalisis hubungan antara variabel bebas dan variabel terikat yang dinyatakan 28 BAB III METODE THEIL Analisis regresi merupakan suatu metode yang digunakan untuk menganalisis hubungan antara variabel bebas dan variabel terikat yang dinyatakan dalam sebuah persamaan regresi. Dalam

Lebih terperinci

DURASI PEMELAJARAN KURIKULUM SMK EDISI 2004

DURASI PEMELAJARAN KURIKULUM SMK EDISI 2004 DESKRIPSI PEMELAJARAN MATA DIKLAT TUJUAN : MATEMATIKA : Melatih berfikir dan bernalar secara logis dan kritis serta mengembangkan aktifitas kreatif dalam memecahkan masalah dan mengkomunikasikan ide/gagasan

Lebih terperinci

VEKTOR GAYA. Gambar 1. Perkalian dan pembagian vektor

VEKTOR GAYA. Gambar 1. Perkalian dan pembagian vektor VEKTOR GAYA Perkalian dan Pembagian vektor dengan scalar Jika vektor dikalikan dengan nilai positif maka besarnya meningkat sesuai jumlah pengalinya. Perkalian dengan bilangan negatif akan mengubah besar

Lebih terperinci

Transformasi Geometri Sederhana

Transformasi Geometri Sederhana Transformasi Geometri Sederhana Transformasi Dasar Pada Aplikasi Grafika diperlukan perubahan bentuk, ukuran dan posisi suatu gambar yang disebut dengan manipulasi. Perubahan gambar dengan mengubah koordinat

Lebih terperinci

ARAH ROTASI PADA ANALISIS KORELASI DAN REGRESI LINIER-SIRKULAR

ARAH ROTASI PADA ANALISIS KORELASI DAN REGRESI LINIER-SIRKULAR PENGARUH PEMILIHAN ARAH ACUAN o DAN ARAH ROTASI PADA ANALISIS KORELASI DAN REGRESI LINIER-SIRKULAR (Kajian Kasus : Peta Kawasan Rawan Bencana Letusan Gunung Api Merapi 21) ABDUL AZIZ NURUSSADAD DEPARTEMEN

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Distribusi Normal Salah satu distribusi frekuensi yang paling penting dalam statistika adalah distribusi normal. Distribusi normal berupa kurva berbentuk lonceng setangkup yang

Lebih terperinci

Statistik Dasar. 1. Pendahuluan Persamaan Statistika Dalam Penelitian. 2. Penyusunan Data Dan Penyajian Data

Statistik Dasar. 1. Pendahuluan Persamaan Statistika Dalam Penelitian. 2. Penyusunan Data Dan Penyajian Data Statistik Dasar 1. Pendahuluan Persamaan Statistika Dalam Penelitian 2. Penyusunan Data Dan Penyajian Data 3. Ukuran Tendensi Sentral, Ukuran Penyimpangan 4. Momen Kemiringan 5. Distribusi Normal t Dan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Data Data adalah bentuk jamak dari datum, yang dapat diartikan sebagai informasi yang diterima yang bentuknya dapat berupa angka, kata-kata, atau dalam bentuk lisan dan tulisan

Lebih terperinci

TINJAUAN PUSTAKA. Analisis regresi adalah suatu metode analisis data yang menggambarkan

TINJAUAN PUSTAKA. Analisis regresi adalah suatu metode analisis data yang menggambarkan II. TINJAUAN PUSTAKA 2.1 Analisis Regresi Analisis regresi adalah suatu metode analisis data yang menggambarkan hubungan fungsional antara variabel respon dengan satu atau beberapa variabel prediktor.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Himpunan Fuzzy Tidak semua himpunan yang dijumpai dalam kehidupan sehari-hari terdefinisi secara jelas, misalnya himpunan orang miskin, himpunan orang pandai, himpunan orang tinggi,

