TAP MPRS No. VIII/MPRS/1965 1

Ukuran: px
Mulai penontonan dengan halaman:

Download "TAP MPRS No. VIII/MPRS/1965 1"

Transkripsi

1 K E T E T A P A N MAJELIS PERMUSYAWARATAN RAKYAT SEMENTARA REPUBLIK INDONESIA No. VIII/MPRS/1965 TENTANG PRINSIP-PRINSIP MUSYAWARAH UNTUK MUFAKAT DALAM DEMOKRASI TERPIMPIN SEBAGAI PEDOMAN BAGI LEMBAGA-LEMBAGA PERMUSYAWARATAN/PERWAKILAN MAJELIS PERMUSYAWARATAN RAKYAT SEMENTARA REPUBLIK INDONESIA Dlm rpt Pripurn kedu tnggl 16 April 1965 Sidng Umum ketig di Bndung. Setelh Membhs : Usul pimpinn MPRS tentng rncngn Ketetpn MPRS mengeni PRINSIP-PRINSIP MUSYAWARAH UNTUK MUFAKAT DALAM DEMO- KRASI TERPIMPIN SEBAGAI PEDOMAN BAGI LEMBAGA-LEMBAGA PERMUSYAWARATAN/PERWAKILAN. Menimbng : 1. bhw sudh tib wktuny merumuskn prinsip-prinsip Musywrh untuk Mufkt yng merupkn inti Demokrsi Terpimpin sebgi pedomn umum setip lembg permusywrtn/perwkiln. 2. bhw Musywrh untuk Mufkt yng telh ditegkkn kembli hrus dikembngkn dn disempurnkn pelksnnny dlm kettnegrn Indonesi untuk melksnkn Amnt Penderitn Rkyt dn Tujun Revolusi Nsionl Indonesi, mewujudkn Msyrkt Adil dn Mkmur, Msyrkt Sosilis Indonesi berdsrkn Pncsil; 3. bhw pelksnn Musywrh untuk Mufkt merupkn slh stu fktor yng menentukn dlm semu Revolusi Indonesi, terutm sekli dlm menghdpi tntngntntngn Revolusi Nsionl yng belum selesi dn untuk mencegh timbulny kembli unsur-unsur Demokrsi liberl; 4. Bhw prinsip Musywrh untuk mufkt telh menjdi pegngn pokok bgi kehidupn prti-prti politik dn bgi TAP MPRS No. VIII/MPRS/1965 1

2 golongn kry dn lin-lin unsur dlm mysrkt dlm pengglngn perstun nsionl progresip revolusioner berporoskn Nskom. Mengingt: 1. Dsr Negr Pncsil; 2. Undng-Undng Dsr 1945; 3. Dekrit Presiden tnggl 5 Juli 1959; 4. Ketetpn-ketetpn MPRS No. I dn II/MPRS/1963, No. III dn IV/MPRS/1963, No. V dn VII/MPRS/1965; 5. Amnt-mnt, Konsepsi-konsepsi dn Pidto-pidto Presiden Pemimpin Besr Revolusi Bung Krno; 6. Deklrsi Bogor tnggl 12 Desember 1964; Mendengr : Permusywrtn dlm rpt-rpt MPRS pd tnggl 13 smpi dengn 16 April M E M U T U S K A N : Menetpkn : KETETAPAN TENTANG PRINSIP-PRINSIP MUSYAWARAH UNTUK MUFAKAT DALAM DEMOKRASI TERPIMPIN SEBAGAI PEDOMAN BAGI LEMBAGA-LEMBAGA PERMUSYAWARATAN/PERWAKILAN sebgi berikut : BAB I PENDAHULUAN Berkt Kemerdekn yng diproklmsikn pd tnggl 17 Agustus 1945 sebgi hsil kemenngn perjungn kemerdekn Rkyt Indonesi selm berpuluh-puluh thun, Bngs Indonesi dengn bebs dpt menggli kepribdinny, ilh menggli kembli ciri-ciri khs pndngn hidup Rkyt Indonesi tentng tt-cr dlm mengtur dn memimpin segl segi kehidupnny selm perjlnn msyrkt Indonesi sejk berbd-bd, ykni ss Demokrsi Indonesi, Demokrsi Gotong-royong, yng kemudin dikenl dengn nm Demokrsi Terpimpin, yitu Kerkytn yng dipimpin oleh hikmt kebijksnn dlm permusywrtn/perwkiln. Ggsn Demokrsi Terpimpin sesungguhny sudh muli dicetuskn pd jmn Pergerkn Kemerdekn Nsionl dengn sebutn "Demokrtie met Leiderschp" dn "Socio-Demokrsi". Demokrsi Terpimpin dlh sli Demokrsi Indonesi, demokrsi berdsrkn Pncsil. 2

3 Demokrsi Terpimpin yng gris-gris besrny telh dijmin dn tersusun dlm Undng-Undng Dsr Republik Indonesi 1945 dlh perwujudn Kerkytn yng dipimpin oleh hikmt kebijksnn dlm permusywrtn/ perwkiln. Akn tetpi kibt penjjhn Belnd dn pengruh-pengruh Demokrsi liberl sert feodlisme dn fsisme selm pendudukn Jepng, mk selm ms itu, dn bhkn pd permuln ms-ms Kemerdekn, wlupun sistim Demokrsi Terpimpin telh digriskn dlm Undng-Undng Dsr Republik Indonesi 1945, tetp kbur dn lumpuhlh sistim Demokrsi Terpimpin smpi pd st lhirny Dekrit Presiden/Pnglim Tertinggi Angktn Perng 5 Juli Alhmdulillh, berkt kebijksnn, kewibwn dn ketngksn pimpinn Presiden/Pnglim Tertinggi Angktn Perng/Pemimpin Besr Revolusi Bung Krno yng pd tnggl 5 Juli 1959 mengumumkn Dekrit Kembli ke Undng- Undng Dsr 1945, diberkhi pul dengn lhirny Mnifesto Politik Republik Indonesi 17 Agustus 1959, mk tegklh kembli sistem Demokrsi Terpimpin dengn intiny Musywrh untuk Mufkt yng dilksnkn secr sdr. Mk perlulh sistem dn kehrusn pelksnn Demokrsi Terpimpin itu selnjutny dikembngkn dn disempurnkn dlm kettnegrn Indonesi, untuk menuju tercpiny Msyrkt Adil dn Mkmur, Msyrkt Sosilis Indonesi berdsrkn Pncsil terutm sekli dlm menghdpi tntngntntngn Revolusi Indonesi thp demi thp. Ats dsr-dsr pemikirn tersebut di ts yng bersumber kepd Undng- Undng Dsr Republik Indonesi 1945, Amnt-mnt, Konsepsi-konsepsi dn Pidto-pidto Presiden/Pemimpin Besr Revolusi Bung Krno dn Ketetpnketetpn MPRS, mk disusunlh ketentun-ketentun mengeni pengertin dsr, prinsip-prinsip sert pelksnn Demokrsi Terpimpin dn Musywrh untuk mufkt. 1. PENGERTIAN DASAR BAB II DEMOKRASI TERPIMPIN (1) Demokrsi Terpimpin dlh kerkytn yng dipimpin oleh hikmt kebijksnn dlm permusywrtn/perwkiln, yng berintikn Musywrh untuk Mufkt secr gotong-royong ntr semu kekutn Nsionl yng progresip revolusioner berporoskn Nskom. (2) Demokrsi Terpimpin merupkn kepribdin dn pndngn hidup bngs Indonesi, yitu tt-cr dlm mengtur dn memimpin segl segi TAP MPRS No. VIII/MPRS/1965 3

