Penerapan Relasi Preferensi pada Pengambilan Keputusan yang Melibatkan Banyak Pihak

Ukuran: px
Mulai penontonan dengan halaman:

Download "Penerapan Relasi Preferensi pada Pengambilan Keputusan yang Melibatkan Banyak Pihak"

Transkripsi

1 Penerapan Relasi Preferensi pada Pengambilan Keputusan yang Melibatkan Banyak Pihak Eko Hari Parmadi Fakultas Sains & Teknologi Univ. Sanata Dharma Kampus III Paingan, Maguwoharo, Depok, Sleman. bstract Multiperson decision making is a process to solve different opinions in a group to find the best final decision. It consists of a five-stage process.i.e. determination of domination individual, preference relation, construction of individual preference relations, aggregation of individual preference relations, and the last is determination of final decision. The result of this process is a final decision that is satisfying all members of the group. Keywords: domination, preference relation, individual preference relation, final decision. Pendahuluan Pengambilan keputusan yang melibatkan banyak pihak (kelompok) adalah model pengambilan keputusan yang melibatkan banyak individu pembuat keputusan. Pendapat atau persepsi yang berbeda dari para pengambil keputusan dapat mengakibatkan keputusan yang dihasilkan berbeda-beda dan belum tentu keputusan tersebut diterima oleh pihak yang lain. Masalah lain yang muncul dalam pengambilan keputusan adalah ika kriteria yang dipakai untuk pengambilan keputusan tersebut kabur atau tidak tegas. Sebagai contoh proses pengambilan keputusan untuk memilih sebuah banner dari tiga desain yang diberikan berdasarkan tingkat kemenarikan desain banner tersebut.. Kriteria menarik untuk sebuah banner merupakan istilah yang kabur atau tidak tegas karena tidak ada batasan yang tegas antara menarik dan tidak menarik. kibatnya, pembuat keputusan menadi kesulitan dalam mengambil keputusan. Melalui pendefinisian relasi preferensi pada pengambilan keputusan yang melibatkan banyak pihak maka akan dihasilkan keputusan akhir yang baik, yaitu keputusan yang merupakan kompromi dari banyak individu pengambil keputusan. Selain itu, masalah kekaburan pada kriteria uga dapat diatasi. Pengambilan Keputusan yang Melibatkan Banyak Pihak Masalah pengambilan keputusan adalah masalah menentukan pilihan berdasarkan sekumpulan alternatif dan kriteria-kriteria yang ada. Proses pengambilan keputusan yang melibatkan banyak pihak memerlukan suatu masukan berupa pilihan dari masing-masing individu terhadap beberapa alternatif pilihan yang ada. Penentuan dari fungsi pemilihan yang melibatkan banyak pihak terdiri dari beberapa proses, yaitu: penentuan fungsi sasaran individual, penyusunan relasi pemilihan individual dan pengumpulan relasi pemilihan individual untuk sampai kepada relasi pemilihan yang melibatkan banyak pihak []. Misalkan diberikan = a, a, L, a } adalah himpunan alternatif dan { n F = { f, f, L, fm} adalah himpunan individu pengambil keputusan, maka pilihan

2 dari masing-masing individu ini dinotasikan dengan r i, dimana r i = fi ( a ) menunukkan nilai kemenarikan yang diberikan oleh individu f i untuk sebuah alternatif a. Nilai r i ini berada di dalam selang tertutup [0,0]. Semakin nilai r i mendekati 0, maka individu f i memberikan pendapat semakin kuat untuk alternatif a. Sebaliknya, ika nilai r i semakin mendekati nol, maka individu memberikan pendapat semakin lemah untuk alternatif a []. Tabel. Data Pengambilan Keputusan yang Melibatkan Banyak Pihak lternatif individu a a a... an f r r r... rn f r... f fm rm rm rm... rmn Definisi. (Relasi Preferensi) Diberikan f adalah sebuah aturan perkawanan dari himpunan alternatif ke himpunan bilangan real. f : R, dimana, a, maka f (a) merupakan nilai dari alternatif tersebut terhadap sebuah kriteria. Pada saat dua alternatif dibandingkan, a, b, maka harus dapat ditentukan perbandingan preferensinya. P disebut relasi preferensi alternatif a terhadap alternatif b, dinotasikan dengan P( a, b) = f ( a) f ( b). P ( a, b) = 0 berarti tidak ada preferensi a lebih baik daripada b P ( a, b) 0 berarti preferensi a lebih baik daripada b P ( a, b) 0 berarti preferensi b lebih baik daripada a Definisi. (Dominasi ) Misalkan diberikan = a, a, L, a } adalah himpunan alternatif dan { n F = { f, f, L, fm} adalah himpunan individu maka dapat didefinisikan: d i ( ri, rik ) = ri rik, yaitu nilai dominasi alternatif a terhadap alternatif a k yang diberikan oleh individu f i. Untuk memberikan gambaran yang lebih baik, digunakan fungsi selisih nilai kriteria antar alternatif yang dinotasikan H(d) dengan d = f ( a) f ( b), dimana hal ini berhubungan langsung pada relasi preferensi P. da banyak kriteria preferensi yang dapat digunakan seperti, kriteria biasa, kriteria quasi, kriteria level, kriteria gaussian dan masih banyak kriteria lainnya []. Salah satu fungsi yang digunakan adalah dengan kriteria preferensi linear, seperti pada definisi. berikut ini: Definisi. (Kriteria Preferensi Linear) Kriteria preferensi linear didefinisikan sebagai:

3 ika d > p H ( d) = d / p ika 0 < d < p 0 ika d < 0 Kriteria preferensi linear dapat menelaskan bahwa selama nilai selisih memiliki nilai yang lebih rendah dari p, maka preferensi dari pembuat keputusan meningkat secara linear dengan nilai d. Jika nilai d lebih besar dari nilai p maka teradi preferensi mutlak. Pada saat pembuat keputusan mengidentifikasi beberapa criteria untuk tipe ini,dia harus menentukan nilai dari kecenderungan atas nilai p. 0 Gambar. Kriteria Preferensi Linear p d. Himpunan Kabur Tidak semua hal yang diumpai dalam kehidupan sehari-hari dapat didefinisikan secara tegas. Hal ini disebabkan oleh batasan yang kabur atau tidak dapat ditentukan secara tegas. Banyak kata-kata, kriteria atau istilah dalam kehidupan seharihari yang mengandung ketidaktegasan, seperti: tinggi, mahal, kaya, cantik, menarik, hemat dan sebagainya. Untuk mengatasi permasalahan himpunan dengan batas yang tidak tegas ini, Zadeh mengaitkan himpunan semacam itu dengan suatu fungsi yang menyatakan deraat kesesuaian unsur-unsur dalam semestanya dengan syarat konsep yang merupakan syarat himpunan tersebut. Fungsi ini disebut fungsi keanggotaan dan nilai fungsi itu disebut deraat keanggotaan suatu unsur dalam himpunan itu, yang selanutnya disebut himpunan kabur. Deraat keanggotaan dinyatakan dengan suatu bilangan real dalam selang tertutup [0,]. Dengan kata lain, fungsi keanggotaan dari suatu himpunan kabur à dalam semesta X adalah pemetaan µ à dari X ke selang [0,][]. Misalkan diberikan himpunan semesta X, maka suatu himpunan kabur ~ didefinisikan sebagai: ~ = {( x, μ ~ ( x)) x X} μ ~ disebut fungsi keanggotaan dari suatu himpunan kabur ~ dan nilai fungsi μ ( ) menyatakan deraat keanggotaan unsur x X dalam himpunan kabur ~ [],[4],[5],[6]. μ ~ ( x) : X [0,] Salah satu contoh fungsi keanggotaan himpunan kabur adalah fungsi keanggotaan trapesium. Suatu fungsi keanggotaan himpunan kabur disebut fungsi ~ x

