METABOLISME SEL. A. Pengertian Umum

Ukuran: px
Mulai penontonan dengan halaman:

Download "METABOLISME SEL. A. Pengertian Umum"

Transkripsi

1 METABOLISME SEL A. Pengertian Umum Metabolisme adalah segala proses reaksi kimia yang terjadi di dalam makhluk hidup, mulai makhluk hidup bersel satu yang sangat sederhana seperti bakteri, protozoa, jamur, tumbuhan, hewan; sampai mkhluk yang susunan tubuhnya kompleks seperti manuasia. Di dalam proses ini, makhluk hidup mendapat, mengubah dan memakai senyawa kimia dari sekitarnya untuk mempertahankan hidupnya. Metabolisme meliputi proses sintesis (anabolisme) dan proses penguraian (katabolisme) senyawa atau komponen dalam sel hidup.. Semua reaksi metabolisme dikatalis oleh enzim. Hal lain yang penting dalam metabolisme adalah peranannya dalam penawaracunan atau detoksifikasi, yaitu mekanisme reaksi pengubahan zat yang beracun menjadi senyawa tak beracun yang dapat dikeluarkan dari tubuh. Anabolisme dibedakan dengan katabolisme dalam beberapa hal: - Anabolisme merupakan proses sintesis molekul kimia kecil menjadi molekul kimia yang lebih besar, sedangkan katabolisme merupakan proses penguraian molekul besar menjadi molekul kecil - Anabolisme merupakan proses membutuhkan energi, sedangkan katabolisme melepaskan energi - Anabolisme merupakan reaksi reduksi, katabolisme merupakan reaksi oksidasi - Hasil akhir anabolisme adalah senyawa pemula untuk proses katabolisme. 1 / 128

2 B. Fotosintesis Pada hakekatnya, semua kehidupan di atas bumi ini tergantung langsung dari adanya proses asimilasi CO menjadi senyawa kimia organik dengan energi yang didapat dari sinar matahari. Dalam proses ini energi sinar matahari (energi foton) ditangkap dan diubah menjadi energi kimia dengan proses yang disebut fotosintesis. Proses ini berlangsung didalam sel pada tumbuhan tinggi, tumbuhan pakis, lumut, ganggang (ganggang hijau, biru, merah dan coklat) dan berbagai jasad renik (protozoa golongan euglena, bakteri belerang ungu, dan bakteri belerang biru). Energi matahari yang ditangkap pada proses fotosintesis merupakan lebih dari 90% sumber energi yang dipakai oleh manusia untuk pemanasan, cahaya dan tenaga. Gambar 1 berikut ini menunjukkan sebaran pemakaian energi matahari oleh bumi dan atmosfer. 30% dipantulkan kembali secara langsung ke ruangan angkasa Sinar matahari 2 / 128

3 3 / 128

4 Gambar 1. Gambaran sebaran pemakain energi matahari oleh bumi dan atmosfernya. 4 / 128

5 Gambar 2. Penggunaan energi matahari oleh klorofil tanaman Keseluruhan proses fotosintesis yang melibatkan berbagai macam enzim dituliskan dengan persamaan reksi: 6 CO + 6 HO CHO + 6 O Dalam bakteri berfotosintesis sebagai pengganti HO dipakai zat pereduksi yang lebih kuat seperti H, HS, HR (R adalh gugus organik ). Persamaan reaksinya adalah : 2 CO+ 2 HR 2 CHO + O + 2 R 5 / 128

6 Proses fotosintesis pada tumbuhan tinggi dibagi dalam dua tahap. Pada tahap pertama energi matahari ditangkap oleh pigmen penyerap cahaya dan diubah menjadi bentuk energi kimia, ATP dan senyawa reduksi, NADPH. Proses ini disebut reaksi terang. Atom hydrogen dari molekul HO dipakai untuk mereduksi NADP menjadi NADPH, dan O dilepaskan sebagai hasil samping reaksi fotosintesis. Reaksi ini juga dirangkaikan dengan reaksi endergonik pembentukan ATP dari ADP + Pi. Dengan demikian tahap reaksi terang dapat dituliskan dengan persamaan: HO + NADP + ADP + Pi O+ H + NADPH + ATP Energi matahari Dalam hal ini pembentukan ATP dari ADP + Pi merupakan suatu mekanisme penyimpanan energi matahari yang diserap kemudian diubah menjadi bentuk energi kimia. Proses ini disebut fotofosforilasi. Tahap kedua disebut tahap reaksi gelap. Dalam hal ini senyawa kimia berenergi tinggi NADPH dan ATP yang dihasilkan dalam tahap pertama ( reaks i gelap) dipakai untuk proses reaksi reduksi CO menjadi glukosa dengan persamaan: CO + NADPH + H + ATP glukosa + NADP + ADP + Pi 1. Tahap Reaksi Terang Cahaya 6 / 128

7 Reaksi terang cahaya dalam proses pebebasan energi matahari oleh klorofil dimana dilepaskan molekul O, terdiri dari dua bagian. Bagian pertama disebut fotosistem I mempunyai kemampuan penyerapan energi matahari dengan panjang gelombang di sekitar 700nm dan tidak melibatkan proses pelepasan O,. bagian kedua yang menyangkut penyerapan energi matahari pada panjang gelombang di sekitar 680 nm, disebut fotosistem II, melibatkan proses pembentukan O dan HO. Fotosistem I merupakan suatu partikel yang disusun oleh sekitar 200 molekul klorofil-a, 50 klorofil-b, pigmen karotenoid dan satu molekul penerima energi matahari yang disebut protein P700. Energi matahari (foton) yang ditangkap oleh pigmen pelengkap dipindahkan melelui beberapa molekul pigmen, disebut proses perpindahan eksiton, yang akhirnya diterima oleh P700. Akibatnya P700 melepaskan elektron yang berenergi tinggi. Proses penangkapan foton dan perpindahan eksiton di dalam fotosistem ini berlangsung dengan sangat cepat dan di pengaruhi oleh suhu. Dengan mekanisme yang sama, proses penangkapan foton dan pemindahan eksiton terjadi pula pada fotosistem II yaitu pada panjang gelombang 680. Partikel fotosistem I dan II terdapat dalam membrane kantong tilakoid secara terpisah. 2. Pengangkutan Elektron dan Fotofosforilasi Fotosistem I dan II merupakan komponen penyalur energi dalam rantai pengangkutan elektron fotosintesis secara kontinyu, dari molekul air sebagai donor elektron ke NADP sebagai aseptor elektron. Perbedaan antara pengangkutan elektron dalam fotosintesis dan pengangkutan elektron pernafasan adalah: 1. Pada yang pertama, elektron mengalir dari molekol HO ke NADP, sedangkan pada yang kedua arah aliran elektron adalah dari NADP ke HO 2. Pada yang pertama terdapat dua system pigmen, fotosistem I dan II yang berperan 7 / 128

8 sebagai pendorong untuk mengalirkan elektron dengan bantuan energi matahari dari HO ke NADP 3. Pada yang pertama dihasilkan O sedangkan pada yang ke dua memerlukan O Persamaannya ialah kedua rantai pengangkutan elektron tersebut menghasilkan energi ATP dan melibatkan sederetan molekul pembawa elektron. Pengangkutan elektron dalam fotosintesis terdiri dari tiga bagian yaitu bagian pendek dari HO ke fotosistem II, bagian dari fotosistem II ke fotosistem I yang dirangkaikan dengan pembentukan ATP dari ADP + Pi, dan bagian dari fotosistem I ke NADPyang menghasilkan NADPH seperti pada gambar 3. 8 / 128

9 9 / 128

10 Gambar 3. Diagram energi pengangkutan elektron dalam fotosintesis Gambar 3. Hubungan energi dan pengengkutan elektron dalam fotosintesis Penyerapan foton oleh molekul pigmen fotosintesis I menyebabkan tereksitasinya molekul tersebut, menghasilkan eksiton berenergi tinggi yang kemudian ditangkap oleh molekul P 700. Akibatnya P 700 melepaskan elektron dan memindahkannya ke molekul penerima elektron pertama P 430. selanjutnya elektron dialirkan melalui deretan molekul pembawa elektron sampai ke NADP menyebabkan tereduksinya NADP menjadi NADPH. Dalam proses ini diperlukan dua elektron untuk mereduksi satu molekul NADP. Lepasnya satu elektron dari P700 mengakibatkan berubahnya molekul ini menjadi bentuk teroksidasinya, P700 yang kekurangan satu elektron. Dengan kata lain terjadinya satu lubang elektron pada P700. Untuk mengisi lubang ini, satu elektron dialirkan melalui sederetan molekul pembawa elektron, dari molekul P680 dalam fotosistem II. Dalam hal ini pengaliran elektron hanya terjadi setelah terlebih dulu terjadi penyinaran terhadap fotosistem II, yaitu tereksitasinya P680 yang segera melepaskan elektron ke molekul penerima elektron pertamanya, C550. Ini mengakibatkan teroksidasinya bentuk P680. Kekurangan elektron pada P680 dipenuhi dari reaksi oksidasi oksidasi molekul HO menjadi O. Proses pengangkutan elektron dari HO ke NADP yang didorong oleh energi matahari ini disebut pengangkutan non siklik (tak mendaur dalam elektron fotosintesis). Dalam hal ini satu molekul HO melepaskan dua elektron yang diperlukan untuk mereduksi satu molekul NADP menajdi NADPH, dirangkaikan dengan pembentuka ATP dari ADP + pi, disebut proses f otofosforilasi. Persamaan reaksinya adalah: 10 / 128

11 FS I FS II HO + NADP + ADP + Pi O+ H + NADPH + ATP Energi matahari Energi pada proses pengangkutan elektron dalam fotosintesis dari HO ke NADP. Elektron yang telah tereksitasi di fotosistem II selanjutnya dialirkan ke fotosistem I melalui molekul penerima elektron; sitokrom 559 (sitokrom b= cyt. b), plastoquinon (PQ), sitokrom 553 (sitokrom f = cyt.f), plastosianin(pc) dan molekul P700di fotosistem I. pengankutan elektron dari PQ ke cyt.f dirangkaikan dengan pembentukan ATP dari ADP+Pi. Sementara itu elektron yang telah tereksitasi difotosistem I, dialirkan berturut-turut ke molekul substrat feredoksin, feredoksin, feredoksin reduktase, dan akhirnya ke NADP dimana molekul ini tereduksi menjadi NADPH. Dalam keadaan tertentu, elektron yang tereksitasi di fotosistem I tidak dialirkan ke NADP, tetapi kembali ke P700 melalui molekul penerima elektron lainnya, sitokrom 564 (cyt.b) yang selanjutnya melalui cyt. b dialirkan ke P700 di fotosistem I. mekanisme pengangkutan elektron ini disebut pengangkutan elektron mendaur dalam fotosintesis, sedangkan pengangkutan 11 / 128

12 elektron dari HO ke NADP melalui fotosistem I dan fotosistem II, disebut pengangkutan elektron tak mendaur dalam fotosintesis. 3. Tahap Reaksi Gelap Cahaya: Daur Calvin Dalam tahap reaksi gelap cahaya ini, energi yang dihasilkan (NADPH dan ATP) dalam tahap reaksi terang cahaya selanjutnya dipakai dalam reaksi sintesis glukosa dari CO, untuk kemudian dipakai dalam reaksi pembentukan senyawa pati, selulosa, dan polisakarida lainnya sebagai hasil akhir proses fotosintesis dalam tumbuhan. Jalur metabolisme reaksi pembentukan glukosa dari CO ini merupakan suatu jalur metabolisme mendaur yang pertama kali diusulkan oleh M.Calvin, disebut daur Calvin. Dalam tahap reaksi pertamanya 6 molekul CO dari udara bereaksi dengan 6 molekul ribulosa 1,5-difosfat, dikatalis oleh enzim ribulosa difosfat karboksilase, menghasilkan 2 molekul 3-fosfogliserat melalui pembentukan senyawa antara, 2-karboksi 3-ketoribitol 1,5-difosfat. 12 / 128

13 Ribulosa 1,5 difosfat 2-karboksi 3-ketoribitol 1,5-difosfat 3-fosfogliserat Pada tahap reaksi kedua, 12 molekul 3-fosfogliserat diubah menjadi 12 molekul gliseral dehida 3-fosfat melalui pembentukan 1,3-difosfogliserat, dikatalis oleh enzim fosfogliserat kinase dan gliseraldehidafosfat dehidrogenase, serta menggunakan 12 ATP dan 12 NADPH. ATP ADP NADPH + H NADP Gliseraldehida fosfat dehidrogenase Fosfogliserat kinase 3-fosfogliserat 3-fosfogliseroil fosfat gliseraldehida-3-fosfat 13 / 128

14 Tahap reaksi ketiga, 12 gliseraldehida 3-P diubah menjadi 3 molekul fruktosa 6-P dengan melalui pembentukan senyawa dihidroksi aseton fosfat dan fruktosa 1,6 difosfat. 14 / 128

15 15 / 128

16 Gambar 4. Daur Calvin: Jalur mendaur metabolisme penambatan CO Reaksi tahap gelap cahaya pada proses fotosintesis. Gambar 4. diatas menunjukkan ringkasan keseluruhan jalur metabolisme daur Calvin. Dalam daur ini yang sangat menonjol adalah tahap reaksi penambatan CO, reaksi yang menggunakan energi NADPH dan ATP dan reaksi yang menghasilkan glukosa sebagai hasil akhir. Dalam reaksi penambatan CO 2, ternyata dibutuhkan tiga molekul ATP dan dua molekul NADPH untukm mereduksi satu molekul CO. Energi matahari yang ditangkap oleh foto sistem I dan foto sistem II dalam fase terang cahaya diubah menjadi energi kimia NADPH dan ATP. Kedua macam energi ini kemudian dipakai untuk menjalankan daur Calvin dengan mendorong tahap reaksi pembentukan gliseraldehida 3-fosfat dan ribosa 1,5-difosfat serta pelepasan dlukosa dari daur. C. Metabolisme Karbohidrat Pada metabolisme karbohidrat pada manusia dan hewan secara umum, setelah melalui dinding usus halus sebagian besar monosakarida dibawa oleh aliran darah ke hati. Di dalam hati, monosakarida mengalami sintesis menghasilkan glikogen, oksidasi menjadi CO dan HO atau dilepaskan untuk dibawa dengan aliran darah kebagian tubuh yang memerlukannya sebagaimana digambarkan pada Gambar 5. HATI DARAH 16 / 128

