STUDI EFEK STATIK PADA DATA MAGNETOTELLURIK (MT) MENGGUNAKAN PEMODELAN INVERSI 2-D

Ukuran: px
Mulai penontonan dengan halaman:

Download "STUDI EFEK STATIK PADA DATA MAGNETOTELLURIK (MT) MENGGUNAKAN PEMODELAN INVERSI 2-D"

Transkripsi

1 STUDI EFEK STATIK PADA DATA MAGNETOTELLURIK (MT) MENGGUNAKAN PEMODELAN INVERSI -D Hendra Grandis Kelompok Keilmuan Geofisika Terapan Fakultas Teknik Pertambangan dan Perminyakan ITB Jalan Ganesha 10 Bandung Abstrak Metode magnetotellurik (MT) merupakan metode eksplorasi geofisika yang sangat efektif untuk mendelineasi daerah prospek geotermal. Hal ini disebabkan eratnya keterkaitan antara parameter resistivitas bawah permukaan yang diperkirakan dari data MT dengan parameter temperatur. Data MT di daerah prospek geotermal umumnya mengandung efek statik yang disebabkan oleh heterogenitas dekat permukaan dan topografi. Manifestasi efek statik pada data MT berupa pergeseran vertikal kurva sounding resistivitas-semu terhadap periode, sementara kurva fase tidak terpengaruh. Untuk mengkoreksi efek statik pada data MT digunakan hasil pengukuran metode transient electromagnetics (TEM) yang tidak sensitif terhadap adanya penyebab efek statik (heterogenitas dekat permukaan dan topografi). Makalah ini membahas efek statik menggunakan model dan data sintetik serta pemodelan inversi MT -D. Hasil awal yang diperoleh menunjukkan indikasi bahwa pada dasarnya pengukuran TEM tidak diperlukan untuk mengkoreksi efek statik pada data MT. Kata kunci: magnetotellurik, efek statik, geotermal, pemodelan, inversi 1. Pendahuluan Heterogenitas dekat-permukaan dan topografi di sekitar titik pengamatan dapat menyebabkan adanya efek statik atau static shift pada data magnetotellurik (MT). Manifestasi efek statik tersebut berupa pergeseran vertikal kurva resistivitas-semu secara serba-sama pada semua interval frekuensi atau periode, sementara kurva fasa tidak mengalami distorsi. Pergeseran vertikal kurva sounding MT pada skala logaritmik ekivalen dengan perkalian harga resistivitas-semu dengan suatu konstanta k > 1 (pergeseran ke atas) atau k < 1 (pergeseran ke bawah). Pemodelan 1-D kurva sounding MT yang mengalami pergeseran vertikal sebesar k menghasilkan model 1-D yang merupakan kelipatan k dan k ½ masing-masing untuk resistivitas dan ketebalan yang sebenarnya (Sternberg dkk., 1988; Hendro & Grandis, 1996). Oleh karena itu kurva sounding MT yang mengalami efek statik perlu dikoreksi terlebih dahulu sebelum dimodelkan. Koreksi efek statik pada data MT dapat dilakukan melalui pemodelan, khususnya efek statik yang disebabkan oleh faktor topografi (Chouteau & Bouchard, 1988). Umumnya dilakukan pengamatan data Transient Electromagnetics (TEM) atau Time domain EM (TDEM) pada titik yang sama untuk mengoreksi data MT yang mengalami efek statik. Data TEM tidak terlalu terpengaruh oleh adanya heterogentitas dekat permukaan karena hanya melibatkan pengukuran medan magnet, tidak melibatkan pengukuran medan listrik menggunakan elektroda yang dihubungkan ke tanah. Sternberg dkk. (1988) dan Pellerin & Hohmann (1990) menguraikan penggunaan data TEM untuk koreksi efek statik pada data MT melalui pemodelan. Sementara itu Hendro dan Grandis (1996) melakukan koreksi efek statik dengan cara pergeseran waktu (time shift) data TEM sehingga diperoleh data MT ekivalen. Pada kedua kasus tersebut, diperoleh data MT yang tidak mengalami distorsi pada interval frekuensi tinggi sesuai kedalaman jangkauan metode TEM. Kemudian data lapangan MT digeser dengan mengalikan harga resistivitas-semu pada semua frekuensi dengan suatu konstanta k secara trial-anderror hingga berimpit dengan kurva MT ekivalen. Makalah ini membahas fenomena efek statik menggunakan model dan data sintetik MT -D. Model sintetik yang digunakan menggambarkan distribusi resistivitas yang umum terdapat di daerah prospek geotermal di daerah volkanik. Pemodelan inversi -D data MT dengan maupun tanpa efek statik menunjukkan hasil yag ekivalen. Meskipun masih bersifat sementara, hasil studi awal ini menunjukkan bahwa koreksi efek statik pada data MT hanya diperlukan jika pemodelan dilakukan untuk memperoleh model 1-D pada setiap titik sounding secara terpisah.

2 . Pemodelan MT -D Persamaan Mawell yang menggambarkan perilaku medan EM dan aplikasinya dalam metode MT telah banyak dibahas (misal Simpson & Bahr, 005). Penyelesaian persamaan Mawell untuk memperoleh persamaan pemodelan kedepan (forward modeling) MT pada medium 1-D telah dibahas diantaranya oleh Grandis (1997; 1999). Untuk dapat merepresentasikan kondisi bawahpermukaan secara lebih realistis maka digunakan model -D dimana resistivitas bervariasi terhadap kedalaman (z) dan jarak dalam arah penampang atau profil (y) sehingga ρ(y, z). Dalam hal ini resistivitas medium tidak bervariasi dalam arah sumbu yang merupakan arah struktur (strike). Gambar 1 memperlihatkan model -D sederhana berupa kontak vertikal. Persamaan yang berlaku pada kondisi -D seperti ditunjukkan pada Gambar 1 adalah persamaan medan EM yang didefinisikan sebagai polarisasi TE (Transverse Electric) dan TM (Transverse Magnetic). Pada polarisasi TE medan listrik E dan medan magnet H y masing-masing sejajar dan tegak lurus dengan arah struktur dan berlaku persamaan, E y H y E + 1 = i ωµ 0 = i ωµ E 0 σ E (1a) (1b) Pada polarisasi TM medan magnet H dan medan listrik E y masing-masing sejajar dan tegak lurus dengan arah struktur. Persamaan yang berlaku adalah, H ρ y y + H ρ = i ωµ 0 H (a) H E y = ρ (b) dimana σ = 1/ρ adalah konduktivitas medium dan ρ adalah resistivitas, ω = πf dan f adalah frekuensi, µ 0 adalah permeabilitas ruang hampa. Persamaan (1) dan () adalah persamaan diferensial yang dapat diselesaikan secara numerik. Medium bawah-permukaan dibagi menjadi blok atau grid dengan ukuran bervariasi dan resistivitas masing-masing blok menggambarkan variasi resistivitas secara -D. Persamaan medan EM masing-masing untuk medan listrik E dan medan magnet H, yaitu persamaan (1a) persamaan (a) didekati dengan persamaan beda-hingga (finitedifference) yang kemudian dinyatakan sebagai sistem persamaan linier (Rodi & Mackie, 001). Pada prinsipnya untuk polarisasi TE terlebih dahulu dilakukan perhitungan E pada grid dan hasilnya kemudian digunakan untuk memperkirakan H y melalui diferensiasi secara numerik persamaan (1b). Hal yang sama dilakukan untuk polarisasi TM. Pada penelitian ini digunakan perangkat lunak WinGLink dari Geosystem Ltd. untuk pemodelan kedepan maupun pemodelan inversi MT -D. Pada pemodelan inversi digunakan kendala kehalusan model (smoothness constrain) sehingga model yang diperoleh menunjukkan variasi spasial resistivitas yang tidak terlalu besar. Gambar 1. Komponen medan listrik dan medan magnet dalam polarisasi TE dan TM pada model -D sederhana berupa kontak vertikal antara medium 1 dan medium dengan resistivitas berbeda. Arah struktur (strike) adalah sejajar dengan sumbu.