4 keanggotaan trapesium ika mempunyai empat buah parameter, yaitu a, b, c, d R dengan a< b< c< d dan dinyatakan dengan trapesium(x; a, b, c, d) dengan aturan : Fungsi keanggotaan tersebut dapat uga dinyatakan sebagai berikut : x a d x Trapesium( x; a, b, c, d) = max min,,,0 b a d c 0 R a b c d Gambar. Fungsi Keanggotaan Trapesium(x; a, b, c, d) Sealan dengan definisi relasi tegas pada himpunan tegas, maka antara elemenelemen dalam himpunan X dengan elemen-elemen dalam himpunan Y dapat dibuat Relasi Kabur R ~ yang didefinisikan sebagai himpunan kabur dari X Y, yaitu himpunan kabur: ~ R = {(( x, y),( μ ~ ( x, y)) ( x, y) X Y} R Relasi Kabur R ~ itu uga disebut relasi kabur pada himpunan (semesta) X Y. Jika X = Y maka R ~ disebut relasi kabur pada himpunan X [],[4],[5],[6]. 4. Operasi Baku Pada Himpunan Kabur Operasi-operasi pada himpunan kabur dapat didefinisikan sesuai dengan operasi-operasi pada himpunan tegas, antara lain : 4. Komplemen Komplemen dari suatu himpunan kabur à adalah himpunan kabur à C dengan fungsi keanggotaan: μ ~ ( x) = μ ~ ( x), untuk setiap x X C

5 Gambar. Komplemen dari Himpunan Kabur à 4. Gabungan Gabungan dua buah himpunan kabur à dan B ~ adalah himpunan kabur B ~ dengan fungsi keanggotaan: μ ~ ~ ( x) = maks{ μ ~ ( x), μ ~ ( x)}, untuk setiap x X. B B à B ~ B ~ Gambar 4. Gabungan Dua Himpunan Kabur à B ~ 4. Irisan Gabungan dua buah himpunan kabur à dan B ~ adalah himpunan kabur à B ~ dengan fungsi keanggotaan μ ~ ~ ( x) = min{ μ ~ ( x), μ ~ ( x)}, untuk setiap x X B B B ~ Gambar 5. Irisan Dua Himpunan Kabur à B ~ B ~

6 5. plikasi Pengambilan Keputusan yang Melibatkan Banyak Pihak Seperti dielaskan di bagian awal bahwa penentuan dari fungsi pemilihan yang melibatkan banyak pihak terdiri dari beberapa proses, yaitu: penentuan fungsi sasaran individual, penyusunan relasi pemilihan individual dan pengumpulan relasi pemilihan individual untuk sampai kepada relasi pemilihan yang melibatkan banyak pihak. Namun tahapan tersebut dapat diperluas menadi lima tahap, yaitu: a. Hitung nilai dominasi kemenarikan untuk tiap individu b. Menentukan kriteria preferensi yang akan digunakan c. Menentukan tingkat pilihan relatif untuk masing-masing individu d. Tingkat pilihan relatif, untuk keseluruhan pembuat keputusan e. Keputusan akhir Salah satu aplikasi pengambilan keputusan yang melibatkan banyak pihak adalah menentukan sebuah banner yang akan dipilih dari desain banner yang diberikan berdasarkan kriteria menarik. Gambar 6. Banner Dari sebanyak 4 individu pengambil keputusan diperoleh data sebagai berikut: Individu Individu Individu Individu

7 Berdasarkan data tersebut di atas, desain banner mana, yang harus diputuskan dipilih sedemikian sehingga keputusan tersebut merupakan kompromi dari banyak individu pengambil keputusan (individu sampai individu 5). Karena kriteria menarik tidak tegas maka digunakan himpunan kabur sebagai cara pemecahan masalah tersebut. dapun tahap-tahap yang dilakukan adalah sebagai berikut: a. Hitung nilai d ( a i, a ) yaitu dominasi kemenarikan desain ke-i dengan desain ke- untuk tiap individu Tabel. Dominasi Kemenarikan untuk Tiap Individu individu individu individu individu Hasil pada perhitungan ini masih berupa nilai tegas. b. Menentukan kriteria preferensi linear Misalkan dipilih nilai p = 4, maka diperoleh tabel kriteria preferensi sebagai berikut: Tabel 4. Kriteria Preferensi Linear individu individu individu individu

8 Melalui kriteria preferensi linear, maka semua nilai real pada interval [0,0] dinyatakan dalam suatu deraat keanggotaan pada interval [0,]. Dengan kata lain, akan didapat relasi kabur H pada ={desain, desain, desain} untuk masingmasing individu. c. Tingkat pilihan relatif untuk masing-masing individu p f ) = min{ H ( a, a )} ( k k untuk suatu k, dan untuk setiap =,,..., n. Hasil perhitungan tingkat pilihan relatif untuk masing-masing individu dapat dilihat pada Tabel 5. berikut ini: Tabel 5. Tingkat Pilihan Relatif untuk Masing-Masing Individu Individu p(f ) Individu p(f ) Individu p(f ) Individu 4 p(f 4 ) d. Tingkat pilihan relatif, untuk keseluruhan pembuat keputusan, diperoleh dengan cara menghitung rata-rata tingkat pilihan relatif tiap individu.

9 Tabel 6. Tingkat Pilihan Relatif untuk Keseluruhan Pembuat Keputusan individu individu individu Individu Rata-rata e. Keputusan akhir Keputusan akhir dari proses pengambilan keputusan tersebut adalah nilai maksimum dari rata-rata tingkat pilihan relatif, untuk keseluruhan pembuat keputusan. Berdasarkan tabel 6. diperoleh hasil bahwa keputusan akhir yang menadi kesepakatan semua individu pengambil keputusan adalah banner yang menarik adalah banner dengan desain. 6. Penutup Berdasarkan pembahasan di atas, dapat disimpulkan bahwa relasi preferensi dapat diterapkan pada pengambilan keputusan yang melibatkan banyak pihak. Proses pengambilan keputusan uga sangat bergantung pada kriteria preferensi yang dipilih. Daftar Pustaka [] Zimmermann, H-J.,99, Fuzzy Sets, Decision Making and Expert Systems. Kluwer cademic Publishers, Boston [] Suryadi, Kadarsah & Ramdani, M. li, 998, Sistem Pendukung Keputusan Suatu Wacana Struktural Idealisasi dan Implementasi Konsep Pengambilan Keputusan, PT Remaa Rosdakarya, Bandung [] Susilo, Frans.,00, Pengantar Himpunan dan Logika Kabur serta plikasinya. Penerbit Universitas Sanata Dharma, Yogyakarta [4] Klir, G.J & Yuan, B., 995, Fuzzy Sets and Fuzzy Logic: Theory and pplications. Englewood Cliffts, Prentice Hall, N.J. [5] Wang, Li Xin, 997, Course in Fuzzy System and Control, Prentice Hall, New Jersey [6] Zimmermann, H.J.,99, Fuzzy Sets Theory and Its pplications. Boston : Kluwer cademic Publishers

STUDI TENTANG PERSAMAAN FUZZY

STUDI TENTANG PERSAMAAN FUZZY STUDI TENTANG PERSAMAAN FUZZY Elva Ravita Sari Evawati Alisah Jurusan Matematika Fakultas Sains Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang e-mail: mbemvie@gmail.com ABSTRAK Bilangan

Lebih terperinci

PENENTUAN JUMLAH PRODUKSI TELEVISI MERK X MENGGUNAKAN METODE FUZZY MAMDANI

PENENTUAN JUMLAH PRODUKSI TELEVISI MERK X MENGGUNAKAN METODE FUZZY MAMDANI PENENTUAN JUMLAH PRODUKSI TELEVISI MERK X MENGGUNAKAN METODE FUZZY MAMDANI Ahmad Mufid Program Studi Sistem Komputer Fakultas Teknik Universitas Sultan Fatah (UNISFAT) Jl. Sultan Fatah No. 83 Demak Telpon

Lebih terperinci

LOGIKA FUZZY PADA PROSES PELET PAKAN IKAN

LOGIKA FUZZY PADA PROSES PELET PAKAN IKAN LOGIKA FUZZY PADA PROSES PELET PAKAN IKAN Agung Saputra 1), Wisnu Broto 2), Ainil Syafitri 3) Prodi Elektro Fakultas Teknik Univ. Pancasila, Srengseng Sawah Jagakarsa, Jakarta, 12640 Email: 1) agungsap2002@yahoo.com

