TAP MPRS No. VIII/MPRS/1965 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "TAP MPRS No. VIII/MPRS/1965 1"

Transkripsi

1 K E T E T A P A N MAJELIS PERMUSYAWARATAN RAKYAT SEMENTARA REPUBLIK INDONESIA No. VIII/MPRS/1965 TENTANG PRINSIP-PRINSIP MUSYAWARAH UNTUK MUFAKAT DALAM DEMOKRASI TERPIMPIN SEBAGAI PEDOMAN BAGI LEMBAGA-LEMBAGA PERMUSYAWARATAN/PERWAKILAN MAJELIS PERMUSYAWARATAN RAKYAT SEMENTARA REPUBLIK INDONESIA Dlm rpt Pripurn kedu tnggl 16 April 1965 Sidng Umum ketig di Bndung. Setelh Membhs : Usul pimpinn MPRS tentng rncngn Ketetpn MPRS mengeni PRINSIP-PRINSIP MUSYAWARAH UNTUK MUFAKAT DALAM DEMO- KRASI TERPIMPIN SEBAGAI PEDOMAN BAGI LEMBAGA-LEMBAGA PERMUSYAWARATAN/PERWAKILAN. Menimbng : 1. bhw sudh tib wktuny merumuskn prinsip-prinsip Musywrh untuk Mufkt yng merupkn inti Demokrsi Terpimpin sebgi pedomn umum setip lembg permusywrtn/perwkiln. 2. bhw Musywrh untuk Mufkt yng telh ditegkkn kembli hrus dikembngkn dn disempurnkn pelksnnny dlm kettnegrn Indonesi untuk melksnkn Amnt Penderitn Rkyt dn Tujun Revolusi Nsionl Indonesi, mewujudkn Msyrkt Adil dn Mkmur, Msyrkt Sosilis Indonesi berdsrkn Pncsil; 3. bhw pelksnn Musywrh untuk Mufkt merupkn slh stu fktor yng menentukn dlm semu Revolusi Indonesi, terutm sekli dlm menghdpi tntngntntngn Revolusi Nsionl yng belum selesi dn untuk mencegh timbulny kembli unsur-unsur Demokrsi liberl; 4. Bhw prinsip Musywrh untuk mufkt telh menjdi pegngn pokok bgi kehidupn prti-prti politik dn bgi TAP MPRS No. VIII/MPRS/1965 1

2 golongn kry dn lin-lin unsur dlm mysrkt dlm pengglngn perstun nsionl progresip revolusioner berporoskn Nskom. Mengingt: 1. Dsr Negr Pncsil; 2. Undng-Undng Dsr 1945; 3. Dekrit Presiden tnggl 5 Juli 1959; 4. Ketetpn-ketetpn MPRS No. I dn II/MPRS/1963, No. III dn IV/MPRS/1963, No. V dn VII/MPRS/1965; 5. Amnt-mnt, Konsepsi-konsepsi dn Pidto-pidto Presiden Pemimpin Besr Revolusi Bung Krno; 6. Deklrsi Bogor tnggl 12 Desember 1964; Mendengr : Permusywrtn dlm rpt-rpt MPRS pd tnggl 13 smpi dengn 16 April M E M U T U S K A N : Menetpkn : KETETAPAN TENTANG PRINSIP-PRINSIP MUSYAWARAH UNTUK MUFAKAT DALAM DEMOKRASI TERPIMPIN SEBAGAI PEDOMAN BAGI LEMBAGA-LEMBAGA PERMUSYAWARATAN/PERWAKILAN sebgi berikut : BAB I PENDAHULUAN Berkt Kemerdekn yng diproklmsikn pd tnggl 17 Agustus 1945 sebgi hsil kemenngn perjungn kemerdekn Rkyt Indonesi selm berpuluh-puluh thun, Bngs Indonesi dengn bebs dpt menggli kepribdinny, ilh menggli kembli ciri-ciri khs pndngn hidup Rkyt Indonesi tentng tt-cr dlm mengtur dn memimpin segl segi kehidupnny selm perjlnn msyrkt Indonesi sejk berbd-bd, ykni ss Demokrsi Indonesi, Demokrsi Gotong-royong, yng kemudin dikenl dengn nm Demokrsi Terpimpin, yitu Kerkytn yng dipimpin oleh hikmt kebijksnn dlm permusywrtn/perwkiln. Ggsn Demokrsi Terpimpin sesungguhny sudh muli dicetuskn pd jmn Pergerkn Kemerdekn Nsionl dengn sebutn "Demokrtie met Leiderschp" dn "Socio-Demokrsi". Demokrsi Terpimpin dlh sli Demokrsi Indonesi, demokrsi berdsrkn Pncsil. 2

3 Demokrsi Terpimpin yng gris-gris besrny telh dijmin dn tersusun dlm Undng-Undng Dsr Republik Indonesi 1945 dlh perwujudn Kerkytn yng dipimpin oleh hikmt kebijksnn dlm permusywrtn/ perwkiln. Akn tetpi kibt penjjhn Belnd dn pengruh-pengruh Demokrsi liberl sert feodlisme dn fsisme selm pendudukn Jepng, mk selm ms itu, dn bhkn pd permuln ms-ms Kemerdekn, wlupun sistim Demokrsi Terpimpin telh digriskn dlm Undng-Undng Dsr Republik Indonesi 1945, tetp kbur dn lumpuhlh sistim Demokrsi Terpimpin smpi pd st lhirny Dekrit Presiden/Pnglim Tertinggi Angktn Perng 5 Juli Alhmdulillh, berkt kebijksnn, kewibwn dn ketngksn pimpinn Presiden/Pnglim Tertinggi Angktn Perng/Pemimpin Besr Revolusi Bung Krno yng pd tnggl 5 Juli 1959 mengumumkn Dekrit Kembli ke Undng- Undng Dsr 1945, diberkhi pul dengn lhirny Mnifesto Politik Republik Indonesi 17 Agustus 1959, mk tegklh kembli sistem Demokrsi Terpimpin dengn intiny Musywrh untuk Mufkt yng dilksnkn secr sdr. Mk perlulh sistem dn kehrusn pelksnn Demokrsi Terpimpin itu selnjutny dikembngkn dn disempurnkn dlm kettnegrn Indonesi, untuk menuju tercpiny Msyrkt Adil dn Mkmur, Msyrkt Sosilis Indonesi berdsrkn Pncsil terutm sekli dlm menghdpi tntngntntngn Revolusi Indonesi thp demi thp. Ats dsr-dsr pemikirn tersebut di ts yng bersumber kepd Undng- Undng Dsr Republik Indonesi 1945, Amnt-mnt, Konsepsi-konsepsi dn Pidto-pidto Presiden/Pemimpin Besr Revolusi Bung Krno dn Ketetpnketetpn MPRS, mk disusunlh ketentun-ketentun mengeni pengertin dsr, prinsip-prinsip sert pelksnn Demokrsi Terpimpin dn Musywrh untuk mufkt. 1. PENGERTIAN DASAR BAB II DEMOKRASI TERPIMPIN (1) Demokrsi Terpimpin dlh kerkytn yng dipimpin oleh hikmt kebijksnn dlm permusywrtn/perwkiln, yng berintikn Musywrh untuk Mufkt secr gotong-royong ntr semu kekutn Nsionl yng progresip revolusioner berporoskn Nskom. (2) Demokrsi Terpimpin merupkn kepribdin dn pndngn hidup bngs Indonesi, yitu tt-cr dlm mengtur dn memimpin segl segi TAP MPRS No. VIII/MPRS/1965 3