Lebih terperinci

DESKRIPSI PEMELAJARAN - MATEMATIKA

DESKRIPSI PEMELAJARAN - MATEMATIKA DESKRIPSI PEMELAJARAN MATA DIKLAT : MATEMATIKA TUJUAN : Melatih berfikir dan bernalar secara logis dan kritis serta mengembangkan aktifitas kreatif dalam memecahkan masalah dan mengkomunikasikan ide/gagasan

Lebih terperinci

BAB II VEKTOR DAN GERAK DALAM RUANG

BAB II VEKTOR DAN GERAK DALAM RUANG BAB II VEKTOR DAN GERAK DALAM RUANG 1. KOORDINAT CARTESIUS DALAM RUANG DIMENSI TIGA SISTEM TANGAN KANAN SISTEM TANGAN KIRI RUMUS JARAK,,,, 16 Contoh : Carilah jarak antara titik,, dan,,. Solusi :, Persamaan

Lebih terperinci

Transformasi Geometri Sederhana. Farah Zakiyah Rahmanti 2014

Transformasi Geometri Sederhana. Farah Zakiyah Rahmanti 2014 Transformasi Geometri Sederhana Farah Zakiyah Rahmanti 2014 Grafika Komputer TRANSFORMASI 2D Transformasi Dasar Pada Aplikasi Grafika diperlukan perubahan bentuk, ukuran dan posisi suatu gambar yang disebut

Lebih terperinci

3.3 Pengumpulan Data Primer

3.3 Pengumpulan Data Primer 10 pada bagian kantong, dengan panjang 200 m dan lebar 70 m. Satu trip penangkapan hanya berlangsung selama satu hari dengan penangkapan efektif sekitar 10 hingga 12 jam. Sedangkan untuk alat tangkap pancing

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab ini terdiri dari dua bagian. Pada bagian pertama berisi tinjauan pustaka dari penelitian-penelitian sebelumnya dan beberapa teori penunjang berisi definisi-definisi yang digunakan

Lebih terperinci

KONSEP DASAR TERKAIT METODE BAYES

KONSEP DASAR TERKAIT METODE BAYES KONSEP DASAR TERKAIT METODE BAYES 2.3. Peubah Acak dan Distribusi Peluang Pada statistika kita melakukan percobaan dimana percobaan tersebut akan menghasilkan suatu peluang. Ruang sampel pada percobaan

Lebih terperinci

: Purnomo Satria NIM : PENDISKRIPSIAN DATA

: Purnomo Satria NIM : PENDISKRIPSIAN DATA Nama : Purnomo Satria PENDISKRIPSIAN DATA NIM : 1133467162 1. Pendahuluan Dalam suatu penelitian kadang-kadang seorang peneliti menemui kesulitan dalam menyajikan sejumlah besar data statistik dalam bentuk

Lebih terperinci

BAB I PENDAHULUAN. menyelidiki hubungan di antara dua atau lebih peubah prediktor X terhadap peubah

BAB I PENDAHULUAN. menyelidiki hubungan di antara dua atau lebih peubah prediktor X terhadap peubah BAB I PENDAHULUAN 1.1 Latar Belakang Analisis regresi linier berganda merupakan analisis yang digunakan untuk menyelidiki hubungan di antara dua atau lebih peubah prediktor X terhadap peubah respon Y yang

Lebih terperinci

UKURAN NILAI SENTRAL&UKURAN PENYEBARAN. Tita Talitha, MT

UKURAN NILAI SENTRAL&UKURAN PENYEBARAN. Tita Talitha, MT UKURAN NILAI SENTRAL&UKURAN PENYEBARAN Tita Talitha, MT DISTRIBUSI FREKWENSI PENGERTIAN distribusi frekwensi adalah suatu tabel dimana banyaknya kejadian / frekwensi didistribusikan ke dalam kelas-kelas

Lebih terperinci

Ukuran Statistik Bagi Data

Ukuran Statistik Bagi Data Ukuran Statistik Bagi Data 1.1 Parameter dan Statistik Dalam statistika dikenal istilah populasi. Populasi merupakan kumpulan objek yang merupakan objek pengamatan kita. Deskripsi dari populasi tersebut