Lebih terperinci

METODE SIMPLEKS FUZZY UNTUK PERMASALAHAN PEMROGRAMAN LINEAR DENGAN VARIABEL TRAPEZOIDAL FUZZY

METODE SIMPLEKS FUZZY UNTUK PERMASALAHAN PEMROGRAMAN LINEAR DENGAN VARIABEL TRAPEZOIDAL FUZZY Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 01 No. 1 (2012) hal 23 30. METODE SIMPLEKS FUZZY UNTUK PERMASALAHAN PEMROGRAMAN LINEAR DENGAN VARIABEL TRAPEZOIDAL FUZZY Anastasia Tri Afriani

Lebih terperinci

PENENTUAN JUMLAH PRODUKSI DENGAN APLIKASI METODE FUZZY MAMDANI

PENENTUAN JUMLAH PRODUKSI DENGAN APLIKASI METODE FUZZY MAMDANI PENENTUAN JUMLAH PRODUKSI DENGAN APLIKASI METODE FUZZY MAMDANI Much. Djunaidi Jurusan Teknik Industri Universitas Muhammadiyah Surakarta Jl. Ahmad Yani Tromol Pos 1 Pabelan Surakarta email: joned72@yahoo.com

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab II ini menjelaskan tentang teori-teori pendukung yang digunakan untuk pembahasan selanjutnya yaitu sistem persamaan linear sistem persamaan linear kompleks dekomposisi Doolittle

Lebih terperinci

PROYEKSI GEOMETRI FUZZY PADA RUANG

PROYEKSI GEOMETRI FUZZY PADA RUANG PROYEKSI GEOMETRI FUZZY PADA RUANG Muhammad Izzat Ubaidillah Mahasiswa Jurusan Matematika UIN Maulana Malik Ibrahim Malang e-mail: IzzatBja@yahoo.co.id ABSTRAK Geometri fuzzy merupakan perkembangan dari

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Himpunan Himpunan adalah kata benda yang berasal dari kata himpun. Kata kerjanya adalah menghimpun. Menghimpun adalah kegiatan yang berhubungan dengan berbagai objek apa saja.

Lebih terperinci

Relasi Tegas (Crips Relation)

Relasi Tegas (Crips Relation) Logika Fuzzy (3) 1 Cartesian Product Terdapat dua himpunan A = {0, 1} dan B = {a, b, c}. Maka beberapa variasi hasil-kali kartesian (cartesian product) dapat dituliskan sebagai berikut: 2 Relasi Tegas

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab II ini dibahas teori-teori pendukung yang digunakan untuk pembahasan selanjutnya yaitu tentang Persamaan Nonlinier, Metode Newton, Aturan Trapesium, Rata-rata Aritmatik dan

Lebih terperinci

BAB II LANDASAN TEORI. 2.1 Penelusuran Minat dan Kemampuan (PMDK) diselenggarakan oleh suatu perguruan tinggi secara mandiri.

BAB II LANDASAN TEORI. 2.1 Penelusuran Minat dan Kemampuan (PMDK) diselenggarakan oleh suatu perguruan tinggi secara mandiri. BAB II LANDASAN TEORI 2.1 Penelusuran Minat dan Kemampuan (PMDK) PMDK adalah salah satu program penerimaan mahasiswa baru yang diselenggarakan oleh suatu perguruan tinggi secara mandiri. Sesuai dengan

Lebih terperinci

FUZZY MULTI-CRITERIA DECISION MAKING

FUZZY MULTI-CRITERIA DECISION MAKING Media Informatika, Vol. 3 No. 1, Juni 2005, 25-38 ISSN: 0854-4743 FUZZY MULTI-CRITERIA DECISION MAKING Sri Kusumadewi, Idham Guswaludin Jurusan Teknik Informatika, Fakultas Teknologi Industri, Universitas

Lebih terperinci

BAB II LANDASAN TEORI. papernya yang monumental Fuzzy Set (Nasution, 2012). Dengan

BAB II LANDASAN TEORI. papernya yang monumental Fuzzy Set (Nasution, 2012). Dengan BAB II LANDASAN TEORI 2.. Logika Fuzzy Fuzzy set pertama kali diperkenalkan oleh Prof. Lotfi Zadeh, 965 orang Iran yang menjadi guru besar di University of California at Berkeley dalam papernya yang monumental

Lebih terperinci

FUZZY LINEAR PROGRAMMING DENGAN FUNGSI KEANGGOTAAN KURVA-S UNTUK PENILAIAN KINERJA KARYAWAN

FUZZY LINEAR PROGRAMMING DENGAN FUNGSI KEANGGOTAAN KURVA-S UNTUK PENILAIAN KINERJA KARYAWAN FUZZY LINEAR PROGRAMMING DENGAN FUNGSI KEANGGOTAAN KURVA-S UNTUK PENILAIAN KINERJA KARYAWAN Astuti Irma Suryani ), Lilik Linawati 2) dan Hanna A. Parhusip 2) ) Mahasiswa Program Studi Matematika FSM UKSW

Lebih terperinci

NURAIDA, IRYANTO, DJAKARIA SEBAYANG

NURAIDA, IRYANTO, DJAKARIA SEBAYANG Saintia Matematika Vol. 1, No. 6 (2013), pp. 543 555. ANALISIS TINGKAT KEPUASAN KONSUMEN BERDASARKAN PELAYANAN, HARGA DAN KUALITAS MAKANAN MENGGUNAKAN FUZZY MAMDANI (Studi Kasus pada Restoran Cepat Saji

Lebih terperinci

BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR

BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR MATERI A. Persamaan dan Pertidaksamaan Nilai Mutlak A. PERSAMAAN DAN PERTIDAKSAMAAN YANG MEMUAT NILAI MUTLAK Dalam matematika, sesuatu yang nilainya selalu positif

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Masalah kendali inventori (persediaan) pada suatu perusahaan atau retailer merupakan salah satu faktor penting untuk menentukan keberhasilan dalam menjalankan

Lebih terperinci

SUATU KAJIAN TENTANG HIMPUNAN LUNAK KABUR (FUZZY SOFT SET ) DAN APLIKASINYA

SUATU KAJIAN TENTANG HIMPUNAN LUNAK KABUR (FUZZY SOFT SET ) DAN APLIKASINYA Jurnal Matematika UNAND Vol. 5 No. 1 Hal. 65 73 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND SUATU KAJIAN TENTANG HIMPUNAN LUNAK KABUR (FUZZY SOFT SET ) DAN APLIKASINYA PRIMA PUTRI ADHA UTAMI Program

Lebih terperinci

HUTAN DAN SIKEL PADA GRAF FUZZY

HUTAN DAN SIKEL PADA GRAF FUZZY HUTAN DAN SIKEL PADA GRAF FUZZY Aisyahtin Afidah Arifai 1, Dwi Juniati 2 1 Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Surabaya, 60231 2 Jurusan Matematika, Fakultas

Lebih terperinci

Metode Fuzzy. Analisis Keputusan TIP FTP UB

Metode Fuzzy. Analisis Keputusan TIP FTP UB Metode Fuzzy Analisis Keputusan TIP FTP UB Pokok Bahasan Pendahuluan Logika Klasik dan Proposisi Himpunan Fuzzy Logika Fuzzy Operasi Fuzzy Contoh Pendahuluan Penggunaan istilah samar yang bersifat kualitatif

Lebih terperinci

OPTIMASI BIAYA PENGANGKUTAN MENGGUNAKAN PROGRAM LINEAR MULTIOBJEKTIF FUZZY (Studi Kasus pada PT. Sentosa Mulia Bahagia)

OPTIMASI BIAYA PENGANGKUTAN MENGGUNAKAN PROGRAM LINEAR MULTIOBJEKTIF FUZZY (Studi Kasus pada PT. Sentosa Mulia Bahagia) OPTIMASI BIAYA PENGANGKUTAN MENGGUNAKAN PROGRAM LINEAR MULTIOBJEKTIF FUZZY (Studi Kasus pada PT. Sentosa Mulia Bahagia) OPTIMIZING THE TRANSPORTATION COST USING FUZZY MULTIOBJECTIVE LINEAR PROGRAMMING