4 kehidupn politik, ekonomi dn sosil Rkyt dn Negr Indonesi, dengn penuh rs tnggung jwb kn kelncrn jlnny revolusi. (3) Demokrsi Terpimpin dlh lt untuk mengembn Amnt Penderitn Rkyt dn tujun Revolusi Nsionl Indonesi, mewujudkn Msyrkt Adil dn Mkmur, Msyrkt Sosilis Indonesi berdsrkn Pncsil, Msyrkt tnp penghispn ts mnusi oleh mnusi. 2. ASAS (1) Demokrsi Terpimpin mempunyi du unsur, yitu Demokrsi dn Terpimpin yng kedu-duny bergndengn mutlk stu sm lin, dn unsur "loro-loroning tunggl". (2) Demokrsi Terpimpin dipimpin oleh Pncsil, bik ideologi mupun crcr kerjny. (3) Demokrsi Terpimpin menjmin kebebsn berpikir dn berbicr mengemukkn pendpt dlm setip permusywrtn, dlm bts-bts keselmtn Negr, kepentingn Rkyt bnyk, kepribdin Bngs, kesusiln dn pertngungnjwb kepd Tuhn. 3. TUJUAN (1) Demokrsi Terpimpin bertujun melksnkn Hlun Negr Mnipol/Usdek dn Dekon untuk mencpi Msyrkt Adil dn Mkmur, Msyrkt Sosilis Indonesi berdsrkn Pncsil, yng penuh dengn kebhgin mteril dn spiritul sesui dengn cit-cit Proklmsi Kemerdekn Indonesi 17 Agustus (2) Demokrsi Terpimpin ditujukn pul untuk melindungi dn menmbh hkhk bgi Rkyt, dn menghpuskn hk-hk kum imperilis, kum feodlis sert kki tngn-kki tngn merek, kum kontr-revolusioner, kum ntiprogresip dn kum penghisp Rkyt. 4. FUNGSI (1) Demokrsi Terpimpin dlh lt Rkyt untuk mencpi tujun Rkyt yng telh diorbni oleh Rkyt berpuluh-puluh thun, yitu Negr kut, Msyrkt Adil Mkmur; (2) Demokrsi Terpimpin pd hkektny dlh Demokrsi Penyelenggrn tu Demokrsi Kry (werk-democrtie). (3) Demokrsi Terpimpin merupkn lt untuk melksnkn Konsepsikonsepsi Bung Krno sebgi penymbung lidh Rkyt, termsuk konsepsi yng dicetuskn pd tnggl 21 Pebruri

5 5. CIRI-CIRI KHAS (1) Demokrsi Terpimpin bertentngn dengn demokrsi liberl, dn bukn dikttur, tetpi dlh Demokrsi Gotong Royong dri semu golongn yng mendukung Revolusi Indonesi menentng kpitlisme, imperilisme, feodlisme, kolonilisme dn neokolonilisme. (2) Demokrsi Terpimpin bukn medn pertemun ntr oponen-oponen stu sm lin, medn hntm-hntmn ntr ntgonisme, medn untuk mencri kemenngn stu golongn ts golongn yng lin, medn untuk merebut kekusn oleh stu golongn terhdp yng lin. (3) Demokrsi Terpimpin mencri sintes, mencri kumulsi pikirn dn teng untuk melksnkn Amnt Penderitn Rkyt. (4) Demokrsi Terpimpin melrng propgnd nti-nsionlisme, nti Agm, Anti-Komunisme, tetpi seblikny menghendki konsultsi sesm lirn progresip-revolusioner. BAB III PRINSIP-PRINSIP MUSYAWARAH UNTUK MUFAKAT 6. PENGERTIAN DASAR Musywrh untuk Mufkt sebgi inti Demokrsi Terpimpin, dlh tt cr khs kepribdin Indonesi untuk memechkn setip persoln kehidupn Rkyt dn Negr, mendptkn kebultn pendpt dn mufkt dlm permusywrtn/perwkiln secr gotong royong yng dipimpin oleh hikmt kebijksnn untuk melksnkn Amnt Penderitn Rkyt, tujun Revolusi Nsionl Indonesi, mewujudkn Msyrkt Adil dn Mkmur, Msyrkt Sosilis Indonesi berdsrkn Pncsil. Msyrkt tnp penghispn ts mnusi oleh mnusi. 7. ASAS MUSYAWARAH UNTUK MUFAKAT (1) Musywrh dilksnkn berdsrkn gotong royong dengn sikp memberi dn menerim dlm susn kekelurgn, tolernsi, timbng rs dn tenggng-menenggng ntr segenp pesert musywrh. (2) Pngkl bertolk dlm tip musywrh dlh priori perstun dn bukn pertentngn ntr pr pesert. (3) Musywrh dilksnkn ntr merek yng dengn sungguh-sungguh menyetujui dsr negr Pncsil, UUD 1945, Hlun Negr Mnipol sert Pedomn-pedomn pelksnnny dn tujun Revolusi Nsionl Indonesi, dn yng sunguh-sungguh berhsrt mensukseskn musywrh. TAP MPRS No. VIII/MPRS/1965 5

6 (4) Musywrh untuk Mufkt bersendikn pd kesdrn dn rs tnggung jwb dri pimpinn dn pesert untuk m enghdiri musywrh, oleh sebb itu Musywrh untuk Mufkt pd dsrny tidk mengenl korum, tetpi mengenl ikut-sertny unsur-unsur yng berkepentingn dn yng representtip untuk turut dlm musywrh. 8. PESERTA MUSYAWARAH (1) Pesert-pesert musywrh dlm permusywrtn/perwkiln terdiri dri golongn politik, golongn kry dn lin-lin unsur msyrkt yng mencerminkn semu kekutn-kekutn nsionl yng progresiprevolusioner. (2) Setip pesert musywrh mendhulukn kepentingn Rkyt dn Negr di ts kepentingn golongn dn perorngn. (3) Setip pesert musywrh mempunyi hk dn kesemptn yng sm lus dn bebs mengemukkn pendpt dn melhirkn kritik dn otokritik yng bersift membngun tnp teknn dri pihk mnpun. 9. MUFAKAT (1) Mufkt sebgi hsil kebultn pendpt yng didpt dri setip permusywrtn/perwkiln dengn jln gotong-royong dlh buh pikirn bersm, bukn oleh perdebtn dn penyistn yng dikhiri oleh pengdun kekutn dn penghitungn sur pro dn kontr, melinkn untuk mencri kebenrn dlm melksnkn Amnt Penderitn Rkyt. (2) Mufkt sebgi hsil musywrh hruslh bermutu tinggi yng dpt dipertnggungjwbkn dn tidk bertentngn dengn dsr negr dn tujun Revolusi. (3) Mufkt sebgi hsil kebultn pendpt diterim dn hrus dilksnkn dengn kesungguhn dn keikhlsn hti. 10. PIMPINAN MUSYAWARAH Pimpinn permusywrtn/perwkiln merupkn stu kestun pimpinn kolektif yng mencerminkn golongn-golongn pesert musywrh, hrus berjiw Pncsil dn revolusioner, berwtk dil, rif bijksn dn berwibw sert hrus seti kepd Undng-Undng Dsr Negr dn tujun Revolusi Indonesi. BAB IV PENTRAPAN DAN PEDOMAN PELAKSANAAN MUSYAWARAH UNTUK MUFAKAT 6

7 11. PENTRAPAN KEPADA LEMBAGA-LEMBAGA PERMUSYA- WARATAN RAKYAT/PERWAKILAN. (1) Lembg-lembg Negr berdsrkn UUD 1945;. Mjelis Permusywrtn Rkyt; b. Dewn Perwkiln Rkyt; c. Kementerin Negr; d. Dewn Pertimbngn Agung; e. Pemerinth Derh; f. Bdn Pemeriks Keungn; g. Mhkmh Agung; dn h. Lembg-lembg negr berdsrkn perturn perundng-undngn linny. (2) Lembg-lembg kemsyrktn. 12. PEDOMAN PELAKSANAAN (1) Prinsip-prinsip Musywrh untuk Mufkt sebgimn tercntum dlm Bb III seluruhny berlku bgi semu lembg-lembg negr legisltif, eksekutif dn yudiktif, bik di pust mupun di derh-derh dn lembglembg kemsyrktn. (2) Dlm permusywrtn lembg-lembg legisltif, pimpinn dn pesert musywrh mempunyi hk yng sm dlm menetpkn mufkt. (3) Dlm permusywrtn lembg-lembg eksekutif, pimpinn lembg mempunyi wewenng untuk menentukn dlm menetpkn mufkt (keputusn), jik tidk tercpi kebultn pendpt. (4) Dlm permusywrtn lembg-lembg yudiktif, keputusn hrus dimbil secr kolektif, dn pimpinn lembg mempunyi wewenng untuk menentukn mufkt (keputusn), jik tidk tercpi kebultn pendpt. (5) Dlm permusywrtn lembg-lembg kemsyrktn, pimpinn dn pesert musywrh mempunyi hk yng sm dlm menetpkn mufkt. (6) Apbil di dlm musywrh seperti yng dimksud dlm yt (2) dn yt (3) dn 12 terdpt perbedn pendpt, mk pimpinn dn pesert musywrh berkewjibn menyelesiknny dengn semngt perstun, gotong-royong dn kekelurgn, sert menginsyfi kn keduduknny TAP MPRS No. VIII/MPRS/1965 7