17 OTOT glikogen fruktosa galaktosa glukosa 17 / 128

18 ATP piruvat 18 / 128

19 lipida CO+ HO sterol kolsterol fruktosa galaktosa 19 / 128

20 glukosa ATP piruvat 20 / 128

21 laktat glikogen 21 / 128

22 glukosa ATP 22 / 128

23 piruvat laktat ATP CO+ HO 23 / 128

24 Gambar 5. Gambaran Umum Metabolisme Karbohidrat: Hubungan antara hati, darah dan otot. Sebagian lain monosakarida dibawa langsung ke sel jaringan organ tertentu dan mengalami proses metabolisme lebih lanjut. Karena pengaruh berbagai faktor dan hormon insulinyang dihasilkan oleh kelenjar pankreas, maka hati dapat mengatur kadar glukosa dalam darah. Bila kadar glkosa dalam darah meningkat sebagai akibat naiknya proses pencernaan dan penyerapan karbohidrat, sintesis glikogen dari glukosa oleh hati akan naik. Sebaliknya bila kadar glukosa menurun, misalnya akibat latihan olahraga, glikogern diuraikan menjadi glukosa yang selanjutnya mengalami proses katabolisme menghasilkan energi (dalam bentuk energi kimia, ATP) yang dibutuhkan oleh kegiatan olahraga tersebut Kadar glukosa dalam darah merupakan faktor yang sangat penting untuk kelancaran kerja tubuh. Kadar normal glukosa dalam darah adalah mg/100 ml. Keadaan dimana kadar glukosa berada di bawah 70mg/100ml disebut hipoglisemia, sedangkan diatas 90mg/100ml disebut hiperglisemia. Hipoglisemia yang ekstrem dapat menghasilkan suatu rentetan reaksi goncangan yang ditunjukkan oleh gejala gemetarnya otot, perasaan lemah badan dan pucatnya warna kulit. Hipoglisemia yang serius dapat menyebabkan kehilangan kesadaran sebagai akibat kekurangan glukosa dalam otak yang diperlukan untuk pembentukan energi, sehingga pada akhirnya dapat menyebabkan kematian. Kadar glukosa yang tinggi merangsang pembentukan glikogen dari glukosa, sintesis asam lemak dan kolesterol dari glukosa. Kadar glukosa antara 140 dan 170 mg/100 ml disebut kadar ambang ginjal, karena pada kadar ini glukosa diekskresi dalam kemih melalui ginjal. Gejala ini disebut glukosuria yaitu keadaan ketidakmampuan ginjal untuk menyerap kembali glukosa yang telah mengalami filtrasi melalui sel tubuh. 24 / 128

25 Kadar glukosa dalam darah diatur oleh beberapa hormon. Insulin dihasilkan oleh kelenjar pankreas menurunkan kadar glukosa dengan menaikkan pembentukan glikogen dari glukosa. Adrenalin (epineprin) yang juga dihasilkan oleh pankreas, dan glukagon berperan dalam menaikkan kadar glukosa dalam darah. Semua faktor ini bekerjasama secara terkoordinasi mempertahankan kadar glukosa tetap normal untuk menunjang berlangsungnya proses metabolisme secara optimum. 1. Biosintesis dan Perombakan Glikogen Glukosa 6-fosfat dan glukosa 1-fosfat merupakan senyawa antara dalam proses glikogenesis atau pembentukan glikogen dari glukosa. Proses kebalikannya, penguraian glikogen menjadi glukosa yang disebut glikogenolisis juga melibatkan terjadinya kedua senyawa antara tersebut tetapi dengan jalur yang berbeda seperti digambarkan pada Gambar 6. Senyawa antara UDP-glukosa (Glukosa Uridin Difosfat) terjadi pada jalur pembentukan tetapi tidak pada jalur penguraian glikogen. Demikian pula enzim yang berperan dalam kedua jalur tersebut juga berbeda. glikogen UDP Pi E E 25 / 128

26 UDP-glukosa glukosa 1-fosfat E PPi UTP E glukosa 6-fosfat ADP E E ATP glukosa Pi 26 / 128

27 Gambar 6. Jalan reaksi glikogenesis dan glikogenolisis. UTP = Uridin Tripospat, ADP = Adenosin Dipospat, (P) = gugus pospat anorganik. UDP-glukosa = Uridin dipospat glukosa. Enzim: E= fosforilase, E= fosfoglukomutase, E= fosfatase, E= glukokinase, E = pirofosforilase, E= glikogen sintetase. PPi = asam piropospat. 2. Glikogenesis Gugus fosfat dan energi yang diperlukan dalam reaksi pembentukan glukosa 6-fosfat dsari glukosa diberikan oleh ATP yang berperan sebagai senyawa kimia berenergi tinggi. Sedang enzim yang mengkatalisnya adalah glukokinase. Selanjutnya, dengan fosfoglukomutase, glukosa 6-fosfat mengalami reaksi isomerasi menjadi glukosa 1-fosfat. ATP ADP Glukosa glukosa 6-fosfat 27 / 128

28 heksokinase fosfoglukomutase Uridin difosfat UTP uridil transferase glukosa (UDPG) Glukosa 1-fosfat PPi UTP Gambar 7. Glikogenesis: pembentukan uridin difosfat glukosa (UDPG) dari glukosa, melalui pembentukan glukosa 6-fosfat dan glukosa 1-fosfat. Glukosa 1-fosfat bereaksi dengan uridin tri fosfat (UTP) dikatalis oleh glukosa 1-fosfat uridil 28 / 128

29 transferase menghasilkan uridin difosfat glukosa (UDP-glukosa)dan pirofosfat (PPi). Mekanisme reaksi glikogenesis juga merupakan jalur metabolisme umum untuk biosintesis disakarida dan polisakarida. Dalam berbagai tumbuhan seperti tanaman tebu, disakarida sukrosa dihasilkan dari glukosa dan fruktosa melalui mekanisme biosintesis tersebut. Dalam hal ini UDP-glukosa abereaksi dengan fruktosa 6-fosfat, dikatalis oleh sukrosa fosfat sintase, membentuk sukrosa 6-fosfat yang kemudian dengan enzim sukrosa fosfatase dihidrolisis menjadi sukrosa. 3. Glikogenolisis Tahap pertama penguraian glikogen adalah pembentukan glukosa 1-fosfat. Berbeda dengan reaksi pembentukan glikogen, reaksi ini tidak melibatkan UDP-glukosa, dan enzimnya adalah glikogen fosforilase. Selanjutnya glukosa 1-fosfat diubah menjadi glukosa 6-fosfat oleh enzim yang sama seperti pada reaksi kebalikannya (glikogenesis) yaitu fosfoglukomutase. Glikogen, (glukosa) Pi glikogen fosforilase Glukosa 1-fosfat + Glikogen, (glukosa) 29 / 128

30 fosfoglukomutase Glukosa 6-fosfat Gambar 11. Glikogenolisis: penguraian glikogen menghasilkan glukosa 6-fosfat. Tahap reaksi berikutnya adalah pembentukan glukosa dari glukosa 6-fosfat. Berbeda dengan reaksi kebalikannya dengan glukokinase, dalam reaksi ini enzim lain, glukosa 6-fosfatase, melepaskan gugus fosfat sehigga terbentuk glukosa. Reaksi ini tidak menghasilkan ATP dari ADP dan fosfat. Glukosa 6-fosfat glukosa + asam fosfat 4. Glikololisis: Proses penguraian karbohidrat menjadi piruvat. Juga disebut jalur metabolisme Emden-Meyerg 30 / 128

31 off dan sering diartikan pula sebagai penguraian glukosa menjadi piruvat. Proses ini terjadi dalam sitoplasma. Glikolisis anaerob : proses penguraian karbohidrat menjadi laktat melalui piruvat tanpa melibatkan oksigen. Proses penguraian glukosa menjadi CO dan air seperti juga semua proses oksidasi. Energi yang dihasilkan dari proses penguraian glukosa ini adalah 690 kilo-kalori (kkal). glukosa + 6 O 6 CO+ 6 HO kkal Jumlah energi ini sebenarnya jauh lebih besar daripada jumlah energi yang dapat disimpan secara sangkil dalam bentuk energi kimia ATP yang dihasilkan dalam proses penguraian tersebut. Ganbar 12. Gambaran Umum Proses Pernafasan Secara Keseluruhan. Glikolisis sampai dengan proses fosforilasi oksidatif Dengan adanya oksigen (dalam suasana aerob), glikolisis menghasilkan piruvat, atau tanpa oksigen (glikolisis anaerob) menghasilkan laktat. Glikolisis menghasilkan dua senyawa karbohidrat beratom tiga dari satu senyawa beratom enam; pada proses ini terjadi sintesis ATP dari ADP + Pi. Gambar 13 me-nunjukkan proses glikolisis secara keselurhan. 31 / 128

32 Glikogen Uridin difosfat glukosa Glukosa 1 - P Glukosa Glukosa 6 P Fruktosa 6 p 32 / 128

33 Fruktosa 1,6 di P Gliseraldehida 3 P dihidroksiaseton fosfat 1,3 d- - P gliserat 3 P gliserat 33 / 128

34 2 2 P gliserat fosfoenol piruvat Melalui mitokondrion piruvat Gambar 13. Glikolisis ( ) dan glikogenesis ( ) secara keseluruhan. 34 / 128

35 Glukogenesis: pembentukan glukosa dari piruvat. Seperti halnya reaksi dengan glukokinase (reaksi tahap pertama) dan fosfofruktokinase (reaksi tahap ketiga), reaksi dengan piruvat kinase ini juga merupakan reaksi yang tidak reversibel, sehingga merupakan salah satu tahap reaksi pendorong glikolisis. Piruvat Oksalasetat 35 / 128

36 Malat mitokondria fosfoenol piruvat CO 36 / 128

37 CO piruvat ATPP 37 / 128

38 fosfoenol piruvat ADP+Pi karboksikinase GTP NADH oksalasetat 38 / 128

39 Malat dehidrogenase NAD malat NAD 39 / 128

40 dehidrogenase Malat sitoplasma sitoplasma Gambar 14. Perubahan piruvat menjadi fosfoenol piruvat dengan bantuan mitokondrion. Reaksi kebalikannya yang merupakan reaksi tahap pertama glukoneogenesis merupakan suatu reaksi yang kompleksyang melibatkan beberapa enzim dan organel sel yaitu mitokondrion, yang diperlukan untuk terlebih dahulu mengubah piruvat menjadi malat sebelum terbentuknya fosfoenol piruvat. Pada jalan metabolisme in, piruvat diangkut kedalam mitokondria dengan cara pengangkutan aktif melalui membran mitokondrion. Selanjutnya piruvat bereaksi dengan CO menghasilkan asam oksalasetat. Reaksi ini dikatalis oleh piruvat karboksilase (enzim yang terdapat pada mitokondria tetapi tidak terdapat pada sitoplasma), dan memerlukan koenzim biotin dan kofaktor ion maggan, serta ATP sebagai sumber energi. Dalam mekanisme reaksinya, biotin (sebagai gugus biotinil) yang terikat pada gugus lisina dari piruvat karboksilase, menarik COatau HCO dalam mitokondrion kemudian mengkondensasikan 40 / 128

41 dengan asam piruvat ( dengan bantuan ATP dan Mn) menghasilkan asam oksalasetat. Asam oksalasetat kemudian direduksi menjadi asam malat oleh NADH dan dikatalis malat dehidrogenase. Asam malat diangkut keluar mitokondria dengan cara pengangkutan aktif melalui membran mitokondrion yang kemudian dioksidasi kembali menjadi asam oksalasetat oleh NAD dan malat dehidrogenase yang terdapat dalam sitoplasma. Akhirnya oksalasetat dikarboksilasi dengan CO dan difosforilasi dengan gugus fosfat dari GTP (guanosin trifosfat, sebagai sumber energi yang khas disamping ATP) dan dikatalis oleh fosfoenolpiruvat karboksikinase menghasilkan fosfoenolpiruvat. Dengan demikian untuk mengubah satu molekul piruvat menjadi fosfoenolpiruvat diperlukan energi sebanyak satu ATP plus satu GTP dan melibatkan paling sedikit empat macam enzim. Dibandingkan dengan reaksi kebalikannya, yaitu perubahan sat molekul fosfoenol piruvat menjadi piruvat, dihasilkan satu ATP dan melibatkan satu macam enzim saja. CO Fosfoenol piruvat piruvat Piruvat kinase (PEP) 41 / 128

42 Malat dehidrogenase sitoplasma Gambar 15. Perubahan dari fosfoenolpiruvat ke piruvat diluar mitokondrion dan dari piruvat ke fosfoenol piruvat dengan melibatkan mitokondrion 42 / 128