Lebih terperinci

APLIKASI METODE FUZZY MAMDANI DALAM PENENTUAN JUMLAH PRODUKSI

APLIKASI METODE FUZZY MAMDANI DALAM PENENTUAN JUMLAH PRODUKSI APLIKASI METODE FUZZY MAMDANI DALAM PENENTUAN JUMLAH PRODUKSI Oleh Enny Durratul Arifah Dosen Pembimbing 1. Prof. Dr. Mohammad Isa Irawan, M.T. 2. DR. Imam Mukhlas, S.Si, M.T. INSTITUT TEKNOLOGI SEPULUH

Lebih terperinci

SEMIGRUP BENTUK BILINEAR TERURUT PARSIAL DALAM BATASAN SUBHIMPUNAN FUZZY

SEMIGRUP BENTUK BILINEAR TERURUT PARSIAL DALAM BATASAN SUBHIMPUNAN FUZZY SEMIGRUP BENTUK BILINEAR TERURUT PARSIAL DALAM BATASAN SUBHIMPUNAN FUZZY Karyati 1), Dhoriva UW 2) 1) Jurusan Pendidikan Matematika, FMIPA, UNY Jl. Colombo No.1, Karangmalang, Yogyakarta, e-mail: yatiuny@yahoo.com

Lebih terperinci

Sifat-sifat Fungsi Keanggotaan, Fuzzifikasi, Defuzzifikasi. Logika Fuzzy

Sifat-sifat Fungsi Keanggotaan, Fuzzifikasi, Defuzzifikasi. Logika Fuzzy Sifat-sifat Fungsi Keanggotaan, Fuzzifikasi, Defuzzifikasi Logika Fuzzy 1 Fitur Fungsi Keanggotaan Fungsi keanggotaan himpunan fuzzy: Core (inti) Support (pendukung) Boundary (batas) 2 (a) (b) Himp. Fuzzy

Lebih terperinci

Program Linear Fuzzy dengan Koefisien dan Konstanta Kendala Bilangan Fuzzy

Program Linear Fuzzy dengan Koefisien dan Konstanta Kendala Bilangan Fuzzy Prosiding Matematika ISSN: 2460-6464 Program Linear Fuzzy dengan Koefisien dan Konstanta Kendala Bilangan Fuzzy 1 Diah Fauziah, 2 Didi Suhaedi, 3 Gani Gunawan 1,2,3 Prodi Matematika, Fakultas Matematika

Lebih terperinci

SISTEM PENDUKUNG KEPUTUSAN PENENTUAN JURUSAN PADA SMK KERTHA WISATA DENPASAR Menggunakan Fuzzy SAW

SISTEM PENDUKUNG KEPUTUSAN PENENTUAN JURUSAN PADA SMK KERTHA WISATA DENPASAR Menggunakan Fuzzy SAW SISTEM PENDUKUNG KEPUTUSAN PENENTUAN JURUSAN PADA SMK KERTHA WISATA DENPASAR Menggunakan Fuzzy SAW I Kadek Dwi Gandika Supartha Dosen Sistem Komputer STMIK STIKOM Indonesia Denpasar-Bali, Indonesia dwigandika[at]gmail.com

Lebih terperinci

SISTEM INFORMASI PENDUKUNG KEPUTUSAN PADA SELEKSI PENERIMAAN PEGAWAI MENGGUNAKAN METODE ANALYTICAL HIERARCHY PROCESS

SISTEM INFORMASI PENDUKUNG KEPUTUSAN PADA SELEKSI PENERIMAAN PEGAWAI MENGGUNAKAN METODE ANALYTICAL HIERARCHY PROCESS SISTEM INFORMASI PENDUKUNG KEPUTUSAN PADA SELEKSI PENERIMAAN PEGAWAI MENGGUNAKAN METODE ANALYTICAL HIERARCHY PROCESS (AHP) Oleh : Imam Husni A Abstrak - Penelitian ini mengembangankan Sistem Pendukung

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Analytical Hierarchy Process (AHP) Analytical Hierarchy Process (AHP) adalah salah satu metode dari Multi Criteria Decision Making (MCDM) yang dikembangkan oleh Prof. Thomas Lorie

Lebih terperinci

BAB 7 TEORI HIMPUNAN FUZZY

BAB 7 TEORI HIMPUNAN FUZZY 7 TEORI HIMPUNN FUZZY Himpunan fuzzy (fuzzy set) adalah generalisasi konsep himpunan ordiner. Untuk semesta wacana (universe of discourse) U, himpunan fuzzy ditentukan oleh fungsi yang memetakan anggota

Lebih terperinci

BAB I H I M P U N A N

BAB I H I M P U N A N 1 BAB I H I M P U N A N Dalam kehidupan nyata, banyak sekali masalah yang terkait dengan data (objek) yang dikumpulkan berdasarkan kriteria tertentu. Kumpulan data (objek) inilah yang selanjutnya didefinisikan

Lebih terperinci

BAB I H I M P U N A N

BAB I H I M P U N A N 1 BAB I H I M P U N A N Dalam kehidupan nyata, banyak sekali masalah yang terkait dengan data (objek) yang dikumpulkan berdasarkan kriteria tertentu. Kumpulan data (objek) inilah yang selanjutnya didefinisikan

Lebih terperinci

LOGIKA FUZZY FUNGSI KEANGGOTAAN

LOGIKA FUZZY FUNGSI KEANGGOTAAN LOGIKA FUZZY FUNGSI KEANGGOTAAN FUNGSI KEANGGOTAAN (Membership function) adalah suatu kurva yang menunjukkan pemetaan titik-titik input data ke dalam nilai/derajat keanggotaannya yang memiliki interval

Lebih terperinci

Berlilana 1 dan Fandy Setyo Utomo 2

Berlilana 1 dan Fandy Setyo Utomo 2 PENGGUNAAN OPERATOR QUANTIFIER GUIDED DOMINANCE DEGREE PADA GROUP DECISION SUPPORT SYSTEM UNTUK SELEKSI ASISTEN PRAKTIKUM (STUDI KASUS DI STMIK AMIKOM PURWOKERTO) Berlilana dan Fandy Setyo Utomo Program

Lebih terperinci

SILABUS MATAKULIAH. Kegiatan Pembelajaran 1. mendiskusikan pengertian atau batasan. Pokok Bahasan dan Subpokok Bahasan 1. Pengertian atau batasan

SILABUS MATAKULIAH. Kegiatan Pembelajaran 1. mendiskusikan pengertian atau batasan. Pokok Bahasan dan Subpokok Bahasan 1. Pengertian atau batasan SILABUS MATAKULIAH Matakuliah : Teori Himpunan Kode Matakuliah : SKS/JS : 2/3 Standar Kompetensi : Setelah mengikuti perkuliahan mahasiswa diharapkan: (1) dan operasinya, (2) bilangan dan serta sifat-sifatnya,

Lebih terperinci

SIMULASI SISTEM UNTUK PENGONTROLAN LAMPU DAN AIR CONDITIONER DENGAN MENGGUNAKAN LOGIKA FUZZY

SIMULASI SISTEM UNTUK PENGONTROLAN LAMPU DAN AIR CONDITIONER DENGAN MENGGUNAKAN LOGIKA FUZZY SIMULASI SISTEM UNTUK PENGONTROLAN LAMPU DAN AIR CONDITIONER DENGAN MENGGUNAKAN LOGIKA FUZZY Nesi Syafitri. N Teknik Informatika, Fakultas Teknik Universitas Islam Riau, Jalan Kaharuddin Nasution No. 3,

Lebih terperinci

PERAMALAN SUHU UDARA DI YOGYAKARTA DENGAN MENGGUNAKAN MODEL FUZZY

PERAMALAN SUHU UDARA DI YOGYAKARTA DENGAN MENGGUNAKAN MODEL FUZZY Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 14 Mei 2011 PERAMALAN SUHU UDARA DI YOGYAKARTA DENGAN MENGGUNAKAN MODEL FUZZY Jayus Priyana

