PERAMALAN DATA NILAI EKSPOR NON MIGAS INDONESIA KE WILAYAH ASEAN MENGGUNAKAN MODEL EGARCH

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "PERAMALAN DATA NILAI EKSPOR NON MIGAS INDONESIA KE WILAYAH ASEAN MENGGUNAKAN MODEL EGARCH"

Transkripsi

1 PERAMALAN DATA NILAI EKSPOR NON MIGAS INDONESIA KE WILAYAH ASEAN MENGGUNAKAN MODEL EGARCH, Universitas Negeri Malang Abstrak: Penelitian ini bertujuan untuk mengetahui model peramalan terbaik dari data nilai ekspor non-migas Indonesia ke wilayah ASEAN dan menentukan hasil peramalan data tersebut untuk periode berikutnya. Model yang digunakan dalam penelitian ini merupakan salah satu model dalam metode deret waktu yaitu model EGARCH. Dari hasil penelitian diperoleh bahwa model terbaik adalah EGARCH(1,1) dan diperoleh persamaan varian sebagai berikut: ln( ) = 36, , , ln( ). Untuk meramalkan nilai ekspor non-migas Indonesia ke wilayah ASEAN pada periode selanjutnya digunakan rumus berikut: = (1 ) + (1 + ) + dengan AR(1) = = , MA(1) = = , C = = Hasil peramalan model ini memiliki persentase kesalahan yang relatif kecil. Hal ini mengindikasikan bahwa model EGARCH(1,1) adalah model yang baik diterapkan dalam meramalkan nilai ekspor non-migas Indonesia terhadap ASEAN untuk periode selanjutnya. Kata kunci: nilai ekspor non migas Indonesia, ASEAN, model EGARCH Abstract: The purpose of this research for knowing the best forcasting model from data of value of non oil and gas export of Indonesia to ASEAN s countries and finding the forcasting result for the next period. Model has used in this research is EGARCH model. The result from this research showed that EGARCH(1,1) is the best model and the varian equation: ln( ) = 36, , , ln( ). To forcast value of non oil and gas export of Indonesia to ASEAN s countries for the next period used this fornula: = (1 ) + (1 + ) + dengan AR(1) = = , MA(1) = = , C = = The forcasting result of this model has percentage of error small relatively. This showed that EGARCH(1,1) is the best model to forcast value of non oil and gas export of Indonesia to ASEAN s countries for the next period. Keyword: value of non oil and gas export of Indonesia, ASEAN, EGARCH model Sebagai negara dengan sumber daya alam yang sangat melimpah, Indonesia memiliki peran yang penting dalam bidang ekspor, khususnya ekspor ke wilayah Asia. Salah satu contoh hasil ekspor Indonesia adalah ekspor nonmigas Indonesia ke wilayah ASEAN. Sebagai langkah awal untuk menentukan kebijakan dalam meningkatkan hasil ekspor non-migas Indonesia ke wilayah ASEAN, maka diperlukan beberapa prediksi nilai hasil ekspor non-migas Indonesia ke wilayah ASEAN untuk periode berikutnya. Untuk itu diperlukan suatu metode yang tepat digunakan dalam mengatasi hal tersebut. Metode yang digunakan adalah metode deret waktu yaitu model EGARCH. Model Exponential General Auto Regressive Conditional Heteroscedastic (EGARCH) diperkenalkan oleh Daniel B. Nelson pada tahun Model ini merupakan pengembangan dari model GARCH. Kelebihan dari model EGARCH yaitu model ini mampu mengatasi varian yang tidak konstan. Selain itu, model ini juga bisa diterapkan untuk mengatasi adanya pengaruh asimetrik pada data, yaitu 1. Adi Santo Prasetyo adalah mahasiswa jurusan Matematika FMIPA Universitas Negeri Malang 2. Swasono Rahardjo adalah dosen jurusan Matematika FMIPA Universitas Negeri Malang

2 data yang memiliki nilai cross correlation antara residual kuadrat dan lag galatnya signifikan. Sedangkan metode GARCH tidak bisa diterapkan untuk data asimetrik. Secara umum, model EGARCH(1,1) dapat ditulis seperti persamaan berikut ini: = ln = + + ( ) + ln (2.32) Dengan sisi sebelah kiri merupakan logaritma linier dari varian bersyarat. Efek laverage diharapkan menyebar eksponensial, yaitu efek yang terjadi pada volatilitas yang berasal dari bad news ( > 0) pada periode mendatang lebih besar daripada efek yang ditimbulkan dari good news ( < 0) pada periode mendatang, sehingga ramalannya tidak akan negatif. Efek laverage dapat diperiksa dengan cara menguji hipotesis nol bahwa < 0 sedangkan pengaruh asimetrik ada jika 0 (Eviews7 User s Guide, 2009). Menurut Enders (2004:142), terdapat tiga hal yang menarik pada model EGARCH, yaitu: 1. Persamaan dari varian bersyarat dalam bentuk log-linier dengan mengabaikan besaran dari ln, mengakibatkan nilai tidak akan negatif. 2. Dari pada menggunakan nilai, model EGARCH menggunakan nilai yang distandarisasi (membagi dengan ). Nelson berpendapat bahwa standarisasi ini memberikan interpretasi yang lebih alami dari ukuran guncangan dan guncangan yang berkelanjutan. Bagaimanapun nilai standarisasi dari merupakan suatu unit yang membebaskan ukuran. 3. Model EGARCH mengijinkan efek laverage. Jika bernilai positif, maka pengaruh guncangan pada log varian bersyaratnya adalah +. Jika bernilai negatif, maka pengaruh guncangan pada log varian bersyaratnya adalah +. Langkah-langkah dalam pembentukan model EGARCH adalah sebagai berikut: 1. Uji Pengaruh Asimetrik Untuk mengetahui adanya pengaruh asimetrik dapat dilakukan uji sebagai berikut: a. Setelah melakukan pendugaan model ARCH/GARCH, hitung sisaan yang distandarisasi dengan rumus: = (2.33) Maka { } terdiri dari masing-masing sisaan yang dibagi oleh standar deviasinya. b. yang diperoleh pada proses di atas dikuadratkan sehingga diperoleh. Setelah itu, diuji menggunakan korelasi silang antara dengan lag galatnya. Jika hasil uji korelasi silang antara kuadrat galat model dengan lag galatnya bernilai nol maka tidak terdapat pengaruh asimetrik dan sebaliknya jika hasil korelasi silang antara kuadrat galat model dengan lag galatnya tidak sama dengan nol, hal itu berarti ada pengaruh asimetrik. 2. Penaksiran Parameter Model EGARCH

3 Proses penaksiran parameter fungsi varian pada model EGARCH sama dengan model GARCH, yaitu dilakukan dengan menggunakan metode Maximum Likelihood Estimation (MLE). 3. Pemeriksaan Model Pemeriksaan model EGARCH dapat dilakukan dengan cara yang sama seperti pada pemeriksaan model ARCH/GARCH, yaitu dengan memeriksa kenormalan deret residualnya dengan menggunakan uji Jaque-Bera. Adapun statistik uji dapat dilihat pada persamaan (2.31) dan berikut hipotesisnya: Hipotesis: : deret residual berdistribusi normal : deret residual tidak berdistribusi normal Daerah penolakan: ditolak jika > ( ) atau P-value < (0.05). 4. Kriteria Pemilihan Model Terbaik Dalam suatu proses analisis deret waktu menghasilkan beberapa model yang dapat mewakili keadaan data. Untuk itu perlu dilakukan pemilihan model yang terbaik. Pemilihan model terbaik yang tepat didasarkan pada kriteria perhitungan model residual yang sesuai atau berdasarkan kesalahan peramalan. Beberapa kriteria yang biasa digunakan untuk pemilihan model terbaik berdasarkan residual adalah sebagai berikut: a. Akaike s Information Criterion (AIC) Semakin kecil nilai AIC semakin baik model itu untuk dipilih. Model terbaik adalah model yang memiliki nilai AIC terkecil (Wei,1990). = (2 ) b. Schwartz s Bayesian Criterion (SBC) Kriteria ini hampir sama dengan AIC, tetapi menggunakan metode Bayesian: = + ( ) + + (2 ) Dengan: = Sum Square Error (SSE) = banyaknya parameter yang ditaksir = banyaknya observasi = 3.14 Sedangkan kriteria yang digunakan dalam pemilihan model terbaik berdasarkan kesalahan peramalan yaitu: a. Mean Square Error (MSE) b. Mean Absolute Error (MAE) = 1 = 1 c. Mean Absolute Percentage Error (MAPE)

