PERAMALAN DATA NILAI EKSPOR NON MIGAS INDONESIA KE WILAYAH ASEAN MENGGUNAKAN MODEL EGARCH

Ukuran: px
Mulai penontonan dengan halaman:

Download "PERAMALAN DATA NILAI EKSPOR NON MIGAS INDONESIA KE WILAYAH ASEAN MENGGUNAKAN MODEL EGARCH"

Transkripsi

1 PERAMALAN DATA NILAI EKSPOR NON MIGAS INDONESIA KE WILAYAH ASEAN MENGGUNAKAN MODEL EGARCH, Universitas Negeri Malang Abstrak: Penelitian ini bertujuan untuk mengetahui model peramalan terbaik dari data nilai ekspor non-migas Indonesia ke wilayah ASEAN dan menentukan hasil peramalan data tersebut untuk periode berikutnya. Model yang digunakan dalam penelitian ini merupakan salah satu model dalam metode deret waktu yaitu model EGARCH. Dari hasil penelitian diperoleh bahwa model terbaik adalah EGARCH(1,1) dan diperoleh persamaan varian sebagai berikut: ln( ) = 36, , , ln( ). Untuk meramalkan nilai ekspor non-migas Indonesia ke wilayah ASEAN pada periode selanjutnya digunakan rumus berikut: = (1 ) + (1 + ) + dengan AR(1) = = , MA(1) = = , C = = Hasil peramalan model ini memiliki persentase kesalahan yang relatif kecil. Hal ini mengindikasikan bahwa model EGARCH(1,1) adalah model yang baik diterapkan dalam meramalkan nilai ekspor non-migas Indonesia terhadap ASEAN untuk periode selanjutnya. Kata kunci: nilai ekspor non migas Indonesia, ASEAN, model EGARCH Abstract: The purpose of this research for knowing the best forcasting model from data of value of non oil and gas export of Indonesia to ASEAN s countries and finding the forcasting result for the next period. Model has used in this research is EGARCH model. The result from this research showed that EGARCH(1,1) is the best model and the varian equation: ln( ) = 36, , , ln( ). To forcast value of non oil and gas export of Indonesia to ASEAN s countries for the next period used this fornula: = (1 ) + (1 + ) + dengan AR(1) = = , MA(1) = = , C = = The forcasting result of this model has percentage of error small relatively. This showed that EGARCH(1,1) is the best model to forcast value of non oil and gas export of Indonesia to ASEAN s countries for the next period. Keyword: value of non oil and gas export of Indonesia, ASEAN, EGARCH model Sebagai negara dengan sumber daya alam yang sangat melimpah, Indonesia memiliki peran yang penting dalam bidang ekspor, khususnya ekspor ke wilayah Asia. Salah satu contoh hasil ekspor Indonesia adalah ekspor nonmigas Indonesia ke wilayah ASEAN. Sebagai langkah awal untuk menentukan kebijakan dalam meningkatkan hasil ekspor non-migas Indonesia ke wilayah ASEAN, maka diperlukan beberapa prediksi nilai hasil ekspor non-migas Indonesia ke wilayah ASEAN untuk periode berikutnya. Untuk itu diperlukan suatu metode yang tepat digunakan dalam mengatasi hal tersebut. Metode yang digunakan adalah metode deret waktu yaitu model EGARCH. Model Exponential General Auto Regressive Conditional Heteroscedastic (EGARCH) diperkenalkan oleh Daniel B. Nelson pada tahun Model ini merupakan pengembangan dari model GARCH. Kelebihan dari model EGARCH yaitu model ini mampu mengatasi varian yang tidak konstan. Selain itu, model ini juga bisa diterapkan untuk mengatasi adanya pengaruh asimetrik pada data, yaitu 1. Adi Santo Prasetyo adalah mahasiswa jurusan Matematika FMIPA Universitas Negeri Malang 2. Swasono Rahardjo adalah dosen jurusan Matematika FMIPA Universitas Negeri Malang

2 data yang memiliki nilai cross correlation antara residual kuadrat dan lag galatnya signifikan. Sedangkan metode GARCH tidak bisa diterapkan untuk data asimetrik. Secara umum, model EGARCH(1,1) dapat ditulis seperti persamaan berikut ini: = ln = + + ( ) + ln (2.32) Dengan sisi sebelah kiri merupakan logaritma linier dari varian bersyarat. Efek laverage diharapkan menyebar eksponensial, yaitu efek yang terjadi pada volatilitas yang berasal dari bad news ( > 0) pada periode mendatang lebih besar daripada efek yang ditimbulkan dari good news ( < 0) pada periode mendatang, sehingga ramalannya tidak akan negatif. Efek laverage dapat diperiksa dengan cara menguji hipotesis nol bahwa < 0 sedangkan pengaruh asimetrik ada jika 0 (Eviews7 User s Guide, 2009). Menurut Enders (2004:142), terdapat tiga hal yang menarik pada model EGARCH, yaitu: 1. Persamaan dari varian bersyarat dalam bentuk log-linier dengan mengabaikan besaran dari ln, mengakibatkan nilai tidak akan negatif. 2. Dari pada menggunakan nilai, model EGARCH menggunakan nilai yang distandarisasi (membagi dengan ). Nelson berpendapat bahwa standarisasi ini memberikan interpretasi yang lebih alami dari ukuran guncangan dan guncangan yang berkelanjutan. Bagaimanapun nilai standarisasi dari merupakan suatu unit yang membebaskan ukuran. 3. Model EGARCH mengijinkan efek laverage. Jika bernilai positif, maka pengaruh guncangan pada log varian bersyaratnya adalah +. Jika bernilai negatif, maka pengaruh guncangan pada log varian bersyaratnya adalah +. Langkah-langkah dalam pembentukan model EGARCH adalah sebagai berikut: 1. Uji Pengaruh Asimetrik Untuk mengetahui adanya pengaruh asimetrik dapat dilakukan uji sebagai berikut: a. Setelah melakukan pendugaan model ARCH/GARCH, hitung sisaan yang distandarisasi dengan rumus: = (2.33) Maka { } terdiri dari masing-masing sisaan yang dibagi oleh standar deviasinya. b. yang diperoleh pada proses di atas dikuadratkan sehingga diperoleh. Setelah itu, diuji menggunakan korelasi silang antara dengan lag galatnya. Jika hasil uji korelasi silang antara kuadrat galat model dengan lag galatnya bernilai nol maka tidak terdapat pengaruh asimetrik dan sebaliknya jika hasil korelasi silang antara kuadrat galat model dengan lag galatnya tidak sama dengan nol, hal itu berarti ada pengaruh asimetrik. 2. Penaksiran Parameter Model EGARCH