8 sebgi lt Revolusi yng sedng berjung gun mengembn Amnt Penderitn Rkyt. (7) Apbil di dlm sutu permusywrtn tidk didpt mufkt, mk musywrh mengmbil kebijksnn dengn menempuh jln:. Persoln itu ditngguhkn pembicrnny; b. Persoln itu diserhkn kepd pimpinn untuk mengmbil kebijksnn dengn memperhtikn pendpt-pendpt yng bertentngn; c. Persoln itu ditidkn. 13. PERMUSYAWARATAN ANTAR LEMBAGA NEGARA Prinsip Musywrh untuk Mufkt dlm permusywrtn ntr lembg Negr sellu dilksnkn dengn mengindhkn wewenng kedudukn dn fungsi msing-msing pihk. 14. PENGAMANAN PELAKSANAAN Pengmnn terhdp pelksnn ketentun-ketentun dlm ketetpn ini, bil tidk cukup terjmin oleh lembg-lembg permusywrtn/ perwkiln yng bersngkutn, diserhkn kepd kebijksnn Presiden/ Pemimpin Besr Revolusi. BAB V KETENTUAN PENUTUP Ketetpn ini muli berlku pd hri ditetpknny. D i t e t p k n d i 8

9 B n d u n g p d t n g g l 1 6 A p r i l TAP MPRS No. VIII/MPRS/1965 9

Rumus Luas Daerah Segi Empat Sembarang? Oleh: Al Jupri Dosen Jurusan Pendidikan Matematika Universitas Pendidikan Indonesia

Rumus Luas Daerah Segi Empat Sembarang? Oleh: Al Jupri Dosen Jurusan Pendidikan Matematika Universitas Pendidikan Indonesia Rumus Lus Derh Segi Empt Sembrng? Oleh: Al Jupri Dosen Jurusn Pendidikn Mtemtik Universits Pendidikn Indonesi Kit bisny lebih menyuki brng yng siftny serb gun dn efektif, stu brng untuk berbgi jenis keperlun.

Lebih terperinci

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII Kesumwti Prodi Sttistik FMIPA-UII Mrch 25, 205 Sutu integrl tertentu b f (x)dx () diktkn wjr jik i memenuhi du syrt berikut: i. Bts integrsi dn b merupkn bilngn berhingg ii. fungsi f (x) terbts pd intervl

Lebih terperinci

12. LUAS DAERAH DAN INTEGRAL

12. LUAS DAERAH DAN INTEGRAL 12. LUAS DAERAH DAN INTEGRAL 12.1 Lus Derh di Bwh Kurv Mslh menentukn lus derh (dn volume rung) telh dipeljri sejk er Pythgors dn Zeno, pd thun 500-n SM. Konsep integrl (yng terkit ert dengn lus derh)

Lebih terperinci

15. INTEGRAL SEBAGAI LIMIT

15. INTEGRAL SEBAGAI LIMIT 15. INTEGRAL SEBAGAI LIMIT 15.1 Jumlh Riemnn Dlm kulih Klkulus pd thun pertm, integrl Riemnn bisny diperkenlkn sebgi limit dri jumlh Riemnn, tidk mellui integrl Riemnn ts dn integrl Riemnn bwh. Hl ini

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bb berikut ini kn disjikn mteri pendukung yng dpt membntu penulis untuk menyelesikn permslhn yng kn dibhs pd bb selnjutny. Adpun mteri pendukungny dlh pengertin mtriks, jenis-jenis

Lebih terperinci

KEBIJAKAN PENGUPAHAN YANG MENDORONG PENINGKATAN KESEJAHTERAAN PEKERJA/BURUH DAN KELANGSUNGAN USAHA

KEBIJAKAN PENGUPAHAN YANG MENDORONG PENINGKATAN KESEJAHTERAAN PEKERJA/BURUH DAN KELANGSUNGAN USAHA Direktorat Pembinaan Hubungan Industrial dan Jaminan Sosial Tenaga Kerja KEBIJKN PENGUPHN YNG MENDORONG PENINGKTN KESEJHTERN PEKERJ/BURUH DN KELNGSUNGN USH OLEH: R. IRINTO SIMBOLON, SE, MM Direktur Jenderal

Lebih terperinci

1. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II)

1. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II) MATA KULIAH KODE MK Dosen : FISIKA DASAR II : EL-22 : Dr. Budi Mulynti, MSi Pertemun ke-6 CAKUPAN MATERI. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II) SUMBER-SUMBER:.

Lebih terperinci

17. PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) (0, a) y 2. y 1. (x 1, y 1 ) (b, 0) X. x 1

17. PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) (0, a) y 2. y 1. (x 1, y 1 ) (b, 0) X. x 1 17. PROGRAM LINEAR A. Persmn Gris Lurus y 1 (x 1, y 1 ) y 2 y 1 (x 1, y 1 ) (x 2, y 2 ) (0, ) 0 x 1 x 1 0 x 2 (b, 0) 0 b. Persmn gris yng bergrdien m dn mellui titik (x 1, y 1 ) dlh: y y 1 = m(x x 1 )

Lebih terperinci

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A.

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A. Bb DETERMINAN MATRIKS Determinn sutu mtriks dlh sutu fungsi sklr dengn domin mtriks bujur sngkr. Dengn kt lin, determinn merupkn pemetn dengn domin berup mtriks bujur sngkr, sementr kodomin berup sutu

Lebih terperinci

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini: ) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut

Lebih terperinci

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1)

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1) BAB: PENERAPAN INTEGRAL Topik: Volume Bend Putr (Khusus Klkulus ) Kompetensi yng diukur dlh kemmpun mhsisw menghitung volume bend putr dengn metode cincin, metode ckrm, tu metode kulit tbung.. UAS Klkulus,

Lebih terperinci

E. INTEGRASI BAGIAN ( PARSIAL )

E. INTEGRASI BAGIAN ( PARSIAL ) E. INTEGRASI BAGIAN ( PARSIAL ) Integrsi gin (prsil) digunkn untuk mengintegrsikn sutu perklin fungsi yng msing-msing fungsiny ukn koefisien diferensil dri yng lin ( seperti yng sudh dihs pd su. B. D )

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) : SMA IT Izzuddin : Matematika : X (Sepuluh) / Ganjil

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) : SMA IT Izzuddin : Matematika : X (Sepuluh) / Ganjil RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nm Sekolh Mt Peljrn Kels / Semester : SMA IT Izzuddin : Mtemtik : X (Sepuluh) / Gnjil Stndr Kompetensi :. Memechkn mslh yng berkitn dengn bentuk pngkt, kr, dn logritm.

Lebih terperinci

Bilangan. Bilangan Nol. Bilangan Bulat (Z )

Bilangan. Bilangan Nol. Bilangan Bulat (Z ) Bilngn Bilngn Asli (N) (,2,, ) Bilngn Nol (0) Bilngn Negtif (,, 2, ) Bilngn Bult (Z ) Bilngn Pechn ( 2 ; 5 ; 5%; 6,82; ) 7 A. Bilngn Asli (N) Bilngn Asli dlh himpunn bilngn bult positif (nol tidk termsuk).