3 3. Model Sintetik Model sintetik -D yang digunakan untuk pengujian berasosiasi dengan struktur yang umum dijumpai di daerah prospek geotermal. Model sintetik pada Gambar memperlihatkan distribusi resistivitas yang berasosiasi dengan adanya batuan penudung (cap rock, 1 Ohm.m) dan reservoir (10 Ohm.m) yang terdapat pada medium dengan resistivitas 100 Ohm.m (kedalaman kurang dari 3500 m) dan 500 Ohm.m (kedalaman lebih dari 3500 m). Lapisan batuan penudung membumbung (dooming) dari kedalaman 3500 m dengan puncak pada kedalaman 1000 m. Pada model sintetik yang sama ditambahkan heterogenitas dekat permukaan berupa blok-blok berukuran kecil konduktif dengan resisitvitas 1 Ohm.m yang dapat menghasilkan efek statik pada data MT sintetik (Gambar 3). Respons model dihitung pada periode antara s. sampai 100 s. pada 31 titik pengamatan dengan jarak antar titik 500 meter. Pada tahap awal ini data sintetik tidak ditambah dengan noise untuk menghindari kesulitan analisis terhadap hasil inversi yang diperoleh. Hal tersebut didasarkan atas pertimbangan bahwa terdapat kemungkinan terjadinya tumpang-tindih atau overlap antara dampak efek statik dan noise terhadap model hasil inversi. Data sintetik berupa kurva sounding MT pada dua titik pengamatan yang dianggap representatif diperlihatkan pada Gambar 4 (tanpa efek statik) dan Gambar 5 (dengan efek statik). Tampak dengan jelas dominasi efek statik di titik 10 yang berasosiasi dengan heterogenitas dekat-permukaan, bukan akibat topografi. Variasi topografi pada kedua model sintetik dibuat tidak terlalu ekstrim, yaitu antara 0 m sampai 500 m sehingga tidak menimbulkan efek statik yang cukup signifikan. Hal ini juga dimaksudkan untuk memudahkan analisis terhadap hasil inversi. 4. Inversi Data Sintetik Pemodelan inversi dilakukan terhadap data gabungan, yaitu data pada polarisasi TE dan TM di semua titik sounding yang ada. Model awal adalah medium homogen dengan resisitivitas 100 Ohm.m. Untuk semua pemodelan inversi yang dilakukan, jumlah iterasi dibuat tetap yaitu 30 iterasi. Tingkat kecocokan antara data dengan respons model inversi cukup tinggi mengingat tidak ditambahkannya noise pada data sintetik (lihat Gambar 4 dan 5). Model hasil inversi data tanpa dan dengan efek statik masing-masing diperlihatkan pada Gambar 6 dan Gambar 7. Tidak terdapat perbedaan yang signifikan antara kedua model tersebut, kecuali adanya heterogenitas dekat-permukaan yang terdapat pada model hasil inversi data yang mengandung efek statik. Secara umum distribusi resistivitas yang berasosiasi dengan elemen daerah prospek geotermal dapat diperoleh kembali dengan cukup baik. Ketidaksesuaian model inversi dengan model sintetik lebih disebabkan oleh digunakannya kendala kehalusan model. Batas-batas yang tegas antara setiap elemen atau blok resisitivitas tidak dapat direkonstruksi melalui pemodelan semacam ini. Karena sifat difusi gelombang EM, metode MT memang hanya dapat memberikan gambaran global distribusi resistivitas bawah-permukaan. Jarak ( 1000 m) Gambar. Model sintetik yang menggambarkan distribusi resistivitas yang umumnya terdapat pada daerah prospek geotermal.

4 Jarak ( 1000 m) Gambar 3. Model sintetik yang sama dengan model pada Gambar. Di dekat-permukaan ditambahkan blok-blok konduktif berukuran kecil dengan resistivitas 1 Ohm.m. Gambar 4. Respons dari model sintetik tanpa efek statik (Gambar ) pada dua titik yang dianggap representatif, yaitu titik 5 (kiri) dan titik 10 (kanan)..

5 Gambar 5. Respons dari model sintetik dengan efek statik (Gambar 3) pada dua titik yang dianggap representatif, yaitu titik 5 (kiri) dan titik 10 (kanan). Jarak ( 1000 m) Gambar 6. Model hasil inversi dari data sintetik yang berasosiasi dengan model tanpa efek statik (Gambar ).

6 Jarak ( 1000 m) Gambar 7. Model hasil inversi dari data sintetik yang berasosiasi dengan model yang mengandung efek statik (Gambar 3). 5. Diskusi dan Kesimpulan Pengukuran MT di daerah geotermal sering menghasilkan data yang mengalami efek statik. Hal ini disebabkan adanya heterogenitas dekat-permukaan dan variasi topografi yang cukup signifikan pada daerah prospek geotermal di daerah volkanik. Umumnya dilakukan pengukuran TEM di titik yang sama dengan titik sounding MT. Data TEM yang diperoleh nantinya dapat digunakan untuk mengkoreksi adanya efek statik pada data MT. Pengukuran TEM yang merupakan metode EM aktif menggunakan sumber gelombang artifisial memerlukan pengaturan logistik, waktu dan biaya operasi yang cukup signifikan. Hal tersebut sering menjadi kendala aplikasi metode MT di Indonesia untuk eksplorasi daerah prospek geotermal. Salah satu usaha untuk mereduksi pengaruh efek statik pada data MT adalah dengan melakukan pemodelan inversi yang telah dimodifikasi. Pada kasus ini faktor atau konstanta yang menimbulkan efek statik dimasukkan sebagai parameter model yang dicari pada proses inversi sebagaimana dilakukan oleh degroot-hedlin & Constable (1991). Penelitian ini masih bersifat sangat awal karena hanya membandingkan hasil inversi MT -D data sintetik yang mengandung efek statik dengan data tanpa efek statik. Pemodelan inversi kedua set data tersebut menghasilkan model yang tidak jauh berbeda. Karena efek statik disimulasikan sebagai akibat adanya heterogenitas dekat-permukaan maka model inversi yang diperoleh juga menunjukkan adanya heterogenitas tersebut. Oleh karena itu perlu kehatihatian dalam menafsirkan model hasil inversi data MT yang mengandung efek statik, khususnya yang menyangkut distribusi resistivitas dekat-permukaan. Anomali yang diperoleh di zona tersebut dapat saja bersifat artifisial, sementara penyebab efek statik sebenarnya adalah topografi, misalnya. Penelitian lebih lanjut masih diperlukan untuk menguji atau mengkonfirmasi hasil yang diperoleh dari penelitian awal ini. Misalnya dengan memberikan efek statik secara artifisial atau manual langsung pada data, bukan melalui model sintetik. Meskipun demikian, secara umum model inversi yang telah diperoleh dapat menggambarkan distribusi resistivitas yang cukup representatif bagi kondisi bawah-permukaan. Hal ini menunjukkan bahwa penggunaan data TEM untuk mengoreksi data MT yang mengandung efek statik tidak diperlukan lagi. Dengan demikian survey MT khususnya untuk eksplorasi daerah prospek geotermal dapat lebih dioptimalkan. Daftar Pustaka 1. M. Chouteau and K. Bouchard, Two-dimensional terrain correction in magnetotelluric surveys, Geophysics 53, (1988).. C. degroot-hedlin, Removal of static shift in twodimensions by regularized inversion, Geophysics 56, (1991).

7 3. H. Grandis, Practical algorithm for 1-D magnetotelluric response calculation, Jurnal Geofisika 1, no.1 (1997). 4. H. Grandis, An alternative algorithm for onedimensional magnetotelluric response calculation, Computer & Geosciences 5, (1999). 5. A. Hendro dan H. Grandis, Koreksi efek statik pada data magnetotellurik menggunakan data elektromagnetik transien, Prosiding PIT HAGI ke- 1 (1996). 6. L. Pellerin and G.W. Hohmann, Transient electromagnetic inversion: a remedy for magnetotelluric static shifts, Geophysics 55, (1990). 7. W. Rodi and R.L. Mackie, Nonlinear conjugate gradients algorithm for -D magnetotelluric inversion, Geophysics 66, (001). 8. F. Simpson and K. Bahr, Practical Magnetotellurics, Cambridge (005). 9. B.K. Sternberg, J.C. Washburne and L. Pellerin, Correction for the static shift in magnetotellurics using transient electromagnetic soundings, Geophysics 53, (1988).

BAB V HASIL DAN PEMBAHASAN. pegunungan dengan lintasan 1 (Line 1) terdiri dari 8 titik MT yang pengukurannya

BAB V HASIL DAN PEMBAHASAN. pegunungan dengan lintasan 1 (Line 1) terdiri dari 8 titik MT yang pengukurannya BAB V HASIL DAN PEMBAHASAN 5. 1. Pengolahan Data 1 Dimensi Dalam penelitian ini dilakukan pengolahan data terhadap 21 titik pengamatan yang tersebar pada tiga lintasan, yaitu Lintasan 1, Lintasan 2 dan

Lebih terperinci

PENERAPAN KOREKSI STATIK TIME DOMAIN ELEKTROMAGNETIK (TDEM) PADA DATA MAGNETOTELLURIK (MT) UNTUK PEMODELAN RESISTIVITAS LAPANGAN PANAS BUMI SS.

PENERAPAN KOREKSI STATIK TIME DOMAIN ELEKTROMAGNETIK (TDEM) PADA DATA MAGNETOTELLURIK (MT) UNTUK PEMODELAN RESISTIVITAS LAPANGAN PANAS BUMI SS. PENERAPAN KOREKSI STATIK TIME DOMAIN ELEKTROMAGNETIK (TDEM) PADA DATA MAGNETOTELLURIK (MT) UNTUK PEMODELAN RESISTIVITAS LAPANGAN PANAS BUMI SS Putri Hardini 1, Dr. Ahmad Zaenudin, M.T 1., Royo Handoyo

Lebih terperinci

SURVEI MAGNETOTELURIK (MT) DAN TIME DOMAIN ELEKTRO MAGNETIC (TDEM) DAERAH PANAS BUMI MAPOS KABUPATEN MANGGARAI TIMUR, PROVINSI NUSA TENGGARA TIMUR

SURVEI MAGNETOTELURIK (MT) DAN TIME DOMAIN ELEKTRO MAGNETIC (TDEM) DAERAH PANAS BUMI MAPOS KABUPATEN MANGGARAI TIMUR, PROVINSI NUSA TENGGARA TIMUR SURVEI MAGNETOTELURIK (MT) DAN TIME DOMAIN ELEKTRO MAGNETIC (TDEM) DAERAH PANAS BUMI MAPOS KABUPATEN MANGGARAI TIMUR, PROVINSI NUSA TENGGARA TIMUR Muhammad Kholid, Arif Munandar Kelompok Penyelidikan Panas