4 kehidupn politik, ekonomi dn sosil Rkyt dn Negr Indonesi, dengn penuh rs tnggung jwb kn kelncrn jlnny revolusi. (3) Demokrsi Terpimpin dlh lt untuk mengembn Amnt Penderitn Rkyt dn tujun Revolusi Nsionl Indonesi, mewujudkn Msyrkt Adil dn Mkmur, Msyrkt Sosilis Indonesi berdsrkn Pncsil, Msyrkt tnp penghispn ts mnusi oleh mnusi. 2. ASAS (1) Demokrsi Terpimpin mempunyi du unsur, yitu Demokrsi dn Terpimpin yng kedu-duny bergndengn mutlk stu sm lin, dn unsur "loro-loroning tunggl". (2) Demokrsi Terpimpin dipimpin oleh Pncsil, bik ideologi mupun crcr kerjny. (3) Demokrsi Terpimpin menjmin kebebsn berpikir dn berbicr mengemukkn pendpt dlm setip permusywrtn, dlm bts-bts keselmtn Negr, kepentingn Rkyt bnyk, kepribdin Bngs, kesusiln dn pertngungnjwb kepd Tuhn. 3. TUJUAN (1) Demokrsi Terpimpin bertujun melksnkn Hlun Negr Mnipol/Usdek dn Dekon untuk mencpi Msyrkt Adil dn Mkmur, Msyrkt Sosilis Indonesi berdsrkn Pncsil, yng penuh dengn kebhgin mteril dn spiritul sesui dengn cit-cit Proklmsi Kemerdekn Indonesi 17 Agustus (2) Demokrsi Terpimpin ditujukn pul untuk melindungi dn menmbh hkhk bgi Rkyt, dn menghpuskn hk-hk kum imperilis, kum feodlis sert kki tngn-kki tngn merek, kum kontr-revolusioner, kum ntiprogresip dn kum penghisp Rkyt. 4. FUNGSI (1) Demokrsi Terpimpin dlh lt Rkyt untuk mencpi tujun Rkyt yng telh diorbni oleh Rkyt berpuluh-puluh thun, yitu Negr kut, Msyrkt Adil Mkmur; (2) Demokrsi Terpimpin pd hkektny dlh Demokrsi Penyelenggrn tu Demokrsi Kry (werk-democrtie). (3) Demokrsi Terpimpin merupkn lt untuk melksnkn Konsepsikonsepsi Bung Krno sebgi penymbung lidh Rkyt, termsuk konsepsi yng dicetuskn pd tnggl 21 Pebruri

5 5. CIRI-CIRI KHAS (1) Demokrsi Terpimpin bertentngn dengn demokrsi liberl, dn bukn dikttur, tetpi dlh Demokrsi Gotong Royong dri semu golongn yng mendukung Revolusi Indonesi menentng kpitlisme, imperilisme, feodlisme, kolonilisme dn neokolonilisme. (2) Demokrsi Terpimpin bukn medn pertemun ntr oponen-oponen stu sm lin, medn hntm-hntmn ntr ntgonisme, medn untuk mencri kemenngn stu golongn ts golongn yng lin, medn untuk merebut kekusn oleh stu golongn terhdp yng lin. (3) Demokrsi Terpimpin mencri sintes, mencri kumulsi pikirn dn teng untuk melksnkn Amnt Penderitn Rkyt. (4) Demokrsi Terpimpin melrng propgnd nti-nsionlisme, nti Agm, Anti-Komunisme, tetpi seblikny menghendki konsultsi sesm lirn progresip-revolusioner. BAB III PRINSIP-PRINSIP MUSYAWARAH UNTUK MUFAKAT 6. PENGERTIAN DASAR Musywrh untuk Mufkt sebgi inti Demokrsi Terpimpin, dlh tt cr khs kepribdin Indonesi untuk memechkn setip persoln kehidupn Rkyt dn Negr, mendptkn kebultn pendpt dn mufkt dlm permusywrtn/perwkiln secr gotong royong yng dipimpin oleh hikmt kebijksnn untuk melksnkn Amnt Penderitn Rkyt, tujun Revolusi Nsionl Indonesi, mewujudkn Msyrkt Adil dn Mkmur, Msyrkt Sosilis Indonesi berdsrkn Pncsil. Msyrkt tnp penghispn ts mnusi oleh mnusi. 7. ASAS MUSYAWARAH UNTUK MUFAKAT (1) Musywrh dilksnkn berdsrkn gotong royong dengn sikp memberi dn menerim dlm susn kekelurgn, tolernsi, timbng rs dn tenggng-menenggng ntr segenp pesert musywrh. (2) Pngkl bertolk dlm tip musywrh dlh priori perstun dn bukn pertentngn ntr pr pesert. (3) Musywrh dilksnkn ntr merek yng dengn sungguh-sungguh menyetujui dsr negr Pncsil, UUD 1945, Hlun Negr Mnipol sert Pedomn-pedomn pelksnnny dn tujun Revolusi Nsionl Indonesi, dn yng sunguh-sungguh berhsrt mensukseskn musywrh. TAP MPRS No. VIII/MPRS/1965 5

6 (4) Musywrh untuk Mufkt bersendikn pd kesdrn dn rs tnggung jwb dri pimpinn dn pesert untuk m enghdiri musywrh, oleh sebb itu Musywrh untuk Mufkt pd dsrny tidk mengenl korum, tetpi mengenl ikut-sertny unsur-unsur yng berkepentingn dn yng representtip untuk turut dlm musywrh. 8. PESERTA MUSYAWARAH (1) Pesert-pesert musywrh dlm permusywrtn/perwkiln terdiri dri golongn politik, golongn kry dn lin-lin unsur msyrkt yng mencerminkn semu kekutn-kekutn nsionl yng progresiprevolusioner. (2) Setip pesert musywrh mendhulukn kepentingn Rkyt dn Negr di ts kepentingn golongn dn perorngn. (3) Setip pesert musywrh mempunyi hk dn kesemptn yng sm lus dn bebs mengemukkn pendpt dn melhirkn kritik dn otokritik yng bersift membngun tnp teknn dri pihk mnpun. 9. MUFAKAT (1) Mufkt sebgi hsil kebultn pendpt yng didpt dri setip permusywrtn/perwkiln dengn jln gotong-royong dlh buh pikirn bersm, bukn oleh perdebtn dn penyistn yng dikhiri oleh pengdun kekutn dn penghitungn sur pro dn kontr, melinkn untuk mencri kebenrn dlm melksnkn Amnt Penderitn Rkyt. (2) Mufkt sebgi hsil musywrh hruslh bermutu tinggi yng dpt dipertnggungjwbkn dn tidk bertentngn dengn dsr negr dn tujun Revolusi. (3) Mufkt sebgi hsil kebultn pendpt diterim dn hrus dilksnkn dengn kesungguhn dn keikhlsn hti. 10. PIMPINAN MUSYAWARAH Pimpinn permusywrtn/perwkiln merupkn stu kestun pimpinn kolektif yng mencerminkn golongn-golongn pesert musywrh, hrus berjiw Pncsil dn revolusioner, berwtk dil, rif bijksn dn berwibw sert hrus seti kepd Undng-Undng Dsr Negr dn tujun Revolusi Indonesi. BAB IV PENTRAPAN DAN PEDOMAN PELAKSANAAN MUSYAWARAH UNTUK MUFAKAT 6

7 11. PENTRAPAN KEPADA LEMBAGA-LEMBAGA PERMUSYA- WARATAN RAKYAT/PERWAKILAN. (1) Lembg-lembg Negr berdsrkn UUD 1945;. Mjelis Permusywrtn Rkyt; b. Dewn Perwkiln Rkyt; c. Kementerin Negr; d. Dewn Pertimbngn Agung; e. Pemerinth Derh; f. Bdn Pemeriks Keungn; g. Mhkmh Agung; dn h. Lembg-lembg negr berdsrkn perturn perundng-undngn linny. (2) Lembg-lembg kemsyrktn. 12. PEDOMAN PELAKSANAAN (1) Prinsip-prinsip Musywrh untuk Mufkt sebgimn tercntum dlm Bb III seluruhny berlku bgi semu lembg-lembg negr legisltif, eksekutif dn yudiktif, bik di pust mupun di derh-derh dn lembglembg kemsyrktn. (2) Dlm permusywrtn lembg-lembg legisltif, pimpinn dn pesert musywrh mempunyi hk yng sm dlm menetpkn mufkt. (3) Dlm permusywrtn lembg-lembg eksekutif, pimpinn lembg mempunyi wewenng untuk menentukn dlm menetpkn mufkt (keputusn), jik tidk tercpi kebultn pendpt. (4) Dlm permusywrtn lembg-lembg yudiktif, keputusn hrus dimbil secr kolektif, dn pimpinn lembg mempunyi wewenng untuk menentukn mufkt (keputusn), jik tidk tercpi kebultn pendpt. (5) Dlm permusywrtn lembg-lembg kemsyrktn, pimpinn dn pesert musywrh mempunyi hk yng sm dlm menetpkn mufkt. (6) Apbil di dlm musywrh seperti yng dimksud dlm yt (2) dn yt (3) dn 12 terdpt perbedn pendpt, mk pimpinn dn pesert musywrh berkewjibn menyelesiknny dengn semngt perstun, gotong-royong dn kekelurgn, sert menginsyfi kn keduduknny TAP MPRS No. VIII/MPRS/1965 7