43 . Dilihat dari keseluruhan, glikolisis terbagi menjadi dua bagian. Bagian pertama meliputi tahap reaksi enzim yang memerlukan ATP, yaitu tahap reaksi dari glukosa sampai dengan pembentukan fruktosa 6-fosfat., yang menggunaka dua molekul ATP tiap satu molekul glukosa yang dioksidasi. Bagian kedua meliputi tahap reaksi yang menghasilkan energi (ATP dan NADH) yaitu dari gliseraldehide 3-fosfat sampai dengan piruvat. Dari bagian kedua ini dihasilkan dua molekul NADH dan empat molekul ATP untuk tiap molekul glukosa yang dioksidasi (atau untuk dua molekul gliseraldehid 3-fosfat yang dioksidasi). Karena satu molekul NADH yang masuk rantai pengangkutan elektron dapat menghasilkan tiga molekul ATP, maka tahap reaksi bagian kedua ini menghasilkan 10 molekul ATP. Dengan demikian, keseluruhan proses glikolisis menghasilkan 10-2 = 8 molekul ATP untuk tiap molekul glukosa yang dioksidasi. Sebaliknya, untuk mensintesis satu molekul glukosa dari dua molekul piruvat dalam proses glukoneogenesis diperlukan energi dari 4 molekul ATP, 2 GTP (sebanding dengan 2 ATP) dan 2 NADH (= 6 ATP) atau sebanding dengan 12 molekul ATP. 5. Glikolisis Anaerob Dalam keadaan tanpa oksigen respirasi terhenti karena proses pengangkutan elektron yang dirangkaikan dengan fosforilasi bersifat oksidasi melalui rantai pernafasan yang menggunakan molekul oksigen sebagai penerima elektron terakhir, tidak berjalan. Akibatnya jalan metabolisme lingkar asam trikarboksilat (daur Krebs) akan terhenti pula sehingga piruvat tidak lagi masuk kedalam daur Krebs melainkan dialihkan pemakaiannya yaitu diubah menjadi asam laktat oleh laktat dehidrogenase dengan NADH sebagai sumber energinya. NADH NAD 43 / 128

44 Piruvat laktat Laktat dehidrogenase Gambar 16. Reaksi perubahan piruvat ke laktat dalam proses fermentasi asam laktat Dalam hal ini, dua molekul NADH yang dihasilkan oleh reaksi tahap kelima dalam glikolisis (reaksi dengan gliseraldehida 3-fosfat dehodrogenase) tidak dipakai untuk membentuk ATP melainkan digunakan untuk reaksi reduksi 2 molekulasam piruvat menjadi asam laktat. Jadi paad glikolisis anaerob energi yang dihasilkannya hanya 2 molekul ATP saja (Gambar 17). Jumlah ini jauh lebih kecil jika dibandingkan dengan energi yang dihasilkan oleh glikolisis aerob yaitu 8 ATP. Gambar 17. Metabolisme karbohidrat. 6. Fermentasi Alkohol Dalam beberapa jasad renik seperti ragi, glukosa dioksidasi menghasilkan etanol dan COdalam 44 / 128

45 proses yang disebut fermentasi alkohol. Jalur metabolisme proses ini sama dengan glikolisis sampai dengan terbentuknya piruvat. Dua tahap reaksi enzim berikutnya adalah reaksi perubahan asam piruvat menjadi asetaldehida, dan reaksi reduksi asetaldehida menjadi alkohol. Dalam reaksi yang pertama piruvat didekarboksilasi diubah menjadi asetaldehida dan CO oleh piruvat dekarboksilase, suatu enzim yang tidak terdapat pada hewan. CO Piruvat asetaldehida Piruvat dekarboksilase Gambar 18. Fermentasi alkohol: reaksi pembentukan asetaldehida dari piruvat dengan enzim Piruvat dekarboksilase. Reaksi dekarboksilase ini merupakan reaksi yang tak reversibel, membutuhkan ion Mg dan koenzim tiamin pirofosfat. Reaksi berlangsung melalui beberapa senyawa antara yang teriakt secara kovalen pada koenzim. Dalam reaksi yang terakhir dibawah ini, asetaldehid direduksi oleh NADH dengan enzim alkohol dehodrogenase, menghasilkan etanol. Dengan demikian etanol dan CO merupakan hasil akhir fermentasi alkohol dan jumlah energi yang dihasilkannya sama dengan glikolisis anaerob. Yaitu 45 / 128

46 2 ATP. NADH + H NAD Asetaldehida etanol Alkohol dehidrogenase Gambar 19. Fermentasi alkohol: reaksi hidrogenasi asetaldehida menghasilkan etanol. 7. Perubahan Piruvat Menjadi Asetilkoezim A Reaksi oksidasi piruvat hasil glikolisis menjadi asetil koenzim-a, merupakan tahap reaksi penghubung yang penting antara glikolisis dengan jalur metabolisme lingkar asam trikarboksilat (daur Krebs). Reaksi yang diaktalisis oleh kompleks piruvat dehidrogenase dalam matriks mitokondria melibatkan tiga macam enzim (piruvat dehidrogenase, dihidrolipoil transasetilase, dan dihidrolipoil dehidrogenase), lima macam koenzim (tiaminpirofosfat, asam lipoat, koenzim-a, flavin adenin dinukleotida, dan nikotinamid adenin dinukleotida) dan berlangsung dalam lima tahap reaksi. Keseluruhan reaksi dekarboksilasi ini irreversibel, dengan? G = - 80 kkal per mol. 46 / 128

47 Piruvat + NAD + koenzim A asetil ko-a + NADh + CO Reaksi ini merupakan jalan masuk utama karbohidrat kedalam daur Krebs. Tahap reaksi pertama dikatalis oleh piruvat dehidrogenase yang menggunakan tiamin pirofosfat sebagai koenzimnya. Dekarboksilasi piruvat menghasilkan senyawa?-hidroksietil yang terkait pada gugus cincin tiazol dari tiamin pirofosfat. Pada tahap reaksi kedua?-hidroksietil didehidrogenase menjadi asetil yang kemudian dipindahkan dari tiamin pirofosfat ke atom S dari koenzim yang berikutnya, yaitu asam lipoat, yang terikat pada enzim dihidrolipoil transasetilase. Dalam hal ini gugus disulfida dari asam lipoat diubah menjadi bentuk reduksinya, gugus sulfhidril. Pada tahap reaksi ketiga, gugus asetil dipindahkan dengan perantara enzim dari gugus lipoil pada asam dihidrolipoat, kegugus tiol (sulfhidril pada koenzim-a). Kemudian asetil ko-a dibebaskan dari sistem enzim kompleks piruvat dehidrogenase. Pada tahap reaksi keempat gugus tiol pada gugus lipoil yang terikat pada dihidrolipoil transasetilase dioksidasi kembali menjadi bentuk disulfidanya dengan enzim dihidrolipoil dehidrogenase yang berikatan dengan FAD (flavin adenin dinukleotida). Akhirnya (tahap reaksi kelima) FADH (bentuk reduksi dari FAD) yang tetap terikat pada enzim, dioksidasi kembali oleh NAD (nikotinamid adenin dinukleotida) manjadi FAD, sedangkan NAD berubah menjadi NADH (bentuk reduksi dari NAD). 8. Pengaturan Dekarboksilasi Piruvat Telah diketahui bahwa di samping mengandung tiga macam enzim tersebut di ats, kompleks enzim piruvat dehidrogenase juga mempunyai dua macam enzim yang terdapat dalam sub unit pengaturnya, yaitu piruvat dehidrogenase kinase dan piruvat dehidrogenase fosfatase. Kedua enzim ini berperan dalam mengatur laju reaksi dekarboksilasi piruvat dengan cara mengendalikan kegiatan subunit katalitiknya pada kompleks enzim piruvat dehidrogenase itu sendiri. Pengaturan kegiatan kompleks piruvat dehidrogenase berlangsung sebagai berikut: Piruvat + ko-a asetil ko-a + CO 47 / 128

48 Pi ADP ATP 48 / 128

49 Piruvat dehidrogenase fosfatase ( bagian dari sub unit pengatur), Ca Piruvat dehidrogenase (bagian dari subunit pengatur) Kompleks piruvat dehidrogenase dengan subunit katalitiknya yang terfosforilasi (tak aktif) 49 / 128

50 Gambar 20. Mekanisme pengaturan kegiatan enzim kompleks piruvat dehidrogenase. 50 / 128

51 Bila jumlah ATP yang dihasilkan oleh daur krebas dan fosforilasi bersifat oksidasi terlalu banyak, keseimbangan reaksi akan berjalan kebawah (laju reaksi fosforilasi sub unit katalitik kompleks piruvat dehidrogenase bertambah besar) sehingga kegiatan kompleks piruvat dehidrogenase terhambat dan menjadi tidak aktif. Hal ini menyebabkan terhentinya reaksi pembentukan asetil ko-a dari piruvat. Akibatnya, jumlah asetil ko-a yang diperlukan untuk daur Krebs akan berkurang sehingga laju reaksi daur Krebs terhambat dan produksi ATP terhenti. Sebaliknya jika jumlah ADP banyak (ATP sedikit), keseimbangan reaaksi didorang ke atas (laju reaksi defosforilasi kompleks piruvat dehidrogenase bertambah besar) sehingga kegiatan kompleks piruvat dehidrogenase bertambah. Akibatnya, reaksi dekarboksilasi piruvat menjadi asetil ko-a naik, sehingga laju reaksi daur Krebs bertambah besar dan produksi ATP bertambah banyak. 10. Jalur Metabolisme Daur Asam Trikarboksilat Jalur metabolisme daur asam trikarboksilat (asam sitrat) pertama diketemukan oleh Krebs (1937). Oleh karena itu, jalur ini disebut pula daur Krebs. Jalur daur ini merupakan ajlur metabolisme yang utama dari berbagai senyawa hasil metabolisme, yaitu hasil katabolisme karbohidrat, lemak, dan protein. Lemak karbohidrat protein Asam lemak glukosa asam amino 51 / 128

52 Asetil ko-a asetil ko-a asetil ko-a?-ketoglutarat Oksalasetat fumarat 52 / 128

53 CO+ HO ATP Gambar 21. Daur asam trikarboksilat (Krebs) sebagai bagian utama metabolisme penghasil energi. Asetil ko-a (sebagai hasil katabolisme lemak dan karbohidrat), oksalasetat, fumarat, dan?-ketoglutarat (sebagaihasil katabolismeasam amino dan protein), masuk kedalam daur Krebs untuk selanjutnya dioksidasi melalui beberapa tahap reaksi yang kompleks menjadi CO, HOdan energi ATP. Kegiatan daur asam tri karboksilat terdapat dalam sel hewan, tumbuhan, dan jasad renik yang aerob dan merupakan metabolisme penghasil energi yang utama. Jasad yang anaerob tidak menggunakan metabolisme daur ini sebagai penghasil energinya. 53 / 128

54 CoASH Asetil ko-a 54 / 128

55 55 / 128

56 56 / 128

57 Gambar 22. Ringkasan keseluruhan daur asam trikarboksilat atau daur Krebs. 57 / 128

58 Daur Krebs merupakan bagian rangkaian proses pernafasan yang panjang dan kompleks, yaitu oksidasi glukosa menjadi COdan HO serta produksi ATP. Proses pernafasan terdiri dari 4 tahap utama: 1) glikolisis (oksidasi glukosa menjadi piruvat), 2) konversi piruvat ke asetil ko-a, 3) daur Krebs dan 4) proses pengangkutan elektron melalui rantai pernafasan yang dirangkaikan degan sintesis ATP dari ADP = Pi melalui proses fosforilasi bersifat oksidasi. Didalam sel eukariota, metabolisme asam trikarboksilat berlangsung didalam mitokondrion. Sebagian enzim dalam metabolisme ini terdapat di dalam cairan matriks dan sebagian lagi terikat pada bagian dalam membran mitokondrion. 11. Energi yang Dihasilkan oleh Glikolisis dan DAur Asam Trikarboksilat Dari pembahasan tentang daur asam trikarboksilat sebelumnya, ternyata terdapat dua tahap reaksi yang masing-masing menghasilkan satu molekul CO; tiga reaksi menghasilkan NADH; satu reaksi menghasilkan GTP; satu reaksi menghasilkan FADH. Satu molekul GTP dapat menghasilkan satu molekul ATP. Dalam proses pengangkutan elektron melalui rantai pernafasan yang dikaitkan dengan fosforilasi bersifat oksidasi, satu molekul NADH dan satu FADH masing-masing menghasilkan 3 dan 2 molekul ATP. Dengan demikian oksidasi satu molekul asetil ko-a dalam daur Krebs menghasilkan (3 x x 1 + 1) ATP = 12 ATP. Asetil ko-a 58 / 128

59 9 ATP 2 ATP 1 ATP 59 / 128

60 12 ATP Ko-A Gambar 23. Jumlah energi (ATP) yang dihasilkan oleh daur Krebs. Bila proses oksidasi itu dimulai dari piruvat, jumlah molekul ATP yang dihasilkan adalah = 15untuk setiap molekul piruvat (pembentukan satu molekul asetil ko-a dari satu molekul piruvat menghasilkan satu molekul NADH). Oksidasi satu molekul glukosa melalui glikolisis menjadi dua molekul piruvat, menghasilak 8 ATP. Dengan demikian oksidasi sempurna satu molekul glukosa menjadi CO + HO 60 / 128

61 menghasilkan 2 x = 38 ATP. Glukosa 8 ATP 2 piruvat 2 x 3 = 6 ATP 61 / 128

62 2 asetil ko-a 62 / 128

63 CO + HO Gambar 42. Jumlah energi (ATP) yang dihasilka oleh glikolisis dan daur Krebs. D. Metabolisme Protein Nama protein pertama kali diusulkan oleh ahli kimia Swedia, Berzelius. Protein berasal dari bahasa Yunani, protios, yang berarti bahan penyokong yang pertama. 63 / 128