4 = 1 100% Dengan: =, = 1, 2, 3,, = data aktual = nilai perkiraan N = jumlah pengamatan. METODE Data yang digunakan dalam penelitian ini adalah data sekunder yaitu data nilai ekspor non-migas Indonesia terhadap ASEAN yang diperoleh dari Perpustakaan Bank Indonesia Cabang Malang. Pengambilan data ini dilakukan pada hari Kamis tanggal 14 Januari Waktu pengambilan data dilakukan pada jam kerja yaitu pukul Langkah-langkah dalam melakukan analisis data menggunakan metode EGARCH adalah sebagai berikut: 1. Melakukan plot data nilai ekspor non-migas Indonesia terhadap ASEAN periode Januari 2007 sampai Oktober Melakukan return terhadap data agar diperoleh data stasioner. 3. Membuat plot ACF dan PACF dari data stasioner untuk menentukan orde p, d, q pada ARIMA(p, d, q). 4. Melakukan uji signifikansi parameter model ARIMA dengan daerah penolakan: ditolak jika P-value < = Uji kecocokan model, yaitu memenuhi asumsi residual dan berdistribusi normal. 6. Melakukan uji ARCH effect dengan menggunakan LM-Test untuk mengatasi ketidakstasioneran variansi dari data acak. 7. Melakukan estimasi parameter model ARCH/GARCH dengan Log- Likelihood dan uji Jaque-Bera untuk mengetahui deret residual berdistribusi normal atau tidak. Daerah penerimaan: diterima jika P-value > = Melakuan uji asimetrik pada data dengan menggunakan uji korelasi silang antara kuadrat galat model ARCH/GARCH dengan lag galatnya. 9. Melakukan estimasi parameter model EGARCH dengan Log-Likelihood. Daerah penolakan: ditolak jika P-value < = Melakukan uji normalitas terhadap deret residual dengan menggunakan uji Jaque-Bera untuk mengetahui deret berdistribusi normal atau tidak. Daerah penerimaan: diterima jika P-value > = Setelah dilakukan uji normalitas, maka dilakukan peramalan untuk periode berikutnya. HASIL DAN PEMBAHASAN Dari hasil analisis dengan melakukan identifikasi model dan proses ARIMA diperoleh bahwa model yang bisa diterapkan adalah model ARIMA (1,1,1). Selanjutnya dilakukan uji efek ARCH menggunakan LM Test untuk mengetahui adanya sifat heteroskedastisitas. Diperoleh bahwa nilai Obs*R- Squared adalah dengan probabilitas < = Karena

5 probabilitas < = 0.05 dapat disimpulkan bahwa pada kuadrat residual tersebut terdapat proses ACRH/GARCH. Hal ini menunjukkan bahwa pada data tersebut terdapat model residual data yang bersifat heteroskedastis. Sehingga untuk selanjutnya akan dilakukan proses penaksiran model ARCH/GARCH. Penaksiran Parameter ARCH/GARCH Tabel di atas merupakan model GARCH(1,1) yang memiliki nilai AIC lebih rendah daripada model yang lainnya, terlihat bahwa probabilitas GARCH memiliki nilai < = 0.05 sehingga varian dari GARCH berpengaruh terhadap model. Dengan demikian diperoleh bahwa model GARCH(1,1) adalah model yang sesuai dengan persamaan varian sebagai berikut: = (4) + (5) + (6) = Dapat dilihat juga bahwa probabilitas dari kuadrat residual adalah > = 0.05 maka kuadrat residual tidak mempengaruhi model. Sehingga persamaan tersebut menjadi: = Selanjutnya dilakukan pemeriksaan model ARCH/GARCH dengan memeriksa normalitas residualnya dan diperoleh bahwa residual mengikuti distribusi normal. 1. Uji Pengaruh Asimetrik Pada langkah ini dilakukan uji pengaruh asimetrik untuk mengetahui apakah data bersifat asimetrik atau tidak. Adanya pengaruh asimetrik inilah yang nantinya akan diterapkan suatu metode khusus yang mampu mengatasi pengaruh asimetrik, dalam hal ini adalah metode EGARCH. Dari hasil uji asimetri tersebut diperoleh bahwa terdapat korelasi yang signifikan pada lag -1, 0 dan 1. Hal ini menunjukkan adanya pengaruh asimetrik. Oleh karena itu, untuk mengatasi pengaruh asimetrik maka dalam kasus ini akan digunakan salah satu model yang mampu mengatasi adanya asimetrik data, yaitu model EGARCH.

6 2. Penaksiran Parameter dengan Model EGARCH Berdasarkan proses ARIMA menunjukkan bahwa model ARIMA yang cocok adalah model ARIMA(1,1,1). Dan pada uji asimetri juga menunjukkan adanya pengaruh asimetri sehingga digunakan model EGARCH untuk mengatasi permasalahn tersebut. Selanjutnya akan dilakukan penaksiran parameter AR(1) dan MA(1) dengan model EGARCH. Hasil penaksiran parameter dengan metode EGARCH disajikan pada tabel di bawah ini. Pada tabel di atas terlihat bahwa C(6) bernilai > = Hal ini berarti koefisien C(6) tidak mempengaruhi model. Sedangkan untuk koefisien C(4), C(5) dan C(7) bernilai < = 0.05 sehingga mempengaruhi model. Berdasarkan hasil output eviews7 di atas, model EGARCH(1,1) memiliki bentuk persamaan: ln( ) = (4) + (5) + (6)( )+C(7) ln( ) dengan = Karena C(6) tidak mempengaruhi model, maka persamaan tersebut menjadi: ln( ) = (4) + (5) + (7) ln( ) ln( ) = 36, , ln( ) Pada model di atas menunjukkan bahwa model EGARCH(1,1) dipengaruhi oleh parameter C(4) dan C(5) bernilai positif, yang berarti memberi pengaruh positif terhadap log variannya. Sedangkan C(7) bernilai negatif, yang berarti memberi pengaruh negatif pada log variannya. Selain itu, pada model di atas juga dipengaruhi oleh nilai residual dan varian sebelumnya. 3. Pemeriksaan Deret Berdistibusi Normal Setelah mengetahui model yang sesuai, selanjutnya akan dilakukan uji normalitas residual pada model tersebut. Hasil uji normalitas residual menunjukkan bahwa residual mengikuti distribusi normal. 4. Peramalan Setelah data sudah stasioner dan memenuhi berbagai asumsi serta residualnya sudah berdistribusi normal, maka peramalan untuk model EGARCH sudah bisa diterapkan. Hasil peramalan model EGARCH(1,1) dapat dilihat pada gambar di bawah ini.