Lebih terperinci

INVERSI 1-D PADA DATA MAGNETOTELLURIK DI LAPANGAN X MENGGUNAKAN METODE OCCAM DAN SIMULATED ANNEALING

INVERSI 1-D PADA DATA MAGNETOTELLURIK DI LAPANGAN X MENGGUNAKAN METODE OCCAM DAN SIMULATED ANNEALING Inversi 1-D... INVERSI 1-D PADA DATA MAGNETOTELLURIK DI LAPANGAN X MENGGUNAKAN METODE OCCAM DAN SIMULATED ANNEALING R. Aldi Kurnia Wijaya 1), Ayi Syaeful Bahri 1), Dwa Desa Warnana 1), Arif Darmawan 2)

Lebih terperinci

POSITRON, Vol. V, No. 1 (2015), Hal ISSN :

POSITRON, Vol. V, No. 1 (2015), Hal ISSN : Identifikasi Struktur Bawah Permukaan Berdasarkan Metode Magnetotellurik di Kawasan Panas Bumi Wapsalit Kabupaten Buru Provinsi Maluku Siti Masyitah Fitrida 1*), Joko Sampurno 1), Okto Ivansyah 2), Muhammad

Lebih terperinci

SURVEI MEGNETOTELLURIK DAERAH PANAS BUMI LILI-SEPPORAKI, KABU- PATEN POLEWALI MANDAR, PROVINSI SULAWESI BARAT. Muhammad Kholid, Harapan Marpaung

SURVEI MEGNETOTELLURIK DAERAH PANAS BUMI LILI-SEPPORAKI, KABU- PATEN POLEWALI MANDAR, PROVINSI SULAWESI BARAT. Muhammad Kholid, Harapan Marpaung SURVEI MEGNETOTELLURIK DAERAH PANAS BUMI LILI-SEPPORAKI, KABU- PATEN POLEWALI MANDAR, PROVINSI SULAWESI BARAT Muhammad Kholid, Harapan Marpaung KPP Bawah Permukaan Pengukuran Magnetotelurik (MT) telah

Lebih terperinci

METODA MAGNETOTELLURIK (MT)

METODA MAGNETOTELLURIK (MT) METODA MAGNETOTELLURIK (MT) Dr. Hendra Grandis Pendahuluan Survey geofisika terutama dimaksudkan untuk memperoleh informasi mengenai distribusi parameter-parameter fisika bawah permukaan berdasarkan hasil

Lebih terperinci

Exploration Geophysics Laboratory, Departement of Physics, The University of Indonesia. PT. NewQuest Geotechnology, Indonesia

Exploration Geophysics Laboratory, Departement of Physics, The University of Indonesia. PT. NewQuest Geotechnology, Indonesia Study of Static Shift Correction for Magnetotelluric (MT) Data using Averaging and CoKriging Methods upon 3-Dimensional Forward Model of Geothermal Field Diajeng Liati 1, Agus Sulistyo 2, Wambra Aswo Nuqramadha

Lebih terperinci

Inversi Data Magnetotellurik 1-D Menggunakan Metoda Simulated Annealing

Inversi Data Magnetotellurik 1-D Menggunakan Metoda Simulated Annealing Kontribusi Fisika Indonesia Vol. 2 o. 2, April 2 Inversi Data Magnetotellurik -D Menggunakan Metoda Simulated Annealing Akhmad Syaripudin dan Hendra Grandis Program Studi Geofisika, Departemen Geofisika

Lebih terperinci

BAB III TEORI DASAR. Magnetotellurik (MT) adalah metode pasif yang mengukur arus listrik alami

BAB III TEORI DASAR. Magnetotellurik (MT) adalah metode pasif yang mengukur arus listrik alami BAB III TEORI DASAR 3.1. Metode Magnetotellurik Magnetotellurik (MT) adalah metode pasif yang mengukur arus listrik alami dalam bumi, yang dihasilkan oleh induksi magnetik dari arus listrik di ionosfer.

Lebih terperinci

Gambar 3.1 Lintasan Pengukuran

Gambar 3.1 Lintasan Pengukuran BAB III METODE PENELITIAN 3.1 Metode Penelitian Metode yang digunakan pada penelitian ini adalah metode deskriptif analitik yaitu metode mengumpulkan data tanpa melakukan akuisisi data secara langsung

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 3.1 Metode Penelitian BAB III METODE PENELITIAN Penelitian ini dilakukan untuk mengidentifikasi potensi panas bumi di sekitar daerah Tegal dengan menggunakan metode deskriptif analitik. Data sekunder yang

Lebih terperinci

SURVEI GEOFISIKA TERPADU AUDIO MAGNETOTELIK DAN GAYA BERAT DAERAH PANAS BUMI KALOY KABUPATEN ACEH TAMIANG, PROVINSI ACEH

SURVEI GEOFISIKA TERPADU AUDIO MAGNETOTELIK DAN GAYA BERAT DAERAH PANAS BUMI KALOY KABUPATEN ACEH TAMIANG, PROVINSI ACEH SURVEI GEOFISIKA TERPADU AUDIO MAGNETOTELIK DAN GAYA BERAT DAERAH PANAS BUMI KALOY KABUPATEN ACEH TAMIANG, PROVINSI ACEH Oleh: Asep Sugianto, Yadi Supriyadi, dan Sri Widodo Kelompok Penyelidikan Panas

Lebih terperinci

SURVEI GEOFISIKA TERPADU (AUDIO MAGNETOTELURIK DAN GAYA BERAT) DAERAH PANAS BUMI MALINGPING KABUPATEN LEBAK, PROVINSI BANTEN

SURVEI GEOFISIKA TERPADU (AUDIO MAGNETOTELURIK DAN GAYA BERAT) DAERAH PANAS BUMI MALINGPING KABUPATEN LEBAK, PROVINSI BANTEN SURVEI GEOFISIKA TERPADU (AUDIO MAGNETOTELURIK DAN GAYA BERAT) DAERAH PANAS BUMI MALINGPING KABUPATEN LEBAK, PROVINSI BANTEN Oleh: Yadi Supriyadi, Asep Sugianto, dan Sri Widodo Kelompok Penyelidikan Panas

Lebih terperinci

BAB III METODE PENELITIAN. A. Koordinat Titik Pengukuran Audio Magnetotellurik (AMT)

BAB III METODE PENELITIAN. A. Koordinat Titik Pengukuran Audio Magnetotellurik (AMT) BAB III METODE PENELITIAN A. Koordinat Titik Pengukuran Audio Magnetotellurik (AMT) Pengukuran audio magnetotellurik (AMT) dilakukan pada 13 titik yang berarah dari timur ke barat. Titik pengukuran pertama

Lebih terperinci

Survei Magnetotellurik (MT) dan Time Domain Electro Magnetic (TDEM) Daerah Panas Bumi Dua Saudara, Provinsi Sulawesi Utara

Survei Magnetotellurik (MT) dan Time Domain Electro Magnetic (TDEM) Daerah Panas Bumi Dua Saudara, Provinsi Sulawesi Utara Survei Magnetotellurik (MT) dan Time Domain Electro Magnetic (TDEM) Daerah Panas Bumi Dua Saudara, Provinsi Sulawesi Utara Ahmad Zarkasyi, Yadi Supriyadi, Sri Widodo Pusat Sumber Daya Geoogi, Badan Geologi,

Lebih terperinci

SURVEI MAGNETOTELLURIK (MT) DAN TIME DOMAIN ELEKTROMAGNETIK (TDEM) DAERAH PANAS BUMI PARIANGAN, KABUPATEN TANAH DATAR PROVINSI SUMATERA BARAT

SURVEI MAGNETOTELLURIK (MT) DAN TIME DOMAIN ELEKTROMAGNETIK (TDEM) DAERAH PANAS BUMI PARIANGAN, KABUPATEN TANAH DATAR PROVINSI SUMATERA BARAT SURVEI MAGNETOTELLURIK (MT) DAN TIME DOMAIN ELEKTROMAGNETIK (TDEM) DAERAH PANAS BUMI PARIANGAN, KABUPATEN TANAH DATAR PROVINSI SUMATERA BARAT Muhammad Kholid, Sri Widodo Kelompok Program Penelitian Panas

Lebih terperinci

SURVEI MAGNETOTELURIK (MT) DAN TIME DOMAIN ELEKTROMAGNETIC (TDEM) DAERAH PANAS BUMI WAESANO, KABUPATEN MANGGARAI BARAT PROVINSI NUSA TENGGARA TIMUR

SURVEI MAGNETOTELURIK (MT) DAN TIME DOMAIN ELEKTROMAGNETIC (TDEM) DAERAH PANAS BUMI WAESANO, KABUPATEN MANGGARAI BARAT PROVINSI NUSA TENGGARA TIMUR SURVEI MAGNETOTELURIK (MT) DAN TIME DOMAIN ELEKTROMAGNETIC (TDEM) DAERAH PANAS BUMI WAESANO, KABUPATEN MANGGARAI BARAT PROVINSI NUSA TENGGARA TIMUR Muhammad Kholid, Sri Widodo Kelompok Penyelidikan Panas