Lebih terperinci

DESKRIPSI PEMELAJARAN

DESKRIPSI PEMELAJARAN DESKRIPSI PEMELAJARAN MATA DIKLAT : Matematika TUJUAN : Melatih berfikir dan bernalar secara logis dan kritis serta mengembangkan aktifitas kreatif dalam memecahkan masalah dan mengkomunikasikan ide/gagasan

Lebih terperinci

PERTEMUAN 2 STATISTIKA DASAR MAT 130

PERTEMUAN 2 STATISTIKA DASAR MAT 130 PERTEMUAN 2 STATISTIKA DASAR MAT 130 Data 1. Besaran Statistika berbicara tentang data dalam bentuk besaran (dimensi) Besaran adalah sesuatu yang dapat dipaparkan secara jelas dan pada prinsipnya dapat

Lebih terperinci

SILABUS ALOKASI WAKTU T M P S P I SUMBER BELAJAR MATERI PEMBELAJARAN KOMPETENSI DASAR INDIKATOR. Kuis Tes lisan Tes tertulis Pengamatan Penugasan

SILABUS ALOKASI WAKTU T M P S P I SUMBER BELAJAR MATERI PEMBELAJARAN KOMPETENSI DASAR INDIKATOR. Kuis Tes lisan Tes tertulis Pengamatan Penugasan SILABUS KELAS / SEMESTER : X / 1 STANDAR : Memecahkan masalah berkaitan dengan konsep operasi bilangan riil KODE : D.1 : 57 x 45 menit 1. Menerapkan operasi pada bilangan riil Dua atau lebih bilangan bulat

Lebih terperinci

PERBANDINGAN METODE BOOTSTRAP DAN JACKKNIFE DALAM MENAKSIR PARAMETER REGRESI UNTUK MENGATASI MULTIKOLINEARITAS

PERBANDINGAN METODE BOOTSTRAP DAN JACKKNIFE DALAM MENAKSIR PARAMETER REGRESI UNTUK MENGATASI MULTIKOLINEARITAS Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 2 (2013), hal 137 146. PERBANDINGAN METODE BOOTSTRAP DAN JACKKNIFE DALAM MENAKSIR PARAMETER REGRESI UNTUK MENGATASI MULTIKOLINEARITAS

Lebih terperinci

Jurnal Gradien Vol. 10 No. 1 Januari 2014 : 963-966 Pendugaan Galat Baku Nilai Tengah Menggunakan Metode Resampling Jackknife dan Bootstrap Nonparametric dengan Software R 2.15.0 * Septiana Wulandari,

Lebih terperinci

PENAKSIRAN PARAMETER REGRESI LINIER DENGAN METODE BOOTSTRAP MENGGUNAKAN DATA BERDISTRIBUSI NORMAL DAN UNIFORM

PENAKSIRAN PARAMETER REGRESI LINIER DENGAN METODE BOOTSTRAP MENGGUNAKAN DATA BERDISTRIBUSI NORMAL DAN UNIFORM BIAStatistics (2015) Vol. 9, 2, hal. 28-32 PENAKSIRAN PARAMETER REGRESI LINIER DENGAN METODE BOOTSTRAP MENGGUNAKAN DATA BERDISTRIBUSI NORMAL DAN UNIFORM Munawar Jurusan Matematika FMIPA Universitas Syiah

Lebih terperinci

STATISTIKA. Statistika pengkuantifikasian (pengkuantitatifan) hasil-hasil pengamatan terhadap kejadian, keberadaan, sifat/karakterisitik, tempat, dll.