3 Proses penaksiran parameter fungsi varian pada model EGARCH sama dengan model GARCH, yaitu dilakukan dengan menggunakan metode Maximum Likelihood Estimation (MLE). 3. Pemeriksaan Model Pemeriksaan model EGARCH dapat dilakukan dengan cara yang sama seperti pada pemeriksaan model ARCH/GARCH, yaitu dengan memeriksa kenormalan deret residualnya dengan menggunakan uji Jaque-Bera. Adapun statistik uji dapat dilihat pada persamaan (2.31) dan berikut hipotesisnya: Hipotesis: : deret residual berdistribusi normal : deret residual tidak berdistribusi normal Daerah penolakan: ditolak jika > ( ) atau P-value < (0.05). 4. Kriteria Pemilihan Model Terbaik Dalam suatu proses analisis deret waktu menghasilkan beberapa model yang dapat mewakili keadaan data. Untuk itu perlu dilakukan pemilihan model yang terbaik. Pemilihan model terbaik yang tepat didasarkan pada kriteria perhitungan model residual yang sesuai atau berdasarkan kesalahan peramalan. Beberapa kriteria yang biasa digunakan untuk pemilihan model terbaik berdasarkan residual adalah sebagai berikut: a. Akaike s Information Criterion (AIC) Semakin kecil nilai AIC semakin baik model itu untuk dipilih. Model terbaik adalah model yang memiliki nilai AIC terkecil (Wei,1990). = (2 ) b. Schwartz s Bayesian Criterion (SBC) Kriteria ini hampir sama dengan AIC, tetapi menggunakan metode Bayesian: = + ( ) + + (2 ) Dengan: = Sum Square Error (SSE) = banyaknya parameter yang ditaksir = banyaknya observasi = 3.14 Sedangkan kriteria yang digunakan dalam pemilihan model terbaik berdasarkan kesalahan peramalan yaitu: a. Mean Square Error (MSE) b. Mean Absolute Error (MAE) = 1 = 1 c. Mean Absolute Percentage Error (MAPE)

4 = 1 100% Dengan: =, = 1, 2, 3,, = data aktual = nilai perkiraan N = jumlah pengamatan. METODE Data yang digunakan dalam penelitian ini adalah data sekunder yaitu data nilai ekspor non-migas Indonesia terhadap ASEAN yang diperoleh dari Perpustakaan Bank Indonesia Cabang Malang. Pengambilan data ini dilakukan pada hari Kamis tanggal 14 Januari Waktu pengambilan data dilakukan pada jam kerja yaitu pukul Langkah-langkah dalam melakukan analisis data menggunakan metode EGARCH adalah sebagai berikut: 1. Melakukan plot data nilai ekspor non-migas Indonesia terhadap ASEAN periode Januari 2007 sampai Oktober Melakukan return terhadap data agar diperoleh data stasioner. 3. Membuat plot ACF dan PACF dari data stasioner untuk menentukan orde p, d, q pada ARIMA(p, d, q). 4. Melakukan uji signifikansi parameter model ARIMA dengan daerah penolakan: ditolak jika P-value < = Uji kecocokan model, yaitu memenuhi asumsi residual dan berdistribusi normal. 6. Melakukan uji ARCH effect dengan menggunakan LM-Test untuk mengatasi ketidakstasioneran variansi dari data acak. 7. Melakukan estimasi parameter model ARCH/GARCH dengan Log- Likelihood dan uji Jaque-Bera untuk mengetahui deret residual berdistribusi normal atau tidak. Daerah penerimaan: diterima jika P-value > = Melakuan uji asimetrik pada data dengan menggunakan uji korelasi silang antara kuadrat galat model ARCH/GARCH dengan lag galatnya. 9. Melakukan estimasi parameter model EGARCH dengan Log-Likelihood. Daerah penolakan: ditolak jika P-value < = Melakukan uji normalitas terhadap deret residual dengan menggunakan uji Jaque-Bera untuk mengetahui deret berdistribusi normal atau tidak. Daerah penerimaan: diterima jika P-value > = Setelah dilakukan uji normalitas, maka dilakukan peramalan untuk periode berikutnya. HASIL DAN PEMBAHASAN Dari hasil analisis dengan melakukan identifikasi model dan proses ARIMA diperoleh bahwa model yang bisa diterapkan adalah model ARIMA (1,1,1). Selanjutnya dilakukan uji efek ARCH menggunakan LM Test untuk mengetahui adanya sifat heteroskedastisitas. Diperoleh bahwa nilai Obs*R- Squared adalah dengan probabilitas < = Karena

5 probabilitas < = 0.05 dapat disimpulkan bahwa pada kuadrat residual tersebut terdapat proses ACRH/GARCH. Hal ini menunjukkan bahwa pada data tersebut terdapat model residual data yang bersifat heteroskedastis. Sehingga untuk selanjutnya akan dilakukan proses penaksiran model ARCH/GARCH. Penaksiran Parameter ARCH/GARCH Tabel di atas merupakan model GARCH(1,1) yang memiliki nilai AIC lebih rendah daripada model yang lainnya, terlihat bahwa probabilitas GARCH memiliki nilai < = 0.05 sehingga varian dari GARCH berpengaruh terhadap model. Dengan demikian diperoleh bahwa model GARCH(1,1) adalah model yang sesuai dengan persamaan varian sebagai berikut: = (4) + (5) + (6) = Dapat dilihat juga bahwa probabilitas dari kuadrat residual adalah > = 0.05 maka kuadrat residual tidak mempengaruhi model. Sehingga persamaan tersebut menjadi: = Selanjutnya dilakukan pemeriksaan model ARCH/GARCH dengan memeriksa normalitas residualnya dan diperoleh bahwa residual mengikuti distribusi normal. 1. Uji Pengaruh Asimetrik Pada langkah ini dilakukan uji pengaruh asimetrik untuk mengetahui apakah data bersifat asimetrik atau tidak. Adanya pengaruh asimetrik inilah yang nantinya akan diterapkan suatu metode khusus yang mampu mengatasi pengaruh asimetrik, dalam hal ini adalah metode EGARCH. Dari hasil uji asimetri tersebut diperoleh bahwa terdapat korelasi yang signifikan pada lag -1, 0 dan 1. Hal ini menunjukkan adanya pengaruh asimetrik. Oleh karena itu, untuk mengatasi pengaruh asimetrik maka dalam kasus ini akan digunakan salah satu model yang mampu mengatasi adanya asimetrik data, yaitu model EGARCH.