64 Protein merupakan komponen utama dalam semua sel hidup. Fungsi utamanya sebagai unsur pembentuk styruktur sel, misalnya dalam rambut, wol, kolagen, jaringan penghubung, membran sel dan lain-lain. Selain itu dapat pula berfungsi sebagai protein yang aktif seperti enzim yang berperan sebagai katalisator segala proses biokimia dalam sel. Protein aktif selain enzim yaitu hormon, hemoglobin, protein yang terikat pada gen, toksin, anti bodi atau anti gen dan lain-lain. Protein adalah rangkaian atau polimer dari sejumlah asam amino. Asam amino adalah molekul organik kecil yang pada umumnya terbuat dari karbon, hidrogen, oksigen, dan nitrogen. Protein dibuat dari suatu pool yang terdiri dari 20 asam amino yang berbeda. Ratusan atau ribuan asam amino dirangkai dengan suatu urutan tertentu untuk membentuk rantai asam amino. Fungsi protein dimungkinkan karena struktur tiga dimensinya yang unik. Dengan strukturnya yang unik suatu molekul protein dapat melakukan interaksi dengan molekul lainnya sehinnga dapat berfungsi sebagai molekul pengatur dalam suatu ekspresi gen atau transmisi genetik menjadi fenotipik. Jadi, suatu protein sangat tergantung pada kemampuannya untuk mengikat atau berpasangan dengan molekul lainnya untuk menjalankan fungsinya. Kemampuan tersebut ditentukan oleh struktur tiga dimensinya. Bila asam amino dirakit menjadi suatu rantai protein, rantai tersebut segera melipat membentuk suatu struktur yang secara energetik paling relaks atau yang bentuknya paling stabil. Bentuk yang secara energetik paling stabil ditentukan oleh interaksi tiap-tiap asam amino yang membentuk protein tersebut. Oleh karena itu, jenis asam amino dan urutannya dalam rantai protein akan menentukan struktur tiga dimensi molekul protein yang terbentuk. Urutan asam amino dalam suatu rantai protein sangat penting menentukan fungsi protein tersebut. Dengan 20 macam asam amino yang berbeda, diperoleh jumlah dan urutan yang berbeda-beda sehingga dihasilkan protein-protein unik yang hampir tidak terbatas jumlahnya. Keragamn ini sangat menguntungkan mengingat berbagai ragam fungsi yang dilakukan oleh protein. Semua organisme merupakan kumpulan dari sejumlah protein dan segala aktivitasnya. Fungsi protein tergantung pada struktur tiga dimensinya, yang pada gilirannya ditentukan oleh sekuen asam amino penyusun protein tersebut. Jadi, DNA menentukan karakteristik suatu organisme karena DNA menentukan sekuen asam amino dari semua protein pada suatu organisme. DNA mengandung sandi genetik untuk tiap asam amino yang ditampilkan masing-masing dari sekuen tiga pasang basa. Ketiga basa (triplet) ini disebut kodon. Urutan kodon pada suatu sekuen DNA mencerminkan urutan asam amino yang akan dirakit menjadi suatu rantai protein. 64 / 128

65 Satu bagian sekuen DNA lengkap yang mampu menentukan sekuen asam amino suatu protein atau molekul r RNA dan trna disebut gen, yaitu satuan hereditas yang didefinisikan oleh para ahli genetika klasik. Semua gen dan sekuen DNA yang dimiliki oleh suatu organisme disebut genom / 128

66 66 / 128

67 DNA 67 / 128

68 68 / 128

69 3 69 / 128

70 5 70 / 128

71 G C A C T A G G A C G T G A T C C T 71 / 128

72 Protein 72 / 128

73 Asam amino Gambar 24. Sekuen DNA menentukan sekuen asam amino pada protein yang terbentuk. 1. Sintesis Protein Proses sintesis protein dari sandi genetik melibatkan beberapa langkah. DNA pada dasarnya adalah penyimpan informasi yang pasif, mirip denga cetak biru (blue print) untuk denah rumah. Aktivitas pembuatan protein terjadi pada suatu situs khusus dalam sel yang disebut ribosom. Oleh karena itu, langkah pertama dalam sintesis protein adalah menyampaikan informasi dari DNA ke ribossom. Untuk melakukan hal ini enzim-enzim seluler membuat salinan kopi gen sehinnga dapat dibaca oleh ribosom. Salinan kopi gen ini disebut RNA duta (messennger RNA = mrna). mrna membawa sandi genetik yang dipakai langsung untuk sintesis protein di ribosom. Tahap ini disebut dengan tahp transkripsi. Dalam tahap berikutnya kodon pada mrna harus dapt dikorelasi dengan asam amino yang seharusnya. Tahapan ini dilakukan molekul RNA lain, yaitu 73 / 128

74 RNA transfer, (transfer RNA = trna) yang dikenal dengan tahap translasi. Akhirnya asam amino harus disambungkan untuk membentuk rantai protein fungsional ( tahap sintesis ). Ribosom yang terdiri dari RNA dan protein, melakukan fungsi tersebut. Bila rantai protein sudah lengkap, suatu tanda berhenti ( stop sign ) mempengaruhi ribosom sehingga ribosom melepas protein baru tersebut ke dalam sel. 1. Transkripsi. Transkripsi adalah sintesis RNA secara enzimatik dengan menggunakan DAN sebagai cetakan. Untuk transkripsi suatu gen, hanya salah satu rantai DNA yang digunakan sebagai cetakan atau templat. Transkripsi dikatalis oleh enzim RNA polimerase. Sintesis RNA selalu bergerak ke satu arah, yaitu dari ujung 5 ke ujung 3 dari molekul RNA. Untuk menginisiasi transkripsi, RNA polimerase berikatan pada suatu daerah di DNA yang disebut promoter. Promoter terletak disebelah hulu (ke arah5 ) dari gen. Perbedaan urutan nukleotida dari promoter berbagai gen menyebabkan perbedaan tingkat efisiensi dan regulasi dari inisiasi transkripsi gen-gen tersebut. Setelah RNA polimerase terikat pada promoter DNA, kedua rantai DNA dipisahkan dan RNA polimerase memulai sintesis RNA di tempat inisiasi. Tempat ini disebut sebagai posisi +1. RNA polimerase menambahkan ribonukleotida ke ujung 3 dari rantai RNA yang sedang disintesis. Hal ini dilakukan dengan bergerak dari ujung 3 ke arah 5 dari rantai DNA cetakan., sambil memisahkan bagian rantai ganda DNA yang dilaluinya. Dengan demikian ribonukleotida dapat berpasangan dengan DNA cetakan dan ditambahkan pada ujung 3 RNA dengan pembentukan ikatan fosfodiester. Heliks ganda akan terbentuk kembali setelah RNA polimerase lewat. 74 / 128

75 Promoter Daerah yang ditranskripsi Terminator DNA 75 / 128

76 5 T A C G A T G C 3 76 / 128

77 RNA Transkripsi 5 U A C G 3 Gambar 25. Struktur gen b.translasi. Translasi merupakan proses sintesis protein di dalam sel. Sebelum sintesis protein dimulaio, setiap jenis trna berikatan dengan asam amino spesifik. Reaksi ini dikatalis oleh enzim aminoasil trna sintetase bersama dengan ATP, sehingga terbentuk aminoasil trna. Pada trna terdapat antikodon yang akan berpasangan dengan kodon yang terdapat pada mrna. Setiap macam aminoasil trna sintetase akan menggabungkan asam amino tertentu pada 77 / 128

78 trna yang spesifik. Pada trna inisiator, trna terikat pada asam amino metionin yang termodifikasi, yaitu N-formilinetionin. Proses sintesis protein terdiri dari tiga tahap yaitu: - Inisiasi : proses penempatan ribosom pada suatu molekul mrna - Elongasi : proses penambahan asam amino - Terminasi : proses pelepasan protein yang baru disintesis Pada sintesis protein sel prokariot, prosaes inisiasi memerlukan sub unit kecil (30S) dan sub unit besar (50S) ribosom, mrna, tiga faktor inisiasi (IF, IF dan IF) dan GTP. IF dan IF mula-mula terikat pada sub unit kecil ribosom, kemudian IF dan GTP bergabung. Kompleks sub unit kecil ini terikat pada mrna di tempat pengikatan ribosom yang terletak 8 13 nukleotida sebelum hulu kodon inisiasi Aug kemudian bergerak sepanjang mrna ke arah hilir sampai menemukan kodon inisiasi. Setelah pengikatan sub unit kecil ribosom pada kodon inisiasi, trna inisiator dapat terikat pada kodon inisiasi dan melepaaskan IF sehingga terbentuk kompleks inisiasi 30S, melepaskan IF, IF, GDP dan fosfat sehingga terbentuk inisiasi 70S. Proses elongasi melibatkan tiga faktor elongasi (EF Tu, EF Ts, EF G0, GTR, aminoasil trna dan kompleks inisiasi 70 S. Proses elongasi terdiri dari tiga tahap: - Aminoasil trna membentuk kompleks denagn EF-Tu dan GTP, terikat pada A-site di ribosom dengan melepaskan EF-Tu GDP. EF-Tu GTP dapat berubah lagi menjadi EF-Tu GTP dengan bantuan EF-Ts dan GTP. - Enzim transferase peptidil yang terdapat pada ribosom membenyuk ikatan peptida antara dua asam amino yang berdampingan. - Enzim translokase (EF-G) dengan energi GTP menggerakkan ribosom sejauh satu kodon sepanjang mrna sehingga trna pada P-site lepas dan trna pada A-site pindah ke P-site. Proses elongasi rantai peptida berjalan terus sampai ribosom mencapai suatu kodon stop. Proses terminasi melibatkan tiga faktor pelepas ( release faktor, RF, RF dan RF). RF atau RF dapat mengenal kodon stop dan denagn bantuan RF menyebabkan trasnsferase peptidil melepaskan rantai polipeptida dari trna. Faktor-faktor pelepas membantu pelepasan kedua sub unit ribosom dari mrna. 78 / 128

79 2. Ciri-ciri Molekul Protein Beberapa ciri utama molekul protein yaitu: - berat molekulnya besar, yang merupakan suatu makromolekul - umumnya terdiri dari 20 macam asam amino, yang membentuk suatu rantai polipeptida yang berikatan satu dengan yang lain. Ikatan peptida merupakan ikatan antara?-karboksil dari asam amino yang satu dengan gugus?-amino dari asam amino yang lainnya. - terdapatnya ikatan kimia yang lain yang menyebabkan terbentuknya lengkungan-lengkungan rantai polipeptida menjadi struktur tiga dimensi protein. Sebagai contoh misalnya ikatan hidrogen dan ikatan hidrofob. - strukturnya tidak stabil terhadap beberapa faktor seperti ph, radiasi, temperatur, dan sebagainya - umumnya reaktif dan sangat spesifik, yang disebabkan terdapatnya gugus samping yang reaktif dan susunan khas struktur makromolekulnya.. bberapa gugus samping yang biasa terdapat diantaranya gugus kation, anion, hidroksil aromati, hdroksil alifatik, amin, amida, tiol, dan gugus heterosiklik 3. Klasifikasi Asam Amino Berdasarkan sifat kekutuban (polarity) gugus R, asam amino dibagi menjadi 4 golongan yaitu: 1. asam amino dengan gugus R yang tak mengutub. Golongan ini terdiri dari 5 asam amino yang mengandung gugus R alifatik (alanin, lesin, isolesin, valin, dan prolin), 2 dengan R aromatik (fenilalanin dan triptofan), dan 1 mengandung atom sulfur (metionin). 2. asam amino dengan gugus R mengutub tak bermuatan. Lebih mudah larut dalam air karena gugus R mengutub dapat membentuk ikatan hidrogen dengan molekul air. Kekutuban serin, treonin, dan tirosin disebabkan oleh gugus hdroksil, asparagin dan glutamin oleh gugus amida, dan sistein oleh gugus sulfhidril (-SH). 79 / 128

80 3. asam amino dengn gugus R bermuatan negatif (asam amino asam). Golongan ini bermuatan negatif pada ph 6,0-7,0 dan terdiri dari asam aspartat dan asam glutamat yang masing-masing mempunyai dua gugus karboksil. 4. asam amino dengan gugus r bermuatan positif (asam amino basa). Golongan asam amino ini bermuatan positif pada ph 7,0 yang terdiri dari lisin, arginin yang mengandung gugus basa lemah. 4. Sifat Asam Basa Asam Amino Di dalam larutan netral asam amino selalu ada dalam bentuk ion berkutub (zwtterion) yang dapat ditunjukkan dengan konstanta elektrik dan momen dwikutub yang tinggi karena adanya pemisahan muatan positif dan negatif dalam bentuk ion berdwikutub. Semua asam amino yang didapat barasal dari hidrolisis protein kecuali glisin, memiliki sifat aktif optik yaitu dapat memutar bidang polarisasi cahaya bila diperiksa dengan polarimeter. Reaksi khas asam amino disebabkan oleh adanya gugus?-karboksil,?-amino dan gugus yang terdapat pada rantai samping (R). 5. Struktur dan Sifat Peptida Peptida mengandung 2,4 atau 4 asam amino, sehingga dapat disebut dipeptida, tripeptida, dst. Peptida didapatkan dari hidrolisis rantai panjang protein. Peptida mempunyai ph isoelektrik. Reaksi kimia peptida disebabkan oleh adanya gugus ujung NH2 dan COOH, dan gugus R yang dapat berionisasi. 80 / 128

81 Penamaan peptida didasarkan pada komponen asam aminonya. Urutan dimulai dar rantai N-ujung. Uji peptida ini dapat dilakukan dengan uji buret, yaitu reaksi yang terjadi antara peptida atau protein dengan CuSO 4 dan alkali,yang menghasilkan warna ungu. Pemisahan atau analisis peptisa biasa dikerjakan dengan kromatografi penukar ion atau elekrtroforesis kertas. 6. Analisis Asam Amino pada Peptida Penentuan urutan asam amino dapat dlakukan dengan cara Hidrolisis sempurna. Hidrolisis dengan HCl 6N pada suhu celcius selama jam memeberikan hasil terbaik, kecuali pada triptopan yang mengalami kerusakan pada suasana asam kuat, juga gugus amida pada glutamin dan asparagin akan pecah menghasilkan asam glutamat, asam aspartat, dan ion amoninum. Banyaknya amonia pada hidrolisat dapat ditentukan untuk mengetahui kadar amida yang terdapat pada protein. Hidrolisis dengan alkali menyebabkan kerusakan pada sistein, sistin, serin dan treonin. Penentuan urutan asam amino dalam Polipeptida didasarkan pada cara sanger untuk penentuan urutan asam amino dalam protein insulin yang bebas dari kontaminasi. Cara bertingkat yang dilakukan sebagai berikut: 1. penentuan asam amino C-ujung dan asam amino N-ujung. 2. pemutusan rantai plipeptida menjadi fragmen peptida dengan rantai yang lebih pendek 81 / 128