Lebih terperinci

PERAMALAN SUHU UDARA DI YOGYAKARTA DENGAN MENGGUNAKAN MODEL FUZZY

PERAMALAN SUHU UDARA DI YOGYAKARTA DENGAN MENGGUNAKAN MODEL FUZZY Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 14 Mei 2011 PERAMALAN SUHU UDARA DI YOGYAKARTA DENGAN MENGGUNAKAN MODEL FUZZY Jayus Priyana

Lebih terperinci

BAB II TINJAUAN TEORITIS

BAB II TINJAUAN TEORITIS BAB II TINJAUAN TEORITIS 2.1. Pengertian Fuzzy Logika fuzzy adalah suatu cara yang tepat untuk memetakan suatu ruang input kedalam suatu ruang output. Titik awal dari konsep modern mengenai ketidakpastian

Lebih terperinci

Sistem Bilangan Ri l

Sistem Bilangan Ri l Sistem Bilangan Riil Sistem bilangan N : bilangan asli Z : bilangan bulat Q : bilangan rasional R : bilangan real N : 1,,,. Z :,-,-1,0,1,,.. Q : a q =, a, b Z, b 0 b R = Q Irasional Contoh Bil Irasional,,π

Lebih terperinci

APLIKASI LOGIKA FUZZY DALAM OPTIMISASI PRODUKSI BARANG MENGGUNAKAN METODE MAMDANI DAN METODE SUGENO SKRIPSI

APLIKASI LOGIKA FUZZY DALAM OPTIMISASI PRODUKSI BARANG MENGGUNAKAN METODE MAMDANI DAN METODE SUGENO SKRIPSI APLIKASI LOGIKA FUZZY DALAM OPTIMISASI PRODUKSI BARANG MENGGUNAKAN METODE MAMDANI DAN METODE SUGENO SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk

Lebih terperinci

PEMODELAN MASALAH TRANSPORTASI DENGAN KOEFISIEN ONGKOS KABUR

PEMODELAN MASALAH TRANSPORTASI DENGAN KOEFISIEN ONGKOS KABUR PEMODELAN MASALAH TRANSPORTASI DENGAN KOEFISIEN ONGKOS KABUR Sani Susanto ; Dedy Suryadi ABSTRACT Trasportation problem elaburates the amount of soures whih is able to supply resoures in relation to the

Lebih terperinci

Himpunan Fuzzy. Sistem Pakar Program Studi : S1 sistem Informasi

Himpunan Fuzzy. Sistem Pakar Program Studi : S1 sistem Informasi Himpunan Fuzzy Sistem Pakar Program Studi : S1 sistem Informasi Outline Himpunan CRISP Himpunan Fuzzy Himpunan CRISP Pada himpunan tegas (crisp), nilai keanggotaan suatu item dalam suatu himpunan A, yang

Lebih terperinci

MENENTUKAN HARGA MOBIL BEKAS TOYOTA AVANZA MENGGUNAKAN METODE TSUKAMOTO

MENENTUKAN HARGA MOBIL BEKAS TOYOTA AVANZA MENGGUNAKAN METODE TSUKAMOTO MENENTUKAN HARGA MOBIL BEKAS TOYOTA AVANZA MENGGUNAKAN METODE TSUKAMOTO Ganjar Ramadhan Jurusan Teknik Informatika, Universitas Islam Negeri Syarif Hidayatullah Jakarta Email : ganjar.ramadhan05@yahoo.com

Lebih terperinci

MENENTUKAN NILAI AKHIR KULIAH DENGAN FUZZY C-MEANS

MENENTUKAN NILAI AKHIR KULIAH DENGAN FUZZY C-MEANS MENENTUKAN NILAI AKHIR KULIAH DENGAN FUZZY C-MEANS Arwan Ahmad Khoiruddin, S.Kom. Staf Pengajar Jurusan Tekn Informata, Fakultas Teknologi Industri, Universitas Islam Indonesia arwan@fti.uii.ac.id ABSTRACT

Lebih terperinci

Analisis Fungsi Implikasi Max-Min dan Max-Prod Dalam Pengambilan Keputusan

Analisis Fungsi Implikasi Max-Min dan Max-Prod Dalam Pengambilan Keputusan 128 ISSN: 2354-5771 Analisis Fungsi Implikasi Max-Min dan Max-Prod Dalam Pengambilan Keputusan Raheliya Br Ginting STT Poliprofesi Meda E-mail: itink_ribu@yahoo.com Abstrak Pengambilan keputusan harus

Lebih terperinci

SEMINAR NASIONAL ke 8 Tahun 2013 : Rekayasa Teknologi Industri dan Informasi MASALAH TRANSPORTASI DENGAN FUZZY SUPPLY DAN FUZZY DEMAND

SEMINAR NASIONAL ke 8 Tahun 2013 : Rekayasa Teknologi Industri dan Informasi MASALAH TRANSPORTASI DENGAN FUZZY SUPPLY DAN FUZZY DEMAND MASALAH TRANSPORTASI DENGAN FUZZY SUPPLY DAN FUZZY DEMAND Ridayati Ircham Jurusan Teknik Sipil STTNAS Jalan Babarsari Caturtunggal Depok Sleman e-mail: ridayati@gmail.com ABSTRAK Tulisan ini membahas tentang

Lebih terperinci

BAB II DASAR TEORI FUZZY DAN SISTEM KENDALI

BAB II DASAR TEORI FUZZY DAN SISTEM KENDALI BAB II DASAR TEORI FUZZY DAN SISTEM KENDALI Sejak logika multimedia pertama kali diperkenalkan oleh J. Lukadiewicz pada tahun 192-an, dimana pada sistem ini diperkenalkan logika kemungkinan (possible)

Lebih terperinci

IMPLEMENTASI METODE ANALYTICAL HIERARCHY PROCESS UNTUK PENGAMBILAN KEPUTUSAN PEMILIHAN FOTO BERDASARKAN TUJUAN PEROLEHAN FOTO

IMPLEMENTASI METODE ANALYTICAL HIERARCHY PROCESS UNTUK PENGAMBILAN KEPUTUSAN PEMILIHAN FOTO BERDASARKAN TUJUAN PEROLEHAN FOTO IMPLEMENTASI METODE ANALYTICAL HIERARCHY PROCESS UNTUK PENGAMBILAN KEPUTUSAN PEMILIHAN FOTO BERDASARKAN TUJUAN PEROLEHAN FOTO Anton Setiawan Honggowibowo Jurusan Teknik Informatika Sekolah Tinggi Teknologi

Lebih terperinci

METODE CLUSTERING BERDASARKAN RELASI EKIVALENSI FUZZY SEBAGAI DASAR UNTUK MENGEMBANGKAN CUSTOMER RELATIONSHIP MANAGEMENT (CRM)

METODE CLUSTERING BERDASARKAN RELASI EKIVALENSI FUZZY SEBAGAI DASAR UNTUK MENGEMBANGKAN CUSTOMER RELATIONSHIP MANAGEMENT (CRM) METODE CLUSTERING BERDASARKAN RELASI EKIVALENSI FUZZY SEBAGAI DASAR UNTUK MENGEMBANGKAN CUSTOMER RELATIONSHIP MANAGEMENT (CRM) Oleh : Desi Trijayanti 1207 100 059 Dosen Pembimbing : Drs. I Gusti Ngurah

Lebih terperinci

Perancangan Aplikasi Rekomendasi Pemilihan Lokasi Rumah dengan Memanfaatkan Fuzzy Database Metode Tahani

Perancangan Aplikasi Rekomendasi Pemilihan Lokasi Rumah dengan Memanfaatkan Fuzzy Database Metode Tahani Perancangan Aplikasi Rekomendasi Pemilihan Lokasi Rumah dengan Memanfaatkan Fuzzy Database Metode Tahani 23 Sathya Adi Dharma Program Studi Teknik Informatika Fakultas Teknologi Informasi Institut Informatika

Lebih terperinci

Himpunan dan Sistem Bilangan Real

Himpunan dan Sistem Bilangan Real Modul 1 Himpunan dan Sistem Bilangan Real Drs. Sardjono, S.U. PENDAHULUAN M odul himpunan ini berisi pembahasan tentang himpunan dan himpunan bagian, operasi-operasi dasar himpunan dan sistem bilangan

Lebih terperinci

PENGGUNAAN SISTEM INFERENSI FUZZY UNTUK PENENTUAN JURUSAN DI SMA NEGERI 1 BIREUEN

PENGGUNAAN SISTEM INFERENSI FUZZY UNTUK PENENTUAN JURUSAN DI SMA NEGERI 1 BIREUEN Saintia Matematika Vol. 1, No. 3 (2013), pp. 233 247. PENGGUNAAN SISTEM INFERENSI FUZZY UNTUK PENENTUAN JURUSAN DI SMA NEGERI 1 BIREUEN Zati Azmiana, Faigiziduhu Bu ulolo, dan Partano Siagian Abstrak.