STATISTIKA. Statistika pengkuantifikasian (pengkuantitatifan) hasil-hasil pengamatan terhadap kejadian, keberadaan, sifat/karakterisitik, tempat, dll. STATISTIKA Statistika pengkuantifikasian (pengkuantitatifan) hasil-hasil pengamatan terhadap kejadian, keberadaan, sifat/karakterisitik, tempat, dll. Statistika deskriptif: pencatatan dan peringkasan hasil

Lebih terperinci

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel 8 BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Regresi dalam statistika adalah salah satu metode untuk menentukan tingkat pengaruh suatu variabel terhadap variabel yang lain. Variabel yang pertama disebut

Lebih terperinci

King s Learning Be Smart Without Limits NAMA : KELAS :

King s Learning Be Smart Without Limits NAMA : KELAS : NAMA : KELAS : A. PENGERTIAN STATISTIKA Statistika adalah ilmu yang mempelajari cara mengumpulkan dan menyusun data, mengolah dan menganalisis data, serta menyajikan data. Statistik adalah hasil dari pengolahan

Lebih terperinci

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali digunakan oleh Francis Galton. Dalam papernya yang

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali digunakan oleh Francis Galton. Dalam papernya yang 13 BAB 2 LANDASAN TEORI 2.1 Analisis Regresi Istilah regresi pertama kali digunakan oleh Francis Galton. Dalam papernya yang terkenal Galton menemukan bahwa meskipun terdapat tendensi atau kecenderungan

Lebih terperinci

MODUL TEORI ESTIMASI ATAU MENAKSIR TEORI ESTIMASI ATAU MENAKSIR

MODUL TEORI ESTIMASI ATAU MENAKSIR TEORI ESTIMASI ATAU MENAKSIR TEORI ESTIMASI ATAU MENAKSIR MODUL 9 TEORI ESTIMASI ATAU MENAKSIR. Pendahuluan Untuk menginginkan mengumpulkan populasi kita lakukan dengan statistik berdasarkan data yang diambil secara sampling yang

Lebih terperinci

BAB ΙΙ LANDASAN TEORI

BAB ΙΙ LANDASAN TEORI 7 BAB ΙΙ LANDASAN TEORI Berubahnya nilai suatu variabel tidak selalu terjadi dengan sendirinya, bisa saja berubahnya nilai suatu variabel disebabkan oleh adanya perubahan nilai pada variabel lain yang

Lebih terperinci

TINJAUAN PUSTAKA. Gambar 1 Diagram kotak garis

TINJAUAN PUSTAKA. Gambar 1 Diagram kotak garis TINJAUAN PUSTAKA Diagram Kotak Garis Metode diagram kotak garis atau boxplot merupakan salah satu teknik untuk memberikan gambaran tentang lokasi pemusatan data, rentangan penyebaran dan kemiringan pola

Lebih terperinci

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR VEKTOR DAN SKALAR Materi pokok pertemuan ke I: 1. Vektor dan skalar 2. Komponen vektor 3. Operasi dasar aljabar vektor URAIAN MATERI Masih ingatkah Anda tentang vektor? Apa beda vektor dengan skalar? Ya,

Lebih terperinci

I. PENDAHULUAN. merangkum, dan mempresentasikan data dengan cara informatif. Sedangkan

I. PENDAHULUAN. merangkum, dan mempresentasikan data dengan cara informatif. Sedangkan I. PENDAHULUAN 1.1 Latar Belakang Statistika merupakan ilmu tentang pengumpulan, pengaturan, analisis, dan pendugaan data untuk membantu proses pengambilan keputusan secara lebih efisien. Ilmu statistika

Lebih terperinci

MODEL-MODEL LEBIH RUMIT

MODEL-MODEL LEBIH RUMIT MAKALAH MODEL-MODEL LEBIH RUMIT DISUSUN OLEH : SRI SISKA WIRDANIYATI 65 JURUSAN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ISLAM INDONESIA 04 BAB I PENDAHULUAN. Latar Belakang

Lebih terperinci

BAB I BESARAN DAN SATUAN

BAB I BESARAN DAN SATUAN BAB I BESARAN DAN SATUAN A. STANDAR KOMPETENSI :. Menerapkan konsep besaran fisika, menuliskan dan menyatakannya dalam satuan dengan baik dan benar (meliputi lambang, nilai dan satuan). B. Kompetensi Dasar