Lebih terperinci

tema 1 diri sendiri liburan ke kota

tema 1 diri sendiri liburan ke kota tem 1 diri sendiri liburn ke kot ku nik ke kels 2 selm liburn ku dijk ke kot ku berlibur ke rumh kkek di kot bnyk kendrn d bus tksi dn sebginy ku meliht bus bernomor 105 d pul tksi bernomor 153 ku bis

Lebih terperinci

DOKUMEN PENDUKUNG KETENTUAN DAN TATA CARA PENGGUNAAN TANDA KESESUAIAN

DOKUMEN PENDUKUNG KETENTUAN DAN TATA CARA PENGGUNAAN TANDA KESESUAIAN DOKUMEN PENDUKUNG KETENTUAN DAN TATA CARA PENGGUNAAN TANDA KESESUAIAN Ditinju Oleh, ttd Dishkn Oleh, ttd ADI IRFAN SHIDQY TRIYOGA I.W. NURJAYA Kepl Seksi Opersionl Kepl Bli Sertifiksi Industri Tnggl:1

Lebih terperinci

Integral Kompleks (Bagian Kesatu)

Integral Kompleks (Bagian Kesatu) Integrl Kompleks (Bgin Kestu) Supm Jurusn Mtemtik, FMIPA UGM Yogykrt 55281, INDONESIA Emil:mspomo@yhoo.com, supm@ugm.c.id (Pertemun Minggu XI) Outline 1 Fungsi Bernili Kompleks 2 Lintsn tu Kontur 3 Integrl

Lebih terperinci

Matematika SKALU Tahun 1978

Matematika SKALU Tahun 1978 Mtemtik SKALU Thun 978 MA-78-0 Persmn c + b + = 0, mempunyi kr-kr dn, mk berlku A. + = b B. + = c C. = c = c = c MA-78-0 Akr dri persmn 5 - = 7 + dlh A. B. C. 4 5 MA-78-0 Hrg dri log b. b log c. c log

Lebih terperinci

BAB VIII PENDIMENSIAN JARINGAN. Data yang diperlukan untuk pendimensian jaringan adalah : 1. matriks trafik (trafik yang ditawarkan)

BAB VIII PENDIMENSIAN JARINGAN. Data yang diperlukan untuk pendimensian jaringan adalah : 1. matriks trafik (trafik yang ditawarkan) 8 Diktt Rekys Trfik VIII PEDIMESI JRIG 8. Dt yng diperlukn Dt yng diperlukn untuk pendimensin jringn dlh :. mtriks trfik (trfik yng ditwrkn) -.... -.... -.... -. mtrik biy (biy per slurn) -.... -.... -....

Lebih terperinci

Jarak Titik, Garis dan Bidang dalam Ruang

Jarak Titik, Garis dan Bidang dalam Ruang Pge of Kegitn eljr. Tujun Pembeljrn Setelh mempeljri kegitn beljr, dihrpkn sisw dpt :. Menentukn jrk titik dn gris dlm rung b. Menentukn jrk titik dn bidng dlm rung c. Menentukn jrk ntr du gris dlm rung.

Lebih terperinci

VEKTOR. Adri Priadana. ilkomadri.com

VEKTOR. Adri Priadana. ilkomadri.com VEKTOR Adri Pridn ilkomdri.com Pengertin Dlm Fisik dikenl du buh besrn, yitu 1. Besrn Sklr. Besrn Vektor Pengertin Besrn Sklr dlh sutu besrn yng hny mempunyi nili dn dinytkn dengn sutu bilngn tunggl diserti

Lebih terperinci

POKOK BAHASAN: PERMINTAAN, DAN HARGA. Suharyanto

POKOK BAHASAN: PERMINTAAN, DAN HARGA. Suharyanto POKOK BAHASAN: PERMINTAAN, PENAWARAN DAN HARGA Suhrynto Tujun Perkulihn ini: Mhsisw dpt mengnlisis kondisi psr berdsrkn konsep dsr permintn, penwrn dn hrg dlm meknisme psr. Bhn bcn: Smuelson, Pul A. &

Lebih terperinci

BAB 1 PERSAMAAN DAN PERTIDAKSAMAAN. Standar Kompetensi Mahasiswa memahami konsep dasar sistem bilangan real (R)

BAB 1 PERSAMAAN DAN PERTIDAKSAMAAN. Standar Kompetensi Mahasiswa memahami konsep dasar sistem bilangan real (R) BAB PERSAMAAN DAN PERTIDAKSAMAAN Stndr Kompetensi Mhsisw memhmi konsep dsr sistem bilngn rel (R) sebgi semest untuk menentukn selesin persmn dn pertidksmn, dpt mengembngkn bentuk persmn dn pertidksmn yng

Lebih terperinci

Minggu ke 3 : Lanjutan Matriks

Minggu ke 3 : Lanjutan Matriks inggu ke : Lnjutn triks Pokok Bhsn Sub Pokok Bhsn Tujun Instruksionl Umum Tujun Instruksionl Khusus : triks :. Trnsformsi Elementer. Trnsformsi Elementer pd bris dn kolom. triks Ekivlen. Rnk triks B. Determinn.

Lebih terperinci

BAB II PANGKAT, AKAR DAN LOGARITMA

BAB II PANGKAT, AKAR DAN LOGARITMA BAB II PANGKAT, AKAR DAN LOGARITMA ILUSTRASI Sony kn membeli sebuh motor secr kredit, ketentun yng ditwrkn oleh perushn lesing dlh, ung muk sebesr Rp.500.000,00 dn ngsurn perbulnny sebesr Rp 365.000,00

Lebih terperinci

Universitas Esa Unggul

Universitas Esa Unggul ALJABAR LINIER DAN MATRIKS BHAN KULIAH DRA SURYARI PURNAMA, MM Universits Es Unggul Minggu I Mtriks Pokok Bhsn Sub Pokok Bhsn Tujun Instruksionl Umum Tujun Instruksionl Khusus : Pendhulun Mtriks : A. Pengertin

Lebih terperinci

2. Paman mempunyai sebidang tanah yang luasnya 5 hektar. Tanah itu dibagikan kepada 3. Luas tanah yang diterima oleh mereka masing-masing = 5 :3 1

2. Paman mempunyai sebidang tanah yang luasnya 5 hektar. Tanah itu dibagikan kepada 3. Luas tanah yang diterima oleh mereka masing-masing = 5 :3 1 . Hitunglh 7 5. : b. 5 : c. 8 : 6 d. 8 9 7 7 7 5 77 77 77. : c. 8 : 6 : 6 6 9 9 9 6 54 8 40 7 b. 5: 5 d. 4: 4: 4 6 8 7 95 Husein Tmpoms, Rumus-rumus Dsr Mtemtik 4 :. Pmn mempunyi sebidng tnh yng lusny

Lebih terperinci

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1 Pge of 8 Kegitn eljr 5. Tujun Pembeljrn Setelh mempeljri kegitn beljr 5, dihrpkn sisw dpt. Menentukn unsur-unsur segitig dengn turn sinus b. Menentukn unsur-unsur segitig dengn turn kosinus. Menghitung

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI. Mtriks Definisi. (Anton, Howrd. ). Mtriks dlh sutu susunn bilngn berbentuk segi empt. Bilngn-bilngn dlm susunn itu disebut nggot dlm mtriks tersebut. Ukurn (size) sutu mtriks dinytkn

Lebih terperinci

BAB III METODE METODE DEFUZZYFIKASI

BAB III METODE METODE DEFUZZYFIKASI Fuy Logi Metode Metode Deuyiksi BAB III METODE METODE DEFUYFIKASI Seperti yng telh dihs dlm, hw untuk meruh kelurn uy menjdi nili risp mk diperlukn sutu proses yng leih dikenl dengn istilh deuyiksi Dlm

Lebih terperinci

SOP TATA CARA PENYELESAIAN GUGATAN SEDERHANA OLEH HAKIM TUNGGAL

SOP TATA CARA PENYELESAIAN GUGATAN SEDERHANA OLEH HAKIM TUNGGAL mor SOP - Negeri Kefmennu Tnggl Pembutn 2 Mei 2016 Jln. My Jend El Tri, Kefmennu Tnggl Revisi - Tnggl Efektif 2 Mei 2016 Dishkn oleh Wkil Ketu Negeri Kefmennu SOP TATA CARA PENYELESAIAN GUGATAN SEDERHANA