6 2. Penaksiran Parameter dengan Model EGARCH Berdasarkan proses ARIMA menunjukkan bahwa model ARIMA yang cocok adalah model ARIMA(1,1,1). Dan pada uji asimetri juga menunjukkan adanya pengaruh asimetri sehingga digunakan model EGARCH untuk mengatasi permasalahn tersebut. Selanjutnya akan dilakukan penaksiran parameter AR(1) dan MA(1) dengan model EGARCH. Hasil penaksiran parameter dengan metode EGARCH disajikan pada tabel di bawah ini. Pada tabel di atas terlihat bahwa C(6) bernilai > = Hal ini berarti koefisien C(6) tidak mempengaruhi model. Sedangkan untuk koefisien C(4), C(5) dan C(7) bernilai < = 0.05 sehingga mempengaruhi model. Berdasarkan hasil output eviews7 di atas, model EGARCH(1,1) memiliki bentuk persamaan: ln( ) = (4) + (5) + (6)( )+C(7) ln( ) dengan = Karena C(6) tidak mempengaruhi model, maka persamaan tersebut menjadi: ln( ) = (4) + (5) + (7) ln( ) ln( ) = 36, , ln( ) Pada model di atas menunjukkan bahwa model EGARCH(1,1) dipengaruhi oleh parameter C(4) dan C(5) bernilai positif, yang berarti memberi pengaruh positif terhadap log variannya. Sedangkan C(7) bernilai negatif, yang berarti memberi pengaruh negatif pada log variannya. Selain itu, pada model di atas juga dipengaruhi oleh nilai residual dan varian sebelumnya. 3. Pemeriksaan Deret Berdistibusi Normal Setelah mengetahui model yang sesuai, selanjutnya akan dilakukan uji normalitas residual pada model tersebut. Hasil uji normalitas residual menunjukkan bahwa residual mengikuti distribusi normal. 4. Peramalan Setelah data sudah stasioner dan memenuhi berbagai asumsi serta residualnya sudah berdistribusi normal, maka peramalan untuk model EGARCH sudah bisa diterapkan. Hasil peramalan model EGARCH(1,1) dapat dilihat pada gambar di bawah ini.

7 Pada gambar di atas terlihat bahwa nilai MAPE untuk model EGARCH(1,1) adalah Nilai MAPE ini relatif kecil bila dibandingkan dengan data yang nilainya berkisar antara ratus ribuan hingga jutaan. Selain itu dapat terlihat juga bahwa nilai bias proporsi mendekati nol, nilai varian proporsi yang sangat kecil dan nilai kovarian proporsi yang mendekati 1 dengan masingmasing nilainya, bias proporsi adalah , varian proporsi adalah dan kovarian proporsi adalah Sehingga model EGARCH(1,1) merupakan model yang cukup baik untuk meramalkan Nilai Ekspor Non-Migas Indonesia terhadap ASEAN pada periode berikutnya. Proses Peramalan EGARCH(1,1) untuk Ekspor Non-Migas Indonesia Terhadap ASEAN Pada proses mencari model EGARCH diketahui bahwa identifikasi model menghasilkan model ARIMA (1,1,1) sebagai model yang cocok. Kemudian dilanjutkan dengan beberapa langkah berikutnya sehingga ditemukan bahwa model yang terbaik adalah model EGARCH(1,1). Oleh karena itu untuk menentukan peramalan berikutnya digunakan rumus sebagai berikut: = (1 ) + (1 + ) + dengan nilai = , = , dan = Kemudian mensubstitusinya ke persamaan tersebut sehingga diperoleh: = ( ) ( ) = Untuk peramalan data berikutnya adalah sebagai berikut: Peramalan data ke-71 = = ( )( ) ( )( ) ( )( ) = = ,369 Peramalan data ke-72 = = ( )( ,369) ( )( ) ( )( )

8 = = Pada hasil peramalan data di atas, jika nilai mutlak dari selisih antara data asli dengan data ramalan dikalikan 100%, maka diperoleh persentase dari kesalahan ramalan. Dengan melakukan penghitungan persentase kesalahan peramalan diperoleh bahwa persentase kesalahan untuk data ke-71 adalah dan untuk data data ke-72 adalah Ini menunjukkan bahwa persentase kesalahan dari hasil peramalan di atas relati kecil. PENUTUP Kesimpulan Pada proses peramalan nilai Ekspor non migas Indonesia ke wilayah ASEAN di atas diperoleh kesimpulan bahwa hasil identifikasi model didapatkan model yang cocok adalah ARIMA(1,1,1), kemudian dilakukan proses lebih lanjut untuk menentukan model peramalan dengan menggunakan model EGARCH dan model yang terbaik adalah model EGARCH(1,1). Persamaan varian dari model EGARCH (1,1):ln( ) = 36, , ln( ) dengan: = dan rumus peramalan nilai ekspor non-migas Indonesia ke wilayah ASEAN periode berikutnya dilakukan dengan rumus berikut: = Dari hasil peramalan periode berikutnya diketahui bahwa persentase kesalahan data hasil ramalan dengan data yang sebenarnya relatif kecil yaitu untuk peramalan data ke-71 dan untuk peramalan data ke-72. Ini menunjukkan bahwa model EGARCH(1,1) memang cocok digunakan dalam peramalan nilai Ekspor non migas Indonesia ke wilayah ASEAN untuk beberapa periode ke depan. B. Saran 1. Peramalan data asimetrik pada pembahasan ini dilakukan dengan menggunakan model EGARCH, salah satu model yang bisa digunakan dalam kasus khusus yaitu apabila data bersifat asimetrik. Untuk itu pada penelitian selanjutnya disarankan untuk meramalkan data asimetrik dengan model lain yang mampu mengatasi adanya pengaruh asimetrik seperti model TARCH. 2. Pada pembahasan ini hanya menggunakan satu model, belum dicoba melakukan perbandingan dengan model lain. Sehingga untuk selanjutnya akan lebih baik jika melakukan pengolahan data dengan membandingkan dua metode atau lebih untuk menentukan model terbaik, seperti membandingkan model EGARCH dengan model TARCH, PARCH atau GARCH-M.