Lebih terperinci

III HASIL DAN PEMBAHASAN

III HASIL DAN PEMBAHASAN Fungsi periodizer kutub tersebut dapat dituliskan pula sebagai: p θ, N, θ 0 = π N N.0 n= n sin Nn θ θ 0. () f p θ, N, θ 0 = π N N j= j sin Nj θ θ 0 diperoleh dengan menyubstitusi variabel θ pada f θ =

Lebih terperinci

270 o. 90 o. 180 o PENDAHULUAN

270 o. 90 o. 180 o PENDAHULUAN PENDAHULUAN Latar Belakang Perkembangan analisis data saat ini masih bertumu ada analisis untuk data linear. Disisi lain, untuk kasus-kasus tertentu engukuran dilakukan secara sirkular. Beberaa ilustrasi

Lebih terperinci

BAB 2 LANDASAN TEORI. digunakan sebagai konsep statistik pada tahun 1877 oleh Sir Francis Galton. Dia

BAB 2 LANDASAN TEORI. digunakan sebagai konsep statistik pada tahun 1877 oleh Sir Francis Galton. Dia 10 BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Dalam ilmu statistika teknik yang umum digunakan untuk menganalisa hubungan antara dua variabel atau lebih adalah analisa regresi linier. Regresi pertama

Lebih terperinci

KINEMATIKA GERAK 1 PERSAMAAN GERAK

KINEMATIKA GERAK 1 PERSAMAAN GERAK KINEMATIKA GERAK 1 PERSAMAAN GERAK Posisi titik materi dapat dinyatakan dengan sebuah VEKTOR, baik pada suatu bidang datar maupun dalam bidang ruang. Vektor yang dipergunakan untuk menentukan posisi disebut

Lebih terperinci

Bab 1 : Skalar dan Vektor

Bab 1 : Skalar dan Vektor Bab 1 : Skalar dan Vektor 1.1 Skalar dan Vektor Istilah skalar mengacu pada kuantitas yang nilainya dapat diwakili oleh bilangan real tunggal (positif atau negatif). x, y dan z kita gunakan dalam aljabar

Lebih terperinci

TINJAUAN PUSTAKA. Matriks adalah suatu susunan bilangan berbentuk segi empat. Bilangan-bilangan

TINJAUAN PUSTAKA. Matriks adalah suatu susunan bilangan berbentuk segi empat. Bilangan-bilangan 4 II. TINJAUAN PUSTAKA 2.1 Konsep Dasar Matriks 2.1.1 Matriks Matriks adalah suatu susunan bilangan berbentuk segi empat. Bilangan-bilangan dalam susunan itu disebut anggota dalam matriks tersebut. Suatu

Lebih terperinci

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Regresi dalam statistika adalah salah satu metode untuk menentukan tingkat pengaruh suatu variabel terhadap variabel yang lain. Variabel yang pertama disebut

Lebih terperinci

PENS. Probability and Random Process. Topik 2. Statistik Deskriptif. Prima Kristalina Maret 2016

PENS. Probability and Random Process. Topik 2. Statistik Deskriptif. Prima Kristalina Maret 2016 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 2. Statistik Deskriptif Prima Kristalina Maret 2016 1 Outline [2][1] 1. Penyajian Data o Tabel

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Regresi pertama kali digunakan sebagi konsep statistika pada tahun 1877 oleh sir Francis Galton.

BAB 2 TINJAUAN TEORITIS. Regresi pertama kali digunakan sebagi konsep statistika pada tahun 1877 oleh sir Francis Galton. BAB 2 TINJAUAN TEORITIS 2.1 Pengertian Regresi Regresi pertama kali digunakan sebagi konsep statistika pada tahun 1877 oleh sir Francis Galton. Beliau memperkenalkan model peramalan, penaksiran, atau pendugaan,

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi (regression analysis) merupakan suatu teknik untuk membangun

BAB 2 LANDASAN TEORI. Analisis regresi (regression analysis) merupakan suatu teknik untuk membangun BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Analisis regresi (regression analysis) merupakan suatu teknik untuk membangun persamaan dan menggunakan persamaan tersebut untuk membuat perkiraan (prediction).