Lebih terperinci

II. FUNGSI. 2.1 Pendahuluan

II. FUNGSI. 2.1 Pendahuluan II. FUNGSI. Pendahuluan A. Tujuan Setelah mempelajari bagian ini diharapkan mahasiswa dapat:. menyebutkan definisi fungsi;. menyebutkan macam-macam variabel dalam fungsi; 3. membedakan antara variabel

Lebih terperinci

Sistem Bilangan Riil

Sistem Bilangan Riil Sistem Bilangan Riil Pendahuluan Kalkulus didasarkan pada sistem bilangan riil dan sifat-sifatnya. Sistem bilangan riil adalah himpunan bilangan riil yang disertai operasi penjumlahan dan perkalian sehingga

Lebih terperinci

Pengantar Kecerdasan Buatan (AK045218) Logika Fuzzy

Pengantar Kecerdasan Buatan (AK045218) Logika Fuzzy Logika Fuzzy Pendahuluan Alasan digunakannya Logika Fuzzy Aplikasi Himpunan Fuzzy Fungsi keanggotaan Operator Dasar Zadeh Penalaran Monoton Fungsi Impilkasi Sistem Inferensi Fuzzy Basis Data Fuzzy Referensi

Lebih terperinci

IMPLEMENTASI LOGIKA FUZZY MAMDANI UNTUK MENENTUKAN HARGA GABAH

IMPLEMENTASI LOGIKA FUZZY MAMDANI UNTUK MENENTUKAN HARGA GABAH IMPLEMENTASI LOGIKA FUZZY MAMDANI UNTUK MENENTUKAN HARGA GABAH Reino Adi Septiawan Program Studi Teknik Informatika S1 Fakultas Ilmu Komputer Universitas Dian Nuswantoro Semarang Email : a11.2009.04948@gmail.com

Lebih terperinci

APLIKASI BERBASIS WEB PEMILIHAN OBYEK PARIWISATA DI YOGYAKARTA MENGGUNAKAN METODE TAHANI

APLIKASI BERBASIS WEB PEMILIHAN OBYEK PARIWISATA DI YOGYAKARTA MENGGUNAKAN METODE TAHANI APLIKASI BERBASIS WEB PEMILIHAN OBYEK PARIWISATA DI YOGYAKARTA MENGGUNAKAN METODE TAHANI Hafsah1), Wilis Kaswidjanti2), Tendi R. Cili3) 1,2,3) Jurusan Teknik Informatika UPN "Veteran" Yogyakarta Jl. Babarsari

Lebih terperinci

Logika, Himpunan, dan Fungsi

Logika, Himpunan, dan Fungsi Logika, Himpunan, dan Fungsi A. Logika Matematika Logika matematika adalah ilmu untuk berpikir dan menalar dengan menggunakan bahasa serta simbol-simbol matematika dengan benar. 1) Kalimat Matematika Kalimat

Lebih terperinci

Oleh, SRI AYU SUBEKTI NIM : TUGAS AKHIR

Oleh, SRI AYU SUBEKTI NIM : TUGAS AKHIR PENGGUNAAN METODE FUZZY MAMDANI DAN SUGENO UNTUK PENGAMBILAN KEPUTUSAN DALAM ANALISIS KREDIT Studi Kasus : Pengambilan Keputusan Kredit PT. Kandimadu Arta Cabang Salatiga Oleh, SRI AYU SUBEKTI NIM : 662010002

Lebih terperinci

INF-104 Matematika Diskrit

INF-104 Matematika Diskrit Teori Himpunan Jurusan Informatika FMIPA Unsyiah February 25, 2015 Himpunan (set) adalah koleksi dari objek-objek yang terdefinisikan dengan baik. Terdefinisikan dengan baik dimaksudkan bahwa untuk sebarang

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 4 BAB 2 TINJAUAN PUSTAKA 2.1. Pengertian Fuzzy Logika fuzzy adalah suatu cara yang tepat untuk memetakan suatu ruang input kedalam suatu ruang output. Titik awal dari konsep modern mengenai ketidakpastian

Lebih terperinci

BAB 2 LANDASAN TEORI. Himpunan fuzzy adalah bentuk umum himpunan biasa yang memiliki tingkat

BAB 2 LANDASAN TEORI. Himpunan fuzzy adalah bentuk umum himpunan biasa yang memiliki tingkat BAB 2 LANDASAN TEORI 2.1 Himpunan Fuzzy Himpunan fuzzy adalah bentuk umum himpunan biasa yang memiliki tingkat keanggotaan dari tiap-tiap elemen yang dibatasi dengan interval [ 0, 1 ]. Oleh karena itu

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Penjadwalan Proyek Penjadwalan proyek merupakan salah satu elemen hasil perencanaan. Penjadwalan proyek adalah kegiatan menetapkan jangka waktu kegiatan proyek yang harus diselesaikan,

Lebih terperinci

ANALISIS KEPUASAN KONSUMEN BERDASARKAN TINGKAT PELAYANAN DAN HARGA KAMAR MENGGUNAKAN APLIKASI FUZZY DENGAN MATLAB 3.5.

ANALISIS KEPUASAN KONSUMEN BERDASARKAN TINGKAT PELAYANAN DAN HARGA KAMAR MENGGUNAKAN APLIKASI FUZZY DENGAN MATLAB 3.5. ANALISIS KEPUASAN KONSUMEN BERDASARKAN TINGKAT PELAYANAN DAN HARGA KAMAR MENGGUNAKAN APLIKASI FUZZY DENGAN MATLAB 3.5. Indah Pratiwi Jurusan Teknik Industri, Universitas Muhammadiyah Surakarta Jl. A. Yani

Lebih terperinci

INF-104 Matematika Diskrit

INF-104 Matematika Diskrit Jurusan Informatika FMIPA Unsyiah February 13, 2012 Apakah Matematika Diskrit Itu? Matematika diskrit: cabang matematika yang mengkaji objek-objek diskrit. Apa yang dimaksud dengan kata diskrit (discrete)?

Lebih terperinci

ANALISIS KESTABILAN SISTEM GERAK PESAWAT TERBANG DENGAN MENGGUNAKAN METODE NILAI EIGEN DAN ROUTH - HURWITZ (*) ABSTRAK

ANALISIS KESTABILAN SISTEM GERAK PESAWAT TERBANG DENGAN MENGGUNAKAN METODE NILAI EIGEN DAN ROUTH - HURWITZ (*) ABSTRAK ISBN : 978-979-7763-3- ANALISIS KESTABILAN SISTEM GERAK PESAWAT TERBANG DENGAN MENGGUNAKAN METODE NILAI EIGEN DAN ROUTH - HURWITZ (*) Oleh Ahmadin Departemen Matematika, Fakultas Sains dan Teknologi, Universitas

Lebih terperinci

Penerapan Algoritma Fuzzy C-Means Guna Penentuan Penjurusan Program Peserta Didik Tingkat SMA

Penerapan Algoritma Fuzzy C-Means Guna Penentuan Penjurusan Program Peserta Didik Tingkat SMA SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2015 Penerapan Algoritma Fuzzy C-Means Guna Penentuan Penjurusan Program Peserta Did Tingkat SMA Maria Anistya Sasongko 1, Lil Linawati 2, Hanna

Lebih terperinci

MATERI : RELASI DAN FUNGSI KELAS : X. 1. Ada hal penting yang bisa dipetik dari contoh di atas. Misalkan X menyatakan

MATERI : RELASI DAN FUNGSI KELAS : X. 1. Ada hal penting yang bisa dipetik dari contoh di atas. Misalkan X menyatakan MTERI : RELSI DN FUNGSI KELS : X Pemahaman Fungsi Dalam berbagai aplikasi, korespondensi/hubungan antara dua himpunan sering terjadi 4 3 Sebagai contoh, volume bola dengan jari-jari r diberikan oleh relasi

Lebih terperinci

ANALISIS KEPUASAN KONSUMEN BERDASARKAN TINGKAT PELAYANAN DAN HARGA KAMAR MENGGUNAKAN APLIKASI FUZZY DENGAN MATLAB 3.5.