7 Pada gambar di atas terlihat bahwa nilai MAPE untuk model EGARCH(1,1) adalah Nilai MAPE ini relatif kecil bila dibandingkan dengan data yang nilainya berkisar antara ratus ribuan hingga jutaan. Selain itu dapat terlihat juga bahwa nilai bias proporsi mendekati nol, nilai varian proporsi yang sangat kecil dan nilai kovarian proporsi yang mendekati 1 dengan masingmasing nilainya, bias proporsi adalah , varian proporsi adalah dan kovarian proporsi adalah Sehingga model EGARCH(1,1) merupakan model yang cukup baik untuk meramalkan Nilai Ekspor Non-Migas Indonesia terhadap ASEAN pada periode berikutnya. Proses Peramalan EGARCH(1,1) untuk Ekspor Non-Migas Indonesia Terhadap ASEAN Pada proses mencari model EGARCH diketahui bahwa identifikasi model menghasilkan model ARIMA (1,1,1) sebagai model yang cocok. Kemudian dilanjutkan dengan beberapa langkah berikutnya sehingga ditemukan bahwa model yang terbaik adalah model EGARCH(1,1). Oleh karena itu untuk menentukan peramalan berikutnya digunakan rumus sebagai berikut: = (1 ) + (1 + ) + dengan nilai = , = , dan = Kemudian mensubstitusinya ke persamaan tersebut sehingga diperoleh: = ( ) ( ) = Untuk peramalan data berikutnya adalah sebagai berikut: Peramalan data ke-71 = = ( )( ) ( )( ) ( )( ) = = ,369 Peramalan data ke-72 = = ( )( ,369) ( )( ) ( )( )

8 = = Pada hasil peramalan data di atas, jika nilai mutlak dari selisih antara data asli dengan data ramalan dikalikan 100%, maka diperoleh persentase dari kesalahan ramalan. Dengan melakukan penghitungan persentase kesalahan peramalan diperoleh bahwa persentase kesalahan untuk data ke-71 adalah dan untuk data data ke-72 adalah Ini menunjukkan bahwa persentase kesalahan dari hasil peramalan di atas relati kecil. PENUTUP Kesimpulan Pada proses peramalan nilai Ekspor non migas Indonesia ke wilayah ASEAN di atas diperoleh kesimpulan bahwa hasil identifikasi model didapatkan model yang cocok adalah ARIMA(1,1,1), kemudian dilakukan proses lebih lanjut untuk menentukan model peramalan dengan menggunakan model EGARCH dan model yang terbaik adalah model EGARCH(1,1). Persamaan varian dari model EGARCH (1,1):ln( ) = 36, , ln( ) dengan: = dan rumus peramalan nilai ekspor non-migas Indonesia ke wilayah ASEAN periode berikutnya dilakukan dengan rumus berikut: = Dari hasil peramalan periode berikutnya diketahui bahwa persentase kesalahan data hasil ramalan dengan data yang sebenarnya relatif kecil yaitu untuk peramalan data ke-71 dan untuk peramalan data ke-72. Ini menunjukkan bahwa model EGARCH(1,1) memang cocok digunakan dalam peramalan nilai Ekspor non migas Indonesia ke wilayah ASEAN untuk beberapa periode ke depan. B. Saran 1. Peramalan data asimetrik pada pembahasan ini dilakukan dengan menggunakan model EGARCH, salah satu model yang bisa digunakan dalam kasus khusus yaitu apabila data bersifat asimetrik. Untuk itu pada penelitian selanjutnya disarankan untuk meramalkan data asimetrik dengan model lain yang mampu mengatasi adanya pengaruh asimetrik seperti model TARCH. 2. Pada pembahasan ini hanya menggunakan satu model, belum dicoba melakukan perbandingan dengan model lain. Sehingga untuk selanjutnya akan lebih baik jika melakukan pengolahan data dengan membandingkan dua metode atau lebih untuk menentukan model terbaik, seperti membandingkan model EGARCH dengan model TARCH, PARCH atau GARCH-M.

9 DAFTAR PUSTAKA Ajija, Shochrul R., Sari, Dyah W., Setianto, Rahmat H. dan Primanti, Martha R Cara Cerdas Menguasai Eviews. Jakarta: Salemba Empat. Enders, W Applied Econometric Time Series Second Edition. New York: Jhon Wiley and Sons, Inc. Gujarati, Damodar Ekonometri Dasar oleh Sumarno Zain. Jakarta: Erlangga. Makridakis, S. Wheelwright, S. C. dan McGee, V. E Metode dan Aplikasi Peramalan. Edisi kedua. Jilid kedua (Terjemahan : Suminto, Hari). Batam: Interaksara. Nachrowi, Djalal Nachrowi dan Usman, Hardius Pendekatan Populer dan Praktis Ekonometrika untuk Analisis Ekonomi dan Keuangan ( Dilengkapi Teknik Analisis dan Pengolahan Data dengan SPSS dan EVIEWS). Jakarta: Lembaga Penerbit Fakultas Ekonomi Universitas Indonesia. Rahayu, Dyah Sih dan Firmansyah Estimasi Pengaruh Inflasi dan Tingkat Output Terhadap Return dan Volatilitas Saham di Indonesia (Pendekatan Model GARCH, TARCH dan EGARCH). Fakultas Ekonomi Universitas Diponegoro. Widiyati, Nur Penerapan Model GARCH dan Model EGARCH Pada Saham Sektor Properti Ketika Krisis Ekonomi Dunia. Skripsi. Institut Pertanian Bogor: Departemen Statistika Fakultas Matematika dan Ilmu Pengetahuan Alam.

PERAMALAN DATA SAHAM S&P 500 INDEX MENGGUNAKAN MODEL TARCH

PERAMALAN DATA SAHAM S&P 500 INDEX MENGGUNAKAN MODEL TARCH PERAMALAN DATA SAHAM S&P 500 INDEX MENGGUNAKAN MODEL TARCH Universitas Negeri Malang E-mail: abiyaniprisca@ymail.com Abstrak: Penelitian ini bertujuan untuk mengetahui model peramalan terbaik dari data

Lebih terperinci

LULIK PRESDITA W APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI

LULIK PRESDITA W APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI LULIK PRESDITA W 1207 100 002 APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI 1 Pembimbing : Dra. Nuri Wahyuningsih, M.Kes BAB I PENDAHULUAN 2 LATAR BELAKANG 1. Stabilitas ekonomi dapat dilihat

Lebih terperinci

BAB IV KESIMPULAN DAN SARAN. maka dapat disimpulkan sebagai berikut: 1. Langkah-langkah dalam menentukan model EGARCH pada pemodelan data

BAB IV KESIMPULAN DAN SARAN. maka dapat disimpulkan sebagai berikut: 1. Langkah-langkah dalam menentukan model EGARCH pada pemodelan data BAB IV KESIMPULAN DAN SARAN A. Kesimpulan Berdasarkan uraian dan pembahasan pada bab-bab sebelumnya, maka dapat disimpulkan sebagai berikut: 1. Langkah-langkah dalam menentukan model EGARCH pada pemodelan

Lebih terperinci

Suma Suci Sholihah, Heni Kusdarwati, Rahma Fitriani. Jurusan Matematika, F.MIPA, Universitas Brawijaya

Suma Suci Sholihah, Heni Kusdarwati, Rahma Fitriani. Jurusan Matematika, F.MIPA, Universitas Brawijaya PEMODELAN RETURN IHSG PERIODE 15 SEPTEMBER 1998 13 SEPTEMBER 2013 MENGGUNAKAN THRESHOLD GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY (TGARCH(1,1)) DENGAN DUA THRESHOLD Suma Suci Sholihah,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. keuntungan atau coumpouding. Dari definisi di atas dapat disimpulkan bahwa

BAB II TINJAUAN PUSTAKA. keuntungan atau coumpouding. Dari definisi di atas dapat disimpulkan bahwa BAB II TINJAUAN PUSTAKA 2.1 Pengertian Investasi Menurut Fahmi dan Hadi (2009) investasi merupakan suatu bentuk pengelolaan dana guna memberikan keuntungan dengan cara menempatkan dana tersebut pada alokasi

Lebih terperinci

BAB IV PEMBAHASAN. Gambar 4.1 nilai tukar kurs euro terhadap rupiah

BAB IV PEMBAHASAN. Gambar 4.1 nilai tukar kurs euro terhadap rupiah BAB IV PEMBAHASAN 4.1 Deskripsi Data Gambar 4.1 memperlihatkan bahwa data berfluktuasi dari waktu ke waktu. Hal ini mengindikasikan bahwa data tidak stasioner baik dalam rata-rata maupun variansi. Gambar

Lebih terperinci

BAB III METODE PENELITIAN. 3.1 Unit Analisis dan Ruang Lingkup Penelitian. yang berupa data deret waktu harga saham, yaitu data harian harga saham

BAB III METODE PENELITIAN. 3.1 Unit Analisis dan Ruang Lingkup Penelitian. yang berupa data deret waktu harga saham, yaitu data harian harga saham 32 BAB III METODE PENELITIAN 3.1 Unit Analisis dan Ruang Lingkup Penelitian 3.1.1. Objek Penelitian Objek sampel data dalam penelitian ini menggunakan data sekunder yang berupa data deret waktu harga saham,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji

BAB II TINJAUAN PUSTAKA. penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji 35 BAB II TINJAUAN PUSTAKA Pada Bab II akan dibahas konsep-konsep yang menjadi dasar dalam penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji ACF, uji PACF, uji ARCH-LM,

Lebih terperinci

PERAMALAN NILAI TUKAR DOLAR SINGAPURA (SGD) TERHADAP DOLAR AMERIKA (USD) DENGAN MODEL ARIMA DAN GARCH

PERAMALAN NILAI TUKAR DOLAR SINGAPURA (SGD) TERHADAP DOLAR AMERIKA (USD) DENGAN MODEL ARIMA DAN GARCH Jurnal Matematika UNAND Vol. VI No. 1 Hal. 110 117 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PERAMALAN NILAI TUKAR DOLAR SINGAPURA (SGD) TERHADAP DOLAR AMERIKA (USD) DENGAN MODEL ARIMA DAN GARCH

Lebih terperinci

Metode Langkah-langkah yang dilakukan dalam penelitian ini dapat dilihat pada Gambar 1. Eksplorasi data. Identifikasi model ARCH

Metode Langkah-langkah yang dilakukan dalam penelitian ini dapat dilihat pada Gambar 1. Eksplorasi data. Identifikasi model ARCH 6 Metode Langkah-langkah yang dilakukan dalam penelitian ini dapat dilihat pada Gambar 1. Eksplorasi data Identifikasi model ARCH Pendugaan parameter dan pemilihan model ARCH/GARCH Uji pengaruh asimetrik

Lebih terperinci

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 bertempat di Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

BAB III THRESHOLD AUTOREGRESSIVE CONDITIONAL HETEROCEDASTICTY (TARCH) Proses TARCH merupakan modifikasi dari model ARCH dan GARCH.

BAB III THRESHOLD AUTOREGRESSIVE CONDITIONAL HETEROCEDASTICTY (TARCH) Proses TARCH merupakan modifikasi dari model ARCH dan GARCH. BAB III THRESHOLD AUTOREGRESSIVE CONDITIONAL HETEROCEDASTICTY (TARCH) 3.1. Model TARCH Proses TARCH merupakan modifikasi dari model ARCH dan GARCH. Pada proses ini nilai residu yang lebih kecil dari nol

Lebih terperinci

PEMODELAN TARCH PADA NILAI TUKAR KURS EURO TERHADAP RUPIAH. Retno Hestiningtyas dan Winita Sulandari, M.Si. Jurusan Matematika FMIPA UNS

PEMODELAN TARCH PADA NILAI TUKAR KURS EURO TERHADAP RUPIAH. Retno Hestiningtyas dan Winita Sulandari, M.Si. Jurusan Matematika FMIPA UNS S-9 PEMODELAN TARCH PADA NILAI TUKAR KURS EURO TERHADAP RUPIAH Retno Hestiningtyas dan Winita Sulandari, M.Si Jurusan Matematika FMIPA UNS ABSTRAK. Pada data finansial sering terjadi keadaan leverage effect,

Lebih terperinci

PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA)

PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA) PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA) Oleh : Nofinda Lestari 1208 100 039 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT

Lebih terperinci

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA 1) Nurul Latifa Hadi 2) Artanti Indrasetianingsih 1) S1 Program Statistika, FMIPA, Universitas PGRI Adi Buana Surabaya 2)

Lebih terperinci

PENENTUAN RESIKO INVESTASI DENGAN MODEL GARCH PADA INDEKS HARGA SAHAM PT. INDOFOOD SUKSES MAKMUR TBK.

PENENTUAN RESIKO INVESTASI DENGAN MODEL GARCH PADA INDEKS HARGA SAHAM PT. INDOFOOD SUKSES MAKMUR TBK. Jurnal Matematika UNAND Vol. VI No. 1 Hal. 25 32 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENENTUAN RESIKO INVESTASI DENGAN MODEL GARCH PADA INDEKS HARGA SAHAM PT. INDOFOOD SUKSES MAKMUR TBK.

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1. Lokasi dan Waktu Penelitian Penelitian dilakukan di Pasar Bunga Rawabelong, Jakarta Barat yang merupakan Unit Pelaksana Teknis (UPT) Pusat Promosi dan Pemasaran Holtikultura

Lebih terperinci

PERBANDINGAN RESIKO INVESTASI BANK CENTRAL ASIA DAN BANK MANDIRI MENGGUNAKAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (GARCH)

PERBANDINGAN RESIKO INVESTASI BANK CENTRAL ASIA DAN BANK MANDIRI MENGGUNAKAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (GARCH) Jurnal Matematika UNAND Vol. 5 No. 4 Hal. 80 88 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PERBANDINGAN RESIKO INVESTASI BANK CENTRAL ASIA DAN BANK MANDIRI MENGGUNAKAN MODEL GENERALIZED AUTOREGRESSIVE

Lebih terperinci

BAB IV METODE PENELITIAN

BAB IV METODE PENELITIAN BAB IV METODE PENELITIAN 4.1 Desain Penelitian Penelitian ini didasari oleh gejolak/volatilitas nilai tukar rupiah terhadap mata uang asing (valuta asing).pada nilai transaksi jual beli valuta asing yang

Lebih terperinci

MODEL NON LINIER GARCH (NGARCH) UNTUK MENGESTIMASI NILAI VALUE at RISK (VaR) PADA IHSG

MODEL NON LINIER GARCH (NGARCH) UNTUK MENGESTIMASI NILAI VALUE at RISK (VaR) PADA IHSG E-Jurnal Matematika Vol. 4 (2), Mei 215, pp. 59-66 ISSN: 233-1751 MODEL NON LINIER (N) UNTUK MENGESTIMASI NILAI VALUE at RISK (VaR) PADA IHSG I Komang Try Bayu Mahendra 1, Komang Dharmawan 2, Ni Ketut

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Variabel ARIMA menggunakan variabel dependen harga saham LQ45 dan variabel independen harga saham LQ45 periode sebelumnya, sedangkan ARCH/GARCH menggunakan variabel dependen

Lebih terperinci

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n SBAB III MODEL VARMAX 3.1. Metode Analisis VARMAX Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n dengan variabel random Z n yang dapat dipandang sebagai variabel random berdistribusi

Lebih terperinci

PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI)

PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) Liana Kusuma Ningrum dan Winita Sulandari, M.Si. Jurusan Matematika,

Lebih terperinci

STUDI KAUSALITAS GRANGER ANTARA NILAI TUKAR RUPIAH TERHADAP USD DAN AUD MENGGUNAKAN ANALISIS VAR

STUDI KAUSALITAS GRANGER ANTARA NILAI TUKAR RUPIAH TERHADAP USD DAN AUD MENGGUNAKAN ANALISIS VAR Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA Fakultas MIPA, Universitas Negeri Yogyakarta, 16 Mei 2009 STUDI KAUSALITAS GRANGER ANTARA NILAI TUKAR RUPIAH TERHADAP USD DAN AUD MENGGUNAKAN

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1. Desain Penelitian Desain penelitian mempunyai peranan yang sangat penting, karena keberhasilan suatu penelitian sangat dipengaruhi oleh pilihan desain atau model penelitian.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan teori-teori yang menjadi dasar dan landasan dalam penelitian sehingga membantu mempermudah pembahasan selanjutnya. Teori tersebut meliputi arti dan peranan

Lebih terperinci

TEKNIK PERAMALAN DENGANMODEL AUTOREGRESSIVE CONDITIONALHETEROSCEDASTIC (ARCH) (Studi KasusPada PT. Astra Agro Lestari Indonesia Tbk)

TEKNIK PERAMALAN DENGANMODEL AUTOREGRESSIVE CONDITIONALHETEROSCEDASTIC (ARCH) (Studi KasusPada PT. Astra Agro Lestari Indonesia Tbk) Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 2 (2013), hal 71 78. TEKNIK PERAMALAN DENGANMODEL AUTOREGRESSIVE CONDITIONALHETEROSCEDASTIC (ARCH) (Studi KasusPada PT. Astra Agro Lestari