Lebih terperinci

SURVEI MAGNETOTELLURIK DAERAH PANAS BUMI GUNUNG ARJUNO- WELIRANG JAWA TIMUR

SURVEI MAGNETOTELLURIK DAERAH PANAS BUMI GUNUNG ARJUNO- WELIRANG JAWA TIMUR SURVEI MAGNETOTELLURIK DAERAH PANAS BUMI GUNUNG ARJUNO- WELIRANG JAWA TIMUR Oleh: Asep Sugianto 1), Edi Suhanto 2), dan Harapan Marpaung 1) 1) Kelompok Penyelidikan Panas Bumi 2) Bidang Program dan Kerjasama

Lebih terperinci

SURVEI MEGNETOTELLURIK DAERAH PANAS BUMI BUKIT KILI GUNUNG TALANG, KABUPATEN SOLOK, SUMATERA BARAT. Muhammad Kholid, Harapan Marpaung

SURVEI MEGNETOTELLURIK DAERAH PANAS BUMI BUKIT KILI GUNUNG TALANG, KABUPATEN SOLOK, SUMATERA BARAT. Muhammad Kholid, Harapan Marpaung SURVEI MEGNETOTELLURIK DAERAH PANAS BUMI BUKIT KILI GUNUNG TALANG, KABUPATEN SOLOK, SUMATERA BARAT Muhammad Kholid, Harapan Marpaung KPP Bawah Permukaan Survei magnetotellurik (MT) telah dilakukan didaerah

Lebih terperinci

Skrip GNU Octave sederhana untuk menghitung respon Magnetotellurik dengan algoritma rekursif

Skrip GNU Octave sederhana untuk menghitung respon Magnetotellurik dengan algoritma rekursif Prosiding Seminar Nasional Penelitian, Pendidikan, dan Penerapan MIPA Fakultas MIPA, Universitas Negeri Yogyakarta, 16 Mei 2009 Skrip GNU Octave sederhana untuk menghitung respon Magnetotellurik dengan

Lebih terperinci

Metode Geolistrik (Tahanan Jenis)

Metode Geolistrik (Tahanan Jenis) Metode Geolistrik (Tahanan Jenis) Kata kunci : Pemodelan Inversi, Resistivitas, Tahanan Jenis. Metode geolistrik merupakan metode geofisika yang mempelajari sifat kelistrikan di bawah permukaan Bumi untuk

Lebih terperinci

Pemodelan Sistem Geotermal Daerah Telomoyo dengan Menggunakan Data Magnetotellurik

Pemodelan Sistem Geotermal Daerah Telomoyo dengan Menggunakan Data Magnetotellurik Pemodelan Sistem Geotermal Daerah Telomoyo dengan Menggunakan Data Magnetotellurik Zulimatul Safa ah Praromadani 1, Yunus Daud 1, Edi Suhanto 2, Syamsu Rosid 1, Supriyanto 1 1 Laboratorium Geothermal,

Lebih terperinci

BAB I PENDAHULUAN. Indonesia merupakan suatu kawasan yang terbentuk akibat pertemuan tiga

BAB I PENDAHULUAN. Indonesia merupakan suatu kawasan yang terbentuk akibat pertemuan tiga BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan suatu kawasan yang terbentuk akibat pertemuan tiga lempeng yang besar, yaitu Lempeng Benua Eurasia, Lempeng Samudra Hindia- Australia, dan Lempeng

Lebih terperinci

BAB I PENDAHULUAN. I.1. Latar Belakang. Geofisika merupakan cabang ilmu kebumian yang menerapkan konsep

BAB I PENDAHULUAN. I.1. Latar Belakang. Geofisika merupakan cabang ilmu kebumian yang menerapkan konsep BAB I PENDAHULUAN I.1. Latar Belakang Geofisika merupakan cabang ilmu kebumian yang menerapkan konsep ilmu fisika untuk mempelajari bumi. Selain untuk keilmuan, studi geofisika juga bermanfaat untuk eksplorasi

Lebih terperinci

Survei Magnetotellurik (MT) dan Time Domain Electro Magnetic (TDEM) Daerah Panas Bumi Lainea, Provinsi Sulawesi Tenggara

Survei Magnetotellurik (MT) dan Time Domain Electro Magnetic (TDEM) Daerah Panas Bumi Lainea, Provinsi Sulawesi Tenggara Survei Magnetotellurik (MT) dan Time Domain Electro Magnetic (TDEM) Daerah Panas Bumi Lainea, Provinsi Sulawesi Tenggara Ahmad Zarkasyi*, Sri Widodo** Pusat Sumber Daya Geoogi, Badan Geologi, KESDM *zarkasyiahmad@gmail.com,

Lebih terperinci

SURVEI TERPADU GAYA BERAT DAN AUDIO MAGNETOTELURIC (AMT) DAERAH PANAS BUMI DOLOK MARAWA, KABUPATEN SIMALUNGUN PROVINSI SUMATERA UTARA

SURVEI TERPADU GAYA BERAT DAN AUDIO MAGNETOTELURIC (AMT) DAERAH PANAS BUMI DOLOK MARAWA, KABUPATEN SIMALUNGUN PROVINSI SUMATERA UTARA SURVEI TERPADU GAYA BERAT DAN AUDIO MAGNETOTELURIC (AMT) DAERAH PANAS BUMI DOLOK MARAWA, KABUPATEN SIMALUNGUN PROVINSI SUMATERA UTARA Asep Sugianto, Tony Rahadinata, dan Yadi Supriyadi Kelompok Penyelidikan

Lebih terperinci

BAB IV METODE PENELITIAN. Penelitian dilakasanakn pada bulan Februari 2015 hingga Maret 2015 dan

BAB IV METODE PENELITIAN. Penelitian dilakasanakn pada bulan Februari 2015 hingga Maret 2015 dan BAB IV METODE PENELITIAN 4.1. Waktu Dan Tempat Pelaksanaan Penelitian dilakasanakn pada bulan Februari 2015 hingga Maret 2015 dan bertempat di Kementerian Energi dan Sumber Daya Mineral Republik Indonesia,

Lebih terperinci

SURVEI MAGNETOTELURIK DAERAH PANAS BUMI MARANA KABUPATEN DONGGALA, SULAWESI TENGAH. Oleh: Asep Sugianto 1) dan Suwahyadi 2)

SURVEI MAGNETOTELURIK DAERAH PANAS BUMI MARANA KABUPATEN DONGGALA, SULAWESI TENGAH. Oleh: Asep Sugianto 1) dan Suwahyadi 2) SURVEI MAGNETOTELURIK DAERAH PANAS BUMI MARANA KABUPATEN DONGGALA, SULAWESI TENGAH Oleh: Asep Sugianto 1) dan Suwahyadi 2) 1) Kelompok Penyelidikan Bawah Permukaan 2) Bidang Sarana Teknik SARI Pada tahun

Lebih terperinci

PEMODELAN RESISTIVITAS BAWAH PERMUKAAN BERDASARKAN METODE MAGNETOTELLURIK (STUDI DAERAH GUNUNGMERAKSA-TASIM, SUMATERA SELATAN)

PEMODELAN RESISTIVITAS BAWAH PERMUKAAN BERDASARKAN METODE MAGNETOTELLURIK (STUDI DAERAH GUNUNGMERAKSA-TASIM, SUMATERA SELATAN) 132 E. W. Sugiyo et al., Pemodelan Resistivitas Bawah Permukaan PEMODELAN RESISTIVITAS BAWAH PERMUKAAN BERDASARKAN METODE MAGNETOTELLURIK (STUDI DAERAH GUNUNGMERAKSA-TASIM, SUMATERA SELATAN) Endar Widi

Lebih terperinci

UNIVERSITAS INDONESIA KOREKSI PERGESERAN STATIK DATA MAGNETOTELLURIK (MT) MENGGUNAKAN METODE GEOSTATISTIK PADA DATA SINTETIK DAN DATA RIIL

UNIVERSITAS INDONESIA KOREKSI PERGESERAN STATIK DATA MAGNETOTELLURIK (MT) MENGGUNAKAN METODE GEOSTATISTIK PADA DATA SINTETIK DAN DATA RIIL UNIVERSITAS INDONESIA KOREKSI PERGESERAN STATIK DATA MAGNETOTELLURIK (MT) MENGGUNAKAN METODE GEOSTATISTIK PADA DATA SINTETIK DAN DATA RIIL NUGRAHENI UTAMININGSIH 0606068511 FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

Identifikasi geological strike dan dimensionalitas berdasarkan analisis phase tensor untuk pemodelan 2D magnetotelurik di lapangan panas bumi GYF

Identifikasi geological strike dan dimensionalitas berdasarkan analisis phase tensor untuk pemodelan 2D magnetotelurik di lapangan panas bumi GYF Youngster Physics Journal ISSN: 2302-7371 Vol. 6, No. 2, April 2017, Hal. 115-122 Identifikasi geological strike dan dimensionalitas berdasarkan analisis phase tensor untuk pemodelan 2D magnetotelurik

Lebih terperinci

SURVEI MAGNETOTELURIK DAN TDEM DAERAH PANAS BUMI WAY SELABUNG KABUPATEN OKU SELATAN, PROVINSI SUMATERA SELATAN

SURVEI MAGNETOTELURIK DAN TDEM DAERAH PANAS BUMI WAY SELABUNG KABUPATEN OKU SELATAN, PROVINSI SUMATERA SELATAN SURVEI MAGNETOTELURIK DAN TDEM DAERAH PANAS BUMI WAY SELABUNG KABUPATEN OKU SELATAN, PROVINSI SUMATERA SELATAN Tony Rahadinata, dan Asep Sugianto Kelompok Penyelidikan Bawah Permukaan Pusat Sumber Daya