ANALISIS KEPUASAN KONSUMEN BERDASARKAN TINGKAT PELAYANAN DAN HARGA KAMAR MENGGUNAKAN APLIKASI FUZZY DENGAN MATLAB 3.5. ANALISIS KEPUASAN KONSUMEN BERDASARKAN TINGKAT PELAYANAN DAN HARGA KAMAR MENGGUNAKAN APLIKASI FUZZY DENGAN MATLAB 3.5. Indah Pratiwi Jurusan Teknik Industri, Universitas Muhammadiyah Surakarta Jl. A. Yani

Lebih terperinci

Sistem Bilangan Riil

Sistem Bilangan Riil Sistem Bilangan Riil Sistem bilangan N : 1,,,. Z :,-,-1,0,1,,.. N : bilangan asli Z : bilangan bulat Q : bilangan rasional R : bilangan real Q : q R a b, a, b Z, b Q Irasional Contoh Bil Irasional,, 0

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2 Analisis Korelasi Analisis korelasi adalah alat statistik yang dapat digunakan untuk mengetahui deraat hubungan linear antara satu variabel dengan variabel lain (Algifari, 997)

Lebih terperinci

BAB III FUNGSI TERUKUR LEBESGUE. Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada

BAB III FUNGSI TERUKUR LEBESGUE. Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada BAB III FUNGSI TERUKUR LEBESGUE Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada Bab II, selanjutnya pada bab ini akan dipelajari gagasan mengenai fungsi terukur Lebesgue. Gagasan mengenai

Lebih terperinci

BAB III METODE FUZZY ANP DAN TOPSIS

BAB III METODE FUZZY ANP DAN TOPSIS BAB III METODE FUZZY ANP DAN TOPSIS 3.1 Penggunaan Konsep Fuzzy Apabila skala penilaian menggunakan variabel linguistik maka harus dilakukan proses pengubahan variabel linguistik ke dalam bilangan fuzzy.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Sistem Pendukung Keputusan Sebuah aplikasi berupa Sistem Pendukung Keputusan (Decision Support System) mulai dikembangkan pada tahun 1970. Decision Support Sistem (DSS) dengan

Lebih terperinci

BAB II KAJIAN TEORI. Berikut ini merupakan pembahasan kajian-kajian tersebut.

BAB II KAJIAN TEORI. Berikut ini merupakan pembahasan kajian-kajian tersebut. BAB II KAJIAN TEORI Pada bab ini akan dibahas mengenai kajian teori yang digunakan sebagai dasar penulisan tugas akhir ini berdasarkan literatur yang relevan. Berikut ini merupakan pembahasan kajian-kajian

Lebih terperinci

Penyelesaian Sistem Persamaan Linear Fully Fuzzy Menggunakan Metode Iterasi Jacobi

Penyelesaian Sistem Persamaan Linear Fully Fuzzy Menggunakan Metode Iterasi Jacobi Penyelesaian Sistem Persamaan Linear Fully Fuzzy Menggunakan Metode Iterasi Jacobi Corry Corazon Marzuki 1, Herawati 2 Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sultan Syarif Kasim Riau Jl.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Sistem Pendukung Keputusan 2.1.1 Pengertian Sistem Pendukung Keputusan Sistem pendukung keputusan (SPK) adalah bagian dari sistem informasi berbasis komputer termasuk sistem berbasis

Lebih terperinci

ANALISIS REAL 1 SUMANANG MUHTAR GOZALI KBK ANALISIS

ANALISIS REAL 1 SUMANANG MUHTAR GOZALI KBK ANALISIS ANALISIS REAL 1 SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta salam

Lebih terperinci

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers Komposisi fungsi dan invers fungsi mempelajari Fungsi komposisi menentukan Fungsi invers terdiri dari Syarat dan aturan fungsi yang dapat dikomposisikan Nilai fungsi komposisi dan pembentuknya Syarat agar

Lebih terperinci

SIMULASI KENDALI MUTU DOSIS OBAT BERBASIS BOBOT DENGAN MENGGUNAKAN LOGIKA FUZZY

SIMULASI KENDALI MUTU DOSIS OBAT BERBASIS BOBOT DENGAN MENGGUNAKAN LOGIKA FUZZY Abstract SIMULASI KENDALI MUTU DOSIS OBAT BERBASIS BOBOT DENGAN MENGGUNAKAN LOGIKA FUZZY Panca Hariwan Program Studi Teknik Komputer AMIK Bina Sarana Informatika panca_hariwan@bsi.ac.id; panca_85@yahoo.com

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LINEAR DUA SISI DALAM ALJABAR MAX-PLUS BILANGAN FUZZY

PENYELESAIAN SISTEM PERSAMAAN LINEAR DUA SISI DALAM ALJABAR MAX-PLUS BILANGAN FUZZY PENYELESAIAN SISTEM PERSAMAAN LINEAR DUA SISI DALAM ALJABAR MAX-PLUS BILANGAN FUZZY Any Muanalifah August 9, 2010 Latar Belakang Latar Belakang Teori himpunan fuzzy berkembang pesat saat ini. Banyak sekali

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI 0 I PEDAHULUA. Latar Belakang Peternakan didefinisikan sebagai suatu usaha untuk membudidayakan hewan ternak. Jika dilihat dari enis hewan yang diternakkan, terdapat berbagai enis peternakan, salah satunya

Lebih terperinci

Jurnal Sistem Informasi

Jurnal Sistem Informasi JSIKA Vol 3, No 2 (2014)/ ISSN 2338-137X Jurnal Sistem Informasi Situs Jurnal : http://jurnal.stikom.edu/index.php/jsika RANCANG BANGUN SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN SUPPLIER PADA PT AMSI DENGAN

Lebih terperinci

SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN DESAIN INTERIOR MENGGUNAKAN METODE ANALYTICAL HIERARCHY PROCESS (AHP)

SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN DESAIN INTERIOR MENGGUNAKAN METODE ANALYTICAL HIERARCHY PROCESS (AHP) ISSN: 1693-6930 49 SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN DESAIN INTERIOR MENGGUNAKAN METODE ANALYTICAL HIERARCHY PROCESS (AHP) Anton Setiawan Honggowibowo, Titien Sediartie Jurusan Teknik Informatika, Sekolah

Lebih terperinci

FUZZY MAMDANI DALAM MENENTUKAN TINGKAT KEBERHASILAN DOSEN MENGAJAR

FUZZY MAMDANI DALAM MENENTUKAN TINGKAT KEBERHASILAN DOSEN MENGAJAR Seminar Nasional Informatika 23 (semnasif 23) ISSN: 979-2328 UPN Veteran Yogyakarta, 8 Mei 23 FUZZY MAMDANI DALAM MENENTUKAN TINGKAT KEBERHASILAN DOSEN MENGAJAR Sundari Retno Andani ) ) AMIK Tunas Bangsa

Lebih terperinci

PENDETEKSIAN DAN PENGAMANAN DINI PADA KEBAKARAN BERBASIS PERSONAL COMPUTER (PC) DENGAN FUZZY LOGIC

PENDETEKSIAN DAN PENGAMANAN DINI PADA KEBAKARAN BERBASIS PERSONAL COMPUTER (PC) DENGAN FUZZY LOGIC Widyantara, Pendeteksian dan Pengamanan Dini Pada Kebakaran 27 PENDETEKSIAN DAN PENGAMANAN DINI PADA KEBAKARAN BERBASIS PERSONAL COMPUTER (PC) DENGAN FUZZY LOGIC Helmy Widyantara Program Studi S Sistem