8 sebgi lt Revolusi yng sedng berjung gun mengembn Amnt Penderitn Rkyt. (7) Apbil di dlm sutu permusywrtn tidk didpt mufkt, mk musywrh mengmbil kebijksnn dengn menempuh jln:. Persoln itu ditngguhkn pembicrnny; b. Persoln itu diserhkn kepd pimpinn untuk mengmbil kebijksnn dengn memperhtikn pendpt-pendpt yng bertentngn; c. Persoln itu ditidkn. 13. PERMUSYAWARATAN ANTAR LEMBAGA NEGARA Prinsip Musywrh untuk Mufkt dlm permusywrtn ntr lembg Negr sellu dilksnkn dengn mengindhkn wewenng kedudukn dn fungsi msing-msing pihk. 14. PENGAMANAN PELAKSANAAN Pengmnn terhdp pelksnn ketentun-ketentun dlm ketetpn ini, bil tidk cukup terjmin oleh lembg-lembg permusywrtn/ perwkiln yng bersngkutn, diserhkn kepd kebijksnn Presiden/ Pemimpin Besr Revolusi. BAB V KETENTUAN PENUTUP Ketetpn ini muli berlku pd hri ditetpknny. D i t e t p k n d i 8

9 B n d u n g p d t n g g l 1 6 A p r i l TAP MPRS No. VIII/MPRS/1965 9

KEMENTERIAN SOSIAL RI

KEMENTERIAN SOSIAL RI KEMENTERIAN SOSIAL RI Jln Slemb Ry No. 28 Jkrt Pust 10430 Telepon 3103591 Lmn : https://www.depsos.go.id KEPUTUSAN DIREKTUR JENDERAL REHABILITASI SOSIAL NOMOR : /RS-PP/KEP/2015 TENTANG PERJANJIAN KINERJA

Lebih terperinci

PRESIDEN REPUBLIK INDONESIA,

PRESIDEN REPUBLIK INDONESIA, KEPUTUSAN PRESIDEN REPUBLIK INDONESIA NOMOR 49 TAHUN 2002 TENTANG KEDUDUKAN, TUGAS, FUNGSI, SUSUNAN ORGANISASI, DAN TATA KERJA INSTANSI VERTIKAL DEPARTEMEN AGAMA PRESIDEN REPUBLIK INDONESIA, Menimng: hw

Lebih terperinci

PERATURAN PEMERINTAH REPUBLIK INDONESIA NOMOR 129 TAHUN 2000 TENTANG

PERATURAN PEMERINTAH REPUBLIK INDONESIA NOMOR 129 TAHUN 2000 TENTANG PERATURAN PEMERINTAH REPUBLIK INDONESIA NOMOR 129 TAHUN 2000 TENTANG PERSYARATAN PEMBENTUKAN DAN KRITERIA PEMEKARAN, PENGHAPUSAN, DAN PENGGABUNGAN DAERAH PRESIDEN REPUBLIK INDONESIA, Menimbng :. bhw sesui

Lebih terperinci

Pedoman Pendidikan dan Pelatihan Pegawai Negeri Sipil di

Pedoman Pendidikan dan Pelatihan Pegawai Negeri Sipil di PERATURAN MENTERI AGAMA REPUBLIK INDONESIA NOMOR 38 TAHUN 2012 TENTANG ORGANISASI DAN TATA KERJA BALM PENDIDIKAN DAN PELATIHAN KEAGAMAAN PROVINSI ACEH DENGAN RAHMAT TUHAN YANG MAHA ESA Menimbng Mengingt

Lebih terperinci

SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real

SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real SISTEM BILANGAN REAL Dlm terminologi Aljbr Abstrk, sistem bilngn rel disebut dengn field (lpngn) pd opersi penjumlhn dn perklin. Sutu opersi biner bis ditulis dengn sutu psngn terurut (, b) yng unik dri

Lebih terperinci

PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA

PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA K- Kels X mtemtik PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi definisi persmn dn pertidksmn logritm.. Dpt

Lebih terperinci

NOMOR: PER- 04 /MBU/2008

NOMOR: PER- 04 /MBU/2008 PERATURAN MENTERI NEGARA BADAN USAHA MILIK NEGARA NOMOR: PER- 04 /MBU/2008 TENTANG PENETAPAN INDIKATOR KINERJA UTAMA DI LINGKUNGAN KEMENTERIAN NEGARA BADAN USAHA MILIK NEGARA MENTERI NEGARA BADAN USAHA

Lebih terperinci

PERATURAN MENTERI NEGARA BADAN USAHA MILIK NEGARA NOMOR: PER- 04 /MBU/2008 TENTANG

PERATURAN MENTERI NEGARA BADAN USAHA MILIK NEGARA NOMOR: PER- 04 /MBU/2008 TENTANG PERATURAN MENTERI NEGARA BADAN USAHA MILIK NEGARA NOMOR: PER- 04 /MBU/2008 TENTANG PENETAPAN INDIKATOR KINERJA UTAMA DI LINGKUNGAN KEMENTERIAN NEGARA BADAN USAHA MILIK NEGARA MENTERI NEGARA BADAN USAHA

Lebih terperinci

6. Himpunan Fungsi Ortogonal

6. Himpunan Fungsi Ortogonal 6. Himpunn Fungsi Ortogonl Mislkn f periodik dengn periode, dn mulus bgin demi bgin pd [ π, π]. Jik S f N (θ) = N n= N c ne inθ, n =,, 2,..., dlh jumlh prsil dri deret Fourier f, mk kit telh menunjukkn

Lebih terperinci

PROBLEM SOLVING TERKAIT DENGAN KELAS X SEMESTER 1 PADA STANDAR KOMPETENSI (SK) 1.

PROBLEM SOLVING TERKAIT DENGAN KELAS X SEMESTER 1 PADA STANDAR KOMPETENSI (SK) 1. PROLEM SOLVING TERKIT DENGN KELS X SEMESTER PD STNDR KOMPETENSI (SK). LJR Memechkn mslh yng berkitn dengn bentuk pngkt, kr, dn logritm Oleh: Sigit Tri Guntoro. Du orng berselisih mengeni bnykny psngn bilngn

Lebih terperinci

BAB 1 PENDAHULUAN. melaksanakan pembangunan kembali diberbagai sektor yang mencakup seluruh

BAB 1 PENDAHULUAN. melaksanakan pembangunan kembali diberbagai sektor yang mencakup seluruh BAB 1 PENDAHULUAN 1.1 Ltr Belkng Pemilihn Judul Setelh menghdpi krisis ekonomi yng cukup pnjng, Indonesi berush melksnkn pembngunn kembli diberbgi sektor yng menckup seluruh spek kehidupn rkyt Indonesi,

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Anlisis Rel Hendr Gunwn* *http://hgunwn82.wordpress.com Anlysis nd Geometry Group Bndung Institute of Technology Bndung, INDONESIA Progrm Studi S1 Mtemtik ITB, Semester II 2016/2017 HG* (*ITB Bndung)

Lebih terperinci

26 TAHUN 2OL6. Pendidikan Nasional (Lembaran Negara Republik. Pendidikan Nonformal sejenis, perlu menetapkan

26 TAHUN 2OL6. Pendidikan Nasional (Lembaran Negara Republik. Pendidikan Nonformal sejenis, perlu menetapkan WALTKOTA PALEIuIBANG PROVINSI PERATURAN SUMATERA SELATAN WALIKOTA PALEMBANG NOMOR 26 TAHUN 2OL6 TENTANG ALIFI FUNGSI UNIT PELAKSANA TEKNIS DINAS SANGGAR KEGIATAN BELAJAR KOTA PALEMBANG MENJADI SATUAN PENDIDIKAN

Lebih terperinci

Rumus Luas Daerah Segi Empat Sembarang? Oleh: Al Jupri Dosen Jurusan Pendidikan Matematika Universitas Pendidikan Indonesia

Rumus Luas Daerah Segi Empat Sembarang? Oleh: Al Jupri Dosen Jurusan Pendidikan Matematika Universitas Pendidikan Indonesia Rumus Lus Derh Segi Empt Sembrng? Oleh: Al Jupri Dosen Jurusn Pendidikn Mtemtik Universits Pendidikn Indonesi Kit bisny lebih menyuki brng yng siftny serb gun dn efektif, stu brng untuk berbgi jenis keperlun.