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian untuk mempelajari karakteristik panas bumi di sepanjang lintasan

BAB III METODE PENELITIAN. Penelitian untuk mempelajari karakteristik panas bumi di sepanjang lintasan BAB III METODE PENELITIAN A. Metode Penelitian Penelitian untuk mempelajari karakteristik panas bumi di sepanjang lintasan Garut-Pangalengan, Jawa Barat ini menggunakan metode deskriptif analitik, hal

Lebih terperinci

BAB I PENDAHULUAN. 1 P a g e

BAB I PENDAHULUAN. 1 P a g e BAB I PENDAHULUAN 1.1 Latar Belakang Metode Magnetotellurik (MT) adalah metode geofisika pasif yang digunakan untuk mengetahui keadaan bawah permukaan dengan menggunakan induksi elektromagnetik di bawah

Lebih terperinci

ANALISIS INVERSI 2D METODE OCCAM UNTUK MEMODELKAN RESISTIVITAS BAWAH PERMUKAAN DATA MAGNETOTELLURIK

ANALISIS INVERSI 2D METODE OCCAM UNTUK MEMODELKAN RESISTIVITAS BAWAH PERMUKAAN DATA MAGNETOTELLURIK Analisis Inversi 2D ANALISIS INVERSI 2D METODE OCCAM UNTUK MEMODELKAN RESISTIVITAS BAWAH PERMUKAAN DATA MAGNETOTELLURIK Satrio Budiraharjo 1), Widya Utama 1), Dwa Desa Warnana 1), Arif Darmawan 2) 1 Teknik

Lebih terperinci

UNIVERSITAS INDONESIA

UNIVERSITAS INDONESIA UNIVERSITAS INDONESIA KOREKSI PERGESERAN STATIK DATA MAGNETOTELLURIC (MT) MENGGUNAKAN METODE GEOSTATISTIK, PERATA-RATAAN, DAN TIME DOMAIN ELECTROMAGNETIC AGUS SULISTYO 0606067976 FAKULTAS MATEMATIKA DAN

Lebih terperinci

BAB I PENDAHULUAN. Kebutuhan akan energi saat ini semakin meningkat khususnya di wilayah

BAB I PENDAHULUAN. Kebutuhan akan energi saat ini semakin meningkat khususnya di wilayah BAB I PENDAHULUAN A. Latar Belakang Kebutuhan akan energi saat ini semakin meningkat khususnya di wilayah Indonesia. Hal ini terlihat dari pertumbuhan jumlah penduduk dan industri di Indonesia yang bertambah

Lebih terperinci

MODUL METODE MAGNETOTELLURIK

MODUL METODE MAGNETOTELLURIK MODUL METODE MAGNETOTELLURIK Asnin Nur Salamah, Rizandi Gemal Parnadi, Heldi Alfiadi, Zamzam Multazam, Mukhlis Ahmad Zaelani, Nanda Tumangger, Surya Wiranto Jati, Andromeda Shidiq 10210045, 10210001, 10210004,

Lebih terperinci

SURVEI MAGNETOTELURIK (MT) DAERAH PANAS BUMI SUMANI, PROVINSI SUMATERA BARAT

SURVEI MAGNETOTELURIK (MT) DAERAH PANAS BUMI SUMANI, PROVINSI SUMATERA BARAT SURVEI MAGNETOTELURIK (MT) DAERAH PANAS BUMI SUMANI, PROVINSI SUMATERA BARAT Ahmad Zarkasyi,Nizar Muhamad, Yuanno Rezky Kelompok Penyelidikan Panas Bumi, Pusat Sumber Daya Geoogi SARI Riset tentang sistem

Lebih terperinci

PENERAPAN METODE MAGNETOTELLURIK DALAM PENYELIDIKAN SISTEM PANAS BUMI

PENERAPAN METODE MAGNETOTELLURIK DALAM PENYELIDIKAN SISTEM PANAS BUMI PENERAPAN METODE MAGNETOTELLURIK DALAM PENYELIDIKAN SISTEM PANAS BUMI I Gusti Agung Hevy Julia Umbara 1*, Pri Utami 1, Imam Baru Raharjo 2 M2P-02 1 Jurusan Teknik Geologi, Fakultas Teknik, Universitas

Lebih terperinci

SURVEI MAGNETOTELURIK DAERAH PANAS BUMI LAINEA KABUPATEN KONAWE SELATAN, SULAWESI TENGGARA. Oleh: Pusat Sumber Daya Geologi. Puslitbang Geotek LIPI

SURVEI MAGNETOTELURIK DAERAH PANAS BUMI LAINEA KABUPATEN KONAWE SELATAN, SULAWESI TENGGARA. Oleh: Pusat Sumber Daya Geologi. Puslitbang Geotek LIPI SURVEI MAGNETOTELURIK DAERAH PANAS BUMI LAINEA KABUPATEN KONAWE SELATAN, SULAWESI TENGGARA Oleh: Asep Sugianto 1), Ahmad Zarkasyi 1), Dadan Dani Wardhana 2), dan Iwan Setiawan 2) 1) Pusat Sumber Daya Geologi

Lebih terperinci

PENDEKATAN INVERSI 1D UNTUK MENGURANGI EFEK GALVANIC PADA MODEL 2D MAGNETOTELLURIK DAERAH PANASBUMI DANAU RANAU. Muhammad Gunadi Arif Wibowo

PENDEKATAN INVERSI 1D UNTUK MENGURANGI EFEK GALVANIC PADA MODEL 2D MAGNETOTELLURIK DAERAH PANASBUMI DANAU RANAU. Muhammad Gunadi Arif Wibowo PENDEKATAN INVERSI 1D UNTUK MENGURANGI EFEK GALVANIC PADA MODEL 2D MAGNETOTELLURIK DAERAH PANASBUMI DANAU RANAU Muhammad Gunadi Arif Wibowo Teknik Geofisika, Universitas Lampung Sari Metode magnetotelurik

Lebih terperinci

STUDI STRUKTUR BAWAH PEMUKAAN PADA ZONA SESAR DENGAN METODE MAGNETOTELLURIK

STUDI STRUKTUR BAWAH PEMUKAAN PADA ZONA SESAR DENGAN METODE MAGNETOTELLURIK STUDI STRUKTUR BAWAH PEMUKAAN PADA ZONA SESAR DENGAN METODE MAGNETOTELLURIK Muhammad Syukri Laboratorium Geofisika, Jurusan Fisika FMIPA, Universitas Syiah Kuala m.syukri@gmail.com ABSTRAK Struktur bawah

Lebih terperinci

Survei Magnetotellurik dan Gaya Berat Daerah Panas Bumi Bittuang, Provinsi Sulawesi Selatan

Survei Magnetotellurik dan Gaya Berat Daerah Panas Bumi Bittuang, Provinsi Sulawesi Selatan Survei Magnetotellurik dan Gaya Berat Daerah Panas Bumi Bittuang, Provinsi Sulawesi Selatan Ahmad Zarkasyi, Yadi Supriyadi, Sri Widodo Pusat Sumber Daya Geoogi, Badan Geologi, KESDM Abstrak Penelitian

Lebih terperinci

Optimalisasi Desain Parameter Lapangan Untuk Data Resistivitas Pseudo 3D

Optimalisasi Desain Parameter Lapangan Untuk Data Resistivitas Pseudo 3D Optimalisasi Desain Parameter Lapangan Untuk Data Resistivitas Pseudo 3D Makhrani* * ) Program Studi Geofisika Jurusan Fisika FMIPA Universitas Hasanuddin E-mail : rani_anshar@yahoo.co.id ABSTRAK Penelitian

Lebih terperinci

BAB II Perkembangan Geolistrik

BAB II Perkembangan Geolistrik BAB II Perkembangan Geolistrik II.1. Metoda Geolistrik Studi medan listrik dan arus dalam bumi masih tergolong disiplin ilmu geofisika yang muda. Meskipun demikian, metoda geolistrik pada geologi telah

Lebih terperinci

GEOFISIKA GEOFISIKA

GEOFISIKA GEOFISIKA Tujuan GEOFISIKA Memperkenalkan GEOFISIKA sebagai salah satu elemen / aspek dalam Ilmu Kebumian, dan perannya dalam dalam Teknologi Sumber Daya Bumi pemahaman fenomena alam mitigasi bencana kebumian Dr.

Lebih terperinci

BAB III METODELOGI PENELITIAN

BAB III METODELOGI PENELITIAN digilib.uns.ac.id BAB III METODELOGI PENELITIAN 3.1. Lingkup Penelitian Penelitian ini dilakukan mulai bulan April 2015 hingga bulan November 2015 di PT.Elnusa.Tbk dan FMIPA UNS Penelitian ini dilakukan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Berdasrkan peta geologi daerah Leles-Papandayan yang dibuat oleh N.