9 DAFTAR PUSTAKA Ajija, Shochrul R., Sari, Dyah W., Setianto, Rahmat H. dan Primanti, Martha R Cara Cerdas Menguasai Eviews. Jakarta: Salemba Empat. Enders, W Applied Econometric Time Series Second Edition. New York: Jhon Wiley and Sons, Inc. Gujarati, Damodar Ekonometri Dasar oleh Sumarno Zain. Jakarta: Erlangga. Makridakis, S. Wheelwright, S. C. dan McGee, V. E Metode dan Aplikasi Peramalan. Edisi kedua. Jilid kedua (Terjemahan : Suminto, Hari). Batam: Interaksara. Nachrowi, Djalal Nachrowi dan Usman, Hardius Pendekatan Populer dan Praktis Ekonometrika untuk Analisis Ekonomi dan Keuangan ( Dilengkapi Teknik Analisis dan Pengolahan Data dengan SPSS dan EVIEWS). Jakarta: Lembaga Penerbit Fakultas Ekonomi Universitas Indonesia. Rahayu, Dyah Sih dan Firmansyah Estimasi Pengaruh Inflasi dan Tingkat Output Terhadap Return dan Volatilitas Saham di Indonesia (Pendekatan Model GARCH, TARCH dan EGARCH). Fakultas Ekonomi Universitas Diponegoro. Widiyati, Nur Penerapan Model GARCH dan Model EGARCH Pada Saham Sektor Properti Ketika Krisis Ekonomi Dunia. Skripsi. Institut Pertanian Bogor: Departemen Statistika Fakultas Matematika dan Ilmu Pengetahuan Alam.

PERAMALAN DATA SAHAM S&P 500 INDEX MENGGUNAKAN MODEL TARCH

PERAMALAN DATA SAHAM S&P 500 INDEX MENGGUNAKAN MODEL TARCH PERAMALAN DATA SAHAM S&P 500 INDEX MENGGUNAKAN MODEL TARCH Universitas Negeri Malang E-mail: abiyaniprisca@ymail.com Abstrak: Penelitian ini bertujuan untuk mengetahui model peramalan terbaik dari data

Lebih terperinci

LULIK PRESDITA W APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI

LULIK PRESDITA W APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI LULIK PRESDITA W 1207 100 002 APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI 1 Pembimbing : Dra. Nuri Wahyuningsih, M.Kes BAB I PENDAHULUAN 2 LATAR BELAKANG 1. Stabilitas ekonomi dapat dilihat

Lebih terperinci

BAB II TINJAUAN PUSTAKA. keuntungan atau coumpouding. Dari definisi di atas dapat disimpulkan bahwa

BAB II TINJAUAN PUSTAKA. keuntungan atau coumpouding. Dari definisi di atas dapat disimpulkan bahwa BAB II TINJAUAN PUSTAKA 2.1 Pengertian Investasi Menurut Fahmi dan Hadi (2009) investasi merupakan suatu bentuk pengelolaan dana guna memberikan keuntungan dengan cara menempatkan dana tersebut pada alokasi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji

BAB II TINJAUAN PUSTAKA. penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji 35 BAB II TINJAUAN PUSTAKA Pada Bab II akan dibahas konsep-konsep yang menjadi dasar dalam penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji ACF, uji PACF, uji ARCH-LM,

Lebih terperinci

Suma Suci Sholihah, Heni Kusdarwati, Rahma Fitriani. Jurusan Matematika, F.MIPA, Universitas Brawijaya

Suma Suci Sholihah, Heni Kusdarwati, Rahma Fitriani. Jurusan Matematika, F.MIPA, Universitas Brawijaya PEMODELAN RETURN IHSG PERIODE 15 SEPTEMBER 1998 13 SEPTEMBER 2013 MENGGUNAKAN THRESHOLD GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY (TGARCH(1,1)) DENGAN DUA THRESHOLD Suma Suci Sholihah,

Lebih terperinci

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n SBAB III MODEL VARMAX 3.1. Metode Analisis VARMAX Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n dengan variabel random Z n yang dapat dipandang sebagai variabel random berdistribusi

Lebih terperinci

PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI)

PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) Liana Kusuma Ningrum dan Winita Sulandari, M.Si. Jurusan Matematika,

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1. Desain Penelitian Desain penelitian mempunyai peranan yang sangat penting, karena keberhasilan suatu penelitian sangat dipengaruhi oleh pilihan desain atau model penelitian.