Lebih terperinci

2.Matriks & Vektor (1)

2.Matriks & Vektor (1) .triks & Vektor () t Kulih: ljbr Liner dn triks Semester Pendek T. / S Teknik Informtik Dosen Pengmpu: Heri Sismoro,.Kom. STIK IKO YOGYKRT Jl. Ringrod Utr Condong Ctur Yogykrt. Telp. 7 88 Fx 7-888 Website:

Lebih terperinci

Dra. Hj. Ernida Basry, M.H NIP PANITERA Judul SOP Pengajuan dan Penyelesaian Perkara Tingkat Kasasi

Dra. Hj. Ernida Basry, M.H NIP PANITERA Judul SOP Pengajuan dan Penyelesaian Perkara Tingkat Kasasi mor SOP SOP.D.01C Tnggl Pembutn 01 Jnuri 2016 Tnggl Revisi Tnggl Efektif 01 April 2016 Dishkn Oleh Ketu DIREKTORAT JENDERAL BADAN PERADILAN AGAMA PENGADILAN AGAMA BEKASI KELAS I B Dr. Hj. Ernid Bsry, M.H

Lebih terperinci

METODE PENELITIAN. Penelitian dilaksanakan pada bulan Oktober sampai dengan November 2011

METODE PENELITIAN. Penelitian dilaksanakan pada bulan Oktober sampai dengan November 2011 III. METODE PENELITIAN 3.1. Tempt dn Wktu Penelitin Penelitin dilksnkn pd buln Oktober smpi dengn November 2011 bertempt di Lbortorium Rekys Bioproses dn Psc Pnen, Jurusn Teknik Pertnin, Fkults Pertnin,

Lebih terperinci

RUMUS HERON DAN RUMUS BRAHMAGUPTA

RUMUS HERON DAN RUMUS BRAHMAGUPTA RUMUS HERON DAN RUMUS BRAHMAGUPTA Sumrdyono, M.Pd. Topik lus bngun dtr telh dipeljri sejk di Sekolh Dsr hingg SMA. Bil di SD, dipeljri lus segitig dn beberp bngun segiempt mk di SMP dipeljri lebih lnjut

Lebih terperinci

M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc.

M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc. M T R I K S Oleh Dims Rhdin M, S.TP. M.Sc Emil rhdindims@yhoo.com JURUSN ILMU DN TEKNOLOGI PNGN UNIVERSITS SEBELS MRET SURKRT DEFINISI... Mtriks dlh susunn bilngn berbentuk jjrn segi empt siku-siku yng

Lebih terperinci

Aljabar Linear. Pertemuan 12_14 Aljabar Vektor (Perkalian vektor)

Aljabar Linear. Pertemuan 12_14 Aljabar Vektor (Perkalian vektor) Aljbr Liner Pertemun 12_14 Aljbr Vektor (Perklin vektor) Pembhsn Perklin vektor dengn sklr Rung vektor Perklin Vektor dengn Vektor: Dot Product - Model dot product - Sift dot product Pendhulun Penmbhn

Lebih terperinci

IRISAN KERUCUT. 1. Persamaan lingkaran dengan pusat (0,0) dan jari-jari r. Persamaan = TK titik T = =

IRISAN KERUCUT. 1. Persamaan lingkaran dengan pusat (0,0) dan jari-jari r. Persamaan = TK titik T = = IRISAN KERUCUT Bb 9 A. LINGKARAN. Persmn lingkrn dengn pust (0,0) dn jri-jri r 0 r T(x,y) X Persmn = TK titik T = { T / OT r } = = {( x, y) / r } {( x, y) / r }. Persmn lingkrn dengn pust (,b) dengn jri-jri

Lebih terperinci

BAB IV TESTING DAN IMPLEMENTASI

BAB IV TESTING DAN IMPLEMENTASI BAB IV TESTING DAN IMPLEMENTASI 4.1. Implementsi Sistem Setelh melkukn nlisis dn perncngn sistem yng telh dibhs, mk untuk thp selnjutny yitu implementsi sistem. Implementsi sistem merupkn thp meletkn sistem

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN 3. LIMIT DAN KEKONTINUAN 1 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi di =1, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp

Lebih terperinci

MAJELIS PERMUSYAWARATAN RAKYAT SEMENTARA,

MAJELIS PERMUSYAWARATAN RAKYAT SEMENTARA, KETETAPAN MAJELIS PERMUSYAWARATAN RAKYAT SEMENTARA REPUBLIK INDONESIA NOMOR VIII/MPRS/1965 TAHUN 1965 TENTANG PRINSIP-PRINSIP MUSYAWARAH UNTUK MUFAKAT DALAM DEMOKRASI TERPIMPIN SEBAGAI PEDOMAN BAGI LEMBAGA-LEMBAGA

Lebih terperinci

BAB III MATRIKS

BAB III MATRIKS BB III MTRIKS PENGERTIN MTRIKS Pengertin Mtriks Mtriks dlh susunn bilngn-bilngn ng berbentuk persegi tu persegi pnjng ng ditur dlm bris dn kolom Bentuk Umum Mtriks : i m i m i m j j j ij mj n n n in mn

Lebih terperinci

BAB IV BILANGAN BERPANGKAT DAN BENTUK AKAR

BAB IV BILANGAN BERPANGKAT DAN BENTUK AKAR BAB IV BILANGAN BERPANGKAT DAN BENTUK AKAR Pet Konsep Bilngn Berpngkt dn Bentuk Akr mempeljri Bilngn berpngkt meliputi Bentuk kr meliputi Sift Opersi Mersionlkn Opersi Sift Kt Kunci. Pngkt 2. Akr 3. Sift

Lebih terperinci

b. Remisi bagianak Pidana diberikan kepada Anak Pidana yang telah memenuhi syarat:

b. Remisi bagianak Pidana diberikan kepada Anak Pidana yang telah memenuhi syarat: KMNTRIAN HUKUM DAN HAK ASASI MANUSIA RI DI RKTORAT NDRAL PMASYARAKATAN ln Vetern Nmr 11 krt Nmr Lmpirn Perihl PAS ' PK 'r ' 1' - t% 3 (tig) lembr Pelksnn pemberin Remisi Ank Pidn thun 2013 bgi Ank Pidn.

Lebih terperinci

BAB IV HASIL PENELITIAN DAN ANALISIS

BAB IV HASIL PENELITIAN DAN ANALISIS Dri Gmbr 4.7, Gmbr 4.8, dn Gmbr 4.9 di ts dpt diliht bhw hybrid film yng terbentuk menglmi retkn (crck). Hl ini sm seperti yng terjdi pd hybrid film presintered dn hybrid film dengn 5% wt PDMS terhdp TEOS

Lebih terperinci

FUNGSI TRANSENDEN. Definisi 1 Fungsi logaritma natural, ditulis sebagai ln, didefenisikan dengan

FUNGSI TRANSENDEN. Definisi 1 Fungsi logaritma natural, ditulis sebagai ln, didefenisikan dengan 2 FUNGSI TRANSENDEN Fungsi trnsenen tu fungsi non-ljbr lh fungsi yng tik pt inytkn lm sejumlh berhingg opersi ljbr. Fungsi trnsenen yng bis ijumpi lm hl ini teriri ri fungsi eksponensil, fungsi logritmik,

Lebih terperinci

MODEL POTENSIAL 1 DIMENSI

MODEL POTENSIAL 1 DIMENSI MODEL POTENSIAL 1 DIMENSI 1. Sumur Potensil Tk Berhingg Kit tinju prtikel bermss m dengn energi positif, berd dlm sumur potensil stu dimensi dengn dinding potensil tk berhingg dn potensil didlmny nol,

Lebih terperinci

Graf Berarah (Digraf)

Graf Berarah (Digraf) Grf Berrh (Digrf) Di dlm situsi yng dinmis, seperti pd komputer digitl tupun pd sistem lirn (flow system), konsep grf errh leih sering digunkn dindingkn dengn konsep grf tk errh. Apil rus sutu grf errh