Lebih terperinci

Bagian 1 Sistem Bilangan

Bagian 1 Sistem Bilangan Bagian 1 Sistem Bilangan Dalam bagian 1 Sistem Bilangan kita akan mempelajari berbagai jenis bilangan, pemakaian tanda persamaan dan pertidaksamaan, menggambarkan himpunan penyelesaian pada selang bilangan,

Lebih terperinci

7. Himpunan penyelesaian dari 2(x 3) 4(2x + 3) adalah... a. x -1 c. X 1 e. x -3 b. x 1 d. x -3

7. Himpunan penyelesaian dari 2(x 3) 4(2x + 3) adalah... a. x -1 c. X 1 e. x -3 b. x 1 d. x -3 . 4% uang Ani diberikan kepada adiknya dan 5% dari uang tersebut untuk membayar rekening listrik dan 5% untuk membayar rekening telpon, sisa uang Ani adalah Rp 4.,. Berapakah jumlah uang Ani a. Rp 4.,

Lebih terperinci

Statistika Deskriptif & Distribusi Frekuensi

Statistika Deskriptif & Distribusi Frekuensi Statistika Deskriptif & Distribusi Frekuensi Oleh: Zulhan Widya Baskara FAKULTAS TEKNOLOGI PERTANIAN Mataram, September 2014 Statistika Statistika Deskriptif Statistika Inferensial Statistika Deskriptif

Lebih terperinci

Diferensial Vektor. (Pertemuan II) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Diferensial Vektor. (Pertemuan II) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Diferensial Vektor (Pertemuan II) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Definisi Secara Grafis : Dari gambar di samping, ada sebuah anak panah yang berawal

Lebih terperinci

TUJUAN INSTRUKSIONAL KHUSUS

TUJUAN INSTRUKSIONAL KHUSUS PREVIEW KALKULUS TUJUAN INSTRUKSIONAL KHUSUS Mahasiswa mampu: menyebutkan konsep-konsep utama dalam kalkulus dan contoh masalah-masalah yang memotivasi konsep tersebut; menjelaskan menyebutkan konsep-konsep

Lebih terperinci

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya FUNGSI dan LIMIT 1.1 Fungsi dan Grafiknya Fungsi : suatu aturan yang menghubungkan setiap elemen suatu himpunan pertama (daerah asal) tepat kepada satu elemen himpunan kedua (daerah hasil) fungsi Daerah

Lebih terperinci

Regresi Linier Sederhana dan Korelasi. Pertemuan ke 4

Regresi Linier Sederhana dan Korelasi. Pertemuan ke 4 Regresi Linier Sederhana dan Korelasi Pertemuan ke 4 Pengertian Regresi merupakan teknik statistika yang digunakan untuk mempelajari hubungan fungsional dari satu atau beberapa variabel bebas (variabel

Lebih terperinci

Pengumpulan & Penyajian Data

Pengumpulan & Penyajian Data Pengumpulan & Penyajian Data Cara Pengumpulan Data 1. Mengadakan penelitian langsung ke lapangan atau laboratorium terhadap obyek yang diteliti, hasilnya dicatat dan dianalisis 2. Mengambil atau menggunakan

Lebih terperinci

dapat digunakan formulasi sebagai berikut : Letak Letak Letak

dapat digunakan formulasi sebagai berikut : Letak Letak Letak 1. Ukuran Letak Agar kita dapat mengetahui lebih jauh mengenai karakteristik data observasi dengan beberapa ukuran sentral, kita sebaiknya mengetahui beberapa ukuran lain, yaitu ukuran letak. Ada tiga

Lebih terperinci

PROBABILITAS &STATISTIK. Oleh: Kholistianingsih, S.T., M.Eng.