Lebih terperinci

STUDI KAUSALITAS GRANGER ANTARA NILAI TUKAR RUPIAH TERHADAP USD DAN AUD MENGGUNAKAN ANALISIS VAR

STUDI KAUSALITAS GRANGER ANTARA NILAI TUKAR RUPIAH TERHADAP USD DAN AUD MENGGUNAKAN ANALISIS VAR Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA Fakultas MIPA, Universitas Negeri Yogyakarta, 16 Mei 2009 STUDI KAUSALITAS GRANGER ANTARA NILAI TUKAR RUPIAH TERHADAP USD DAN AUD MENGGUNAKAN

Lebih terperinci

TEKNIK PERAMALAN DENGANMODEL AUTOREGRESSIVE CONDITIONALHETEROSCEDASTIC (ARCH) (Studi KasusPada PT. Astra Agro Lestari Indonesia Tbk)

TEKNIK PERAMALAN DENGANMODEL AUTOREGRESSIVE CONDITIONALHETEROSCEDASTIC (ARCH) (Studi KasusPada PT. Astra Agro Lestari Indonesia Tbk) Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 2 (2013), hal 71 78. TEKNIK PERAMALAN DENGANMODEL AUTOREGRESSIVE CONDITIONALHETEROSCEDASTIC (ARCH) (Studi KasusPada PT. Astra Agro Lestari

Lebih terperinci

MODEL NON LINIER GARCH (NGARCH) UNTUK MENGESTIMASI NILAI VALUE at RISK (VaR) PADA IHSG

MODEL NON LINIER GARCH (NGARCH) UNTUK MENGESTIMASI NILAI VALUE at RISK (VaR) PADA IHSG E-Jurnal Matematika Vol. 4 (2), Mei 215, pp. 59-66 ISSN: 233-1751 MODEL NON LINIER (N) UNTUK MENGESTIMASI NILAI VALUE at RISK (VaR) PADA IHSG I Komang Try Bayu Mahendra 1, Komang Dharmawan 2, Ni Ketut

Lebih terperinci

PENGGUNAAN METODE VaR (Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT. TELKOM DENGAN PENDEKATAN MODEL GARCH-M

PENGGUNAAN METODE VaR (Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT. TELKOM DENGAN PENDEKATAN MODEL GARCH-M PENGGUNAAN METODE VaR (Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT. TELKOM DENGAN PENDEKATAN MODEL GARCH-M Oleh: Nurkhoiriyah 1205100050 Dosen pembimbing: Dra. Nuri Wahyuningsih, M. Kes. Jurusan

Lebih terperinci

PENERAPAN MODEL EGARCH-M DALAM PERAMALAN NILAI HARGA SAHAM DAN PENGUKURAN VALUE AT RISK (VAR)

PENERAPAN MODEL EGARCH-M DALAM PERAMALAN NILAI HARGA SAHAM DAN PENGUKURAN VALUE AT RISK (VAR) PENERAPAN MODEL EGARCH-M DALAM PERAMALAN NILAI HARGA SAHAM DAN PENGUKURAN VALUE AT RISK (VAR) Oleh: Julianto (1) Entit Puspita (2) Fitriani Agustina (2) ABSTRAK Dalam melakukan investasi dalam saham, investor

Lebih terperinci

PERBANDINGAN RAMALAN MODEL TARCH DAN EGARCH PADA NILAI TUKAR KURS EURO TERHADAP RUPIAH

PERBANDINGAN RAMALAN MODEL TARCH DAN EGARCH PADA NILAI TUKAR KURS EURO TERHADAP RUPIAH PERBANDINGAN RAMALAN MODEL TARCH DAN EGARCH PADA NILAI TUKAR KURS EURO TERHADAP RUPIAH Oleh RETNO HESTININGTYAS M0106061 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar

Lebih terperinci

PEMODELAN DAN PERAMALAN PENUTUPAN HARGA SAHAM PT. TELKOM DENGAN METODE ARCH - GARCH

PEMODELAN DAN PERAMALAN PENUTUPAN HARGA SAHAM PT. TELKOM DENGAN METODE ARCH - GARCH PEMODELAN DAN PERAMALAN PENUTUPAN HARGA SAHAM PT. TELKOM DENGAN METODE ARCH - GARCH BUNGA LETY MARVILLIA Matematika, Fakultas Ilmu Pengetahuan Alam, UNESA Jl. Ketintang villy_cute_7@yahoo.com 1, raywhite_vbm@gmail.com

Lebih terperinci

PERHITUNGAN VALUE AT RISK HARGA SAHAM DENGAN MENGGUNAKAN VOLATILITAS ARCH-GARCH DALAM KELOMPOK SAHAM LQ 45 ABSTRACT

PERHITUNGAN VALUE AT RISK HARGA SAHAM DENGAN MENGGUNAKAN VOLATILITAS ARCH-GARCH DALAM KELOMPOK SAHAM LQ 45 ABSTRACT PERHITUNGAN VALUE AT RISK HARGA SAHAM DENGAN MENGGUNAKAN VOLATILITAS ARCH-GARCH DALAM KELOMPOK SAHAM LQ 45 Boy A Lumban Gaol 1, Tumpal Parulian Nababan 2, Haposan Sirait 2 1 Mahasiswa Program Studi S1

Lebih terperinci

BAB II LANDASAN TEORI. nonstasioneritas, Autocorrelation Function (ACF) dan Parsial Autocorrelation

BAB II LANDASAN TEORI. nonstasioneritas, Autocorrelation Function (ACF) dan Parsial Autocorrelation BAB II LANDASAN TEORI Pada Bab II akan dijelaskan pengertian-pengertian dasar yang digunakan sebagai landasan pembahasan pada bab selanjutnya yaitu peramalan data runtun waktu (time series), konsep dasar

Lebih terperinci

PERAMALAN NILAI EKSPOR DAN NILAI IMPOR INDONESIA KE JEPANG MENGGUNAKAN MODEL VARIMA

PERAMALAN NILAI EKSPOR DAN NILAI IMPOR INDONESIA KE JEPANG MENGGUNAKAN MODEL VARIMA PERAMALAN NILAI EKSPOR DAN NILAI IMPOR INDONESIA KE JEPANG MENGGUNAKAN MODEL VARIMA, Universitas Negeri Malang E-mail: desyulvia@gmail.com Abstrak: Penulisan skripsi ini bertujuan untuk mempelajari Model

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Regresi Linier Sederhana Dalam beberapa masalah terdapat dua atau lebih variabel yang hubungannya tidak dapat dipisahkan karena perubahan nilai suatu variabel tidak selalu terjadi

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA BAB IV HASIL PENELITIAN DAN PEMBAHASAN Pada bab ini, akan dilakukan analisis dan pembahasan terhadap data runtun waktu. Adapun data yang digunakan dalam penelitian ini merupakan data sekunder, yaitu data

Lebih terperinci

Bab IV. Metode dan Model Penelitian

Bab IV. Metode dan Model Penelitian Bab IV Metode dan Model Penelitian 4.1 Spesifikasi Model Sesuai dengan tinjauan literatur, hal yang akan diteliti adalah pengaruh real exchange rate, pertumbuhan ekonomi domestik, pertumbuhan ekonomi Jepang,