BAB IV HASIL DAN PEMBAHASAN. Berdasrkan peta geologi daerah Leles-Papandayan yang dibuat oleh N. BAB IV HASIL DAN PEMBAHASAN 4.1 Geologi Daerah Penelitian Berdasrkan peta geologi daerah Leles-Papandayan yang dibuat oleh N. Ratman dan S. Gafoer. Tahun 1998, sebagian besar berupa batuan gunung api,

Lebih terperinci

PEMODELAN INVERSI DATA GEOLISTRIK UNTUK MENENTUKAN STRUKTUR PERLAPISAN BAWAH PERMUKAAN DAERAH PANASBUMI MATALOKO. Abstrak

PEMODELAN INVERSI DATA GEOLISTRIK UNTUK MENENTUKAN STRUKTUR PERLAPISAN BAWAH PERMUKAAN DAERAH PANASBUMI MATALOKO. Abstrak PEMODELAN INVERSI DATA GEOLISTRIK UNTUK MENENTUKAN STRUKTUR PERLAPISAN BAWAH PERMUKAAN DAERAH PANASBUMI MATALOKO Eko Minarto* * Laboratorium Geofisika Jurusan Fisika FMIPA Institut Teknologi Sepuluh Nopember

Lebih terperinci

BAB I PENDAHULUAN. fosil, seperti minyak dan gas bumi, merupakan masalah bagi kita saat ini. Hal ini

BAB I PENDAHULUAN. fosil, seperti minyak dan gas bumi, merupakan masalah bagi kita saat ini. Hal ini BAB I PENDAHULUAN 1.1. Latar Belakang Penelitian Kebutuhan energi di Indonesia khususnya energi listrik semakin berkembang. Energi listrik sudah menjadi bagian yang tidak dapat dipisahkan dari kehidupan

Lebih terperinci

BAB I PENDAHULUAN. Indonesia memiliki berbagai potensi sumber daya alam dengan jumlah yang

BAB I PENDAHULUAN. Indonesia memiliki berbagai potensi sumber daya alam dengan jumlah yang BAB I PENDAHULUAN A. Latar Belakang Indonesia memiliki berbagai potensi sumber daya alam dengan jumlah yang melimpah. Anugrah ini merupakan hal yang harus termanfaatkan secara baik demi kebaikan kehidupan

Lebih terperinci

Pemodelan Magnetotellurik 2D Menggunakan Metode Elemen Batas. 2D Magnetotelluric Modelling using Boundary Element Method

Pemodelan Magnetotellurik 2D Menggunakan Metode Elemen Batas. 2D Magnetotelluric Modelling using Boundary Element Method Jurnal Matematika & ains, Agustus 211, Vol. 16 Nomor 2 Pemodelan Magnetotellurik 2D Menggunakan Metode Elemen Batas Imran Hilman Mohammad 1,2), Wahyu rigutomo 1), dan Doddy utarno 1) 1) Kelompok Keahlian

Lebih terperinci

SURVEI MAGNETOTELURIK DAERAH PANAS BUMI WAY SELABUNG KABUPATEN OKU SELATAN, SUMATERA SELATAN. Oleh: Asep Sugianto dan Yudi Aziz Muttaqin

SURVEI MAGNETOTELURIK DAERAH PANAS BUMI WAY SELABUNG KABUPATEN OKU SELATAN, SUMATERA SELATAN. Oleh: Asep Sugianto dan Yudi Aziz Muttaqin SURVEI MAGNETOTELURIK DAERAH PANAS BUMI WAY SELABUNG KABUPATEN OKU SELATAN, SUMATERA SELATAN Oleh: Asep Sugianto dan Yudi Aziz Muttaqin Kelompok Penyelidikan Bawah Permukaan SARI Secara geologi daerah

Lebih terperinci

PENERAPAN FORWARD MODELING 2D UNTUK IDENTIFIKASI MODEL ANOMALI BAWAH PERMUKAAN

PENERAPAN FORWARD MODELING 2D UNTUK IDENTIFIKASI MODEL ANOMALI BAWAH PERMUKAAN PENERAPAN FORWARD MODELING 2D UNTUK IDENTIFIKASI MODEL ANOMALI BAWAH PERMUKAAN Syamsuddin1, Lantu1, Sabrianto Aswad1, dan Sulfian1 1 Program Studi Geofisika Jurusan Fisika FMIPA Universitas Hasanuddin

Lebih terperinci

SURVEI MAGNETOTELURIK DAN TDEM DAERAH PANAS BUMI KADIDIA KADIDIA SELATAN, KABUPATEN SIGI, PROVINSI SULAWESI TENGAH

SURVEI MAGNETOTELURIK DAN TDEM DAERAH PANAS BUMI KADIDIA KADIDIA SELATAN, KABUPATEN SIGI, PROVINSI SULAWESI TENGAH SURVEI MAGNETOTELURIK DAN TDEM DAERAH PANAS BUMI KADIDIA KADIDIA SELATAN, KABUPATEN SIGI, PROVINSI SULAWESI TENGAH Oleh : Ahmad Zarkasyi dan Nizar Muhamad Nurdin Kelompok Penyelidikan Bawah Permukaan Pusat

Lebih terperinci

Noise Elimination Technique in Magnetotelluric Data Using Digital Filter and Time Series Data Selection

Noise Elimination Technique in Magnetotelluric Data Using Digital Filter and Time Series Data Selection Noise Elimination Technique in Magnetotelluric Data Using Digital Filter and Time Series Data Selection Mohamad Lutfi Ismail 1, Dzil Mulki Heditama 2,3, Ratna Dewi 1,3, Yunus Daud 1,2 and Wambra Aswo Nuqramadha

Lebih terperinci

Identifikasi Keretakan Beton Menggunakan Metode Geolistrik Resistivitas Timotius 1*), Yoga Satria Putra 1), Boni P. Lapanporo 1)

Identifikasi Keretakan Beton Menggunakan Metode Geolistrik Resistivitas Timotius 1*), Yoga Satria Putra 1), Boni P. Lapanporo 1) Identifikasi Keretakan Beton Menggunakan Metode Geolistrik Resistivitas Timotius 1*), Yoga Satria Putra 1), Boni P. Lapanporo 1) 1) Program Studi Fisika, Fakultas Matematika Dan Ilmu Pengetahuan Alam,

Lebih terperinci

Pemodelan Inversi Data Geolistrik untuk Menentukan Struktur Perlapisan Bawah Permukaan Daerah Panasbumi Mataloko

Pemodelan Inversi Data Geolistrik untuk Menentukan Struktur Perlapisan Bawah Permukaan Daerah Panasbumi Mataloko JURNAL FISIKA DAN APLIKASINYA VOLUME 3, NOMOR JUNI 007 Pemodelan Inversi Data Geolistrik untuk Menentukan Struktur Perlapisan Bawah Permukaan Daerah Panasbumi Mataloko Eko Minarto Laboratorium Geofisika

Lebih terperinci

POSITRON, Vol. IV, No. 2 (2014), Hal ISSN :

POSITRON, Vol. IV, No. 2 (2014), Hal ISSN : Aplikasi Metode Magnetotellurik Untuk Pendugaan Reservoir Panas Bumi (Studi Kasus: Daerah Mata Air Panas Cubadak, Sumatera Barat) Hezliana Syahwanti 1), Yudha Arman 1), Okto Ivansyah 2) dan Muhammad Kholid

Lebih terperinci

INVERSI GEOFISIKA (geophysical inversion) Dr. Hendra Grandis

INVERSI GEOFISIKA (geophysical inversion) Dr. Hendra Grandis INVERSI GEOFISIKA (geophysical inversion) Dr. Hendra Grandis Teknik Geofisika FTTM - ITB Tujuan kuliah Memberikan landasan teori dan konsep pemodelan inversi geofisika (linier dan non- linier) serta penerapannya

Lebih terperinci

BAB V INTERPRETASI HASIL PENGUKURAN RESISTIVITAS

BAB V INTERPRETASI HASIL PENGUKURAN RESISTIVITAS BAB V INTERPRETASI HASIL PENGUKURAN RESISTIVITAS Metode resistivitas atau metode geolistrik merupakan salah satu metode geofisika yang digunakan untuk mengetahui sifat fisik batuan, yaitu dengan melakukan

Lebih terperinci

BAB II SALURAN TRANSMISI. tunda ketika sinyal bergerak didalam saluran interkoneksi. Jika digunakan sinyal

BAB II SALURAN TRANSMISI. tunda ketika sinyal bergerak didalam saluran interkoneksi. Jika digunakan sinyal BAB II SALURAN TRANSMISI 2.1 Umum Sinyal merambat dengan kecepatan terbatas. Hal ini menimbulkan waktu tunda ketika sinyal bergerak didalam saluran interkoneksi. Jika digunakan sinyal sinusoidal, maka

Lebih terperinci

SURVEI GAYA BERAT DAN AUDIO MAGNETOTELURIK (AMT) DAERAH PANAS BUMI PARIANGAN, KABUPATEN TANAH DATAR PROVINSI SUMATERA BARAT

SURVEI GAYA BERAT DAN AUDIO MAGNETOTELURIK (AMT) DAERAH PANAS BUMI PARIANGAN, KABUPATEN TANAH DATAR PROVINSI SUMATERA BARAT SURVEI GAYA BERAT DAN AUDIO MAGNETOTELURIK (AMT) DAERAH PANAS BUMI PARIANGAN, KABUPATEN TANAH DATAR PROVINSI SUMATERA BARAT Muhammad Kholid, M. Nurhadi Kelompok Program Penelitian Panas Bumi Pusat Sumber

Lebih terperinci

SURVEI TERPADU GAYA BERAT DAN AUDIO MAGNETOTELLURIC

SURVEI TERPADU GAYA BERAT DAN AUDIO MAGNETOTELLURIC SURVEI TERPADU GAYA BERAT DAN AUDIO MAGNETOTELLURIC (AMT) DAERAH PANAS BUMI POHON BATU, KABUPATEN SERAM BAGIAN BARAT DAN KABUPATEN MALUKU TENGAH, PROVINSI MALUKU Ahmad Zarkasyi, Yadi Supriyadi, Arif Munandar