Lebih terperinci

Skew- Semifield dan Beberapa Sifatnya 1

Skew- Semifield dan Beberapa Sifatnya 1 Skew- Semifield dn Beberp Siftny K r y t i Jurusn Pendidikn Mtemtik Fkults Mtemtik dn Ilmu Pengethun Alm Universits Negeri Yogykrt E-mil: ytiuny@yhoo.com Abstrk Sutu field ( lpngn ) F dlh struktur ljbr

Lebih terperinci

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII Kesumwti Prodi Sttistik FMIPA-UII Mrch 25, 205 Sutu integrl tertentu b f (x)dx () diktkn wjr jik i memenuhi du syrt berikut: i. Bts integrsi dn b merupkn bilngn berhingg ii. fungsi f (x) terbts pd intervl

Lebih terperinci

Matriks. Pengertian. Lambang Matrik

Matriks. Pengertian. Lambang Matrik triks Pengertin Definisi: trik dlh susunn bilngn tu fungsi yng diletkkn ts bris dn kolom sert dipit oleh du kurung siku. Bilngn tu fungsi tersebut disebut entri tu elemen mtrik. mbng mtrik dilmbngkn dengn

Lebih terperinci

KEPUTUSAN KEPALA SATUAN POLISI PAMONG PRAJA KABUPATEN MUSI BANYUASIN /SAT.POL.PP/MUBA/2017. Tentang

KEPUTUSAN KEPALA SATUAN POLISI PAMONG PRAJA KABUPATEN MUSI BANYUASIN /SAT.POL.PP/MUBA/2017. Tentang KEPUTUSAN NOMOR : /SAT.POL.PP/MUBA/2017 Tentng PENETAPAN INDIKATOR KINERJA UTAMA DI LINGKUNGAN SATUAN POLISI PAMONG PRAJA Menimbng :. Bhw untuk melksnkn ketentun psl 3 dn psl 4 Perturn Menteri Negr Pendygunn

Lebih terperinci

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn

Lebih terperinci

7. Ruang L 2 (a, b) f(x) 2 dx < }.

7. Ruang L 2 (a, b) f(x) 2 dx < }. 7. Rung L (, b) Rung L (, b) didefinisikn sebgi rung semu fungsi f yng kudrtny terintegrlkn pd [, b], ykni L (, b) := {f : b f(x) dx < }. Rung ini menckup fungsi-fungsi f yng tk terbts pd [, b] tetpi f

Lebih terperinci

15. INTEGRAL SEBAGAI LIMIT

15. INTEGRAL SEBAGAI LIMIT 15. INTEGRAL SEBAGAI LIMIT 15.1 Jumlh Riemnn Dlm kulih Klkulus pd thun pertm, integrl Riemnn bisny diperkenlkn sebgi limit dri jumlh Riemnn, tidk mellui integrl Riemnn ts dn integrl Riemnn bwh. Hl ini

Lebih terperinci

12. LUAS DAERAH DAN INTEGRAL

12. LUAS DAERAH DAN INTEGRAL 12. LUAS DAERAH DAN INTEGRAL 12.1 Lus Derh di Bwh Kurv Mslh menentukn lus derh (dn volume rung) telh dipeljri sejk er Pythgors dn Zeno, pd thun 500-n SM. Konsep integrl (yng terkit ert dengn lus derh)

Lebih terperinci

' =J ".1' . r~~~1vlj~tjjim[~ '7 c 13;) i\ ~'1,,\"'? P'~~~s:rjeJ~~j!Jtl~i]Jr~J. f1~,i~\ J. bd~jj~.k ~U"(tJ. ' J ~ t't\'" r.

' =J .1' . r~~~1vlj~tjjim[~ '7 c 13;) i\ ~'1,,\'? P'~~~s:rjeJ~~j!Jtl~i]Jr~J. f1~,i~\ J. bd~jj~.k ~U(tJ. ' J ~ t't\' r. (",, '. r~~~1vlj~tjjim[~ P'~~~s:rjeJ~~j!Jtl~i]Jr~J II I" :ii! tl bd~jj~.k ~U"(tJ f1~,i~\ J ' J ~ t't\'" r li~, " r,.-.~~j II ", 7~ 'P lj l ' ~,.r t' ~I' ' " ~ ' =J ".1',, i ('1'.\,, "",,I )J-~~ ~ j' '7

Lebih terperinci

METODE PENGUJIAN KEAUSAN AGREGAT DENGAN MESIN ABRASI LOS ANGELES

METODE PENGUJIAN KEAUSAN AGREGAT DENGAN MESIN ABRASI LOS ANGELES METODE PENGUJIAN KEAUSAN AGREGAT DENGAN MESIN ABRASI LOS ANGELES SNI 03-2417-1991 BAB I DESKRIPSI 1.1 Mksud dn Tujun 1.1.1 Mksud Metode ini dimksudkn sebgi pegngn untuk menentukn kethnn gregt ksr terhdp

Lebih terperinci

PRESIDEN REPUBLIK INDONESIA, Menimbang: perlu mengatur kembali pemberian Honorarium kepada para penjabat pada Pengadilan/Kejaksaan Ketentaraan;

PRESIDEN REPUBLIK INDONESIA, Menimbang: perlu mengatur kembali pemberian Honorarium kepada para penjabat pada Pengadilan/Kejaksaan Ketentaraan; PERATURAN PEMERINTAH REPUBLIK INDONESIA NOMOR 37 TAHUN 1954 TENTANG PEMBERIAN HONORARIUM KEPADA PARA KETUA (PENGGANTI) PARA JAKSA (PENGGANTI) DAN PARA PANITERA (PENGGANTI) PADA PENGADILAN KEJAKSAAN KETENTARAAN

Lebih terperinci

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L.

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L. INTEGRAL FOURIER Disumsikn syrt-syrt berikut pd f(x):. f x memenuhi syrt Dirichlet pd setip intervl terhingg L, L.. f x dx konvergen, yitu f(x) dpt diintegrsikn secr mutlk dlm (, ). Selnjutny, Teorem integrl

Lebih terperinci

FISIKA BESARAN VEKTOR

FISIKA BESARAN VEKTOR K-3 Kels X FISIKA BESARAN VEKTOR TUJUAN PEMBELAJARAN Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi pengertin besrn vektor.. Mengusi konsep penjumlhn vektor dengn berbgi metode.

Lebih terperinci

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0.