PROBABILITAS &STATISTIK. Oleh: Kholistianingsih, S.T., M.Eng. PROBABILITAS &STATISTIK ke-1 Oleh: Kholistianingsih, S.T., M.Eng. KONTRAK PEMBELAJARAN UAS : 35% UTS : 35% TUGAS : 20% KEHADIRAN :10% SEMUA KOMPONEN HARUS ADA KEHADIRAN 0 NILAI MAKS D PEUBAH DAN GRAFIK

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Regresi Linier Sederhana Dalam beberapa masalah terdapat dua atau lebih variabel yang hubungannya tidak dapat dipisahkan karena perubahan nilai suatu variabel tidak selalu terjadi

Lebih terperinci

BAB 2 TINJAUAN TEORITIS

BAB 2 TINJAUAN TEORITIS BAB 2 TINJAUAN TEORITIS 2.1 Data Data merupakan kumpulan keterangan atau fakta yang diperoleh dari satu populasi atau lebih. Data yang baik, benar dan sesuai dengan model menentukan kualitas kebijakan

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam mengkaji penelitian Karakteristik Penduga Parameter Distribusi Log

II. TINJAUAN PUSTAKA. Dalam mengkaji penelitian Karakteristik Penduga Parameter Distribusi Log II. TINJAUAN PUSTAKA Dalam mengkaji penelitian Karakteristik Penduga Parameter Distribusi Log Normal Menggunakan Metode Generalized Moment digunakan beberapa definisi, dan teorema yang berkaitan dengan

Lebih terperinci

PENENTUAN UKURAN CONTOH DAN REPLIKASI BOOTSTRAP UNTUK MENDUGA MODEL REGRESI LINIER SEDERHANA

PENENTUAN UKURAN CONTOH DAN REPLIKASI BOOTSTRAP UNTUK MENDUGA MODEL REGRESI LINIER SEDERHANA Jurnal Matematika UNAND Vol. 3 No. 2 Hal. 53 61 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENENTUAN UKURAN CONTOH DAN REPLIKASI BOOTSTRAP UNTUK MENDUGA MODEL REGRESI LINIER SEDERHANA OLIVIA ATINRI,

Lebih terperinci

PROBABILITAS &STATISTIK. Oleh: Kholistianingsih, S.T., M.Eng.

PROBABILITAS &STATISTIK. Oleh: Kholistianingsih, S.T., M.Eng. PROBABILITAS &STATISTIK ke-1 Oleh: Kholistianingsih, S.T., M.Eng. KONTRAK PEMBELAJARAN UAS : 35% UTS : 35% TUGAS : 20% KEHADIRAN :10% SEMUA KOMPONEN HARUS ADA KEHADIRAN 0 NILAI MAKS D PEUBAH DAN GRAFIK

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Statistika adalah salah satu cabang ilmu matematika yang memperhitungkan probabilitas dari suatu data sampel dengan tujuan mendapatkan kesimpulan mendekati

Lebih terperinci

Metode Penelitian Kuantitatif Aswad Analisis Deskriptif

Metode Penelitian Kuantitatif Aswad Analisis Deskriptif Analisis Deskriptif Tanpa mengurangi keterumuman, pembahasan analisis deskriptif kali ini difokuskan kepada pembahasan tentang Ukuran Pemusatan Data, dan Ukuran Penyebaran Data Terlebih dahulu penting

Lebih terperinci

PENGUKURAN DESKRIPTIF

PENGUKURAN DESKRIPTIF PENGUKURAN DESKRIPTIF STATISTIK INDUSTRI I Jurusan Teknik Industri Universitas Brawijaya Malang 1 PENGUKURAN DESKRIPTIF Suatu pengukuran yang bertujuan untuk memberikan gambaran tentang data yang diperoleh

Lebih terperinci

ESTIMASI. Arna Fariza PENDAHULUAN

ESTIMASI. Arna Fariza PENDAHULUAN ESTIMASI Arna Fariza PENDAHULUAN MATERI LALU Karena adanya berbagai alasan seperti banyaknya individu dalam populasi amatan, maka penelitian keseluruhan terhadap populasi tersebut tidaklah ekonomis, baik

Lebih terperinci

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel BAB LANDASAN TEORI.1 Pengertian Regresi Regresi dalam statistika adalah salah satu metode untuk menentukan tingkat pengaruh suatu variabel terhadap variabel yang lain. Variabel yang pertama disebut dengan