Lebih terperinci

SENSITIFITAS MODEL GARCH UNTUK MENGATASI HETEROKEDASTIK PADA DATA DERET WAKTU

SENSITIFITAS MODEL GARCH UNTUK MENGATASI HETEROKEDASTIK PADA DATA DERET WAKTU SENSITIFITAS MODEL GARCH UNTUK MENGATASI HETEROKEDASTIK PADA DATA DERET WAKTU Asep Saefuddin, Anang Kurnia dan Sutriyati Departemen Statistika FMIPA IPB Ringkasan Data deret waktu pada bidang keuangan

Lebih terperinci

PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS

PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS Saintia Matematika ISSN: 2337-9197 Vol. 02, No. 03 (2014), pp. 253 266. PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS

Lebih terperinci

Perbandingan Metode Fuzzy Time Series Cheng dan Metode Box-Jenkins untuk Memprediksi IHSG

Perbandingan Metode Fuzzy Time Series Cheng dan Metode Box-Jenkins untuk Memprediksi IHSG JURNAL SAINS DAN SENI POMITS Vol. 3, No. 2, (2014) ISSN: 2337-3539 (2301-9271 Print) A-34 Perbandingan Metode Fuzzy Time Series Cheng dan Metode Box-Jenkins untuk Memprediksi IHSG Mey Lista Tauryawati

Lebih terperinci

PERAMALAN JUMLAH KUNJUNGAN WISATAWAN MANCANEGARA YANG BEKUNJUNG KE BALI MENGGUNAKAN FUNGSI TRANSFER

PERAMALAN JUMLAH KUNJUNGAN WISATAWAN MANCANEGARA YANG BEKUNJUNG KE BALI MENGGUNAKAN FUNGSI TRANSFER PERAMALAN JUMLAH KUNJUNGAN WISATAWAN MANCANEGARA YANG BEKUNJUNG KE BALI MENGGUNAKAN FUNGSI TRANSFER I Ketut Putra Adnyana 1, I Wayan Sumarjaya 2, I Komang Gde Sukarsa 3 1 Jurusan Matematika, Fakultas FMIPA

Lebih terperinci

BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT

BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT Model fungsi transfer multivariat merupakan gabungan dari model ARIMA univariat dan analisis regresi berganda, sehingga menjadi suatu model yang mencampurkan pendekatan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan digunakanan sebagai acuan pencegah yang mendasari suatu keputusan untuk yang akan datang dalam upaya meminimalis kendala atau memaksimalkan pengembangan baik

Lebih terperinci

BAB 2 LANDASAN TEORI Pengertian Data Deret Berkala

BAB 2 LANDASAN TEORI Pengertian Data Deret Berkala BAB 2 LANDASAN TEORI 2.1. Pengertian Data Deret Berkala Suatu deret berkala adalah himpunan observasi yang terkumpul atau hasil observasi yang mengalami peningkatan waktu. Data deret berkala adalah serangkaian

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Jenis dan Sumber Data Jenis data yang digunakan dalam penelitian ini adalah data sekunder (time series) yang diperoleh dari beberapa lembaga dan instansi pemerintah,

Lebih terperinci

LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU. Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins

LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU. Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU Kelas A Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins No Nama Praktikan Nomor Mahasiswa Tanggal Pengumpulan 1 29 Desember 2010 Tanda Tangan Praktikan

Lebih terperinci

Cetakan I, Agustus 2014 Diterbitkan oleh: Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Pattimura

Cetakan I, Agustus 2014 Diterbitkan oleh: Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Pattimura Hak cipta dilindungi Undang-Undang Cetakan I, Agustus Diterbitkan oleh: Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Pattimura ISBN: ---- Deskripsi halaman sampul : Gambar yang ada pada cover

Lebih terperinci

III. METODE PENELITIAN. Data yang digunakan dalam penelitian ini adalah data sekunder yaitu data time series

III. METODE PENELITIAN. Data yang digunakan dalam penelitian ini adalah data sekunder yaitu data time series 51 III. METODE PENELITIAN A. Jenis dan Sumber Data Data yang digunakan dalam penelitian ini adalah data sekunder yaitu data time series yang didapat dari Bank Indonesia dan Badan Pusat Statistik dan melalui

Lebih terperinci

Pemodelan ARIMA Non- Musim Musi am

Pemodelan ARIMA Non- Musim Musi am Pemodelan ARIMA Non- Musimam ARIMA ARIMA(Auto Regresif Integrated Moving Average) merupakan suatu metode analisis runtun waktu(time series) ARIMA(p,d,q) Dengan AR : p =orde dari proses autoreggresif I

Lebih terperinci

Prediksi Jumlah Penumpang Kapal Laut di Pelabuhan Laut Manado Menggunakan Model ARMA

Prediksi Jumlah Penumpang Kapal Laut di Pelabuhan Laut Manado Menggunakan Model ARMA Prediksi Jumlah Penumpang Kapal Laut di Pelabuhan Laut Manado Menggunakan Model ARMA Jeine Tando 1, Hanny Komalig 2, Nelson Nainggolan 3* 1,2,3 Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN 31 BAB 3 METODOLOGI PENELITIAN Pada bab ini akan dibahas mengenai tahapan-tahapan serta metode pengolahan data yang akan digunakan dalam penelitian. Penelitian tahap pertama mencoba untuk keberadaan fenomena

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini mengunakan data sekunder berdasarkan runtun waktu (time series)

III. METODE PENELITIAN. Penelitian ini mengunakan data sekunder berdasarkan runtun waktu (time series) 41 III. METODE PENELITIAN A. Jenis dan Sumber Data Penelitian ini mengunakan data sekunder berdasarkan runtun waktu (time series) periode Januari 2001- Desember 2008 yang diperoleh dari publikasi resmi,

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 15 III. METODE PENELITIAN 3.1. Kerangka Pemikiran Penelitian Perkembangan ekonomi dan bisnis dewasa ini semakin cepat dan pesat. Bisnis dan usaha yang semakin berkembang ini ditandai dengan semakin banyaknya