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0. DETERMINAN Fungsi determinn dri sutu mtriks persegi A (dinotsikn dengn det(a) tu A ) didefinisikn sebgi jumlh dri semu hsil kli elementer bertnd dri A. Sementr, ngk tu bilngn dri det(a) disebut determinn

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bb berikut ini kn disjikn mteri pendukung yng dpt membntu penulis untuk menyelesikn permslhn yng kn dibhs pd bb selnjutny. Adpun mteri pendukungny dlh pengertin mtriks, jenis-jenis

Lebih terperinci

matematika WAJIB Kelas X RASIO TRIGONOMETRI Kurikulum 2013 A. Definisi Trigonometri

matematika WAJIB Kelas X RASIO TRIGONOMETRI Kurikulum 2013 A. Definisi Trigonometri Kurikulum 0 Kels X mtemtik WAJIB RASIO TRIGONOMETRI Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi rsio-rsio trigonometri yng meliputi sinus, kosinus, tngen,

Lebih terperinci

Two-Stage Nested Design

Two-Stage Nested Design Mteri #13 TIN309 DESAIN EKSPERIMEN Two-Stge Nested Design Nested design dlh slh stu ksus dri desin multi fktor dimn level dri slh stu fktor (misl: fktor B) serup tpi tidk identik untuk setip level yng

Lebih terperinci

Kerjakan di buku tugas. Tentukan hasil operasi berikut. a. A 2 d. (A B) (A + B) b. B 2 e. A (B + B t ) c. A B f. A t (A t + B t ) Tes Mandiri

Kerjakan di buku tugas. Tentukan hasil operasi berikut. a. A 2 d. (A B) (A + B) b. B 2 e. A (B + B t ) c. A B f. A t (A t + B t ) Tes Mandiri Mmt Apliksi SMA Bhs Dikethui A = Tentukn hsil opersi berikut A c A A b A A d A Dikethui A = Tentukn hsil opersi berikut (A + B) c (B A) b A + AB + B d B BA + A Sol Terbuk Kerjkn di buku tugs Jik X = dn

Lebih terperinci

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang VEKTOR 1. Pengertin Vektor dlh besrn yng memiliki besr (nili dn rh. Vektor merupkn sebuh rus gris yng P berrh dn memiliki pnjng. Pnjng rus gris tersebut dlh pnjng vektor. Rus gris dri titik P dn berujung

Lebih terperinci

LIMIT FUNGSI DAN KEKONTINUAN

LIMIT FUNGSI DAN KEKONTINUAN LIMIT FUNGSI DAN KEKONTINUAN RANGKUMAN MATERI Sebelum memsuki mteri, perhtikn himpunn-himpunn berikut: ) Himpunn bilngn sli:,,,4,5,.... b) Himpunn bilngn bult:...,,,0,,,.... p c) Himpunn bilngn rsionl:

Lebih terperinci

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. Dikethui bhw,. Untuk k didefinisikn bhw k k k. Tentukn jumlh tk hingg dri. Kit mislkn S S. Dengn demikin kit dpt menuliskn Kedu

Lebih terperinci

INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45

INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45 INTEGRAL Deprtemen Mtemtik FMIPA IPB Bogor, 2012 (Deprtemen Mtemtik FMIPA IPB) Klkulus I Bogor, 2012 1 / 45 Topik Bhsn 1 Pendhulun 2 Anti-turunn 3 Lus di Bwh Kurv 4 Integrl Tentu 5 Teorem Dsr Klkulus 6

Lebih terperinci

KEBIJAKAN PENGUPAHAN YANG MENDORONG PENINGKATAN KESEJAHTERAAN PEKERJA/BURUH DAN KELANGSUNGAN USAHA

KEBIJAKAN PENGUPAHAN YANG MENDORONG PENINGKATAN KESEJAHTERAAN PEKERJA/BURUH DAN KELANGSUNGAN USAHA Direktorat Pembinaan Hubungan Industrial dan Jaminan Sosial Tenaga Kerja KEBIJKN PENGUPHN YNG MENDORONG PENINGKTN KESEJHTERN PEKERJ/BURUH DN KELNGSUNGN USH OLEH: R. IRINTO SIMBOLON, SE, MM Direktur Jenderal

Lebih terperinci

3.1 Permutasi. Secara umum, bilangan-bilangan pada {1, 2,, n} akan mempunyai n! permutasi

3.1 Permutasi. Secara umum, bilangan-bilangan pada {1, 2,, n} akan mempunyai n! permutasi BB Determinn . Permutsi Definisi Permutsi: (i) Sutu permutsi dri bilngn-bilngn bult {,,,, n} dlh penyusunn bilngn-bilngn tersebut dengn urutn tnp pengulngn. (ii) Brisn bilngn ( j, j,.., j n ) dimn j i

Lebih terperinci

DOKUMEN PENDUKUNG KETENTUAN DAN TATA CARA PENGGUNAAN TANDA KESESUAIAN

DOKUMEN PENDUKUNG KETENTUAN DAN TATA CARA PENGGUNAAN TANDA KESESUAIAN Jl.Cikini IV No. 15 Jkrt Pust 10330 Telp. 021-31925807, 021-31925808 Fks. 021-31925806 Emil: lspro@kemenperin.go.id Website: http://lspro.kemenperin.go.id DOKUMEN PENDUKUNG KETENTUAN DAN TATA CARA PENGGUNAAN

Lebih terperinci

Materi IX A. Pendahuluan

Materi IX A. Pendahuluan Mteri IX Tujun :. Mhsisw dpt memhmi vektor. Mhsisw mmpu mengunkn vektor dlm persoln sederhn 3. Mhsisw mengimplementsikn konsep vektor pd rngkin listrik. Pendhulun Sudh menjdi kesepktn umum hw untuk menentukn

Lebih terperinci

1. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II)

1. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II) MATA KULIAH KODE MK Dosen : FISIKA DASAR II : EL-22 : Dr. Budi Mulynti, MSi Pertemun ke-6 CAKUPAN MATERI. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II) SUMBER-SUMBER:.

Lebih terperinci

BABAK PENYISIHAN AMSO JENJANG SMA PEMBAHASAN BABAK PENYISIHAN AMSO

BABAK PENYISIHAN AMSO JENJANG SMA PEMBAHASAN BABAK PENYISIHAN AMSO . Jwbn : C 8 3 8 6 3 3 3 6 BABAK PENYISIHAN AMSO JENJANG SMA PEMBAHASAN BABAK PENYISIHAN AMSO. Jwbn : C Tig bilngn prim pertm yng lebih besr dri 0 dlh 3, 9, dn 6. Mk 3 + 9 + 6 = 73. Jdi, jumlh tig bilngn

Lebih terperinci

Tanggal Efektif Jakarta Pusat PO. BOX 1148 JKT13011 JAT Disahkan oleh SOP TATA CARA PENYELESAIAN GUGATAN SEDERHANA OLEH HAKIM TUNGGAL

Tanggal Efektif Jakarta Pusat PO. BOX 1148 JKT13011 JAT Disahkan oleh SOP TATA CARA PENYELESAIAN GUGATAN SEDERHANA OLEH HAKIM TUNGGAL Mhkmh Agung Republik Indonesi Nomor SOP Direktort Jenderl Bdn Perdiln Agm Tnggl Pembutn Gedung Bersm Stu Atp Mhkmh Agung RI Tnggl Revisi - Jln. Ahmd Yni Kv. 58 ByPss Tnggl Efektif Jkrt Pust PO. BOX 1148

Lebih terperinci

17. PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) (0, a) y 2. y 1. (x 1, y 1 ) (b, 0) X. x 1

17. PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) (0, a) y 2. y 1. (x 1, y 1 ) (b, 0) X. x 1 17. PROGRAM LINEAR A. Persmn Gris Lurus y 1 (x 1, y 1 ) y 2 y 1 (x 1, y 1 ) (x 2, y 2 ) (0, ) 0 x 1 x 1 0 x 2 (b, 0) 0 b. Persmn gris yng bergrdien m dn mellui titik (x 1, y 1 ) dlh: y y 1 = m(x x 1 )

Lebih terperinci

Kota Kotamobagu, dipandang perlu merubah

Kota Kotamobagu, dipandang perlu merubah WALIKOTA KOTAMOBAGU KEPUTUSAT{ WALIKOTA KOTAMOBAGU NOMOR, LO TATIUN zol* TENTANG PERUBATIAN I(TPUTUSAIY WALIKOTA KOTAMOBAGU IVOMOR 127 TAHUN 2013 TET{TAI{G PEMBENTUI(AT{ ORGANISASI DAIY TATA KEzuA UNIT

Lebih terperinci

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A.