Lebih terperinci

IV. METODOLOGI PENELITIAN

IV. METODOLOGI PENELITIAN IV. METODOLOGI PENELITIAN A. Tempat dan Waktu Penelitian Penelitian ini dilaksanakan pada bulan Agustus 2014 sampai dengan bulan Februari 2015 di Pusat Sumber Daya Geologi (PSDG) Bandung dan Laboratorium

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA digilib.uns.ac.id BAB II TINJAUAN PUSTAKA 2.1. Metode Magnetotellurik Metode Magnetotellurik (MT) merupakan metode geofisika pasif yang memanfaatkan perubahan medan magnet (Hx, Hy, dan Hz) dan medan listrik

Lebih terperinci

Metode Geofisika untuk Eksplorasi Panasbumi

Metode Geofisika untuk Eksplorasi Panasbumi 1 Metode Geofisika untuk Eksplorasi Panasbumi Pendahuluan 2 Pendahuluan (1) Metoda geofisika menyelidiki gejala fisika bumi dengan mengukur parameter-parameter fisik yang berkaitan. Beberapa metode geofisika

Lebih terperinci

BAB IV PENGOLAHAN DAN INTERPRETASI DATA GEOFISIKA

BAB IV PENGOLAHAN DAN INTERPRETASI DATA GEOFISIKA BAB IV PENGOLAHAN DAN INTERPRETASI DATA GEOFISIKA Dalam penelitian ini, penulis menggunakan 2 metode geofisika, yaitu gravitasi dan resistivitas. Dimana kedua metode tersebut saling mendukung, sehingga

Lebih terperinci

SURVEI MAGNETOTELURIK DAN GAYA BERAT DAERAH PANAS BUMI LILLI-MATANGNGA KABUPATEN POLEWALI MANDAR, PROVINSI SULAWESI BARAT

SURVEI MAGNETOTELURIK DAN GAYA BERAT DAERAH PANAS BUMI LILLI-MATANGNGA KABUPATEN POLEWALI MANDAR, PROVINSI SULAWESI BARAT SURVEI MAGNETOTELURIK DAN GAYA BERAT DAERAH PANAS BUMI LILLI-MATANGNGA KABUPATEN POLEWALI MANDAR, PROVINSI SULAWESI BARAT Muhammad Kholid, dan Sri Widodo Kelompok Penyelidikan Bawah Permukaan Pusat Sumber

Lebih terperinci

BAB III TEORI DASAR. 3.1 Metode Gayaberat

BAB III TEORI DASAR. 3.1 Metode Gayaberat BAB III TEORI DASAR 3.1 Metode Gayaberat Metode gayaberat adalah metode dalam geofisika yang dilakukan untuk menyelidiki keadaan bawah permukaan berdasarkan perbedaan rapat massa cebakan mineral dari daerah

Lebih terperinci

Pemodelan Forward dan Inversi Multidimensi Data Magnetotellurik untuk Memetakan Sistem Panas Bumi

Pemodelan Forward dan Inversi Multidimensi Data Magnetotellurik untuk Memetakan Sistem Panas Bumi Pemodelan Forward dan Inversi Multidimensi Data Magnetotellurik untuk Memetakan Sistem Panas Bumi Yunus Daud 1 dan Anugrah Indah Lestari 2 1. Laboratorium Geothermal, Departemen Fisika, FMIPA UI, Kampus

Lebih terperinci

Persamaan Gelombang Datar

Persamaan Gelombang Datar Persamaan Gelombang Datar Budi Syihabuddin Telkom University Semester Ganjil 2017/2018 August 28, 2017 Budi Syihabuddin (Telkom University) Elektromagnetika Telekomunikasi August 28, 2017 1 / 20 Referensi

Lebih terperinci

Dimensionality Analysis of Magnetotelluric Data Crossing the Sumatran Fault System at Aceh Segment

Dimensionality Analysis of Magnetotelluric Data Crossing the Sumatran Fault System at Aceh Segment Jurnal Natural Vol. 13, No. 2 September 2013 Dimensionality Analysis of Magnetotelluric Data Crossing the Sumatran Fault System at Aceh Segment Khumaidi, Fadhli, Nazli Ismail Jurusan Fisika, FMIPA, Universitas

Lebih terperinci

Abstrak

Abstrak PENENTUAN KARAKTERISTIK ENDAPAN MINERAL LOGAM BERDASARKAN DATA INDUCED POLARIZATION (IP) PADA DAERAH PROSPEK CBL, BANTEN Wahyu Trianto 1, Adi Susilo 1, M. Akbar Kartadireja 2 1 Jurusan Fisika FMIPA Universitas

Lebih terperinci

ANALISIS NILAI TAHANAN JENIS BERDASARKAN PEMODELAN 2D MAGNETOTELLURIK DAERAH PROSPEK PANAS BUMI

ANALISIS NILAI TAHANAN JENIS BERDASARKAN PEMODELAN 2D MAGNETOTELLURIK DAERAH PROSPEK PANAS BUMI ANALISIS NILAI TAHANAN JENIS BERDASARKAN PEMODELAN 2D MAGNETOTELLURIK DAERAH PROSPEK PANAS BUMI Disusun Oleh: RIFA AZHAR HANIFA M0211065 SKRIPSI JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

SURVEI GAYA BERAT DAN AUDIO MAGNETOTELURIK (AMT) DAERAH PANAS BUMI PERMIS, KABUPATEN BANGKA SELATAN PROVINSI BANGKA BELITUNG

SURVEI GAYA BERAT DAN AUDIO MAGNETOTELURIK (AMT) DAERAH PANAS BUMI PERMIS, KABUPATEN BANGKA SELATAN PROVINSI BANGKA BELITUNG SURVEI GAYA BERAT DAN AUDIO MAGNETOTELURIK (AMT) DAERAH PANAS BUMI PERMIS, KABUPATEN BANGKA SELATAN PROVINSI BANGKA BELITUNG Muhammad Kholid dan Sri Widodo Kelompok Penyelidikan Bawah Permukaan Pusat Sumber

Lebih terperinci

Analisa Resistivitas Batuan dengan Menggunakan Parameter Dar Zarrouk dan Konsep Anisotropi

Analisa Resistivitas Batuan dengan Menggunakan Parameter Dar Zarrouk dan Konsep Anisotropi JURNAL SAINS DAN SENI ITS Vol. 1, No. 1, (Sept. 2012) ISSN: 2301-928X B-15 Analisa Resistivitas Batuan dengan Menggunakan Parameter Dar Zarrouk dan Konsep Anisotropi Fransiskha W. Prameswari, A. Syaeful

Lebih terperinci

BAB II SALURAN TRANSMISI

BAB II SALURAN TRANSMISI BAB II SALURAN TRANSMISI 2.1 Umum Penyampaian informasi dari suatu sumber informasi kepada penerima informasi dapat terlaksana bila ada suatu sistem atau media penyampaian di antara keduanya. Jika jarak

Lebih terperinci

ρ i = f(z i ) (1) V r = ρ ii 2π ρ a = K V AB 2

ρ i = f(z i ) (1) V r = ρ ii 2π ρ a = K V AB 2 JURNAL FISIKA DAN APLIKASINYA VOLUME 3, NOMOR 2 JUNI 2007 Pemodelan Inversi Data Geolistrik untuk menentukan Struktur Perlapisan Bawah Permukaan Daerah Panasbumi Mataloko Eko Minarto Laboratorium Geosika

Lebih terperinci

Gambar 3.1 Lokasi lintasan pengukuran Sumber: Lembaga Ilmu Pengetahuan Indonesia (LIPI)

Gambar 3.1 Lokasi lintasan pengukuran Sumber: Lembaga Ilmu Pengetahuan Indonesia (LIPI) BAB III METODOLOGI PENELITIAN Pada penelitian ini dibahas mengenai proses pengolahan data apparent resistivity dan apparent chargeability dengan menggunakan perangkat lunak Res2dInv dan Rockwork 15 sehingga

Lebih terperinci

Sponsored by : Presentasi Tengah Sesi FC 2014,Gedongsongo 14 Juni 2014

Sponsored by : Presentasi Tengah Sesi FC 2014,Gedongsongo 14 Juni 2014 AMT FC 2014 Sponsored by : Presentasi Tengah Sesi FC 2014,Gedongsongo 14 Juni 2014 1. Astya Brilliana 2. Adytia Laksamana Putra 3. Dwi Noviyanto 4. Dwiky Perdana Susanto 5. Mochammad Husni Rizal 6. Setyarini

Lebih terperinci

Pemograman Ray Tracing Metode Pseudo-Bending Medium 3-D Untuk Menghitung Waktu Tempuh Antara Sumber Dan Penerima

Pemograman Ray Tracing Metode Pseudo-Bending Medium 3-D Untuk Menghitung Waktu Tempuh Antara Sumber Dan Penerima Pemograman Ray Tracing Metode Pseudo-Bending Medium 3-D Untuk Menghitung Waktu Tempuh Antara Sumber Dan Penerima Ahmad Syahputra dan Andri Dian Nugraha Teknik Geofisika, Fakultas Teknik Pertambangan dan