82 dengan enzim tripsin fragmen peptida. Kemudian fragmen tersebut dipisahkan satu dari yang lain dengan cara elektroforesis atau kromatografi. Tiap fragmen peptida dihidrolisis sempurna dan asam amino ditentukan. 3. asam amino C-ujung dan asam amino N-ujung tiap fragmen peptida yang didapat dari no 2 ditentukan, sehingga urutan asam amino tiap fragmen peptida (dipeptida atau tripeptida) dapat ditentukan. 4. fragmen peptida yang lebih panjang dari tripeptida, ditentukan urutan asam amino dengan cara edman, yaitu dengan pereaksi fenilisotisianat. 5. diambil polipeptida asal dan pemotongan rantai menjadi fragmen diulangi lagi, tetapi dengan mempergunakan enzim lain, misalnya kimotripsin atau pepsin. Kimotripsin menghidrolisis ikatan peptida yang gugus karboksilnya berasal dari asam amino fenilalanin, triptofan atau tirosin. Pepsin menghidrolisis ikatan peptida yang gugus aminonya berasal dari asam amino fenilalanin, triptofan, tirosin, lesin, asam aspartat, asam glutamat. 6. Dibandingkan komposisi asam amino dan asam amino N-ujung serta C-ujung dari fragmen yang dihasilkan kedua cara hidrolisis tersebut, maka urutan yang benar sisa asam amino dalam polipeptida asal dapat ditentukan. 7. Organisasi struktur protein Struktur tiga dimensi protein dapat dijelaskan dengan mempelajari tingkat organisasi struktur yaitu struktur primer, sekunder, tersier dan kuartener. a. Struktur primer 82 / 128

83 Struktur primer protein ditentukan oleh ikatan kovalen antara residu asam amino yang berurutan yang membentuk ikatan peptida.struktur primer dapat digambarkan sebagai rumus bangun yang biasa ditulis untuk senyawa organik.untuk mengetahui struktur primer protein diperlukan cara penentuan bertingkat yaitu: 1.Penentuan jumlah rantai polipeptida yang berdiri sendiri dari protein 2.Pemutusan ikatan antara rantai polipeptida yang satu dengan lainnya. 3.Pemisahan masing-masing rantai polipeptida 4.Penentuan urutan asam amino dari masing-masing rantai polipeptida dengan cara sanger. b. Struktur sekunder Struktur ini terjadi karena ikatan hidrogen antara atom O dari gugus karbonil (C=O) dengan atom H dari gugus amino (N-H) dalam satu rantai pilipeptida,memungkinkan terbentuknya konfirasi spiral yang disebut Struktur helix.rantai paralel yang berkelok-kelok disebut konfirmasi ß,rantai dihubung silangkan oleh ikatan hidrogen sehingga membentuk suatu struktur yang disebut lembaran berlipat-lipat.struktur polipeptida dalam protein serabut pada rambut dan wol berbentuk spiral yang berarah putar kekanan. Yang disebut dengan ð-helix,sedang yang berkelok-kelok disebut ß-kerotin. c. Struktur tersier 1. Struktur tersier terbentuk karena terjadinya perlipatan (folding) rantai ð-helix,konformasi ß,maupun gulungan rambang suatu polipeptida,membentuk glubular,yang struktur tiga dimensinya lebih rumit daripada protein serabut. protein 83 / 128

84 2. Kemantapan struktur tersier suatu molekul protein selain disebabkan oleh ikatan kovalen seperti ikatan peptida dan ikatan disulfida juga oleh ikatan tak-kovalen yang menunjangnya yaitu yang menyebabkan terjadinya pelipatan tersebut. d. Struktur kuartener Sebagian besar protein berbentuk globular yang mempunyai berat molekul lebih dari 50 ribu merupakan suatu obligomer,yang terjadi dari beberapa rantai polipeptida yang terpisah yang disebut juga dengan protomer yang saling mengadakan interaksi membentuk struktur kuartener dari proteina obligomer tersebut. E. Metabolisme Lemak Lemak atau lipid terdapat pada semua bagian tubuh manusia terutama pada bagian otak, mempunyai peran yang sangat penting dalam proses metabolisme secara umum. Sebagian lipid jaringan tersebar sebagai komponen utama membrane sel dan berperan mengatur jalannya metabolisme di dalam sel. Beberapa peranan biologi yang penting dari lipid adalah sebagi berikut: - Komponen struktur membran - Lapisan pelindung paad beberapa jasad - Bentuk energi cadangan - Komponen permukaan sel yang berperan dalam proses interaksi antara sel dengan senyawa kimia di luar sel, seperti dalam proses kekebalan jaringan - Sebagai komponen dalam proses pengangkutan melalui membran. 1. Biosintesis Asam Lemak 84 / 128

85 Biosintesis asam lemak sebagai bagian dari biosintesis lipida adalah suatu proses metabolisme yang penting dalam jasad hidup. Hal ini benar jika diingat jaringan hewan mempunyai kemampuan terbatas untuk menyimpan energi dalam bentuk karbohidrat. Dalam hal ini sebagian dari polisakarida dirombak melalui proses glikolisis menjadi asetil ko-a, yang merupakan prazat untuk biosintesis asam lemak dan triasilgliserol. Senyawa lipid ini mempunyai kandungan energi yang lebih tinggi bila dibandingkan dengan karbohidrat dan dapat disimpan sebagai cadangan energi yang besar di dalam jaringan lemak. Di dalam tumbuhan, senyawa lipid disimpan sebagai cadangan energi yang cukup besar di dalam biji dan buah. Biosintesis asam lemak dari asetil ko-a terjadi di hampir semua bagian tubuh hewan, terutama di dalam jaringan hati, jaringan lemak dan kelenjar susu. Biosintesis ini berlangsung dalam sitoplasma, membutuhkan asam sitrat sebagai kofaktor dan membutuhkan CO sebagai factor pembantu dalam mekanisme pemanjangan rantai asam lemak, meskipun CO tidak tergabung ke dalam asam lemak tersebut. Berikut ini merupakan reaksi keseluruhan dari biosintesis asam lemak: 85 / 128

Metabolisme Karbohidrat. Oleh : Muhammad Fakhri, S.Pi, MP, M.Sc Tim Pengajar Biokimia

Metabolisme Karbohidrat. Oleh : Muhammad Fakhri, S.Pi, MP, M.Sc Tim Pengajar Biokimia Metabolisme Karbohidrat Oleh : Muhammad Fakhri, S.Pi, MP, M.Sc Tim Pengajar Biokimia LATAR BELAKANG Kemampuan ikan untuk memanfaatkan karbohidrat tergantung pada kemampuannya menghasilkan enzim amilase

Lebih terperinci

Metabolisme (Katabolisme) Radityo Heru Mahardiko XII IPA 2

Metabolisme (Katabolisme) Radityo Heru Mahardiko XII IPA 2 Metabolisme (Katabolisme) Radityo Heru Mahardiko XII IPA 2 Peta Konsep Kofaktor Enzim Apoenzim Reaksi Terang Metabolisme Anabolisme Fotosintesis Reaksi Gelap Katabolisme Polisakarida menjadi Monosakarida

Lebih terperinci

BIOLOGI JURNAL ANABOLISME DAN KATABOLISME MEILIA PUSPITA SARI (KIMIA I A)

BIOLOGI JURNAL ANABOLISME DAN KATABOLISME MEILIA PUSPITA SARI (KIMIA I A) BIOLOGI JURNAL ANABOLISME DAN KATABOLISME MEILIA PUSPITA SARI (KIMIA I A) PROGRAM STUDI KIMIA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI SYARIF HIDAYATULLAH JAKARTA Jalan Ir. H. Juanda No. 95

Lebih terperinci

SMA XII (DUA BELAS) BIOLOGI METABOLISME

SMA XII (DUA BELAS) BIOLOGI METABOLISME JENJANG KELAS MATA PELAJARAN TOPIK BAHASAN SMA XII (DUA BELAS) BIOLOGI METABOLISME Metabolisme adalah seluruh reaksi kimia yang dilakukan oleh organisme. Metabolisme juga dapat dikatakan sebagai proses

Lebih terperinci

Metabolisme karbohidrat

Metabolisme karbohidrat Metabolisme karbohidrat Dr. Syazili Mustofa, M.Biomed Lektor mata kuliah ilmu biomedik Departemen Biokimia, Biologi Molekuler, dan Fisiologi Fakultas Kedokteran Unila PENCERNAAN KARBOHIDRAT Rongga mulut

Lebih terperinci

KEHIDUPAN SEL PELEPASAN ENERGI DALAM SEL

KEHIDUPAN SEL PELEPASAN ENERGI DALAM SEL KEHIDUPAN SEL PELEPASAN ENERGI DALAM SEL Gimana UTSnya??? LUMAYAN...????!!? SILABUS PERTEMUAN KE- TGL MATERI 8 15 NOV 9 22 NOV 10 29 NOV KEHIDUPAN SEL (PELEPASAN ENERGI DALAM SEL) KEHIDUPAN SEL (PELEPASAN

Lebih terperinci

Pertemuan : Minggu ke 7 Estimasi waktu : 150 menit Pokok Bahasan : Respirasi dan metabolisme lipid Sub pokok bahasan : 1. Respirasi aerob 2.

Pertemuan : Minggu ke 7 Estimasi waktu : 150 menit Pokok Bahasan : Respirasi dan metabolisme lipid Sub pokok bahasan : 1. Respirasi aerob 2. Pertemuan : Minggu ke 7 Estimasi waktu : 150 menit Pokok Bahasan : Respirasi dan metabolisme lipid Sub pokok bahasan : 1. Respirasi aerob 2. Respirasi anaerob 3. Faktor-faktor yg mempengaruhi laju respirari

Lebih terperinci

BAB IV METABOLISME. Proses pembentukan atau penguraian zat di dalam sel yang disertai dengan adanya perubahan energi.

BAB IV METABOLISME. Proses pembentukan atau penguraian zat di dalam sel yang disertai dengan adanya perubahan energi. BAB IV METABOLISME Proses pembentukan atau penguraian zat di dalam sel yang disertai dengan adanya perubahan energi METABOLISME ANABOLISME Proses Pembentukan Contoh: Fotosintesis, Kemosintesis Sintesis

Lebih terperinci

organel yang tersebar dalam sitosol organisme

organel yang tersebar dalam sitosol organisme STRUKTUR DAN FUNGSI MITOKONDRIA Mitokondria Mitokondria merupakan organel yang tersebar dalam sitosol organisme eukariot. STRUKTUR MITOKONDRIA Ukuran : diameter 0.2 1.0 μm panjang 1-4 μm mitokondria dalam

Lebih terperinci

Tabel Perbedan Reaksi terang dan Reaksi gelap secara mendasar: Tempat membran tilakoid kloroplas stroma kloroplas

Tabel Perbedan Reaksi terang dan Reaksi gelap secara mendasar: Tempat membran tilakoid kloroplas stroma kloroplas Tabel Perbedan Reaksi terang dan Reaksi gelap secara mendasar: Reaksi Terang Reaksi Gelap Tempat membran tilakoid kloroplas stroma kloroplas Kebutuhan Cahaya membutuhkan cahaya tidak membutuhan cahaya

Lebih terperinci

Tugas Biologi KATABOLISME. Disusun oleh: Niluh Yuliastri. Kelas E

Tugas Biologi KATABOLISME. Disusun oleh: Niluh Yuliastri. Kelas E Tugas Biologi KATABOLISME Disusun oleh: Niluh Yuliastri Kelas E Fakultas Perternakan Universitas Halu Oleo 2017 KATA PENGANTAR Puji syukur kami haturkan kehadirat Tuhan Yang Maha Esa karena dengan rahmat,

Lebih terperinci

Giant Panda (Ailuropoda melanoleuca)

Giant Panda (Ailuropoda melanoleuca) Giant Panda (Ailuropoda melanoleuca) METABOLISME merupakan keseluruhan reaksi kimia yang terjadi di dalam tubuh makhluk hidup. Transformasi energi selalu mengikuti setiap proses metabolisme. Transformasi

Lebih terperinci

METABOLISME PROTEIN. Oleh : Tim Pengampu MK Biokimia

METABOLISME PROTEIN. Oleh : Tim Pengampu MK Biokimia METABOLISME PROTEIN Oleh : Tim Pengampu MK Biokimia Outline Perkuliahan Katabolisme Protein Degradasi Protein Asam Amino Katabolisme Asam Amino Siklus Urea Anabolisme Protein Biosintesis Asam Amino Biosintesis

Lebih terperinci

Metabolisme : Enzim & Respirasi

Metabolisme : Enzim & Respirasi Metabolisme : Enzim & Respirasi SMA Regina Pacis Ms. Evy Anggraeny August 2014 1 Pengantar Metabolisme Yaitu modifikasi reaksi biokimia dalam sel makhluk hidup Aktivitas sel Metabolit Enzim/fermen Macamnya

Lebih terperinci

Siklus Krebs. dr. Ismawati, M.Biomed

Siklus Krebs. dr. Ismawati, M.Biomed Siklus Krebs dr. Ismawati, M.Biomed Berfungsi dalam katabolisme dan juga anabolisme amfibolik Katabolisme memproduksi molekul berenergi tinggi Anabolisme memproduksi intermedier untuk prekursor biosintesis

Lebih terperinci

2.1.3 Terjadi dimana Terjadi salam mitokondria

2.1.3 Terjadi dimana Terjadi salam mitokondria 2.1.1 Definisi Bioenergetika Bioenergetika atau termodinamika biokimia adalah ilmu pengetahuan mengenai perubahan energi yang menyertai reaksi biokimia. Reaksi ini diikuti oleh pelepasan energi selama

Lebih terperinci

METABOLISME KARBOHIDRAT

METABOLISME KARBOHIDRAT METABOLISME KARBOHIDRAT METABOLISME KARBOHIDRAT DIET BERVARIASI P.U. KARBOHIDRAT > FUNGSI KARBOHIDRAT TERUTAMA SEBAGAI SUMBER ENERGI ( DR. GLUKOSA ) MONOSAKARIDA ( HEKSOSA ) HASIL PENCERNA- AN KARBOHIDRAT

Lebih terperinci

METABOLISME KARBOHIDRAT. Chairul Huda Al Husna

METABOLISME KARBOHIDRAT. Chairul Huda Al Husna METABOLISME KARBOHIDRAT Chairul Huda Al Husna IMAJINASI METABOLISME ENERGI KH Lemak Protein ADP + P ATP Transport aktif membran sel Kontraksi otot Reaksi sintesis : hormon, dll Hantaran impuls syaraf Pertumbuhan

Lebih terperinci

RESPIRASI SELULAR. Cara Sel Memanen Energi

RESPIRASI SELULAR. Cara Sel Memanen Energi RESPIRASI SELULAR Cara Sel Memanen Energi TIK: Setelah mengikuti kuliah ini mahasiswa dapat menjelaskan cara sel memanen energi kimia melalui proses respirasi selular dan faktorfaktor yang mempengaruhi

Lebih terperinci

DIKTAT PEMBELAJARAN BIOLOGI KELAS XII IPA 2009/2010

DIKTAT PEMBELAJARAN BIOLOGI KELAS XII IPA 2009/2010 DIKTAT PEMBELAJARAN BIOLOGI KELAS XII IPA 2009/2010 DIKTAT 2 METABOLISME Standar Kompetensi : Memahami pentingnya metabolisme pada makhluk hidup Kompetensi Dasar : Mendeskripsikan fungsi enzim dalam proses

Lebih terperinci

Dr. Dwi Suryanto Prof. Dr. Erman Munir Nunuk Priyani, M.Sc.