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A. Bb DETERMINAN MATRIKS Determinn sutu mtriks dlh sutu fungsi sklr dengn domin mtriks bujur sngkr. Dengn kt lin, determinn merupkn pemetn dengn domin berup mtriks bujur sngkr, sementr kodomin berup sutu

Lebih terperinci

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini: ) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut

Lebih terperinci

Hendra Gunawan. 30 Oktober 2013

Hendra Gunawan. 30 Oktober 2013 MA MATEMATIKA A Hendr Gunwn Semester I, 2/24 Oktoer 2 Ltihn. Fungsi g =,, terintegrlkn pd [, ]. Nytkn integrl tentu g pd [, ] segi limit jumlh Riemnn dengn prtisi reguler, dn hitunglh niliny. //2 c Hendr

Lebih terperinci

MODUL 6. Materi Kuliah New_S1

MODUL 6. Materi Kuliah New_S1 MODUL 6 Mteri Kulih New_S1 KULIAH 10 Spnning tree dn minimum spnning tree - Definisi spnning tree T diktkn spnning tree dri grph terhubung G bil T dlh sutu tree yng vertexvertexny sm dengn vertexny G dn

Lebih terperinci

SUKU BANYAK ( POLINOM)

SUKU BANYAK ( POLINOM) SUKU BANYAK ( POLINOM) Bb 16 Skl 8.Menyelesikn mslh yng berkitn dengn teorem sis tu teorem fktor A. PENGERTIAN SUKU BANYAK. Bentuk x x x... x x, dengn 0 dn n { bil. cch} 1 0 disebut dengn Suku bnyk (Polinomil)

Lebih terperinci

NFA. Teori Bahasa dan Automata. Viska Mutiawani - Informatika FMIPA Unsyiah

NFA. Teori Bahasa dan Automata. Viska Mutiawani - Informatika FMIPA Unsyiah NFA Teori Bhs dn Automt Visk Mutiwni - Informtik FMIPA Unsyih 1 NFA NFA: Nondeterministic Finite Automt Atu Automt Hingg NonDeterministik (AHND) Slh stu bentuk dri Finite Automt NFA memiliki kemmpun untuk

Lebih terperinci

IAH IAAH I H HAAH xaah I A b x2ah x23h I A 3 x23b H 2

IAH IAAH I H HAAH xaah I A b x2ah x23h I A 3 x23b H 2 GRMMR CONTEXT-FREE DN PRING entuk umum produksi CFG dlh :, V N, (V N V T )* nlisis sintks dlh penelusurn seuh klimt (tu sentensil) smpi pd simol wl grmmr. nlisis sintks dpt dilkukn mellui derivsi tu prsing.

Lebih terperinci

DETERMINAN DAN INVERS MATRIKS BLOK 2 2

DETERMINAN DAN INVERS MATRIKS BLOK 2 2 Buletin Ilmih Mth. Stt. dn Terpnny (Bimster) Volume 06, No. 3(2017), hl 193 202. DETERMINAN DAN INVERS MATRIKS BLOK 2 2 Ilhmsyh, Helmi, Frnsiskus Frn INTISARI Mtriks blok merupkn mtriks persegi yng diblok

Lebih terperinci

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan.

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan. 1. Identits Trigonometri Pengertin Identits Trigonometri dlh kesmn yng memut entuk trigonometri dn erlku untuk semrng sudut yng dierikn. Jenis Identits Trigonometri 1. Identits trigonometri dsr erikut

Lebih terperinci

Perhitungan Biaya Tenaga Kerja Sesungguhnya Pada Cafe WarunKomando

Perhitungan Biaya Tenaga Kerja Sesungguhnya Pada Cafe WarunKomando Perhitungn Biy Teng Kerj Sesungguhny Pd Cfe WrunKomndo Jnuri Posisi Keterngn: JKS (Jm) TUS JKS : Jm Kerj Sesungguhny TUS : Trif Uph Sesungguhny JTUS : Jumlh Trif Uph per orng (JKS x TUS) JTK : Jumlh Teng

Lebih terperinci

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1)

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1) BAB: PENERAPAN INTEGRAL Topik: Volume Bend Putr (Khusus Klkulus ) Kompetensi yng diukur dlh kemmpun mhsisw menghitung volume bend putr dengn metode cincin, metode ckrm, tu metode kulit tbung.. UAS Klkulus,

Lebih terperinci

Vektor di R 2 dan R 3

Vektor di R 2 dan R 3 Vektor di R dn R Pengertin Vektor dlh besrn yng mempunyi besr dn rh Vektor digmbrkn oleh rus gris yng dilengkpi dengn nk pnh vektor dimuli dri titik wl (initil point) dn dikhiri oleh titik khir (terminl

Lebih terperinci

PEMBAHASAN SOAL OSN MATEMATIKA SMP 2013 TINGKAT KABUPATEN

PEMBAHASAN SOAL OSN MATEMATIKA SMP 2013 TINGKAT KABUPATEN www.sip-osn.blogspot.com @Mret 0 PEMBAHASAN SOAL OSN MATEMATIKA SMP 0 TINGKAT KABUPATEN. B. x ( x ) ( x + )( x ) ( x ( ) )( x ) ( x + )( x )( x + )( x ) (d fktor) Tidk d penjelsn tentng fktor hrus bilngn

Lebih terperinci

E. INTEGRASI BAGIAN ( PARSIAL )

E. INTEGRASI BAGIAN ( PARSIAL ) E. INTEGRASI BAGIAN ( PARSIAL ) Integrsi gin (prsil) digunkn untuk mengintegrsikn sutu perklin fungsi yng msing-msing fungsiny ukn koefisien diferensil dri yng lin ( seperti yng sudh dihs pd su. B. D )

Lebih terperinci

matematika PEMINATAN Kelas X FUNGSI LOGARITMA K-13 A. Definisi Fungsi Logaritma

matematika PEMINATAN Kelas X FUNGSI LOGARITMA K-13 A. Definisi Fungsi Logaritma K-3 Kels mtemtik PEMINATAN FUNGSI LOGARITMA Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi definisi fungsi logritm.. Dpt menggunkn konsep fungsi logritm dlm menyelesikn

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) : SMA IT Izzuddin : Matematika : X (Sepuluh) / Ganjil

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) : SMA IT Izzuddin : Matematika : X (Sepuluh) / Ganjil RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nm Sekolh Mt Peljrn Kels / Semester : SMA IT Izzuddin : Mtemtik : X (Sepuluh) / Gnjil Stndr Kompetensi :. Memechkn mslh yng berkitn dengn bentuk pngkt, kr, dn logritm.

Lebih terperinci

Bilangan. Bilangan Nol. Bilangan Bulat (Z )

Bilangan. Bilangan Nol. Bilangan Bulat (Z ) Bilngn Bilngn Asli (N) (,2,, ) Bilngn Nol (0) Bilngn Negtif (,, 2, ) Bilngn Bult (Z ) Bilngn Pechn ( 2 ; 5 ; 5%; 6,82; ) 7 A. Bilngn Asli (N) Bilngn Asli dlh himpunn bilngn bult positif (nol tidk termsuk).

Lebih terperinci

14. SIFAT-SIFAT INTEGRAL RIEMANN

14. SIFAT-SIFAT INTEGRAL RIEMANN 4. SIFAT-SIFAT INTEGRAL RIEMANN 4. Sift-sift Dsr Integrl Riemnn Pd bb ini kit kn mempeljri sift-sift dsr integrl Riemnn. Sift pertm dlh sift kelinern, yng dinytkn dlm Proposisi. Sepnjng bb ini, I menytkn

Lebih terperinci

tema 1 diri sendiri liburan ke kota

tema 1 diri sendiri liburan ke kota tem 1 diri sendiri liburn ke kot ku nik ke kels 2 selm liburn ku dijk ke kot ku berlibur ke rumh kkek di kot bnyk kendrn d bus tksi dn sebginy ku meliht bus bernomor 105 d pul tksi bernomor 153 ku bis

Lebih terperinci

TENTANG BANTING STIR UNTUK BERDIRI DI ATAS KAKI SENDIRI DI BIDANG EKONOMI DAN PEMBANGUNAN

TENTANG BANTING STIR UNTUK BERDIRI DI ATAS KAKI SENDIRI DI BIDANG EKONOMI DAN PEMBANGUNAN K E T E T A P A N MAJELIS PERMUSYAWARATAN RAKYAT SEMENTARA REPUBLIK INDONESIA No. VI/MPRS/1965 TENTANG BANTING STIR UNTUK BERDIRI DI ATAS KAKI SENDIRI DI BIDANG EKONOMI DAN PEMBANGUNAN MAJELIS PERMUSYAWARATAN