Lebih terperinci

Materi V. Determianan dinotasikan berupa pembatas dua gris lurus,

Materi V. Determianan dinotasikan berupa pembatas dua gris lurus, Mteri V Tujun : 1. Mhsisw dpt mengenli determinn.. Mhsisw dpt merubh persmn linier menjdi persmn determinn.. Mhsisw menelesikn determinn ordo du. Mhsisw mmpu menelesikn determinn ordo tig. Mhsisw mengethui

Lebih terperinci

http://meetied.wordpress.com Mtemtik X Semester 1 SMAN 1 Bone-Bone Reutlh st ini. Ap pun yng is And lkukn tu And impikn Mulilh!!! Keernin mengndung kejeniusn, kekutn dn kejin. Lkukn sj dn otk And kn muli

Lebih terperinci

MATEMATIKA IPA PAKET A KUNCI JAWABAN

MATEMATIKA IPA PAKET A KUNCI JAWABAN MATEMATIKA IPA PAKET A KUNCI JAWABAN. Jwbn : A Mislkn : p : Msyrkt membung smph pd temptny. q: Kesehtn msyrkt terjg. Diperoleh: Premis : ~q ~p p q Premis : p Kesimpuln : q Jdi, kesimpuln dri premis-premis

Lebih terperinci

BAB 3 SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR

BAB 3 SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR A SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR. Metode Eliminsi Guss Tinu sistem persmn liner ng terdiri dri i ris dn peuh, kni,,,, erikut.......... i i i Jik =, sistem persmn linern diseut sistem homogen, sedngkn

Lebih terperinci

MATRIKS. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah.

MATRIKS. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah. MATRIKS Stndr Kompetensi : Menggunkn konsep mtriks, vektor, dn trnsformsi dlm pemechn mslh Kompetensi Dsr : Menggunkn sift-sift dn opersi mtriks untuk menentukn invers mtriks persegi Menggunkn determinn

Lebih terperinci

Pertemuan : 1 Materi : Vektor Pada Bidang ( R 2 ), Bab I. Pendahuluan

Pertemuan : 1 Materi : Vektor Pada Bidang ( R 2 ), Bab I. Pendahuluan Pertemun : 1 Mteri : Vektor Pd Bidng ( R 2 ), Bb I. Pendhulun Stndr Kompetensi : Setelh mengikuti perkulihn ini mhsisw dihrpkn dpt : 1. Memhmi kembli pengertin vektor, opersi pd vektor, dn sift-sift opersi

Lebih terperinci

PERTEMUAN 4 Metode Simpleks Kasus Maksimum

PERTEMUAN 4 Metode Simpleks Kasus Maksimum PERTEMUAN 4 Metode Simpleks Ksus Mksimum Untuk menyelesikn Persoln Progrm Linier dengn Metode Simpleks untuk fungsi tujun memksimumkn dn meminimumkn crny ered Model mtemtik dri Permslhn Progrm Linier dpt

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2004 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2004 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE MATEMATIKA INDONESIA 004 TINGKAT PROVINSI TAHUN 003 Prestsi itu dirih bukn didpt!!! SOLUSI SOAL Bidng Mtemtik Bgin Pertm Disusun oleh : Solusi Olimpide Mtemtik Tk Provinsi 003 Bgin Pertm

Lebih terperinci

KETERKAITAN GARIS-GARIS SEJAJAR DENGAN SEGIEMPAT DAN SEGITIGA

KETERKAITAN GARIS-GARIS SEJAJAR DENGAN SEGIEMPAT DAN SEGITIGA KETERKAITAN GARIS-GARIS SEJAJAR DENGAN SEGIEMPAT DAN SEGITIGA (Jurnl 4) Memen Permt Azmi Mhsisw S2 Pendidikn Mtemtik Universits Pendidikn Indonesi Perkulih geometri pd pertemun keempt pd tnggl 2 oktober

Lebih terperinci

BAB VI PEWARNAAN GRAF

BAB VI PEWARNAAN GRAF 85 BAB VI PEWARNAAN GRAF 6.1 Pewrnn Simpul Pewrnn dri sutu grf G merupkn sutu pemetn dri sekumpuln wrn ke eerp simpul (vertex) yng d pd grf G sedemikin sehingg simpul yng ertetngg memiliki wrn yng ered.

Lebih terperinci

Soal Latihan dan Pembahasan Dimensi Tiga

Soal Latihan dan Pembahasan Dimensi Tiga Sol Ltihn dn embhsn imensi ig i susun Oleh : Yuyun Somntri http://bimbingnbeljr.net/ i dukung oleh : ortl eduksi rtis Indonesi Open Knowledge nd duction http://oke.or.id utoril ini diperbolehkn untuk di

Lebih terperinci

A x = b apakah solusi x

A x = b apakah solusi x MTRIKS INVERSI & SIFT-SIFTNY Bil, x, dlh sklr ilngn rel yng memenuhi x, mk x pil. Sekrng, untuk sistem persmn linier x pkh solusi x dpt diselesikn dengn x? Mtriks Identits Untuk sklr (rel numer dn ), mk.

Lebih terperinci

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan LUAS DAERAH APLIKASI INTEGRAL TENTU Indiktor Pencpin Hsil Beljr Mhsisw menunjukkn kemmpun dlm :. Menghitung lus pd idng dtr Ringksn Mteri Perkulihn Jik sutu derh ditsi oleh kurv f(), g(), gris dn dengn

Lebih terperinci

KINEMATIKA Kelas XI. Terdiri dari sub bab : 1. persamaan gerak 2. Gerak Parabola 3. Gerak Melingkar

KINEMATIKA Kelas XI. Terdiri dari sub bab : 1. persamaan gerak 2. Gerak Parabola 3. Gerak Melingkar Terdiri dri sub bb : 1. persmn gerk. Gerk Prbol 3. Gerk Melingkr KINEMATIKA Kels XI 1. PERSAMAAN GERAK Membhs tentng posisi, perpindhn, keceptn dn perceptn dengn menggunkn vector stun. Pembhnsn meliputi

Lebih terperinci

Spesifikasi pilar dan kepala jembatan beton sederhana bentang 5 m sampai dengan 25 m dengan fondasi tiang pancang

Spesifikasi pilar dan kepala jembatan beton sederhana bentang 5 m sampai dengan 25 m dengan fondasi tiang pancang SNI 5:00 Stndr Nsionl Indonesi Spesifiksi pilr dn kepl jemtn eton sederhn entng 5 m smpi dengn 5 m dengn fondsi ting pncng Copy stndr ini diut oleh BSN untuk Bdn Penelitin dn Pengemngn Deprtemen Pekerjn

Lebih terperinci

(Suatu Aplikasi dari Faktorisasi Tunggal Pada Z[X])

(Suatu Aplikasi dari Faktorisasi Tunggal Pada Z[X]) DADU SICHERMAN (Sutu Apliksi dri Fktorissi Tunggl Pd Z[X]) Elh Nurlelh Jurusn Pendidikn Mtemtik Fkults Pendidikn Mtemtik dn Ilmu Pengethun Alm Universits Pendidikn Indonesi *) ABSTRACT An interesting ppliction

Lebih terperinci

Suku banyak. Akar-akar rasional dari

Suku banyak. Akar-akar rasional dari Suku nyk Algoritm pemgin suku nyk menentukn Teorem sis dn teorem fktor terdiri dri Pengertin dn nili suku nyk Hsil gi dn sis pemgin suku nyk Penggunn teorem sis Penggunn teorem fktor Derjd suku nyk pd

Lebih terperinci

METODE ANALISIS. Tentukan arus pada masing-masing tahanan dengan menggunakan metode arus cabang untuk rangkaian seperti pada Gambar 1.