Lebih terperinci

PENGGUNAAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (P,Q) UNTUK PERAMALAN HARGA DAGING AYAM BROILER DI PROVINSI JAWA TIMUR

PENGGUNAAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (P,Q) UNTUK PERAMALAN HARGA DAGING AYAM BROILER DI PROVINSI JAWA TIMUR Seminar Nasional Matematika dan Aplikasinya, 21 Oktober 27 PENGGUNAAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (P,Q) UNTUK PERAMALAN HARGA DAGING AYAM BROILER DI PROVINSI JAWA TIMUR

Lebih terperinci

Analisis Time Series Pada Penjualan Shampoo Zwitsal daerah Jakarta dan Jawa Barat di PT. Sara Lee Indonesia. Oleh : Pomi Kartin Yunus

Analisis Time Series Pada Penjualan Shampoo Zwitsal daerah Jakarta dan Jawa Barat di PT. Sara Lee Indonesia. Oleh : Pomi Kartin Yunus Analisis Time Series Pada Penjualan Shampoo Zwitsal daerah Jakarta dan Jawa Barat di PT. Sara Lee Indonesia Oleh : Pomi Kartin Yunus 1306030040 Latar Belakang Industri manufaktur yang berkembang pesat

Lebih terperinci

BAB III MODEL ARIMAX DENGAN EFEK VARIASI KALENDER

BAB III MODEL ARIMAX DENGAN EFEK VARIASI KALENDER 21 BAB III MODEL ARIMAX DENGAN EFEK VARIASI KALENDER 3.1 Model Variasi Kalender Liu (Kamil 2010: 10) menjelaskan bahwa untuk data runtun waktu yang mengandung efek variasi kalender, dituliskan pada persamaan

Lebih terperinci

PEMODELAN RETURN SAHAM PERBANKAN MENGGUNAKAN EXPONENTIAL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (EGARCH)

PEMODELAN RETURN SAHAM PERBANKAN MENGGUNAKAN EXPONENTIAL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (EGARCH) ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 6, Nomor 1, Tahun 2016, Halaman 91-99 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PEMODELAN RETURN SAHAM PERBANKAN MENGGUNAKAN EXPONENTIAL GENERALIZED

Lebih terperinci

KAJIAN METODE JACKKNIFE DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN PARAMETER ARMA(p,q)

KAJIAN METODE JACKKNIFE DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN PARAMETER ARMA(p,q) UJIAN TUGAS AKHIR KAJIAN METODE JACKKNIFE DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN PARAMETER ARMA(p,q) Disusun oleh : Novan Eko Sudarsono NRP 1206.100.052 Pembimbing: Dra. Nuri Wahyuningsih, M.Kes Dra.Laksmi

Lebih terperinci

PENGGUNAAN METODE VaR (Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT. TELKOM DENGAN PENDEKATAN MODEL GARCH-M

PENGGUNAAN METODE VaR (Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT. TELKOM DENGAN PENDEKATAN MODEL GARCH-M PENGGUNAAN METODE VaR (Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT. TELKOM DENGAN PENDEKATAN MODEL GARCH-M Oleh: Nurkhoiriyah 1205100050 Dosen pembimbing: Dra. Nuri Wahyuningsih, M. Kes. Jurusan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA DAFTAR ISI PERNYATAAN... i ABSTRAK... ii KATA PENGANTAR... iii UCAPAN TERIMA KASIH... iv DAFTAR ISI... v DAFTAR TABEL... ix DAFTAR GAMBAR... x DAFTAR LAMPIRAN... xi BAB I PENDAHULUAN... 1 1.1 Latar Belakang...

Lebih terperinci

PENGGUNAAN METODE VaR(Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT.TELKOM DENGAN PENDEKATAN MODEL GARCH-M

PENGGUNAAN METODE VaR(Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT.TELKOM DENGAN PENDEKATAN MODEL GARCH-M PENGGUNAAN METODE VaR(Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT.TELKOM DENGAN PENDEKATAN MODEL GARCH-M Oleh: NURKHOIRIYAH 1205100050 Dosen Pembimbing: Dra. Nuri Wahyuningsih, M.Kes. 1 Latar

Lebih terperinci

ISSN: JURNAL GAUSSIAN, Volume 5, Nomor 4, Tahun 2016, Halaman Online di:

ISSN: JURNAL GAUSSIAN, Volume 5, Nomor 4, Tahun 2016, Halaman Online di: ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 5, Nomor 4, Tahun 2016, Halaman 633-640 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PERBANDINGAN MODEL ARCH/GARCH MODEL ARIMA DAN MODEL FUNGSI TRANSFER

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 33 BAB III METODE PENELITIAN 3.1 Jenis dan Sumber Data Penelitian ini dilakukan berdasarkan data series bulan yang dipublikasikan oleh Bank Indonesia (BI) dan Badan Pusat Statistik (BPS), diantaranya adalah

Lebih terperinci

PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO

PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO Perbandingan Model ARIMA... (Alia Lestari) PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO Alia Lestari Fakultas Teknik Universitas

Lebih terperinci

BAB III NONLINEAR GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY (N-GARCH)

BAB III NONLINEAR GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY (N-GARCH) BAB III NONLINEAR GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY (N-GARCH) 3.1 Proses Nonlinear Autoregressive Conditional Heteroskedasticity (N-ARCH) Model Nonlinear Autoregressive Conditional

Lebih terperinci

PEMODELAN DAN PERAMALAN PENUTUPAN HARGA SAHAM PT. TELKOM DENGAN METODE ARCH - GARCH

PEMODELAN DAN PERAMALAN PENUTUPAN HARGA SAHAM PT. TELKOM DENGAN METODE ARCH - GARCH PEMODELAN DAN PERAMALAN PENUTUPAN HARGA SAHAM PT. TELKOM DENGAN METODE ARCH - GARCH BUNGA LETY MARVILLIA Matematika, Fakultas Ilmu Pengetahuan Alam, UNESA Jl. Ketintang villy_cute_7@yahoo.com 1, raywhite_vbm@gmail.com

Lebih terperinci

PENERAPAN MODEL EGARCH PADA ESTIMASI VOLATILITAS HARGA MINYAK KELAPA SAWIT

PENERAPAN MODEL EGARCH PADA ESTIMASI VOLATILITAS HARGA MINYAK KELAPA SAWIT PENERAPAN MODEL EGARCH PADA ESTIMASI VOLATILITAS HARGA MINYAK KELAPA SAWIT Yoseva Agung Prihandini 1, Komang Dharmawan 2, Kartika Sari 3 1 Jurusan Matematika, Fakultas MIPA - Universitas Udayana [Email:

Lebih terperinci

PERBANDINGAN RAMALAN MODEL TARCH DAN EGARCH PADA NILAI TUKAR KURS EURO TERHADAP RUPIAH

PERBANDINGAN RAMALAN MODEL TARCH DAN EGARCH PADA NILAI TUKAR KURS EURO TERHADAP RUPIAH PERBANDINGAN RAMALAN MODEL TARCH DAN EGARCH PADA NILAI TUKAR KURS EURO TERHADAP RUPIAH Oleh RETNO HESTININGTYAS M0106061 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar

Lebih terperinci

Bab IV. Pembahasan dan Hasil Penelitian

Bab IV. Pembahasan dan Hasil Penelitian Bab IV Pembahasan dan Hasil Penelitian IV.1 Statistika Deskriptif Pada bab ini akan dibahas mengenai statistik deskriptif dari variabel yang digunakan yaitu IHSG di BEI selama periode 1 April 2011 sampai

Lebih terperinci

JURNAL SAINS DAN SENI POMITS Vol. 2, No.2, (2013) ( X Print) D-300

JURNAL SAINS DAN SENI POMITS Vol. 2, No.2, (2013) ( X Print) D-300 JURNAL SAINS DAN SENI POMITS Vol. 2, No.2, (203) 233-20 (230-9X Print) D-300 Pemodelan Konsumsi Listrik Berdasarkan Jumlah Pelanggan PLN Jawa Timur untuk Kategori Rumah Tangga R- dengan Metode Fungsi Transfer