Lebih terperinci

DOKUMEN PENDUKUNG KETENTUAN DAN TATA CARA PENGGUNAAN TANDA KESESUAIAN

DOKUMEN PENDUKUNG KETENTUAN DAN TATA CARA PENGGUNAAN TANDA KESESUAIAN DOKUMEN PENDUKUNG KETENTUAN DAN TATA CARA PENGGUNAAN TANDA KESESUAIAN Ditinju Oleh, ttd Dishkn Oleh, ttd ADI IRFAN SHIDQY TRIYOGA I.W. NURJAYA Kepl Seksi Opersionl Kepl Bli Sertifiksi Industri Tnggl:1

Lebih terperinci

LEMBAR KEGIATAN SISWA. : Menemukan Teorema Pythagoras Sekolah/Satuan Pendidikan:... Kelas/Semester :... Anggota Kelompok :

LEMBAR KEGIATAN SISWA. : Menemukan Teorema Pythagoras Sekolah/Satuan Pendidikan:... Kelas/Semester :... Anggota Kelompok : LEMBAR KEGATAN SSWA Topik : Menemukn Teorem Pythgors Sekolh/Stun Pendidikn:... Kels/Semester :... Anggot Kelompok : 1.... 2.... 3.... 4. 5.... Tnggl Mengerjkn LKS :. Petunjuk Umum: 1. Setelh mengerjkn

Lebih terperinci

PROSIDING ISBN : RUANG LINEAR BERNORMA CESS. Muslim Ansori

PROSIDING ISBN : RUANG LINEAR BERNORMA CESS. Muslim Ansori PROSIDING ISBN : 978 979 16353 3 RUANG LINEAR BERNORMA C (, L ([, b ] An-1 Muslim Ansori Jurusn Mtemtik FMIPA Universits Lmpung Almt : Jln. Soemtri Brodjonegoro No.1 Bndr Lmpung E-mil: nsomth@yhoo.com

Lebih terperinci

ANALISIS DISPARITAS INPUT PEMBANGUNAN, 2010

ANALISIS DISPARITAS INPUT PEMBANGUNAN, 2010 BADAN PUSAT STATISTIK ANALISIS DISPARITAS INPUT PEMBANGUNAN, 2010 ABSTRAKSI Ltr belkng: 1. Pelksnn Otonomi Derh msih bnyk ditemukn permslhn kibt perbedn ltr belkng demogrfi, geogrfi, infrstruktur, ekonomi,

Lebih terperinci

Integral Kompleks (Bagian Kesatu)

Integral Kompleks (Bagian Kesatu) Integrl Kompleks (Bgin Kestu) Supm Jurusn Mtemtik, FMIPA UGM Yogykrt 55281, INDONESIA Emil:mspomo@yhoo.com, supm@ugm.c.id (Pertemun Minggu XI) Outline 1 Fungsi Bernili Kompleks 2 Lintsn tu Kontur 3 Integrl

Lebih terperinci

BAB VIII PENDIMENSIAN JARINGAN. Data yang diperlukan untuk pendimensian jaringan adalah : 1. matriks trafik (trafik yang ditawarkan)

BAB VIII PENDIMENSIAN JARINGAN. Data yang diperlukan untuk pendimensian jaringan adalah : 1. matriks trafik (trafik yang ditawarkan) 8 Diktt Rekys Trfik VIII PEDIMESI JRIG 8. Dt yng diperlukn Dt yng diperlukn untuk pendimensin jringn dlh :. mtriks trfik (trfik yng ditwrkn) -.... -.... -.... -. mtrik biy (biy per slurn) -.... -.... -....

Lebih terperinci

Matematika SKALU Tahun 1978

Matematika SKALU Tahun 1978 Mtemtik SKALU Thun 978 MA-78-0 Persmn c + b + = 0, mempunyi kr-kr dn, mk berlku A. + = b B. + = c C. = c = c = c MA-78-0 Akr dri persmn 5 - = 7 + dlh A. B. C. 4 5 MA-78-0 Hrg dri log b. b log c. c log

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Anlisis Rel Hendr Gunwn* *http://hgunwn82.wordpress.com Anlysis nd Geometry Group Bndung Institute of Technology Bndung, INDONESIA Progrm Studi S1 Mtemtik ITB, Semester II 2016/2017 HG* (*ITB Bndung)

Lebih terperinci

POKOK BAHASAN: PERMINTAAN, DAN HARGA. Suharyanto

POKOK BAHASAN: PERMINTAAN, DAN HARGA. Suharyanto POKOK BAHASAN: PERMINTAAN, PENAWARAN DAN HARGA Suhrynto Tujun Perkulihn ini: Mhsisw dpt mengnlisis kondisi psr berdsrkn konsep dsr permintn, penwrn dn hrg dlm meknisme psr. Bhn bcn: Smuelson, Pul A. &

Lebih terperinci

Jarak Titik, Garis dan Bidang dalam Ruang

Jarak Titik, Garis dan Bidang dalam Ruang Pge of Kegitn eljr. Tujun Pembeljrn Setelh mempeljri kegitn beljr, dihrpkn sisw dpt :. Menentukn jrk titik dn gris dlm rung b. Menentukn jrk titik dn bidng dlm rung c. Menentukn jrk ntr du gris dlm rung.

Lebih terperinci

ω = kecepatan sudut poros engkol

ω = kecepatan sudut poros engkol Kerj Untuk Mengtsi Gesekn 1. Pomp Tnp Bejn Udr Telh dijelskn pd bgin muk bhw pd wl dn khir lngkh hisp mupun lngkh tekn, tidk terjdi kerugin hed kibt gesekn. Kerugin hed mksimum hny terjdi pd pertenghn

Lebih terperinci

VEKTOR. Adri Priadana. ilkomadri.com

VEKTOR. Adri Priadana. ilkomadri.com VEKTOR Adri Pridn ilkomdri.com Pengertin Dlm Fisik dikenl du buh besrn, yitu 1. Besrn Sklr. Besrn Vektor Pengertin Besrn Sklr dlh sutu besrn yng hny mempunyi nili dn dinytkn dengn sutu bilngn tunggl diserti

Lebih terperinci

TURUNAN FUNGSI. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI

TURUNAN FUNGSI. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI LA - WB (Lembr Aktivits Wrg Beljr) TURUNAN FUNGSI Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI Creted By It Yulin 33 Turunn Fungsi Kompetensi Dsr 1. Menggunkn

Lebih terperinci

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar . LIMIT DAN KEKONTINUAN INF8 Klkulus Dsr . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn

Lebih terperinci

, PEMERINTAH KABUPATEN BTITAR

, PEMERINTAH KABUPATEN BTITAR , PEMERITAH KABUPATE BTITAR BADA PERECAAA PEMBAGUA DAERAH Semeru. 40 Telp. [0342J 808165 Fx. [0342) g0627s BITAR KEPUTUSA KEPAA BADA PERECAAA PEMBAGUA DAERAH KABUPATE BITAR MR = BB.4 / 26 / 49.20. / 27

Lebih terperinci

Minggu ke 3 : Lanjutan Matriks

Minggu ke 3 : Lanjutan Matriks inggu ke : Lnjutn triks Pokok Bhsn Sub Pokok Bhsn Tujun Instruksionl Umum Tujun Instruksionl Khusus : triks :. Trnsformsi Elementer. Trnsformsi Elementer pd bris dn kolom. triks Ekivlen. Rnk triks B. Determinn.