Lebih terperinci

PENGOLAHAN DATA MANUAL DAN SOFTWARE GEOLISTRIK INDUKSI POLARISASI DENGAN MENGGUNAKAN KONFIGURASI DIPOLE-DIPOLE

PENGOLAHAN DATA MANUAL DAN SOFTWARE GEOLISTRIK INDUKSI POLARISASI DENGAN MENGGUNAKAN KONFIGURASI DIPOLE-DIPOLE PENGOLAHAN DATA MANUAL DAN SOFTWARE GEOLISTRIK INDUKSI POLARISASI DENGAN MENGGUNAKAN KONFIGURASI DIPOLE-DIPOLE Try Fanny Poerna Maulana 115.140.058 Program Studi Teknik Geofisika, Universitas Pembangunan

Lebih terperinci

BAB I PENDAHULUAN. Geofisika adalah bagian dari ilmu bumi yang mempelajari bumi

BAB I PENDAHULUAN. Geofisika adalah bagian dari ilmu bumi yang mempelajari bumi 1 BAB I PENDAHULUAN 1.1 Latar Belakang Geofisika adalah bagian dari ilmu bumi yang mempelajari bumi menggunakan kaidah atau prinsip-prinsip fisika. Secara umum, metode geofisika dibagi menjadi dua kategori

Lebih terperinci

Manifestasi Panas Bumi Gradien Geothermal Eksplorasi Panas Bumi Analisis Geologi

Manifestasi Panas Bumi Gradien Geothermal Eksplorasi Panas Bumi Analisis Geologi DAFTAR ISI Halaman SARI.. i ABSTRACT... ii KATA PENGANTAR... iii DAFTAR ISI.. v DAFTAR GAMBAR. viii DAFTAR TABEL... xi BAB I PENDAHULUAN.. 1 1.1. Latar Belakang Penelitian... 1 1.2. Identifikasi dan Batasan

Lebih terperinci

BAB III METODE PENELITIAN. Dalam penelitian ini, ada beberapa tahapan yang ditempuh dalam

BAB III METODE PENELITIAN. Dalam penelitian ini, ada beberapa tahapan yang ditempuh dalam BAB III METODE PENELITIAN Dalam penelitian ini, ada beberapa tahapan yang ditempuh dalam pencapaian tujuan. Berikut adalah gambar diagram alir dalam menyelesaikan penelitian ini: Data lapangan (AB/2, resistivitas

Lebih terperinci

Inversi 3D Data Magnetotellurik Menggunakan Data Inversi 1D Magnetotellurik Sebagai Model Awal

Inversi 3D Data Magnetotellurik Menggunakan Data Inversi 1D Magnetotellurik Sebagai Model Awal Inversi 3D Data Magnetotellurik Menggunakan Data Inversi 1D Magnetotellurik Sebagai Model Awal Wahyu Noor Ichwan Departemen Fisika, FMIPA, Universitas Indonesia, Depok, 16424, Indonesia E-Mail: wahyu.noor@ui.ac.id

Lebih terperinci

e-issn : Jurnal Pemikiran Penelitian Pendidikan dan Sains Didaktika

e-issn : Jurnal Pemikiran Penelitian Pendidikan dan Sains Didaktika STUDI STRUKTUR BAWAH PERMUKAAN DENGAN MENGGUNAKAN METODE GEOLISTRIK RESISTIVITAS KONFIGURASI SCHLUMBERGER (Study kasus Stadion Universitas Brawijaya, Malang) ABSTRAK: Arif Rahman Hakim 1, Hairunisa 2 STKIP

Lebih terperinci

PEMODELAN INVERSI DATA MAGNETOTELLURIK 1-D MENGGUNAKAN METODA GENETIC ALGORITHM (GA) DRAFT TESIS

PEMODELAN INVERSI DATA MAGNETOTELLURIK 1-D MENGGUNAKAN METODA GENETIC ALGORITHM (GA) DRAFT TESIS PEMODELAN INVERSI DATA MAGNETOTELLURIK 1-D MENGGUNAKAN METODA GENETIC ALGORITHM (GA) DRAFT TESIS Oleh NIA MAHARANI NIM : 22405003 Program Studi Sains Kebumian INSTITUT TEKNOLOGI BANDUNG 2007 v ABSTRAK

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Geolistrik merupakan salah satu metode geofisika yang mempelajari sifat aliran listrik di dalam bumi serta bagaimana cara mendeteksinya di dalam bumi dan di permukaan

Lebih terperinci

SURVEI MAGNETOTELLURIK DAERAH PANAS BUMI KEPAHIANG KABUPATEN KEPAHIANG, BENGKULU. Oleh: Asep Sugianto dan Ary Kristianto A.W.

SURVEI MAGNETOTELLURIK DAERAH PANAS BUMI KEPAHIANG KABUPATEN KEPAHIANG, BENGKULU. Oleh: Asep Sugianto dan Ary Kristianto A.W. SURVEI MAGNETOTELLURIK DAERAH PANAS BUMI KEPAHIANG KABUPATEN KEPAHIANG, BENGKULU Oleh: Asep Sugianto dan Ary Kristianto A.W. Kelompok Penyelidikan Bawah Permukaan SARI Daerah panas bumi Kepahia berada

Lebih terperinci

BAB III METODE PENELITIAN. geolistrik dengan konfigurasi elektroda Schlumberger. Pada konfigurasi

BAB III METODE PENELITIAN. geolistrik dengan konfigurasi elektroda Schlumberger. Pada konfigurasi 3 BAB III METODE PENELITIAN 3. Pengambilan Data Lapangan Pada penelitian ini pengambilan data di lapangan menggunakan metode geolistrik dengan konfigurasi elektroda Schlumberger. Pada konfigurasi Schlumberger

Lebih terperinci

SURVEI TERPADU GAYA BERAT DAN AUDIO MAGNETOTELURIC (AMT) DAERAH PANAS BUMI WAESANO, KABUPATEN MANGGARAI BARAT PROVINSI NUSA TENGGARA TIMUR

SURVEI TERPADU GAYA BERAT DAN AUDIO MAGNETOTELURIC (AMT) DAERAH PANAS BUMI WAESANO, KABUPATEN MANGGARAI BARAT PROVINSI NUSA TENGGARA TIMUR SURVEI TERPADU GAYA BERAT DAN AUDIO MAGNETOTELURIC (AMT) DAERAH PANAS BUMI WAESANO, KABUPATEN MANGGARAI BARAT PROVINSI NUSA TENGGARA TIMUR Muhammad Kholid, Iqbal Takodama, Nizar Muhammad Nurdin Kelompok

Lebih terperinci

Pemodelan Sintetik Gaya Berat Mikro Selang Waktu Lubang Bor. Menggunakan BHGM AP2009 Sebagai Studi Kelayakan Untuk Keperluan

Pemodelan Sintetik Gaya Berat Mikro Selang Waktu Lubang Bor. Menggunakan BHGM AP2009 Sebagai Studi Kelayakan Untuk Keperluan Pemodelan Sintetik Gaya Berat Mikro Selang Waktu Lubang Bor Menggunakan BHGM AP2009 Sebagai Studi Kelayakan Untuk Keperluan Monitoring dan Eksplorasi Hidrokarbon Oleh : Andika Perbawa 1), Indah Hermansyah

Lebih terperinci

PRISMA FISIKA, Vol. I, No. 3 (2013), Hal ISSN :

PRISMA FISIKA, Vol. I, No. 3 (2013), Hal ISSN : Pemodelan Zona Patahan Berdasarkan Anomali Self Potensial (SP) Menggunakan Metode Simulated Annealing Wilen ), Yudha Arman ), Yoga Satria Putra ) Program Studi Fisika, FMIPA, Universitas Tanjungpura, Pontianak

Lebih terperinci

HALAMAN JUDUL HALAMAN PENGESAHAN HALAMAN PERNYATAAN

HALAMAN JUDUL HALAMAN PENGESAHAN HALAMAN PERNYATAAN DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii HALAMAN PERNYATAAN... iii KATA PENGANTAR... iv HALAMAN PERSEMBAHAN... vi ABSTRAK... vii ABSTRACT... viii DAFTAR ISI... ix DAFTAR GAMBAR... xii DAFTAR

Lebih terperinci

Mata Kuliah : ELEKTROMAGNETIKA I Kode Kuliah : FEG2C3 Semester : Genap 2014/2015 Kredit : 3 SKS

Mata Kuliah : ELEKTROMAGNETIKA I Kode Kuliah : FEG2C3 Semester : Genap 2014/2015 Kredit : 3 SKS Mata Kuliah : ELEKTROMAGNETIKA I Kode Kuliah : FEG2C3 Semester : Genap 2014/2015 Kredit : 3 SKS Minggu Pokok 1 Analisis Vektor dan Sistem Koordinat a. Konsep vektor : - definisi dan arti, notasi/simbol

Lebih terperinci

Dikumpulkan pada Hari Sabtu, tanggal 27 Februari 2016 Jam di N107, berupa copy file, bukan file asli.

Dikumpulkan pada Hari Sabtu, tanggal 27 Februari 2016 Jam di N107, berupa copy file, bukan file asli. Nama: NIM : Kuis I Elektromagnetika II TT38G1 Dikumpulkan pada Hari Sabtu, tanggal 27 Februari 2016 Jam 14.30 15.00 di N107, berupa copy file, bukan file asli. Kasus #1. Medium A (4 0, 0, x < 0) berbatasan

Lebih terperinci