Lebih terperinci

IV METODE PENELITIAN 4.1 Lokasi Penelitian 4.2. Data dan Sumber Data 4.3 Metode Pengumpulan Data

IV METODE PENELITIAN 4.1 Lokasi Penelitian 4.2. Data dan Sumber Data 4.3 Metode Pengumpulan Data IV METODE PENELITIAN 4.1 Lokasi Penelitian Penelitian mengenai risiko harga dan perilaku penawaran apel dilakukan di PT Kusuma Satria Dinasasri Wisatajaya yang beralamat di Jalan Abdul Gani Atas, Kelurahan

Lebih terperinci

PERHITUNGAN VALUE AT RISK HARGA SAHAM DENGAN MENGGUNAKAN VOLATILITAS ARCH-GARCH DALAM KELOMPOK SAHAM LQ 45 ABSTRACT

PERHITUNGAN VALUE AT RISK HARGA SAHAM DENGAN MENGGUNAKAN VOLATILITAS ARCH-GARCH DALAM KELOMPOK SAHAM LQ 45 ABSTRACT PERHITUNGAN VALUE AT RISK HARGA SAHAM DENGAN MENGGUNAKAN VOLATILITAS ARCH-GARCH DALAM KELOMPOK SAHAM LQ 45 Boy A Lumban Gaol 1, Tumpal Parulian Nababan 2, Haposan Sirait 2 1 Mahasiswa Program Studi S1

Lebih terperinci

SIMULASI PENGUKURAN KETEPATAN MODEL VARIOGRAM PADA METODE ORDINARY KRIGING DENGAN TEKNIK JACKKNIFE

SIMULASI PENGUKURAN KETEPATAN MODEL VARIOGRAM PADA METODE ORDINARY KRIGING DENGAN TEKNIK JACKKNIFE ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 3, Nomor 3, Tahun 2014, Halaman 333-342 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian SIMULASI PENGUKURAN KETEPATAN MODEL VARIOGRAM PADA METODE ORDINARY

Lebih terperinci

PERAMALAN NILAI EKSPOR DAN NILAI IMPOR INDONESIA KE JEPANG MENGGUNAKAN MODEL VARIMA

PERAMALAN NILAI EKSPOR DAN NILAI IMPOR INDONESIA KE JEPANG MENGGUNAKAN MODEL VARIMA PERAMALAN NILAI EKSPOR DAN NILAI IMPOR INDONESIA KE JEPANG MENGGUNAKAN MODEL VARIMA, Universitas Negeri Malang E-mail: desyulvia@gmail.com Abstrak: Penulisan skripsi ini bertujuan untuk mempelajari Model

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Variabel Penelitian Penelitian ini menggunakan satu definisi variabel operasional yaitu ratarata temperatur bumi periode tahun 1880 sampai dengan tahun 2012. 3.2 Jenis dan

Lebih terperinci

III. METODOLOGI PENELITIAN

III. METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN 3.1 Sumber Data Penelitian ini menggunakan data sekunder yang diperoleh dari BEI. Data yang digunakan dalam penelitian ini merupakan data harian yang dimulai dari 3 Januari 2007

Lebih terperinci

Oleh : Dwi Listya Nurina Dosen Pembimbing : Dr. Irhamah, S.Si, M.Si

Oleh : Dwi Listya Nurina Dosen Pembimbing : Dr. Irhamah, S.Si, M.Si Oleh : Dwi Listya Nurina 1311105022 Dosen Pembimbing : Dr. Irhamah, S.Si, M.Si Air Bersih BUMN Penyediaan air bersih untuk masyarakat mempunyai peranan yang sangat penting dalam meningkatkan kesehatan

Lebih terperinci

BAB I PENDAHULUAN. penting dalam proses pengambilan keputusan di suatu instansi. Untuk melakukan

BAB I PENDAHULUAN. penting dalam proses pengambilan keputusan di suatu instansi. Untuk melakukan 1 BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pada zaman sekarang, peramalan merupakan salah satu unsur yang sangat penting dalam proses pengambilan keputusan di suatu instansi. Untuk melakukan peramalan

Lebih terperinci

BAB III ASYMMETRIC POWER AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (APARCH) Asymmetric Power Autoregressive Conditional Heteroscedasticity

BAB III ASYMMETRIC POWER AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (APARCH) Asymmetric Power Autoregressive Conditional Heteroscedasticity BAB III ASYMMETRIC POWER AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (APARCH) 3.1 Proses APARCH Asymmetric Power Autoregressive Conditional Heteroscedasticity (APARCH) diperkenalkan oleh Ding, Granger

Lebih terperinci

PENERAPAN MODEL EGARCH-M DALAM PERAMALAN NILAI HARGA SAHAM DAN PENGUKURAN VALUE AT RISK (VAR)

PENERAPAN MODEL EGARCH-M DALAM PERAMALAN NILAI HARGA SAHAM DAN PENGUKURAN VALUE AT RISK (VAR) PENERAPAN MODEL EGARCH-M DALAM PERAMALAN NILAI HARGA SAHAM DAN PENGUKURAN VALUE AT RISK (VAR) Oleh: Julianto (1) Entit Puspita (2) Fitriani Agustina (2) ABSTRAK Dalam melakukan investasi dalam saham, investor

Lebih terperinci

MODEL EXPONENTIAL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (EGARCH) DAN PENERAPANNYA PADA DATA INDEKS HARGA SAHAM

MODEL EXPONENTIAL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (EGARCH) DAN PENERAPANNYA PADA DATA INDEKS HARGA SAHAM MODEL EXPONENTIAL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (EGARCH) DAN PENERAPANNYA PADA DATA INDEKS HARGA SAHAM (Studi Kasus pada Saham PT. ANTAM (Persero) Tbk) SKRIPSI Diajukan Kepada

Lebih terperinci

BAB II LANDASAN TEORI. nonstasioneritas, Autocorrelation Function (ACF) dan Parsial Autocorrelation

BAB II LANDASAN TEORI. nonstasioneritas, Autocorrelation Function (ACF) dan Parsial Autocorrelation BAB II LANDASAN TEORI Pada Bab II akan dijelaskan pengertian-pengertian dasar yang digunakan sebagai landasan pembahasan pada bab selanjutnya yaitu peramalan data runtun waktu (time series), konsep dasar

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Investasi berkaitan dengan penempatan dana ke dalam bentuk aset yang lain selama periode tertentu dengan harapan tertentu. Aset yang menjadi objek investasi seseorang

Lebih terperinci

IV METODE PENELITIAN 4.1 Lokasi dan Waktu Penelitian 4.2 Jenis dan Sumber Data

IV METODE PENELITIAN 4.1 Lokasi dan Waktu Penelitian 4.2 Jenis dan Sumber Data IV METODE PENELITIAN 4.1 Lokasi dan Waktu Penelitian Lokasi penelitian tentang risiko harga sayuran di Indonesia mencakup komoditas kentang, kubis, dan tomat dilakukan di Pasar Induk Kramat Jati, yang

Lebih terperinci

BAB IV ANALISIS HASIL PENELITIAN

BAB IV ANALISIS HASIL PENELITIAN BAB IV ANALISIS HASIL PENELITIAN 4.1 Menghitung Return Karena penelitian ini mengukur potensi kerugian maksimum dari saham BMRI. Maka, langkah pertama adalah menghitung return hariannya dengan rumus (2-3)

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Regresi Linier Sederhana Dalam beberapa masalah terdapat dua atau lebih variabel yang hubungannya tidak dapat dipisahkan karena perubahan nilai suatu variabel tidak selalu terjadi

Lebih terperinci

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya II. TINJAUAN PUSTAKA 2.1 Stasioner Analisis ARIMA Autoregressive Integrated Moving Average umumnya mengasumsikan bahwa proses umum dari time series adalah stasioner. Tujuan proses stasioner adalah rata-rata,

Lebih terperinci

BAB I PENDAHULUAN. untuk menjual, menahan, atau membeli saham dengan menggunakan indeks

BAB I PENDAHULUAN. untuk menjual, menahan, atau membeli saham dengan menggunakan indeks BAB I PENDAHULUAN A. LATAR BELAKANG MASALAH Pasar modal merupakan pasar abstrak, dimana yang diperjualbelikan adalah dana jangka panjang, yaitu dana yang keterikatannya dalam investasi lebih dari satu