METODE ANALISIS. Tentukan arus pada masing-masing tahanan dengan menggunakan metode arus cabang untuk rangkaian seperti pada Gambar 1. 1. Anlisis Arus Cng METODE ANALSS Metode rus ng dlh slh stu metode penyelesin nlisis rngkin il rngkin terdiri dri du tu leih sumer. Pd metode rus ng ini, kn diperoleh rus pd setip ng dri sutu rngkin yng

Lebih terperinci

KEMENTERIAN KEUANGAN REPUBLIK INDONESIA DIREKTORAT JENDERAL PAJAK

KEMENTERIAN KEUANGAN REPUBLIK INDONESIA DIREKTORAT JENDERAL PAJAK KEMENTERIAN KEUANGAN REPUBLIK INDONESIA DIREKTORAT JENDERAL PAJAK GEDUNG UTAMA LANTAI 9, JALAN JEND. GATOT SUBROTO NOMOR 40-42, JAKARTA 12190, KOTAK POS 124 TELEPON (021) 5250208, 5251609; FAKSIMILI 5732062;

Lebih terperinci

MODUL 2 DETERMINAN DAN INVERS MATRIKS

MODUL 2 DETERMINAN DAN INVERS MATRIKS MODUL DETERMINN DN INVERS MTRIKS.. Determinn Definisi. (Determinn) Untuk setip mtriks berukurn n x n, yng dikitkn dengn sutu bilngn rel dengn sift tertentu dinmkn determinn, dengn notsi dri determinn mtriks

Lebih terperinci

Vektor translasi dpt ditunjukkan oleh bil. berurutan yang ditulis dlm bentuk matriks kolom

Vektor translasi dpt ditunjukkan oleh bil. berurutan yang ditulis dlm bentuk matriks kolom TRANSFORMASI GEOMETRI BAB Sutu trnsformsi idng dlh sutu pemetn dri idng Krtesius ke idng ng lin tu T : R R (,) ( ', ') Jenis-jenis trnsformsi ntr lin : Trnsformsi Isometri itu trnsformsi ng tidk menguh

Lebih terperinci

TRIGONOMETRI I. KOMPETENSI YANG DICAPAI

TRIGONOMETRI I. KOMPETENSI YANG DICAPAI TRIGONOMETRI I. KOMPETENSI YANG DICAPAI Mhsisw dpt : 1. Membuktikn identits trigonometri.. Menghitung hubungn ntr sudut dn sisi segitig dengn Rumus Sinus. 3. Menghitung hubungn ntr sudut dn sisi segitig

Lebih terperinci

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan APLIKASI INTEGRAL APLIKASI INTEGRAL PENERAPAN INTEGRAL Lus derh kelengkungn Integrl digunkn pd design Menr Petrons di Kul lumpur, untuk perhitungn kekutn menr. Sdne Oper House di design berdsrkn irisn-irisn

Lebih terperinci

Aplikasi KwikTrig dalam Penyelesaian Masalah Trigonometri

Aplikasi KwikTrig dalam Penyelesaian Masalah Trigonometri Apliksi KwikTrig 3.0.5 dlm Penyelesin Mslh Trigonometri Kuswri Hernwti Nur Hdi Wrynto Jurusn Pendidikn Mtemtik FMIPA UNY ABSTRAK St ini terdpt bermcm-mcm Eduction Softwre yng dpt digunkn untuk memechkn

Lebih terperinci

RENCANA STRATEGIS (RENSTRA) TAHUN 2010 2014 PENGADILAN TINGGI PEKANBARU

RENCANA STRATEGIS (RENSTRA) TAHUN 2010 2014 PENGADILAN TINGGI PEKANBARU RENCANA STRATEGIS (RENSTRA) TAHUN 2010 2014 PENGADILAN TINGGI PEKANBARU PENGADILAN TINGGI PEKANBARU Jl. Jenderl Sudirmn No. 315 Peknru Telp/ Fx No. 0761-21523 Emil:dmin@ptpeknru.go.id BAB I PENDAHULUAN

Lebih terperinci

,, % ,, % -0: 0 -0: 0! 2 % 26, &

,, % ,, % -0: 0 -0: 0! 2 % 26, & PERSAMAAN LINIER GAUSS-SIEDEL METHOD Simultneous Liner Equtions Oleh : Purwnto,S.Si Bentuk Umum x + x + 3 x 3 + + n x n = b Sebuh persmn linier dengn : n peubh : x, x, x 3,, x n n konstnt :,, 3,, n Contoh

Lebih terperinci

UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 1 (UTAMA) SELASA, 11 MEI 2004 Pukul

UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 1 (UTAMA) SELASA, 11 MEI 2004 Pukul 0-0 D0-P-0- DOKUMEN NEGARA SANGAT RAHASIA UJIAN NASIONAL TAHUN PELAJARAN 00/00 SMA/MA Mtemtik (D0) PROGRAM STUDI IPA PAKET (UTAMA) SELASA, MEI 00 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL Hk Cipt

Lebih terperinci

det DEFINISI Jika A 0 disebut matriks non singular

det DEFINISI Jika A 0 disebut matriks non singular DETERINAN DEFINISI Untuk setip mtriks persegi (bujur sngkr), d stu bilngn tertentu yng disebut determinn Determinn dlh jumlh semu hsil kli elementer bertnd dri sutu mtriks bujur sngkr. Disimbolkn dengn:

Lebih terperinci

Muatan Pada Konstruksi

Muatan Pada Konstruksi Mutn Pd Konstruksi Konstruksi sutu ngunn sellu diciptkn untuk dn hrus dpt menhn ergi mcm mutn. Mutn yng dimksud dlh mutn yng terseut dlm Perturn Mutn Indonesi 197 NI 18. ergi mcm mutn tergntung pd perencnn,

Lebih terperinci

INTEGRAL. 1. Macam-macam Integral. Nuria Rahmatin TIP L. A. Integral Tak Tentu

INTEGRAL. 1. Macam-macam Integral. Nuria Rahmatin TIP L. A. Integral Tak Tentu INTEGRAL Nuri Rhmtin 5000006 TIP L. Mcm-mcm Integrl A. Integrl Tk Tentu Integrl dlh entuk invers dri turunn. Secr umum jik seuh fungsi diintegrlkn terhdp vrile tertentu dpt disjikn dlm entuk : f ( F( C

Lebih terperinci

PELATIHAN INSTRUKTUR/PENGEMBANG SMU TANGGAL 28 JULI s.d. 10 AGUSTUS 2003 SUKU BANYAK. Oleh: Fadjar Shadiq, M.App.Sc.

PELATIHAN INSTRUKTUR/PENGEMBANG SMU TANGGAL 28 JULI s.d. 10 AGUSTUS 2003 SUKU BANYAK. Oleh: Fadjar Shadiq, M.App.Sc. PELATIHAN INSTRUKTUR/PENGEMBANG SMU TANGGAL 8 JULI s.d. 0 AGUSTUS 00 SUKU BANYAK Oleh: Fdjr Shdiq, M.App.Sc. DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH PUSAT PENGEMBANGAN

Lebih terperinci

FORMULIR PENERIMAAN PESERTA DIDIK BARU TH.

FORMULIR PENERIMAAN PESERTA DIDIK BARU TH. YAYASAN TARAKANITA KANTOR WILAYAH YOGYAKARTA Jl. Dr.Sutomo 56, Yogyklrt Telp: 0274-564014, Fx: 0274-553518 webmil: yogykrt_trknit@trknit.or.id 01-1 KB Trknit Bumijo 01-1 TK Trknit Bumijo 02-1 Trknit Bumijo

Lebih terperinci

PENENTUAN KONDUKTIVITAS DAN RESISTIVITAS AIR LAUT DENGAN PENGUKURAN TIDAK LANGSUNG

PENENTUAN KONDUKTIVITAS DAN RESISTIVITAS AIR LAUT DENGAN PENGUKURAN TIDAK LANGSUNG PENENTUAN KONDUKTIVITAS DAN RESISTIVITAS AIR LAUT DENGAN PENGUKURAN TIDAK LANGSUNG Ahmd Fuzi 1 1 Progrm Studi Pendidikn Fisik PMIPA FKIP UNS Surkrt, 57126, Indonesi fuziuns@gmil.com Abstrk Pergurun tinggi