Lebih terperinci

PENERAPAN REGRESI LINIER MULTIVARIAT PADA DISTRIBUSI UJIAN NASIONAL 2014 (Pada Studi Kasus Nilai Ujian Nasional 2014 SMP Negeri 1 Sayung)

PENERAPAN REGRESI LINIER MULTIVARIAT PADA DISTRIBUSI UJIAN NASIONAL 2014 (Pada Studi Kasus Nilai Ujian Nasional 2014 SMP Negeri 1 Sayung) ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 4, Nomor 3, Tahun 2015, Halaman 697-704 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PENERAPAN REGRESI LINIER MULTIVARIAT PADA DISTRIBUSI UJIAN NASIONAL

Lebih terperinci

PEMODELAN DAN PERAMALAN DATA NILAI TUKAR MATA UANG DOLLAR AMERIKA TERHADAP YEN JEPANG DAN EURO TERHADAP DOLLAR AMERIKA DALAM ARCH, GARCH DAN TARCH

PEMODELAN DAN PERAMALAN DATA NILAI TUKAR MATA UANG DOLLAR AMERIKA TERHADAP YEN JEPANG DAN EURO TERHADAP DOLLAR AMERIKA DALAM ARCH, GARCH DAN TARCH PEMODELAN DAN PERAMALAN DATA NILAI TUKAR MATA UANG DOLLAR AMERIKA TERHADAP YEN JEPANG DAN EURO TERHADAP DOLLAR AMERIKA DALAM ARCH, GARCH DAN TARCH Nama : Yulia Sukma Hardyanti NRP : 1303.109.001 Jurusan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. autokovarians (ACVF) dan fungsi autokorelasi (ACF), fungsi autokorelasi parsial

BAB II TINJAUAN PUSTAKA. autokovarians (ACVF) dan fungsi autokorelasi (ACF), fungsi autokorelasi parsial BAB II TINJAUAN PUSTAKA Berikut teori-teori yang mendukung penelitian ini, yaitu konsep dasar peramalan, konsep dasar deret waktu, proses stokastik, proses stasioner, fungsi autokovarians (ACVF) dan fungsi

Lebih terperinci

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA KEMENTERIAN PEKERJAAN UMUM BADAN PENELITIAN DAN PENGEMBANGAN PUSAT PENELITIAN DAN PENGEMBANGAN SUMBER DAYA AIR PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA PENDAHULUAN Prediksi data runtut waktu.

Lebih terperinci

PENERAPAN METODE ARIMA DALAM MERAMALKAN INDEKS HARGA KONSUMEN (IHK) INDONESIA TAHUN 2013

PENERAPAN METODE ARIMA DALAM MERAMALKAN INDEKS HARGA KONSUMEN (IHK) INDONESIA TAHUN 2013 La Pimpi //Paradigma, Vol. 17 No. 2, Oktober 2013, hlm. 35-46 PENERAPAN METODE ARIMA DALAM MERAMALKAN INDEKS HARGA KONSUMEN (IHK) INDONESIA TAHUN 2013 1) La Pimpi 1 Staf Pengajar Jurusan Matematika, FMIPA,

Lebih terperinci

Analisis ARCH dan GARCH menggunakan EViews

Analisis ARCH dan GARCH menggunakan EViews Analisis ARCH dan GARCH menggunakan EViews Pada bagian ini akan dikemukakan penggunaan EViews untuk analisis ARCH dan GARCH. Penggunaan EViews kali ini lebih ditekankan dengan memanfaatkan menumenu yang

Lebih terperinci

DAFTAR ISI. BAB I PENDAHULUAN Latar Belakang Masalah Rumusan Masalah Batasan Masalah Tujuan Penelitian...

DAFTAR ISI. BAB I PENDAHULUAN Latar Belakang Masalah Rumusan Masalah Batasan Masalah Tujuan Penelitian... DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii HALAMAN PERNYATAAN... iii NASKAH SOAL TUGAS AKHIR... iv HALAMAN PERSEMBAHAN... v INTISARI... vi KATA PENGANTAR... vii UCAPAN TERIMA KASIH... viii

Lebih terperinci

X 3 : Flow Top (Aliran Atas) (lt/min) X 4 : Speed (Kecepatan) (m/min)

X 3 : Flow Top (Aliran Atas) (lt/min) X 4 : Speed (Kecepatan) (m/min) Periode Maret 06, Samarinda, Indonesia ISBN: 978-60-7658--3 Pemilihan Model Regresi Linier Multivariat Terbaik Dengan Kriteria Mean Square Error Dan Akaike s Information Criterion Edriani Lestari, Rito

Lebih terperinci

Analisis Statistik Faktor Faktor Yang Mempengaruhi Pergerakan Harga Saham di Bursa Efek Indonesia (BEI) Menggunakan Regresi Time Series

Analisis Statistik Faktor Faktor Yang Mempengaruhi Pergerakan Harga Saham di Bursa Efek Indonesia (BEI) Menggunakan Regresi Time Series Analisis Statistik Faktor Faktor Yang Mempengaruhi Pergerakan Harga Saham di Bursa Efek Indonesia (BEI) Menggunakan Regresi Time Series Theresia Desy M ), Haryono ) ) Mahasiswa Jurusan Statistika FMIPA

Lebih terperinci

Magister Manajemen Univ. Muhammadiyah Yogyakarta

Magister Manajemen Univ. Muhammadiyah Yogyakarta Analisis Regresi Linier Wihandaru Sotya Pamungkas Pendahuluan 1 Pendahuluan A. Pengertian Regresi dan Korelasi Istilah regresi diperkenalkan oleh Francis Galton tahun 1886 diperkuat oleh Karl Pearson tahun

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Peramalan merupakan studi terhadap data historis untuk menemukan hubungan, kecenderungan dan pola data yang sistematis (Makridakis, 1999). Peramalan menggunakan pendekatan

Lebih terperinci

BAB III KALMAN FILTER DISKRIT. Kalman Filter adalah rangkaian teknik perhitungan matematika (algoritma)