Lebih terperinci

11. PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) (0, a) y 2. y 1. (x 1, y 1 ) (b, 0) X. x 1

11. PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) (0, a) y 2. y 1. (x 1, y 1 ) (b, 0) X. x 1 11. PROGRAM LINEAR A. Persmn Gris Lurus y 1 (x 1, y 1 ) y 2 y 1 (x 1, y 1 ) (x 2, y 2 ) (, ) x 1 x 1 x 2 (b, ) b. Persmn gris yng bergrdien m dn mellui titik (x 1, y 1 ) dlh: y y 1 = m(x x 1 ) b. Persmn

Lebih terperinci

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN HIPERBLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi dn unsur-unsur hiperol.. Dpt menentukn persmn

Lebih terperinci

2. Paman mempunyai sebidang tanah yang luasnya 5 hektar. Tanah itu dibagikan kepada 3. Luas tanah yang diterima oleh mereka masing-masing = 5 :3 1

2. Paman mempunyai sebidang tanah yang luasnya 5 hektar. Tanah itu dibagikan kepada 3. Luas tanah yang diterima oleh mereka masing-masing = 5 :3 1 . Hitunglh 7 5. : b. 5 : c. 8 : 6 d. 8 9 7 7 7 5 77 77 77. : c. 8 : 6 : 6 6 9 9 9 6 54 8 40 7 b. 5: 5 d. 4: 4: 4 6 8 7 95 Husein Tmpoms, Rumus-rumus Dsr Mtemtik 4 :. Pmn mempunyi sebidng tnh yng lusny

Lebih terperinci

Catatan Kuliah 2 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks (2)

Catatan Kuliah 2 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks (2) Cttn Kulih Mtemtik Ekonomi Memhmi dn Mengnlis ljbr Mtriks (). Vektor dn kr Krkteristik pbil dlh mtriks berordo n n dn X dlh vector n, kn dicri sklr λ R yng memenuhi persmn : X λ X tu ( λi) X gr X (solusiny

Lebih terperinci

BAB II PANGKAT, AKAR DAN LOGARITMA

BAB II PANGKAT, AKAR DAN LOGARITMA BAB II PANGKAT, AKAR DAN LOGARITMA ILUSTRASI Sony kn membeli sebuh motor secr kredit, ketentun yng ditwrkn oleh perushn lesing dlh, ung muk sebesr Rp.500.000,00 dn ngsurn perbulnny sebesr Rp 365.000,00

Lebih terperinci

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1 Pge of 8 Kegitn eljr 5. Tujun Pembeljrn Setelh mempeljri kegitn beljr 5, dihrpkn sisw dpt. Menentukn unsur-unsur segitig dengn turn sinus b. Menentukn unsur-unsur segitig dengn turn kosinus. Menghitung

Lebih terperinci

Universitas Esa Unggul

Universitas Esa Unggul ALJABAR LINIER DAN MATRIKS BHAN KULIAH DRA SURYARI PURNAMA, MM Universits Es Unggul Minggu I Mtriks Pokok Bhsn Sub Pokok Bhsn Tujun Instruksionl Umum Tujun Instruksionl Khusus : Pendhulun Mtriks : A. Pengertin

Lebih terperinci

STANDAR PELAYANAN MINIMAL BIDANG PENDIDIKAN

STANDAR PELAYANAN MINIMAL BIDANG PENDIDIKAN STANDAR PELAYANAN MINIMAL BIDANG PENDIDIKAN KEPUTUSAN MENTERI PENDIDIKAN NASIONAL Rl NOMOR :.129/U/2004 DEPARTEMEN PENDIDIKAN NASIONAL REPUBLIK INDONESIA JAKARTA 2004 1 KATA PENGANTAR Pertm-tm mrilh kit

Lebih terperinci

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut: INTEGRAL.PENGERTIAN INTEGRAL Integrl dlh cr mencri sutu fungsi jik turunnn di kethui tu kelikn dri diferensil (turunn) ng diseut jug nti derivtif tu nti diferensil. Untuk menentukn integrl tidk semudh

Lebih terperinci

BAB 1 PERSAMAAN DAN PERTIDAKSAMAAN. Standar Kompetensi Mahasiswa memahami konsep dasar sistem bilangan real (R)

BAB 1 PERSAMAAN DAN PERTIDAKSAMAAN. Standar Kompetensi Mahasiswa memahami konsep dasar sistem bilangan real (R) BAB PERSAMAAN DAN PERTIDAKSAMAAN Stndr Kompetensi Mhsisw memhmi konsep dsr sistem bilngn rel (R) sebgi semest untuk menentukn selesin persmn dn pertidksmn, dpt mengembngkn bentuk persmn dn pertidksmn yng

Lebih terperinci

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat.

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat. Husn Arifh,M.Sc : Persmn Legendre Emil : husnrifh@uny.c.id Persmn diferensil Legendre (1) 1 x 2 y 2xy + n n + 1 y = 0 Prmeter n pd (1) dlh bilngn rill yng diberikn. Setip penyelesin dri (1) dinmkn fungsi

Lebih terperinci

Tiara Ariqoh Bawindaputri TIP / kelas L

Tiara Ariqoh Bawindaputri TIP / kelas L Tir Ariqoh Bwindputri 500008 TIP / kels L INTEGRAL Integrl Tk tentu Integrl dlh entuk invers dri turunn. Secr umum jik seuh fungsi diintegrlkn terhdp vrile tertentu dpt disjikn dlm entuk : f ( F( C Untuk

Lebih terperinci

INTEGRAL. Kelas XII IIS Semester Genap. Oleh : Markus Yuniarto, S.Si. SMA Santa Angela Tahun Pelajaran 2017/2018

INTEGRAL. Kelas XII IIS Semester Genap. Oleh : Markus Yuniarto, S.Si. SMA Santa Angela Tahun Pelajaran 2017/2018 Modul Integrl INTEGRAL Kels XII IIS Semester Genp Oleh : Mrkus Yunirto, SSi SMA Snt Angel Thun Peljrn 7/8 Modul Mtemtik Kels XII IIS Semester TA 7/8 Modul Integrl INTEGRAL Stndr Kompetensi: Menggunkn konsep

Lebih terperinci

PRINSIP DASAR SURVEYING

PRINSIP DASAR SURVEYING POKOK HSN : PRINSIP DSR SURVEYING Metri system, Dsr Mtemtik, Prinsip pengkurn : pengkurn jrk, pengkurn sudut dn pengukurn jrk dn sudut,.. Sistem Ukurn Jrk Unit pling dsr dlm sistem metrik dlh meter, dimn

Lebih terperinci

BAB IV METODE PENELITIAN

BAB IV METODE PENELITIAN 21 BAB IV METODE PENELITIAN A. Thpn Penelitin Thpn peneletin Yng dilkukn mengcu pd lngkh lngkh yng terdpt dlm Gmr 4.1. Muli Studi Litertur Dt Dt Sekunder Dt Primer Lus Arel Prkir Geometri Arel Prkir c

Lebih terperinci

BAB ALJABAR MARIX Dlm pokok bhsn ini kn disjikn dsr-dsr opersi ljbr mtrix yng berhubungn dengn nlisis struktur dengn menggunkn metode mtrix kekkun (stiffness method)... Pengertin Mtrix Mtrix merupkn sutu

Lebih terperinci

DAFTAR INFORMASI PUBLIK

DAFTAR INFORMASI PUBLIK Nm Pejt Nm Unit/Stker yng mengusi : Wdir Umum dn Keungn : RSUD Provinsi NTB DAFTAR INFORMASI PUBLIK NO Jenis Ringksn Isi yng A Profil Rumh Skit Tentng Rumh Skit Kg Perencnn setip thun soft copy dn 1 thun

Lebih terperinci

Bab. Vektor. A. Vektor B. Perkalian Vektor. Hasil yang harus Anda capai: menerapkan konsep besaran Fisika dan pengukurannya.

Bab. Vektor. A. Vektor B. Perkalian Vektor. Hasil yang harus Anda capai: menerapkan konsep besaran Fisika dan pengukurannya. 2 Sumer: Dsr-Dsr Foto Jurnlistik, 2003 esrn yng memiliki esr dn rh diseut esrn vektor. Keceptn merupkn slh stu esrn vektor. Vektor Hsil yng hrus nd cpi: menerpkn konsep esrn Fisik dn pengukurnny. Setelh

Lebih terperinci

BAB III METODE METODE DEFUZZYFIKASI

BAB III METODE METODE DEFUZZYFIKASI Fuy Logi Metode Metode Deuyiksi BAB III METODE METODE DEFUYFIKASI Seperti yng telh dihs dlm, hw untuk meruh kelurn uy menjdi nili risp mk diperlukn sutu proses yng leih dikenl dengn istilh deuyiksi Dlm

Lebih terperinci