Lebih terperinci

STRUKTUR BETON BERTULANG I. Tulangan Rangkap. Oleh Resmi Bestari Muin

STRUKTUR BETON BERTULANG I. Tulangan Rangkap. Oleh Resmi Bestari Muin MODUL KULIAH STRUKTUR BETON BERTULANG I Minggu ke : 9 Tulngn Rngkp Oleh Resmi Bestri Muin PRODI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL dn PERENCANAAN UNIVERSITAS MERCU BUANA 2010 DAFTAR ISI DAFTAR ISI i IX

Lebih terperinci

Konstruksi Super Matriks Simetris Persegi Latin

Konstruksi Super Matriks Simetris Persegi Latin SEMINR NSIONL MTEMTIK DN PENDIDIKN MTEMTIK UNY Konstruksi Super Mtriks Simetris Persegi Ltin T - Hendr Krtik Progrm Studi Pendidikn Mtemtik, Universits Singperbngs Krwng, Jln. H.S. Ronggowluyo Telukjmbe

Lebih terperinci

PERSAMAAN KUADRAT. ac 0 p dan q sama tanda. 2. dg. Melengkapkan bentuk kuadrat ( kuadrat sempurna ) :

PERSAMAAN KUADRAT. ac 0 p dan q sama tanda. 2. dg. Melengkapkan bentuk kuadrat ( kuadrat sempurna ) : PERSAMAAN KUADRAT Bb. Bentuk Umum : b c,,, b, c Re l Menyelesikn ersmn kudrt :. dg. Memfktorkn : b c ( )( q) q q = ( q) dimn : b = + q dn c, Jik c dn q berbed tnd c dn q sm tnd. dg. Melengkkn bentuk kudrt

Lebih terperinci

MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT. Supriyono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo.

MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT. Supriyono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo. MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT Supriyono Jurusn Pendidikn Mtemtik FKIP Universits Muhmmdiyh Purworejo Abstrk Tulisn ini terdiri bgin yitu () bgin pendhulun yng membhs bentuk umum persmn pngkt

Lebih terperinci

5. Bangun Geometris. Sudaryatno Sudirham

5. Bangun Geometris. Sudaryatno Sudirham 5.. Persmn Kurv 5. Bngun Geometris Sudrtno Sudirhm Persmn sutu kurv secr umum dpt kit tuliskn sebgi F (, ) = 0 (5.) Persmn ini menentukn tempt kedudukn titik-titik ng memenuhi persmn tersebut. Jdi setip

Lebih terperinci

FUNGSI KUADRAT. . a 0, a, b, c bil real. ymax. ymin. , maka harga m= A. 0 B. 1 C. 2 D. 3 E. 4 Jawab : m mempunyai nilai minimum 1 5.

FUNGSI KUADRAT. . a 0, a, b, c bil real. ymax. ymin. , maka harga m= A. 0 B. 1 C. 2 D. 3 E. 4 Jawab : m mempunyai nilai minimum 1 5. FUNGSI KUADRAT Bb Bentuk Umum : x bx c. 0,, b, c bil rel b b c A. Titik Punck =, b Dengn sumbu simetri : x b c mx jik 0 Nili ekstrim : min jik 0 Jik fungsi x x m memuni nili minimum 8, mk hrg m= A. 0 B.

Lebih terperinci

LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memperebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 2011

LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memperebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 2011 LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Mempereutkn Pil Guernur Sumter Seltn Mei 0 PENYISIHAN I PERORANGAN LCCM TINGKAT SMA. Dikethui kuus ABCD.EFGH dengn rusuk 6 cm. Jik

Lebih terperinci

ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE)

ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Mcm Mtriks Mtriks Nol () Mtriks yng semu entriny nol. Ex: Mtriks Identits (I) Mtriks persegi dengn entri pd digonl utmny dn pd tempt lin.

Lebih terperinci

Percobaan RANGKAIAN RESISTOR, HUKUM OHM DAN PEMBAGI TEGANGAN. (Oleh : Sumarna, Lab-Elins, Jurdik Fisika FMIPA UNY)

Percobaan RANGKAIAN RESISTOR, HUKUM OHM DAN PEMBAGI TEGANGAN. (Oleh : Sumarna, Lab-Elins, Jurdik Fisika FMIPA UNY) Percon ANGKAIAN ESISTO, HUKUM OHM DAN PEMBAGI TEGANGAN (Oleh : Sumrn, L-Elins, Jurdik Fisik FMIPA UNY) E-mil : sumrn@un.c.id) 1. Tujun 1). Mempeljri cr-cr merngki resistor. 2). Mempeljri wtk rngkin resistor.

Lebih terperinci

BAHAN AJAR MATEMATIKA UMUM KELAS XI MATERI POKOK : OPERASI MATRIKS

BAHAN AJAR MATEMATIKA UMUM KELAS XI MATERI POKOK : OPERASI MATRIKS BAHAN AJAR MATEMATIKA UMUM KELAS XI MATERI POKOK : OPERASI MATRIKS Mtriks A dn mtriks B diktkn sm (A = B), jik dn hny jik: 1. Ordo mtriks A sm dengn ordo mtriks B 2. Setip elemen yng seletk pd mtriks A

Lebih terperinci

GEOMETRI ANALITIK DATAR. Oleh: Dr. Susanto, MPd

GEOMETRI ANALITIK DATAR. Oleh: Dr. Susanto, MPd GEOMETRI ANALITIK DATAR Oleh: Dr. Susnto, MPd PROGRAM STUDI PENDIDIKAN MATEMATIKA JURUSAN PENDIDIKAN MATEMATIKA DAN IPA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS JEMBER TAHUN 0 KATA PENGANTAR Puji

Lebih terperinci

TRIGONOMETRI. cos ec. sec. cot an

TRIGONOMETRI. cos ec. sec. cot an TRIGONOMETRI Bb. Perbndingn Trigonometri Y y r r tn y. Hubungn fungsi-fungsi trigonometri r T(,b y X ctg ec tn sec tg ;ctg co s co s ec sec cot n tn Ltihn. Titik-titik sudut segitig sm kki ABC terletk

Lebih terperinci

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0 PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh c 0,,,c R, 0 Penyelesin Persmn Kudrt. Rumus c Rumus menentukn kr persmn kudrt c 0;,, c R dn 0, = ± 4c. Memfktorkn

Lebih terperinci

Sudaryatno Sudirham. Studi Mandiri. Fungsi dan Grafik. Darpublic

Sudaryatno Sudirham. Studi Mandiri. Fungsi dan Grafik. Darpublic Sudrtno Sudirhm Studi Mndiri Fungsi dn Grfik Drpublic BAB 8 Fungsi Logritm turl, Eksponensil, Hiperbolik 8.. Fungsi Logrithm turl. Definisi. Logritm nturl dlh logritm dengn menggunkn bsis bilngn e. Bilngn

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN

NILAI EIGEN DAN VEKTOR EIGEN Hl di 9 NILAI EIGEN DAN VEKTOR EIGEN 7. Definisi Sebuh mtiks buju sngk dengn ode n n mislkn A, dn sebuh vekto kolom X. Vekto X dlh vekto dlm ung Euklidin dengn sebuh pesmn: n R yng dihubungkn AX X (7.)

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN 7 RENCANA PELAKSANAAN PEMBELAJARAN M Peljrn : Memik Kels/ Semeser: XI Progrm IPA/ Aloksi Wku: 6 jm Peljrn ( Peremun) A. Sndr Kompeensi Menggunkn konsep i fungsi dn urunn fungsi dlm pemehn mslh. B. Kompeensi

Lebih terperinci

[RUMUS CEPAT MATEMATIKA]

[RUMUS CEPAT MATEMATIKA] http://meetied.wordpress.com SMAN BoneBone, Luwu Utr, SulSel Keslhn teresr yng diut mnusi dlm kehidupnny dlh terusmenerus mers tkut hw merek kn melkukn keslhn (Elert Hud) [RUMUS CEPAT MATEMATIKA] Vektor

Lebih terperinci

SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI. Prasetyo Budi Darmono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo

SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI. Prasetyo Budi Darmono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI Prsetyo Budi Drmoo Jurus Pedidik Mtemtik FKIP Uiversits Muhmmdiyh Purworejo Abstrk Persm lier dlm vribel 1, 2, 3,.. sebgi sebuh persm yg dpt diytk dlm

Lebih terperinci