Dr. Dwi Suryanto Prof. Dr. Erman Munir Nunuk Priyani, M.Sc. BIO210 Mikrobiologi Dr. Dwi Suryanto Prof. Dr. Erman Munir Nunuk Priyani, M.Sc. Kuliah 4-5. METABOLISME Ada 2 reaksi penting yang berlangsung dalam sel: Anabolisme reaksi kimia yang menggabungkan bahan

Lebih terperinci

BIOLOGI. Nissa Anggastya Fentami, M.Farm, Apt

BIOLOGI. Nissa Anggastya Fentami, M.Farm, Apt BIOLOGI Nissa Anggastya Fentami, M.Farm, Apt Metabolisme Sel Metabolisme Metabolisme merupakan totalitas proses kimia di dalam tubuh. Metabolisme meliputi segala aktivitas hidup yang bertujuan agar sel

Lebih terperinci

Protein (asal kata protos dari bahasa Yunani yang berarti "yang paling utama") adalah senyawa organik kompleks berbobot molekul tinggi yang merupakan

Protein (asal kata protos dari bahasa Yunani yang berarti yang paling utama) adalah senyawa organik kompleks berbobot molekul tinggi yang merupakan A. Protein Protein (asal kata protos dari bahasa Yunani yang berarti "yang paling utama") adalah senyawa organik kompleks berbobot molekul tinggi yang merupakan polimer dari monomer-monomer asam amino

Lebih terperinci

SIKLUS ASAM SITRAT SIKLUS KREBS ETI YERIZEL BAGIAN BIOKIMIA FK-UNAND

SIKLUS ASAM SITRAT SIKLUS KREBS ETI YERIZEL BAGIAN BIOKIMIA FK-UNAND SIKLUS ASAM SITRAT SIKLUS KREBS ETI YERIZEL BAGIAN BIOKIMIA FK-UNAND SIKLUS KREBS Pertama kali ditemukan oleh Krebs tahun 1937, sehingga disebut Daur Krebs Merupakan jalur metabolisme utama dari berbagai

Lebih terperinci

Secara sederhana, oksidasi berarti reaksi dari material dengan oksigen. Secara kimiawi: OKSIDASI BIOLOGI

Secara sederhana, oksidasi berarti reaksi dari material dengan oksigen. Secara kimiawi: OKSIDASI BIOLOGI Proses oksidasi Peranan enzim, koenzim dan logam dalam oksidasi biologi Transfer elektron dalam sel Hubungan rantai pernapasan dengan senyawa fosfat berenergi tinggi Oksidasi hidrogen (H) dalam mitokondria

Lebih terperinci

BAB V FOTOSINTESIS. 5. proses terjadinya rreaksi terang dan gelap dalam proses fotosintesis.

BAB V FOTOSINTESIS. 5. proses terjadinya rreaksi terang dan gelap dalam proses fotosintesis. BAB V FOTOSINTESIS A. STANDAR KOMPETENSI Mahasiswa mampu memahami proses fotosintesis dan mampu menguraikan mekanisme terjadinya fotosintesis pada tumbuhan serta faktor-faktor yang mempengaruhinya. B.

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN BIOLOGI BAB XIII METABOLISME. Dra. Ely Rudyatmi, M.Si. Dra. Endah Peniati, M.

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN BIOLOGI BAB XIII METABOLISME. Dra. Ely Rudyatmi, M.Si. Dra. Endah Peniati, M. SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN BIOLOGI BAB XIII METABOLISME Dra. Ely Rudyatmi, M.Si Dra. Endah Peniati, M.Si Dr. Ning Setiati,M.S KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

Lebih terperinci

METABOLISME SEL; Dr. Refli., MSc Jurusan Biologi FST UNDANA Kupang, 2015

METABOLISME SEL; Dr. Refli., MSc Jurusan Biologi FST UNDANA Kupang, 2015 Fotosintesis & Respirasi Dr. Refli., MSc Jurusan Biologi FST UNDANA Kupang, 2015 Materi Kuliah Biologi Dasar. Jurusan Biologi FST Universitas Nusa Cendana. 2015 Pengertian METABOLISME SEL; Fotosintesis

Lebih terperinci

ULANGAN HARIAN BERSAMA TENGAH SEMESTER GASAL TAHUN 2016/2017

ULANGAN HARIAN BERSAMA TENGAH SEMESTER GASAL TAHUN 2016/2017 ULANGAN HARIAN BERSAMA TENGAH SEMESTER GASAL TAHUN 2016/2017 Mata Pelajaran : Biologi Hari / Tanggal : Selasa, 25 Oktober 2016 Kelas / Peminatan : XII / IPA Waktu : 09.30 11.00 WIB ooooo Pilihlah salah

Lebih terperinci

5. Kerja enzim dipengaruhi oleh faktor-faktor berikut, kecuali. a. karbohidrat b. suhu c. inhibitor d. ph e. kofaktor

5. Kerja enzim dipengaruhi oleh faktor-faktor berikut, kecuali. a. karbohidrat b. suhu c. inhibitor d. ph e. kofaktor 1. Faktor internal yang memengaruhi pertumbuhan dan perkembangan pada tumbuhan adalah. a. suhu b. cahaya c. hormon d. makanan e. ph 2. Hormon yang termasuk ke dalam jenis hormon penghambat pertumbuhan

Lebih terperinci

Tabel Mengikhtisarkan reaksi glikolisis : 1. Glukosa Glukosa 6-fosfat. 2. Glukosa 6 Fosfat Fruktosa 6 fosfat

Tabel Mengikhtisarkan reaksi glikolisis : 1. Glukosa Glukosa 6-fosfat. 2. Glukosa 6 Fosfat Fruktosa 6 fosfat PROSES GLIKOLISIS Glikolisis merupakan jalur, dimana pemecahan D-glukosa yang dioksidasi menjadi piruvat yang kemudian dapat direduksi menjadi laktat. Jalur ini terkait dengan metabolisme glikogen lewat

Lebih terperinci

Karbohidrat. Metabolisme Karbohidrat. Karbohidrat. Karbohidrat. Karbohidrat & energi

Karbohidrat. Metabolisme Karbohidrat. Karbohidrat. Karbohidrat. Karbohidrat & energi Karbohidrat Metabolisme Karbohidrat Oleh: dr dini Penting utk makhluk hidup sbg bahan nutrisi utama & sbg struktur dasar MH. tanaman: menghasilkan KH (glukosa) mll fotosintesis. Hewan/manusia: konsumen

Lebih terperinci

DOSEN PENGAMPU : Dra.Hj.Kasrina,M.Si

DOSEN PENGAMPU : Dra.Hj.Kasrina,M.Si DISUSUN OLEH : WIDIYA AGUSTINA (A1F013001) FEPRI EFFENDI (A1F013021) DIAN KARTIKA SARI (A1F013047) DHEA PRASIWI (A1F013059) TYAS SRI MURYATI (A1F013073) DOSEN PENGAMPU : Dra.Hj.Kasrina,M.Si RESPIRASI Respirasi

Lebih terperinci

Secara sederhana, oksidasi berarti reaksi dari material dengan oksigen OKSIDASI BIOLOGI

Secara sederhana, oksidasi berarti reaksi dari material dengan oksigen OKSIDASI BIOLOGI Proses oksidasi Peranan enzim, koenzim dan logam dalam oksidasi biologi Transfer elektron dalam sel Hubungan rantai pernapasan dengan senyawa fosfat berenergi tinggi Oksidasi hidrogen (H) dalam mitokondria

Lebih terperinci

Mekanisme Proses Pencernaan Protein dalam Tubuh Manusia

Mekanisme Proses Pencernaan Protein dalam Tubuh Manusia Mekanisme Proses Pencernaan Protein dalam Tubuh Manusia Protein adalah salah satu zat gizi penting yang dibutuhkan tubuh sebagai bahan baku energi, pembentukan dan perbaikan sel, sintesis hormon, enzim,

Lebih terperinci

A. Respirasi Selular/Aerobik

A. Respirasi Selular/Aerobik UNSYIAH Universitas Syiah Kuala Pendahuluan METABOLISME Pengantar Biologi MPA-107, 3 (2-1) Kuliah 4 SEL: RESPIRASI Tim Pengantar Biologi Jurusan Biologi FMIPA Unsyiah ANABOLISME (Pembentukan molekul kompleks

Lebih terperinci

METABOLISME MIKROORGANISME

METABOLISME MIKROORGANISME METABOLISME MIKROORGANISME Metabolisme adalah sekumpulan proses kimia dan fisika yang terjadi di dalam tubuh suatu organisme atau makhluk hidup/sel yang dengan proses tersebut dibentuk protoplasma atau

Lebih terperinci

Rangkaian reaksi biokimia dalam sel hidup. Seluruh proses perubahan reaksi kimia beserta perubahan energi yg menyertai perubahan reaksi kimia tsb.

Rangkaian reaksi biokimia dalam sel hidup. Seluruh proses perubahan reaksi kimia beserta perubahan energi yg menyertai perubahan reaksi kimia tsb. Rangkaian reaksi biokimia dalam sel hidup. Seluruh proses perubahan reaksi kimia beserta perubahan energi yg menyertai perubahan reaksi kimia tsb. Anabolisme = (biosintesis) Proses pembentukan senyawa

Lebih terperinci

fosfotriose isomerase, dihidroksi aseton fosfat juga dioksidasi menjadi 1,3- bisfosfogliserat melalui gliseraldehid 3-fosfat.

fosfotriose isomerase, dihidroksi aseton fosfat juga dioksidasi menjadi 1,3- bisfosfogliserat melalui gliseraldehid 3-fosfat. 1. GLIKOLISIS PENDAHULUAN Sebagian besar jaringan membutuhkan glukosa meskipun dalam jumlah minimum, terutama otak dan eritrosit. Glikolisis merupakan jalur utama untuk pemanfaatan glukosa dan di sitosol

Lebih terperinci

BAB 2 PROSES METABOLISME ORGANISME

BAB 2 PROSES METABOLISME ORGANISME BAB 2 PROSES METABOLISME ORGANISME Sumber: Encarta Encyclopedia Bersepeda, seperti gambar di samping, dapat meningkatkan laju metabolisme hingga 15 kali laju metabolisme biasa. Denyut jantung meningkat

Lebih terperinci

Anabolisme Lipid. Biokimia Semester Gasal 2012/2013 Esti Widowati,S.Si.,M.P

Anabolisme Lipid. Biokimia Semester Gasal 2012/2013 Esti Widowati,S.Si.,M.P Anabolisme Lipid Biokimia Semester Gasal 2012/2013 Esti Widowati,S.Si.,M.P Lemak Hewani dan Nabati Lemak hewani mengandung banyak sterol yang disebut kolesterol Lemak nabati mengandung fitosterol dan lebih

Lebih terperinci

Oleh: Tim Biologi Fakultas Teknologi Pertanian Universitas Brawijaya 2013

Oleh: Tim Biologi Fakultas Teknologi Pertanian Universitas Brawijaya 2013 Energi & METABOLISME Oleh: Tim Biologi Fakultas Teknologi Pertanian Universitas Brawijaya 2013 Sesuatu yang diperlukan untuk aktivitas seluler, seperti pertumbuhan, gerak, transport molekul maupun ion

Lebih terperinci

1. Glikolisis, yakni proses pemecahan molekul c6 atau glukosa menjadi senyawa bernama asam piruvat atau dikenal dengan rumus kimia C3.

1. Glikolisis, yakni proses pemecahan molekul c6 atau glukosa menjadi senyawa bernama asam piruvat atau dikenal dengan rumus kimia C3. MEKANISME PERNAPASAN Aerob Dan Anaerob Secara kompleks, respirasi diartikan sebagai sebuah proses pergerakan atau mobilisasi energi oleh makhluk hidup dengan cara memecah senyawa dengan ebergi tinggi yakni

Lebih terperinci

Peta Konsep. komponen enzim. Ko-enzim. Cara kerja enzim. Bekerja secara spesifik Sifat-sifat enzim. Glikolisis. Siklus krebs.