Lebih terperinci

PROSIDING SEMINAR NASIONAL STATISTIKA UNIVERSITAS DIPONEGORO 2013 ISBN:

PROSIDING SEMINAR NASIONAL STATISTIKA UNIVERSITAS DIPONEGORO 2013 ISBN: METODE PERAMALAN MENGGUNAKAN MODEL VOLATILITAS ASYMMETRIC POWER AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY PADA RETURN NILAI TUKAR RUPIAH TERHADAP DOLLAR Cindy Wahyu Elvitra 1, Budi Warsito 2, Abdul

Lebih terperinci

BAB IV METODE PENELITIAN

BAB IV METODE PENELITIAN BAB IV METODE PENELITIAN 4.1. Desain Penelitian Metode yang diterapkan dalam penelitian ini yaitu desain kuantitatif, konklusif, eksperimental dan deskriptif. Metode deskriptif bertujuan untuk membuat

Lebih terperinci

PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS

PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS Saintia Matematika ISSN: 2337-9197 Vol. 02, No. 03 (2014), pp. 253 266. PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS

Lebih terperinci

UANG BEREDARR DAN TINGKAT INFLASI FEB RINA HANDAYANI

UANG BEREDARR DAN TINGKAT INFLASI FEB RINA HANDAYANI FUNGSI TRANSFER HUBUNGAN PERUBAHAN JUMLAH UANG BEREDARR DAN TINGKAT INFLASI FEB RINA HANDAYANI DEPARTEMEN STATISTIKA FAKULTAS MATEMATIKAA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2010 RINGKASAN

Lebih terperinci

Peramalan Penjualan Pipa di PT X

Peramalan Penjualan Pipa di PT X Elviani, et al. / Peramalan Penjualan Pipa di PT X / Jurnal Titra, Vol.. 2, No. 2, Juni 2014, pp. 55-60 Peramalan Penjualan Pipa di PT X Cicely Elviani 1, Siana Halim 1 Abstract: In this thesis we modeled

Lebih terperinci

BAB I PENDAHULUAN. statistika sebagai dasar analisis atau perancangan yang menyangkut olah data

BAB I PENDAHULUAN. statistika sebagai dasar analisis atau perancangan yang menyangkut olah data BAB I PENDAHULUAN A. Latar Belakang Tanpa disadari dalam kehidupan sehari-hari sesungguhnya statistika telah banyak dipakai meskipun dalam bentuk yang sangat sederhana. Sekarang ini ilmu statistika telah

Lebih terperinci

PEMODELAN RETURN PORTOFOLIO SAHAM MENGGUNAKAN METODE GARCH ASIMETRIS. Keywords: Stocks, Portfolio, Return, Volatility, Asymmetric GARCH.

PEMODELAN RETURN PORTOFOLIO SAHAM MENGGUNAKAN METODE GARCH ASIMETRIS. Keywords: Stocks, Portfolio, Return, Volatility, Asymmetric GARCH. ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 6, Nomor 1, Tahun 2017, Halaman 51-60 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PEMODELAN RETURN PORTOFOLIO SAHAM MENGGUNAKAN METODE GARCH ASIMETRIS

Lebih terperinci

3 Kesimpulan. 4 Daftar Pustaka

3 Kesimpulan. 4 Daftar Pustaka Litterman-2. Keuntungan aktual maksimal kedua kinerja Black Litterman ternyata terjadi pada waktu yang sama yaitu tanggal 19 Februari 2013. Secara umum dapat dinyatakan bahwa pembentukan portofolio dengan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Stasioneritas Stasioneritas berarti bahwa tidak terdapat perubahan yang drastis pada data. Fluktuasi data berada di sekitar suatu nilai rata-rata yang konstan, tidak tergantung

Lebih terperinci

MENGGUNAKAN METODE GARCH ASIMETRIS

MENGGUNAKAN METODE GARCH ASIMETRIS PEMODELAN RETURN PORTOFOLIO SAHAM MENGGUNAKAN METODE GARCH ASIMETRIS SKRIPSI Disusun Oleh : MUHAMMAD ARIFIN 24010212140058 DEPARTEMEN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO SEMARANG

Lebih terperinci

Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series

Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series JURNAL SAINS DAN SENI ITS Vol. 6, No. 1, (2017) ISSN: 2337-3520 (2301-928X Print) D-157 Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series Moh Ali Asfihani dan Irhamah

Lebih terperinci

ISSN: JURNAL GAUSSIAN, Volume 5, Nomor 4, Tahun 2016, Halaman Online di:

ISSN: JURNAL GAUSSIAN, Volume 5, Nomor 4, Tahun 2016, Halaman Online di: ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 5, Nomor 4, Tahun 2016, Halaman 705-715 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PEMODELAN DAN PERAMALAN VOLATILITAS PADA RETURN SAHAM BANK BUKOPIN

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA BAB IV HASIL PENELITIAN DAN PEMBAHASAN Pada bab ini, akan dilakukan analisis dan pembahasan terhadap data runtun waktu. Adapun data yang digunakan dalam penelitian ini merupakan data sekunder, yaitu data

Lebih terperinci

BAB IV METODE PENELITIAN

BAB IV METODE PENELITIAN BAB IV METODE PENELITIAN 4.1. Jenis Penelitian Penelitian dalam menganalisis volatilitas Indeks Harga Saham Gabungan (IHSG) dan sembilan Indeks Harga Saham Sektoral dengan metode ARCH, GARCH, EGARCH, TGARCH,

Lebih terperinci

Pemodelan Konsumsi Listrik Berdasarkan Jumlah Pelanggan PLN Jawa Timur untuk Kategori Rumah Tangga R-1 Dengan Metode Fungsi Transfer single input

Pemodelan Konsumsi Listrik Berdasarkan Jumlah Pelanggan PLN Jawa Timur untuk Kategori Rumah Tangga R-1 Dengan Metode Fungsi Transfer single input Pemodelan Konsumsi Listrik Berdasarkan Jumlah Pelanggan PLN Jawa Timur untuk Kategori Rumah Tangga R-1 Dengan Metode Fungsi Transfer single input Oleh : Defi Rachmawati 1311 105 007 Dosen Pembimbing :

Lebih terperinci

BAB III METODE EGARCH, JARINGAN SYARAF TIRUAN DAN NEURO-EGARCH

BAB III METODE EGARCH, JARINGAN SYARAF TIRUAN DAN NEURO-EGARCH BAB III METODE EGARCH, JARINGAN SYARAF TIRUAN DAN NEURO-EGARCH 3.1 Variabel Penelitian Penelitian ini menggunakan satu definisi variabel operasional yaitu data saham Astra Internasional Tbk tanggal 2 Januari

Lebih terperinci

BAB I PENDAHULUAN. satu sumber tetap yang terjadi berdasarkan waktu t secara berurutan dan dengan

BAB I PENDAHULUAN. satu sumber tetap yang terjadi berdasarkan waktu t secara berurutan dan dengan BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Data time series merupakan serangkaian data pengamatan yang berasal dari satu sumber tetap yang terjadi berdasarkan waktu t secara berurutan dan dengan interval

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Iklim Iklim ialah suatu keadaan rata-rata dari cuaca di suatu daerah dalam periode tertentu. Curah hujan ialah suatu jumlah hujan yang jatuh di suatu daerah pada kurun waktu

Lebih terperinci

ISSN: JURNAL GAUSSIAN, Volume 6, Nomor 3, Tahun 2017, Halaman Online di:

ISSN: JURNAL GAUSSIAN, Volume 6, Nomor 3, Tahun 2017, Halaman Online di: ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 6, Nomor 3, Tahun 2017, Halaman 323-332 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PEMODELAN FUNGSI TRANSFER DENGAN DETEKSI OUTLIER UNTUK MEMPREDIKSI

Lebih terperinci

Peramalan Aset dengan Memperhatikan Dana Pihak Ketiga (DPK) dan Pembiayaan Perbankan Syariah di Indonesia dengan Metode Fungsi Transfer