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. HASIL PENELITIAN 1. Hasil Pengembangan Produk Penelitian ini merupakan penelitian pengembangan yang bertujuan untuk mengembangkan produk berupa Skema Pencapaian

Lebih terperinci

PENERAPAN METODE BOOTSTRAP RESIDUAL DALAM MENGATASI BIAS PADA PENDUGA PARAMETER ANALISIS REGRESI

PENERAPAN METODE BOOTSTRAP RESIDUAL DALAM MENGATASI BIAS PADA PENDUGA PARAMETER ANALISIS REGRESI PENERAPAN METODE BOOTSTRAP RESIDUAL DALAM MENGATASI BIAS PADA PENDUGA PARAMETER ANALISIS REGRESI Ni Made Metta Astari 1, Ni Luh Putu Suciptawati 2, I Komang Gde Sukarsa 3 1 Jurusan Matematika, Fakultas

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH STATISTIKA DESKRIPTIF (TK) KODE / SKS: KD / 2 SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH STATISTIKA DESKRIPTIF (TK) KODE / SKS: KD / 2 SKS Minggu Pokok Bahasan ke dan TIU 1 1. Pendahulua n tentang konsep statistika dan notasi penjumlahan Sub Pokok Bahasan dan Sasaran Belajar 1.1. Konsep statistika Mahasiswa dapat menjelaskan pengertian statistika

Lebih terperinci

TINJAUAN PUSTAKA. Gunung Merapi

TINJAUAN PUSTAKA. Gunung Merapi 5 TINJAUAN PUSTAKA Gunung Merapi Gunung Merapi merupakan salah satu gunung api yang paling aktif di Indonesia. Merapi mempunyai ciri-ciri sebagai berikut (BPPTK). 1. Tipe : Strato-volcano 2. Petrologi

Lebih terperinci

Pengertian. Transformasi geometric transformation. koordinat dari objek Transformasi dasar: Translasi Rotasi Penskalaan

Pengertian. Transformasi geometric transformation. koordinat dari objek Transformasi dasar: Translasi Rotasi Penskalaan Pengertian Transformasi geometric transformation Transformasi = mengubah deskripsi koordinat dari objek Transformasi dasar: Translasi Rotasi Penskalaan Translasi Mengubah posisi objek: perpindahan lurus

Lebih terperinci

Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Diferensial Vektor (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Perkalian Titik Perkalian titik dari dua buah vektor A dan B pada bidang dinyatakan

Lebih terperinci

TINJAUAN PUSTAKA Analisis Biplot Biasa

TINJAUAN PUSTAKA Analisis Biplot Biasa TINJAUAN PUSTAKA Analisis Biplot Biasa Analisis biplot merupakan suatu upaya untuk memberikan peragaan grafik dari matriks data dalam suatu plot dengan menumpangtindihkan vektor-vektor dalam ruang berdimensi

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. penjelasan tentang pola hubungan (model) antara dua variabel atau lebih.. Dalam

BAB 2 TINJAUAN TEORITIS. penjelasan tentang pola hubungan (model) antara dua variabel atau lebih.. Dalam BAB 2 TINJAUAN TEORITIS 21 Pengertian Regresi Linier Pengertian regresi secara umum adalah sebuah alat statistik yang memberikan penjelasan tentang pola hubungan (model) antara dua variabel atau lebih

Lebih terperinci

UKURAN PEMUSATAN MK. STATISTIK (MAM 4137) 3 SKS (3-0) Ledhyane Ika Harlyan

UKURAN PEMUSATAN MK. STATISTIK (MAM 4137) 3 SKS (3-0) Ledhyane Ika Harlyan UKURAN PEMUSATAN MK. STATISTIK (MAM 4137) 3 SKS (3-0) Ledhyane Ika Harlyan 1 DAFTAR ISI Mean Median Modus Kuartil, Desil dan Presentil Hubungan Mean-Median-Modus 2 Ukuran Statistik Untuk menjelaskan ciri-ciri

Lebih terperinci