Peta Konsep. komponen enzim. Ko-enzim. Cara kerja enzim. Bekerja secara spesifik Sifat-sifat enzim. Glikolisis. Siklus krebs. Bab 2 Metabolisme Sel Bab 2 Metabolisme Sel Pengertian metabolisme Peta Konsep komponen enzim Gugus prostetik Ko-enzim Ion-ion organik Cara kerja enzim Teori gembok dan anak kunci Teori kecocokan yang

Lebih terperinci

Antiremed Kelas 12 Biologi

Antiremed Kelas 12 Biologi Antiremed Kelas 12 Biologi UTS BIOLOGI latihan 1 Doc Name : AR12BIO01UTS Version : 2014-10 halaman 1 01. Perhatikan grafik hasil percobaan pertumbuhan kecambah di tempat gelap, teduh, dan terang berikut:

Lebih terperinci

Fransiska Ayunintyas W, M.Sc., Apt Akfar Theresiana 2014

Fransiska Ayunintyas W, M.Sc., Apt Akfar Theresiana 2014 Fransiska Ayunintyas W, M.Sc., Apt Akfar Theresiana 2014 Siklus Krebs Tahap 1. Sitrat Sintase (hidrolisis) Asetil KoA + oksaloasetat + H 2 O sitrat + KoA-SH Merupakan reaksi kondensasi aldol yang

Lebih terperinci

Pengertian Mitokondria

Pengertian Mitokondria Home» Pelajaran» Pengertian Mitokondria, Struktur, dan Fungsi Mitokondria Pengertian Mitokondria, Struktur, dan Fungsi Mitokondria Pengertian Mitokondria Mitokondria adalah salah satu organel sel dan berfungsi

Lebih terperinci

BIOKIMIA adalah ilmu yang mempelajari segala bentuk perubahan molekul atau perubahan struktur kimia

BIOKIMIA adalah ilmu yang mempelajari segala bentuk perubahan molekul atau perubahan struktur kimia KODE MK: IKF 207 DOSEN: DR.dr. BM.WARA KUSHARTANTI MS RUANG LINGKUP BIOKIMIA adalah ilmu yang mempelajari segala bentuk perubahan molekul atau perubahan struktur kimia yang terjadi pada makhluk hidup.

Lebih terperinci

METABOLISME MIKROORGANISME

METABOLISME MIKROORGANISME METABOLISME MIKROORGANISME Mengapa mempelajari metabolisme? Marlia Singgih Wibowo School of Pharmacy ITB Tujuan mempelajari metabolisme mikroorganisme Memahami jalur biosintesis suatu metabolit (primer

Lebih terperinci

MAKALAH BIOKIMIA II DEKARBOKSILASI OKSIDATIF, SIKLUS ASAM SITRAT, DAN FOSFORILASI OKSIDATIF

MAKALAH BIOKIMIA II DEKARBOKSILASI OKSIDATIF, SIKLUS ASAM SITRAT, DAN FOSFORILASI OKSIDATIF MAKALAH BIOKIMIA II DEKARBOKSILASI OKSIDATIF, SIKLUS ASAM SITRAT, DAN FOSFORILASI OKSIDATIF OLEH KELOMPOK IV NAMA ANGGOTA : 1. LALU SINGGIH AJI PUTRA 2. NONI MULIANA LISTIAWATI 3. SAMSUL RIZAL UMAMI 4.

Lebih terperinci

VIII. GLIKOLISIS Dr. Edy Meiyanto, MSi., Apt.

VIII. GLIKOLISIS Dr. Edy Meiyanto, MSi., Apt. VIII. GLIKOLISIS Dr. Edy Meiyanto, MSi., Apt. Tujuan Instruksional Umum (TIU) Setelah mengikuti kuliah bagian ini diharapkan mahasiswa dapat menyebutkan dan menjelaskan proses reaksi glikolisis Pendahuluan

Lebih terperinci

Protein adalah sumber asam-asam amino yang mengandung unsur-unsur C, H, O, dan N yang tidak dimiliki oleh lemak atau karbohidrat.

Protein adalah sumber asam-asam amino yang mengandung unsur-unsur C, H, O, dan N yang tidak dimiliki oleh lemak atau karbohidrat. PROTEIN Protein adalah sumber asam-asam amino yang mengandung unsur-unsur C, H, O, dan N yang tidak dimiliki oleh lemak atau karbohidrat. Sebagai zat pembangun, protein merupakan bahan pembentuk jaringanjaringan

Lebih terperinci

Asam Amino dan Protein

Asam Amino dan Protein Modul 1 Asam Amino dan Protein Dra. Susi Sulistiana, M.Si. M PENDAHULUAN odul 1 ini membahas 2 unit kegiatan praktikum, yaitu pemisahan asam amino dengan elektroforesis kertas dan uji kualitatif Buret

Lebih terperinci

BIOENERGETIKA. Oleh: Moammad Hanafi Dan Trimartini

BIOENERGETIKA. Oleh: Moammad Hanafi Dan Trimartini BIOENERGETIKA Oleh: Moammad Hanafi Dan Trimartini 1 BIOENERGETIKA MEMPELAJARI DINAMIKA/ PERUBAHAN ENERGI PADA REAKSI BIOKIMIAWI (REAKSI KIMIA PADA ORGANISME) 2 PADA ILMU KIMIA TELAH DIKENAL ADANYA: 1.REAKSI

Lebih terperinci

FISIOLOGI TUMBUHAN MKK 414/3 SKS (2-1)

FISIOLOGI TUMBUHAN MKK 414/3 SKS (2-1) FISIOLOGI TUMBUHAN MKK 414/3 SKS (2-1) OLEH : PIENYANI ROSAWANTI PROGRAM STUDI AGROTEKNOLOGI FAKULTAS PERTANIAN DAN KEHUTANAN UNIVERSITAS MUHAMMADIYAH PALANGKARAYA 2017 METABOLISME Metabolisme adalah proses-proses

Lebih terperinci

BIOLOGI. Nissa Anggastya Fentami, M.Farm, Apt

BIOLOGI. Nissa Anggastya Fentami, M.Farm, Apt BIOLOGI Nissa Anggastya Fentami, M.Farm, Apt Metabolisme Sel Metabolisme Metabolisme merupakan totalitas proses kimia di dalam tubuh. Metabolisme meliputi segala aktivitas hidup yang bertujuan agar sel

Lebih terperinci

Dr. MUTIARA INDAH SARI NIP:

Dr. MUTIARA INDAH SARI NIP: GLIKOLISIS SEBAGAI METABOLISME KARBOHIDRAT UNTUK MENGHASILKAN ENERGI Dr. MUTIARA INDAH SARI NIP: 132 296 973 2007 DAFTAR ISI I. PENDAHULUAN...1 II. III. KATABOLISME KARBOHIDRAT DALAM SALURAN PENCERNAAN....1

Lebih terperinci

BAHAN AJAR BIOKIMIA Sistem energi untuk olahraga. Oleh: Cerika Rismayanthi, M.Or FIK UNY

BAHAN AJAR BIOKIMIA Sistem energi untuk olahraga. Oleh: Cerika Rismayanthi, M.Or FIK UNY BAHAN AJAR BIOKIMIA Sistem energi untuk olahraga Oleh: Cerika Rismayanthi, M.Or FIK UNY Seluruh sel-sel tubuh memiliki kemampuan mengkonversi makanan (dalam hal ini protein, lemak, dan karbohidrat) menjadi

Lebih terperinci

4. Respirasi aerob menghasilkan produk berupa A. sukrosa B. glukosa C. CO D. oksigen

4. Respirasi aerob menghasilkan produk berupa A. sukrosa B. glukosa C. CO D. oksigen 1. Pada respirasi terjadi proses pemakaian karbohidrat menjadi piruvat yang disebut... A. siklus Krebs B. siklus Calvin C. fermentasi D. glikolisis E. fiksasi Pada proses glikolisis, glukosa (C6) di pecah

Lebih terperinci

ENZIM Enzim : adalah protein khusus yang mengkatalisis reaksi biokimia tertentu

ENZIM Enzim : adalah protein khusus yang mengkatalisis reaksi biokimia tertentu ENZIM Enzim : adalah protein khusus yang mengkatalisis reaksi biokimia tertentu terikat pada satu atau lebih zat-zat yang bereaksi. Dengan demikian enzim menurunkan barier energi (jumlah energi aktivasi

Lebih terperinci

2. Komponen piruvat DH terdiri dari 3 enzim yaitu: a. komponen piruvat DH, dihidrolipoil transasetilase, dan dihidrolipoil DH b.? c.?

2. Komponen piruvat DH terdiri dari 3 enzim yaitu: a. komponen piruvat DH, dihidrolipoil transasetilase, dan dihidrolipoil DH b.? c.? 1 BIOKIMIA Prof. Mulyadi, Apt 1. Siklus Krebs: a. merupakan jalur metabolisme bersama untuk oksidasi molekul bahan bakar seperti asam amino, asam lemak, dan karbohidrat b. mempunyai nama lain daur asam

Lebih terperinci

BAB VIII PROSES FOTOSINTESIS, RESPIRASI DAN FIKSASI NITROGEN OLEH TANAMAN

BAB VIII PROSES FOTOSINTESIS, RESPIRASI DAN FIKSASI NITROGEN OLEH TANAMAN BAB VIII PROSES FOTOSINTESIS, RESPIRASI DAN FIKSASI NITROGEN OLEH TANAMAN 8.1. Fotosintesis Fotosintesis atau fotosintesa merupakan proses pembuatan makanan yang terjadi pada tumbuhan hijau dengan bantuan

Lebih terperinci

BAB III KOMPOSISI KIMIA DALAM SEL. A. STANDAR KOMPETENSI Mahasiswa diharapkan Mampu Memahami Komposisi Kimia Sel.

BAB III KOMPOSISI KIMIA DALAM SEL. A. STANDAR KOMPETENSI Mahasiswa diharapkan Mampu Memahami Komposisi Kimia Sel. BAB III KOMPOSISI KIMIA DALAM SEL A. STANDAR KOMPETENSI Mahasiswa diharapkan Mampu Memahami Komposisi Kimia Sel. B. KOMPETENSI DASAR 1. Mahasiswa dapat membedakan komposisi kimia anorganik dan organik

Lebih terperinci

Karena glikolisis dan glukoneogenesis mempunyai jalur yang same tetapi arahnya berbeda, maka keduanya hams dikendalikan secara timbal balik.

Karena glikolisis dan glukoneogenesis mempunyai jalur yang same tetapi arahnya berbeda, maka keduanya hams dikendalikan secara timbal balik. 5. GLUKONEOGENESIS Glukoneogenesis merupakan mekanisme dan reaksi-reaksi yang merubah senyawa non karbohidrat menjadi glukosa atau glikogen. Substrat utama glukoneogenesis adalah asam amino glukogenik,

Lebih terperinci

PRINSIP ENERGI METABOLISME

PRINSIP ENERGI METABOLISME PRINSIP ENERGI METABOLISME TUJUAN PEMBELAJARAN MENGETAHUI PRINSIP REAKSI OKSIDASI PADA SIKLUS KREBS MENGETAHUI SUMBER RESIDU ASETIL MENGETAHUI LOKASI ENZIM PADA MITOKONDRIA MENGETAHUI KOMPONEN RANTAI PERNAPASAN

Lebih terperinci

ANABOLISME KARBOHIDRAT (FOTOSINTESIS)

ANABOLISME KARBOHIDRAT (FOTOSINTESIS) ANABOLISME KARBOHIDRAT (FOTOSINTESIS) Fotosintesis adalah proses sintesis / penyusunan/ pembentukan senyawa organik karbohidrat dari zat anorganik CO 2 dan H 2 O yang terjadi pada tumbuhan yang berklorofil

Lebih terperinci

Asam Amino dan Protein. Tri Rini Nuringtyas

Asam Amino dan Protein. Tri Rini Nuringtyas Asam Amino dan Protein Tri Rini Nuringtyas Protein Molekul yg sangat vital untuk organisme terdapt di semua sel Polimer disusun oleh 20 mcm asam amino standar Rantai asam amino dihubungkan dg iktn kovalen

Lebih terperinci

Metabolisme karbohidrat - 4

Metabolisme karbohidrat - 4 Glukoneogenesis Uronic acid pathway Metabolisme fruktosa Metabolisme galaktosa Metabolisme gula amino (glucoseamine) Pengaturan metabolisme karbohidrat Pengaturan kadar glukosa darah Metabolisme karbohidrat

Lebih terperinci

Uraian Materi Anda suka makan ubi atau kentang rebus? Ubi jalar dan kentang sama-sama mengandung karbohidrat dalam bentuk amilum.