Peramalan Aset dengan Memperhatikan Dana Pihak Ketiga (DPK) dan Pembiayaan Perbankan Syariah di Indonesia dengan Metode Fungsi Transfer Peramalan Aset dengan Memperhatikan Dana Pihak Ketiga (DPK) dan Pembiayaan Perbankan Syariah di Indonesia dengan Metode Fungsi Transfer 1 Faridah Yuliani dan 2 Dr. rer pol Heri Kuswanto 1,2 Jurusan Statistika

Lebih terperinci

SENSITIFITAS MODEL GARCH UNTUK MENGATASI HETEROKEDASTIK PADA DATA DERET WAKTU

SENSITIFITAS MODEL GARCH UNTUK MENGATASI HETEROKEDASTIK PADA DATA DERET WAKTU SENSITIFITAS MODEL GARCH UNTUK MENGATASI HETEROKEDASTIK PADA DATA DERET WAKTU Asep Saefuddin, Anang Kurnia dan Sutriyati Departemen Statistika FMIPA IPB Ringkasan Data deret waktu pada bidang keuangan

Lebih terperinci

PERBANDINGAN INVESTASI PADA MATA UANG DOLAR AMERIKA (USD) DAN YEN JEPANG (JPY) DENGAN MODEL ARIMA DAN GARCH

PERBANDINGAN INVESTASI PADA MATA UANG DOLAR AMERIKA (USD) DAN YEN JEPANG (JPY) DENGAN MODEL ARIMA DAN GARCH Jurnal Matematika UNAND Vol. VI No. 1 Hal. 1 8 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PERBANDINGAN INVESTASI PADA MATA UANG DOLAR AMERIKA (USD) DAN YEN JEPANG (JPY) DENGAN MODEL ARIMA DAN GARCH

Lebih terperinci

PEMODELAN RETURN INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN THRESHOLD GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (TGARCH)

PEMODELAN RETURN INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN THRESHOLD GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (TGARCH) ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 5, Nomor 3, Tahun 2016, Halaman 465-474 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PEMODELAN RETURN INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN THRESHOLD

Lebih terperinci

III. METODOLOGI PENELITIAN. kuantitatif. Menurut Silalahi dalam Eliyawati (2012) penelitian kuantitatif yaitu

III. METODOLOGI PENELITIAN. kuantitatif. Menurut Silalahi dalam Eliyawati (2012) penelitian kuantitatif yaitu III. METODOLOGI PENELITIAN 3.1 Jenis Penelitian Penelitian ini merupakan jenis penelitian yang menggunakan pendekatan kuantitatif. Menurut Silalahi dalam Eliyawati (2012) penelitian kuantitatif yaitu penelitian

Lebih terperinci

Perbandingan Metode Fuzzy Time Series Cheng dan Metode Box-Jenkins untuk Memprediksi IHSG

Perbandingan Metode Fuzzy Time Series Cheng dan Metode Box-Jenkins untuk Memprediksi IHSG JURNAL SAINS DAN SENI POMITS Vol. 3, No. 2, (2014) ISSN: 2337-3539 (2301-9271 Print) A-34 Perbandingan Metode Fuzzy Time Series Cheng dan Metode Box-Jenkins untuk Memprediksi IHSG Mey Lista Tauryawati

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan digunakanan sebagai acuan pencegah yang mendasari suatu keputusan untuk yang akan datang dalam upaya meminimalis kendala atau memaksimalkan pengembangan baik

Lebih terperinci

Prediksi Jumlah Penumpang Kapal Laut di Pelabuhan Laut Manado Menggunakan Model ARMA

Prediksi Jumlah Penumpang Kapal Laut di Pelabuhan Laut Manado Menggunakan Model ARMA Prediksi Jumlah Penumpang Kapal Laut di Pelabuhan Laut Manado Menggunakan Model ARMA Jeine Tando 1, Hanny Komalig 2, Nelson Nainggolan 3* 1,2,3 Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT

BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT Model fungsi transfer multivariat merupakan gabungan dari model ARIMA univariat dan analisis regresi berganda, sehingga menjadi suatu model yang mencampurkan pendekatan

Lebih terperinci

Prediksi Curah Hujan dengan Model Deret Waktu dan Prakiraan Krigging pada 12 Stasiun di Bogor Periode Januari Desember 2014.

Prediksi Curah Hujan dengan Model Deret Waktu dan Prakiraan Krigging pada 12 Stasiun di Bogor Periode Januari Desember 2014. Jur. Ris. & Apl. Mat. Vol. 1 (2017), no. 1, 1-52 Jurnal Riset dan Aplikasi Matematika e-issn: 2581-0154 URL: journal.unesa.ac.id/index.php/jram Prediksi Curah Hujan dengan Model Deret Waktu dan Prakiraan

Lebih terperinci

PREDIKSI HARGA SAHAM PT. BRI, Tbk. MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average)

PREDIKSI HARGA SAHAM PT. BRI, Tbk. MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average) PREDIKSI HARGA SAHAM PT. BRI, MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average) Greis S. Lilipaly ), Djoni Hatidja ), John S. Kekenusa ) ) Program Studi Matematika FMIPA UNSRAT Manado

Lebih terperinci

BAB III PEMBAHASAN. Pada bab ini, dibahas mengenai model Vector Error Correction (VEC),

BAB III PEMBAHASAN. Pada bab ini, dibahas mengenai model Vector Error Correction (VEC), BAB III PEMBAHASAN Pada bab ini, dibahas mengenai model Vector Error Correction (VEC), prosedur pembentukan model Vector Error Correction (VEC), dan aplikasi model Vector Error Correction (VEC) pada penutupan

Lebih terperinci

III. METODE PENELITIAN. model struktural adalah nilai PDRB, investasi Kota Tangerang, jumlah tenaga kerja,

III. METODE PENELITIAN. model struktural adalah nilai PDRB, investasi Kota Tangerang, jumlah tenaga kerja, III. METODE PENELITIAN 3.1. Jenis dan Sumber Data Data yang dibutuhkan dalam penelitian ini adalah data sekunder dalam bentuk time series dari tahun 1995 sampai tahun 2009. Data yang digunakan dalam model

Lebih terperinci

METODE PENELITIAN. wilayah Kecamatan Karawang Timur dijadikan sebagai kawasan pemukiman dan

METODE PENELITIAN. wilayah Kecamatan Karawang Timur dijadikan sebagai kawasan pemukiman dan IV. METODE PENELITIAN 4.1 Lokasi dan Waktu Penelitian Penelitian ini merupakan studi kasus yang dilakukan di Kecamatan Karawang Timur, Kabupaten Karawang. Pemilihan lokasi tersebut didasarkan atas wilayah

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Pendahuluan Peramalan merupakan upaya memperkirakan apa yang terjadi pada masa mendatang berdasarkan data pada masa lalu, berbasis pada metode ilmiah dan kualitatif yang dilakukan

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN 18 HASIL DAN PEMBAHASAN Eksplorasi data Tahap pertama dalam pembentukan model VAR adalah melakukan eksplorasi data untuk melihat perilaku data dari semua peubah yang akan dimasukkan dalam model. Eksplorasi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 1 BAB 2 LANDASAN TEORI Bab ini membahas tentang teori penunjang dan penelitian sebelumnya yang berhubungan dengan metode ARIMA box jenkins untuk meramalkan kebutuhan bahan baku. 2.1. Peramalan Peramalan

Lebih terperinci

ISSN: JURNAL GAUSSIAN, Volume 4, Nomor 4, Tahun 2015, Halaman Online di:

ISSN: JURNAL GAUSSIAN, Volume 4, Nomor 4, Tahun 2015, Halaman Online di: ISSN: 2339-254 JURNAL GAUSSIAN, Volume 4, Nomor 4, Tahun 205, Halaman 957-966 Online di: http://ejournal-s.undip.ac.id/index.php/gaussian PREDIKSI NILAI KURS DOLLAR AMERIKA MENGGUNAKAN EXPONENTIAL SMOOTHING

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Saham adalah surat berharga yang menjadi bukti seseorang berinvestasi pada suatu perusahaan. Harga saham selalu mengalami perubahan harga atau biasa disebut

Lebih terperinci