Lebih terperinci

Erwien Tjipta Wijaya, ST.,M.Kom

Erwien Tjipta Wijaya, ST.,M.Kom Erwien Tjipta Wijaya, ST.,M.Kom PENDAHULUAN Logika Fuzzy pertama kali dikenalkan oleh Prof. Lotfi A. Zadeh tahun 1965 Dasar Logika Fuzzy adalah teori himpunan fuzzy. Teori himpunan fuzzy adalah peranan

Lebih terperinci

PERENCANAAN PENGAMBILAN MATA KULIAH DENGAN METODE FUZZY LOGIC (STUDI KASUS PADA STMIK ASIA MALANG) ABSTRAK

PERENCANAAN PENGAMBILAN MATA KULIAH DENGAN METODE FUZZY LOGIC (STUDI KASUS PADA STMIK ASIA MALANG) ABSTRAK PERENCANAAN PENGAMBILAN MATA KULIAH DENGAN METODE FUZZY LOGIC (STUDI KASUS PADA STMIK ASIA MALANG) Broto Poernomo Tri Prasetyo Dosen Teknik Informatika STMIK ASIA Malang papung@gmail.com ABSTRAK Perencanaan

Lebih terperinci

PENDAHULUAN. Latar Belakang

PENDAHULUAN. Latar Belakang 1 Latar Belakang PENDHULUN Jumlah pengguna data dan informasi dengan menggunakan sarana IT (Information Technology) semakin meningkat dari hari ke hari. Oleh karena itu perlu suatu penanganan yang sangat

Lebih terperinci

SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN HANDPHONE BERDASARKAN KEBUTUHAN KONSUMEN MENGGUNAKAN LOGIKA FUZZY. Abstraksi

SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN HANDPHONE BERDASARKAN KEBUTUHAN KONSUMEN MENGGUNAKAN LOGIKA FUZZY. Abstraksi SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN HANDPHONE BERDASARKAN KEBUTUHAN KONSUMEN MENGGUNAKAN LOGIKA FUZZY Denny Cristiono T.S., Yugowati P.,Sri Yulianto J.P. Fakultas Teknologi Informasi Universitas Kristen

Lebih terperinci

Mahasiswa mampu memformulasikan permasalahan yang mengandung fakta dengan derajad ketidakpastian tertentu ke dalam pendekatan Sistem Fuzzy.

Mahasiswa mampu memformulasikan permasalahan yang mengandung fakta dengan derajad ketidakpastian tertentu ke dalam pendekatan Sistem Fuzzy. Chapter 7 Tujuan Instruksional Khusus Mahasiswa mampu memformulasikan permasalahan yang mengandung fakta dengan derajad ketidakpastian tertentu ke dalam pendekatan. Mahasiswa mampu melakukan perhitungan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA A. Penjurusan di SMA Sepanjang perkembangan Pendidikan formal di Indonesia teramati bahwa penjurusan di SMA telah dilaksanakan sejak awal kemerdekaan yaitu tahun 1945 sampai sekarang,

Lebih terperinci

Teori Himpunan. Author-IKN. MUG2B3/ Logika Matematika 9/8/15

Teori Himpunan. Author-IKN. MUG2B3/ Logika Matematika 9/8/15 Teori Himpunan Author-IKN 1 Materi Jenis Himpunan Relasi Himpunan Operasi Himpunan Hukum-Hukum Operasi Himpunan Representasi Komputer untuk Himpunan 2 Teori Himpunan Himpunan Sekumpulan elemen unik, terpisah,

Lebih terperinci

IMPLEMENTASI SISTEM PENDUKUNG KEPUTUSAN PADA SUPPLIER FURNITURE MENGGUNAKAN MODEL PROMETHEE ABSTRAK

IMPLEMENTASI SISTEM PENDUKUNG KEPUTUSAN PADA SUPPLIER FURNITURE MENGGUNAKAN MODEL PROMETHEE ABSTRAK IMPLEMENTASI SISTEM PENDUKUNG KEPUTUSAN PADA SUPPLIER FURNITURE MENGGUNAKAN MODEL PROMETHEE Alexander Setiawan, Agustinus Noertjahyana, Willy Saputra Jurusan Teknik Informatika, Fakultas Teknologi Industri

Lebih terperinci

Aplikasi Logika Fuzzy pada Pengambilan Keputusan Seleksi Beasiswa Bidikmisi dengan Metode TOPSIS

Aplikasi Logika Fuzzy pada Pengambilan Keputusan Seleksi Beasiswa Bidikmisi dengan Metode TOPSIS SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2015 Aplikasi Logika Fuzzy pada Pengambilan Keputusan Seleksi Beasiswa Bidikmisi dengan Metode TOPSIS Triyanti, Agus Maman Abadi FMIPA, Universitas

Lebih terperinci

BAB 6 KESIMPULAN DAN SARAN 6.1 Kesimpulan Saran DAFTAR PUSTAKA LAMPIRAN KOMENTAR DATA PENGUJI DATA PENULIS

BAB 6 KESIMPULAN DAN SARAN 6.1 Kesimpulan Saran DAFTAR PUSTAKA LAMPIRAN KOMENTAR DATA PENGUJI DATA PENULIS Abstrak Dunia industri yang semakin kompetitif membuat setiap perusahaan berupaya meningkatkan kualitas produknya dengan memperhatikan keinginan dan kebutuhan konsumen. Salah satu langkah yang ditempuh

Lebih terperinci

ABSTRAK. Kata kunci : SPK, metode AHP, penentuan lokasi.

ABSTRAK. Kata kunci : SPK, metode AHP, penentuan lokasi. APLIKASI SISTEM PENDUKUNG KEPUTUSAN PENENTUAN LOKASI PENDIRIAN WARNET DENGAN METODE ANALYTICAL HIERARCHY PROCESS (AHP) (Studi Kasus : PT. Pika Media Komunika) Sri Winiarti 1), Ulfah Yuraida 2) Program

Lebih terperinci

PENENTUAN KUALITAS CABE MERAH VARIETAS HOT BEAUTY DENGAN FUZZY INFERENCE SYSTEM TSUKAMOTO

PENENTUAN KUALITAS CABE MERAH VARIETAS HOT BEAUTY DENGAN FUZZY INFERENCE SYSTEM TSUKAMOTO PENENTUAN KUALITAS CABE MERAH VARIETAS HOT BEAUTY DENGAN FUZZY INFERENCE SYSTEM TSUKAMOTO oleh TAUFIQ HANIF TRI SUSELO M0107017 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh

Lebih terperinci

PENGEMBANGAN APLIKASI PENDUKUNG KEPUTUSAN UNTUK MENENTUKAN PEKERJAAN DI BIDANG TEKNOLOGI INFORMASI

PENGEMBANGAN APLIKASI PENDUKUNG KEPUTUSAN UNTUK MENENTUKAN PEKERJAAN DI BIDANG TEKNOLOGI INFORMASI PENGEMBANGAN APLIKASI PENDUKUNG KEPUTUSAN UNTUK MENENTUKAN PEKERJAAN DI BIDANG TEKNOLOGI INFORMASI Wilis Kaswidjanti 1, Novrido Charibaldi 2, Datu Lestari Mallisa 3 1,2,3 ), Jurusan Teknik Informatika

Lebih terperinci

METODE KUMAR UNTUK MENYELESAIKAN PROGRAM LINIER FUZZY PENUH PADA MASALAH TRANSPORTASI FUZZY. Mohamad Ervan S 1, Bambang Irawanto 2,

METODE KUMAR UNTUK MENYELESAIKAN PROGRAM LINIER FUZZY PENUH PADA MASALAH TRANSPORTASI FUZZY. Mohamad Ervan S 1, Bambang Irawanto 2, METODE KUMAR UNTUK MENYELESAIKAN PROGRAM LINIER FUZZY PENUH PADA MASALAH TRANSPORTASI FUZZY Mohamad Ervan S 1, Bambang Irawanto 2, 1,2 Deartemen Matematika, Fakultas Sains dan Matematika Universitas Dionegoro

Lebih terperinci