Uraian Materi Anda suka makan ubi atau kentang rebus? Ubi jalar dan kentang sama-sama mengandung karbohidrat dalam bentuk amilum. Uraian Materi Anda suka makan ubi atau kentang rebus? Ubi jalar dan kentang sama-sama mengandung karbohidrat dalam bentuk amilum. Dari manakah asal kandungan amilum pada ubi jalar dan kentang? Amilum yang

Lebih terperinci

KIMIA. Sesi. Review IV A. KARBOHIDRAT

KIMIA. Sesi. Review IV A. KARBOHIDRAT KIMIA KELAS XII IPA - KURIKULUM GABUNGAN 24 Sesi NGAN Review IV A. KARBOHIDRAT 1. Di bawah ini adalah monosakarida golongan aldosa, kecuali... A. Ribosa D. Eritrosa B. Galaktosa E. Glukosa C. Fruktosa

Lebih terperinci

TEORI PEMBENTUKAN ATP, KAITANNYA DENGAN PERALIHAN ASAM-BASA. Laurencius Sihotang BAB I PENDAHULUAN

TEORI PEMBENTUKAN ATP, KAITANNYA DENGAN PERALIHAN ASAM-BASA. Laurencius Sihotang BAB I PENDAHULUAN TEORI PEMBENTUKAN ATP, KAITANNYA DENGAN PERALIHAN ASAM-BASA Laurencius Sihotang BAB I PENDAHULUAN A. LATAR BELAKANG Semua kehidupan di bumi ini bergantung kepada fotosintesis baik langsung maupun tidak

Lebih terperinci

METABOLISME ENERGI. Metabolisme : segala proses reaksi kimia yang terjadi dalam tubuh makhluk hidup

METABOLISME ENERGI. Metabolisme : segala proses reaksi kimia yang terjadi dalam tubuh makhluk hidup METABLISME EERGI Metabolisme : segala proses reaksi kimia yang terjadi dalam tubuh makhluk hidup Energi : kemampuan makhluk hidup untuk melakukan aktivitas Metabolisme energi dipelajari bioenergitika Disebut

Lebih terperinci

BIOKIMIA NUTRISI. : PENDAHULUAN (Haryati)

BIOKIMIA NUTRISI. : PENDAHULUAN (Haryati) BIOKIMIA NUTRISI Minggu I : PENDAHULUAN (Haryati) - Informasi kontrak dan rencana pembelajaran - Pengertian ilmu biokimia dan biokimia nutrisi -Tujuan mempelajari ilmu biokimia - Keterkaitan tentang mata

Lebih terperinci

FUNGSI PHOSPOR DALAM METABOLISME ATP

FUNGSI PHOSPOR DALAM METABOLISME ATP TUGAS MATA KULIAH NUTRISI TANAMAN FUNGSI PHOSPOR DALAM METABOLISME ATP Oleh : Dewi Ma rufah H0106006 Lamria Silitonga H 0106076 FAKULTAS PERTANIAN UNIVERSITAS SEBELAS MARET SURAKARTA 2008 Pendahuluan Fosfor

Lebih terperinci

6H 2 O + 6CO 2 > C 6 H 12 O 6 + 6O 2. cahaya menjadi energi kimia. molekul gula

6H 2 O + 6CO 2 > C 6 H 12 O 6 + 6O 2. cahaya menjadi energi kimia. molekul gula FOTOSINTESIS Fotosisntesis 6H 2 O + 6CO 2 > C 6 H 12 O 6 + 6O 2 1. REAKSI CAHAYA: mengubah bhenergi cahaya menjadi energi kimia 2. REAKSI KARBON: siklus Calvin, merakit molekul gula An overview of photosynthesis

Lebih terperinci

Fungsi utama Siklus Kreb 1. Menghasilkan karbondioksida terbanyak pada jaringan manusia.

Fungsi utama Siklus Kreb 1. Menghasilkan karbondioksida terbanyak pada jaringan manusia. URAIAN MATERI A. Glikolisis Glikolisis diperoleh daribahasa yunani glyk manis, dan lysis pemecahan.glikolisis merupakan proses pemecahan glukosa menjadi senyawa triosa (C 3) yaitu piruvat. Siklus asam

Lebih terperinci

ENZIM 1. Nomenklatur Enzim 2. Struktur Enzim

ENZIM 1. Nomenklatur Enzim 2. Struktur Enzim ENZIM Enzim atau biokatalisator adalah katalisator organik yang dihasilkan oleh sel.enzim sangat penting dalam kehidupan, karena semua reaksi metabolisme dikatalis oleh enzim. Jika tidak ada enzim, atau

Lebih terperinci

adalah proses DNA yang mengarahkan sintesis protein. ekspresi gen yang mengodekan protein mencakup dua tahap : transkripsi dan translasi.

adalah proses DNA yang mengarahkan sintesis protein. ekspresi gen yang mengodekan protein mencakup dua tahap : transkripsi dan translasi. bergerak sepanjang molekul DNA, mengurai dan meluruskan heliks. Dalam pemanjangan, nukleotida ditambahkan secara kovalen pada ujung 3 molekul RNA yang baru terbentuk. Misalnya nukleotida DNA cetakan A,

Lebih terperinci

Metabolisme Energi. Pertemuan ke-4 Mikrobiologi Dasar. Prof. Ir. H. Usman Pato, MSc. PhD. Fakultas Pertanian Universitas Riau

Metabolisme Energi. Pertemuan ke-4 Mikrobiologi Dasar. Prof. Ir. H. Usman Pato, MSc. PhD. Fakultas Pertanian Universitas Riau Metabolisme Energi Pertemuan ke-4 Mikrobiologi Dasar Prof. Ir. H. Usman Pato, MSc. PhD. Fakultas Pertanian Universitas Riau Sumber Energi Mikroba Setiap makhluk hidup butuh energi untuk kelangsungan hidupnya

Lebih terperinci

METABOLISME 2. Respirasi Sel Fotosintesis

METABOLISME 2. Respirasi Sel Fotosintesis METABOLISME 2 Respirasi Sel Fotosintesis Jalur Respirasi Aerobik dan Anaerobik Rantai respirasi Fotosintesis Fotosintesis merupakan proses sintesis molekul organik dengan menggunakan bantuan energi

Lebih terperinci

SMP kelas 8 - BIOLOGI BAB 8. FOTOSINTESISLatihan Soal 8.2. Stroma. Grana. Membran luar

SMP kelas 8 - BIOLOGI BAB 8. FOTOSINTESISLatihan Soal 8.2. Stroma. Grana. Membran luar SMP kelas 8 - BIOLOGI BAB 8. FOTOSINTESISLatihan Soal 8.2 1. Proses fotosintesis berlangsung dalam dua tahap, yaitu reaksi terang dan reaksi gelap. Reaksi terang berlangsung di... Membran tilakoid Stroma

Lebih terperinci

BIOMOLEKUL II PROTEIN

BIOMOLEKUL II PROTEIN KIMIA KELAS XII IPA - KURIKULUM GABUNGAN 22 Sesi NGAN BIOMOLEKUL II PROTEIN Protein dan peptida adalah molekul raksasa yang tersusun dari asam α-amino (disebut residu) yang terikat satu dengan lainnya

Lebih terperinci

KARBOHIDRAT Carbohydrate

KARBOHIDRAT Carbohydrate KARBOHIDRAT Carbohydrate Di akhir kuliah ini, pelajar-pelajar dapat: By the end of this lecture, students may get: 1. Menjelaskan jenis-jenis karbohidrat. 2. Menmbincangkan ciri-ciri asas bagi heksosa.

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Penggandaan dan penyediaan asam amino menjadi amat penting oleh karena senyawa tersebut dipergunakan sebagai satuan penyusun protein. Kemampuan jasad hidup untuk membentuk

Lebih terperinci

BIOSINTESIS METABOLIT PRIMER DAN METABOLIT SEKUNDER

BIOSINTESIS METABOLIT PRIMER DAN METABOLIT SEKUNDER BIOSINTESIS METABOLIT PRIMER DAN METABOLIT SEKUNDER Biosintesis merupakan proses pembentukan suatu metabolit (produk metabolisme) dari molekul yang sederhana sehingga menjadi molekul yang lebih kompleks

Lebih terperinci

Retikulum Endoplasma (Mader, 2000) Tuti N. dan Sri S. (FIK-UI)

Retikulum Endoplasma (Mader, 2000) Tuti N. dan Sri S. (FIK-UI) Retikulum Endoplasma (Mader, 2000) RETIKULUM ENDOPLASMA Ada dua jenis retikum endoplasma (ER) yang melakukan fungsi yang berbeda di dalam sel: Retikulum Endoplasma kasar (rough ER), yang ditutupi oleh

Lebih terperinci

Metabolisme karbohidrat - 2

Metabolisme karbohidrat - 2 Glukoneogenesis Uronic acid pathway Metabolisme fruktosa Metabolisme galaktosa Metabolisme gula amino (glucoseamine) Pengaturan metabolisme karbohidrat Pengaturan kadar glukosa darah Metabolisme karbohidrat

Lebih terperinci

KOENZIM, KOFAKTOR DAN VITAMIN

KOENZIM, KOFAKTOR DAN VITAMIN KOENZIM, KOFAKTOR DAN VITAMIN KOENZIM Bagian bukan protein dari enzim yang terbuat dari bahan organik seperti vitamin. KOFAKTOR Bagian bukan protein dari enzim yang berasal dari molekul anorganik VITAMIN

Lebih terperinci

oksaloasetat katabolisme anabolisme asetil-koa aerobik

oksaloasetat katabolisme anabolisme asetil-koa aerobik Siklus Kreb s Sumber asetil-koa Pembentukan energi pada siklus Kreb s Fungsi amfibolik siklus Kreb s Siklus asam sitrat pada metabolisme karbohidrat, lipid dan protein Proses metabolisme karbohidrat dan

Lebih terperinci

METABOLISME dan KATABOLISME KARBOHIDRAT

METABOLISME dan KATABOLISME KARBOHIDRAT METABOLISME dan KATABOLISME KARBOHIDRAT Disampaikan oleh: Sofia Februanti METABOLISME & KATABOLISME KARBOHIDRAT PENGERTIAN KLASIFIKASI METABOLISME DAN KATABOLISME PENGERTIAN KARBOHIDRAT Senyawa organik

Lebih terperinci

ENZIM. Ir. Niken Astuti, MP. Prodi Peternakan, Fak. Agroindustri, UMB YOGYA

ENZIM. Ir. Niken Astuti, MP. Prodi Peternakan, Fak. Agroindustri, UMB YOGYA ENZIM Ir. Niken Astuti, MP. Prodi Peternakan, Fak. Agroindustri, UMB YOGYA ENZIM ENZIM ADALAH PROTEIN YG SANGAT KHUSUS YG MEMILIKI AKTIVITAS KATALITIK. SPESIFITAS ENZIM SANGAT TINGGI TERHADAP SUBSTRAT

Lebih terperinci

1 Asimilasi nitrogen dan sulfur

1 Asimilasi nitrogen dan sulfur BAB I PENDAHULUAN 1.1 Latar Belakang Tumbuhan tingkat tinggi merupakan organisme autotrof dapat mensintesa komponen molekular organik yang dibutuhkannya, selain juga membutuhkan hara dalam bentuk anorganik

Lebih terperinci

Pertemuan III: Cara Kerja Sel dan Respirasi Seluler. Program Tingkat Persiapan Bersama IPB 2011

Pertemuan III: Cara Kerja Sel dan Respirasi Seluler. Program Tingkat Persiapan Bersama IPB 2011 Pertemuan III: Cara Kerja Sel dan Respirasi Seluler Program Tingkat Persiapan Bersama IPB 2011 Pertemuan III. Cara Kerja Sel Topik Bahasan: Fungsi (protein) membran Energi dalam kehidupan Fungsi enzim

Lebih terperinci

FOTOSINTESIS. Fotosintesis 1

FOTOSINTESIS. Fotosintesis 1 FOTOSINTESIS Fotosintesis 1 CAKUPAN MATERI Peran Fotosintesis Sejarah Fotosintesis Tempat terjadinya Fotosintesis Reaksi-reksi Fotosintesis Reaksi Terang Reaksi Gelap Tumbuhan C3, C4 dan CAM Fotosintesis

Lebih terperinci

Asam Amino, Peptida dan Protein. Oleh Zaenal Arifin S.Kep.Ns.M.Kes

Asam Amino, Peptida dan Protein. Oleh Zaenal Arifin S.Kep.Ns.M.Kes Asam Amino, Peptida dan Protein Oleh Zaenal Arifin S.Kep.Ns.M.Kes Pendahuluan Protein adalah polimer alami terdiri atas sejumlah unit asam amino yang berkaitan satu dengan yg lainnya Peptida adalah oligomer

Lebih terperinci

Energi & METABOLISME. Oleh: Mochamad Nurcholis

Energi & METABOLISME. Oleh: Mochamad Nurcholis Energi & METABOLISME Oleh: Mochamad Nurcholis Sesuatu yang diperlukan untuk aktivitas seluler, seperti pertumbuhan, gerak, transport molekul maupun ion melalui membran. Hukum Termodinamika I : Jumlah energi

Lebih terperinci

METABOLISME HETEROTROF. Kelompok 8 : Mica Mirani ( ) Ulin Ni'mah Setiawati ( )

METABOLISME HETEROTROF. Kelompok 8 : Mica Mirani ( ) Ulin Ni'mah Setiawati ( ) METABOLISME HETEROTROF Kelompok 8 : Mica Mirani (1717021019) Ulin Ni'mah Setiawati (1717021020) Metabolisme Semua reaksi kimia yang terjadi di dalam tubuh makhluk hidup (sel). Reaksi kimia disusun/ diataur

Lebih terperinci

BIO KELAS 12 SEMESTER 1

BIO KELAS 12 SEMESTER 1 BIO KELAS 12 SEMESTER 1 1. Siswa SMA kelas XII ingin mengetahui pengaruh cahaya terhadap pertumbuhan, maka metode penelitian yang dipilih sebaiknya.... a. penelitian evaluasi b. grounded research c. penelitian

Lebih terperinci

Penemunya adalah Dr. Hans Krebs; disebut juga sebagai siklus asam sitrat atau jalur asam trikarboksilik. Siklus yang merubah asetil-koa menjadi CO 2.

Penemunya adalah Dr. Hans Krebs; disebut juga sebagai siklus asam sitrat atau jalur asam trikarboksilik. Siklus yang merubah asetil-koa menjadi CO 2. Siklus Kreb s Sumber asetil-koa Pembentukan energi pada siklus Kreb s Fungsi amfibolik siklus Kreb s Siklus asam sitrat pada metabolisme karbohidrat, lipid dan protein Proses metabolisme karbohidrat dan

Lebih terperinci

PERTEMUAN IV: FOTOSINTESIS. Program Tingkat Persiapan Bersama IPB 2011

PERTEMUAN IV: FOTOSINTESIS. Program Tingkat Persiapan Bersama IPB 2011 PERTEMUAN IV: FOTOSINTESIS Program Tingkat Persiapan Bersama IPB 2011 FOTOSINTESIS Pokok Bahasan: Peran Tumbuhan dan Fotosintesis Tumbuhan sebagai produser Tempat terjadinya Fotosintesis Pemecahan air

Lebih terperinci