BAB III KALMAN FILTER DISKRIT. Kalman Filter adalah rangkaian teknik perhitungan matematika (algoritma) BAB III KALMAN FILTER DISKRIT 3.1 Pendahuluan Kalman Filter adalah rangkaian teknik perhitungan matematika (algoritma) yang memberikan perhitungan efisien dalam mengestimasi state proses, yaitu dengan

Lebih terperinci

PENGUJIAN HETEROSKEDASTISITAS PADA REGRESI EKSPONENSIAL DENGAN MENGGUNAKAN UJI PARK

PENGUJIAN HETEROSKEDASTISITAS PADA REGRESI EKSPONENSIAL DENGAN MENGGUNAKAN UJI PARK PENGUJIAN HETEROSKEDASTISITAS PADA REGRESI EKSPONENSIAL DENGAN MENGGUNAKAN UJI PARK Asmin MM. 1, Saleh M., Islamiyati A. 3 Abstrak Model eksponensial merupakan regresi non linier yang dapat diubah bentuknya

Lebih terperinci

BAB III PERBANDINGAN MODEL ARIMA DAN MODEL VAR PADA PERAMALAN VOLUME PENJUALAN DAN HARGA INTI SAWIT

BAB III PERBANDINGAN MODEL ARIMA DAN MODEL VAR PADA PERAMALAN VOLUME PENJUALAN DAN HARGA INTI SAWIT BAB III PERBANDINGAN MODEL ARIMA DAN MODEL VAR PADA PERAMALAN VOLUME PENJUALAN DAN HARGA INTI SAWIT Pada bab ini, penulis akan membandingkan hasil peramalan menggunakan model ARIMA dan model VAR yang telah

Lebih terperinci

REGRESI LINIER BERGANDA

REGRESI LINIER BERGANDA REGRESI LINIER BERGANDA 1. PENDAHULUAN Analisis regresi merupakan salah satu teknik analisis data dalam statistika yang seringkali digunakan untuk mengkaji hubungan antara beberapa variabel dan meramal

Lebih terperinci

SEMINAR TUGAS AKHIR. Peta Kendali Comulative Sum (Cusum) Residual Studi Kasus pada PT. PJB Unit Pembangkitan Gresik. Rina Wijayanti

SEMINAR TUGAS AKHIR. Peta Kendali Comulative Sum (Cusum) Residual Studi Kasus pada PT. PJB Unit Pembangkitan Gresik. Rina Wijayanti SEMINAR TUGAS AKHIR Peta Kendali Comulative Sum (Cusum) Residual Studi Kasus pada PT. PJB Unit Pembangkitan Gresik Rina Wijayanti 1306100044 Pembimbing Drs. Haryono, MSIE Dedi Dwi Prastyo, S.Si., M.Si.

Lebih terperinci

ISSN: JURNAL GAUSSIAN, Volume 3, Nomor 4, Tahun 2014, Halaman Online di:

ISSN: JURNAL GAUSSIAN, Volume 3, Nomor 4, Tahun 2014, Halaman Online di: ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 3, Nomor 4, Tahun 2014, Halaman 635-643 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PERHITUNGAN VALUE AT RISK MENGGUNAKAN MODEL INTEGRATED GENERALIZED

Lebih terperinci

PERAMALAN KUNJUNGAN WISATAWAN MENGGUNAKAN MODEL ARMAX DENGAN NILAI KURS DAN EKSPOR-IMPOR SEBAGAI FAKTOR EKSOGEN

PERAMALAN KUNJUNGAN WISATAWAN MENGGUNAKAN MODEL ARMAX DENGAN NILAI KURS DAN EKSPOR-IMPOR SEBAGAI FAKTOR EKSOGEN PERAMALAN KUNJUNGAN WISATAWAN MENGGUNAKAN MODEL ARMAX DENGAN NILAI KURS DAN EKSPOR-IMPOR SEBAGAI FAKTOR EKSOGEN Putu Ika Oktiyari Laksmi 1, Komang Dharmawan 2, Luh Putu Ida Harini 3 1 Jurusan Matematika,

Lebih terperinci

MASALAH-MASALAH DALAM MODEL REGRESI LINIER

MASALAH-MASALAH DALAM MODEL REGRESI LINIER MASALAH-MASALAH DALAM MODEL REGRESI LINIER Pendahuluan Analisis model regresi linier memerlukan dipenuhinya berbagai asumsi agar model dapat digunakan sebagai alat prediksi yang baik. Namun tidak jarang

Lebih terperinci

BAB IV METODE PENELITIAN. resmi Direktorat Jenderal Pengolahan dan Pemasaran Hasil Pertanian yaitu

BAB IV METODE PENELITIAN. resmi Direktorat Jenderal Pengolahan dan Pemasaran Hasil Pertanian yaitu BAB IV METODE PENELITIAN 4.1 Jenis dan Sumber Data Data yang digunakan dalam penelitian ini adalah data sekunder berbentuk time series, yang merupakan data bulanan dari tahun 005 sampai 008, terdiri dari

Lebih terperinci

II. TINJAUAN PUSTAKA. Time series merupakan serangkaian observasi terhadap suatu variabel yang

II. TINJAUAN PUSTAKA. Time series merupakan serangkaian observasi terhadap suatu variabel yang II. TINJAUAN PUSTAKA 2.1 Analisis Deret Waktu (time series) Time series merupakan serangkaian observasi terhadap suatu variabel yang diambil secara beruntun berdasarkan interval waktu yang tetap (Wei,

Lebih terperinci

PERAMALAN HARGA SAHAM DENGAN METODE EXPONENTIAL SMOOTH TRANSITION AUTOREGRESSIVE (ESTAR) (Studi Kasus pada Harga Saham Mingguan PT United Tractors)

PERAMALAN HARGA SAHAM DENGAN METODE EXPONENTIAL SMOOTH TRANSITION AUTOREGRESSIVE (ESTAR) (Studi Kasus pada Harga Saham Mingguan PT United Tractors) ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 4, Nomor 2, Tahun 2015, Halaman 257-266 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PERAMALAN HARGA SAHAM DENGAN METODE EXPONENTIAL SMOOTH TRANSITION

Lebih terperinci

MENENTUKAN PORTOFOLIO OPTIMAL MENGGUNAKAN MODEL CONDITIONAL MEAN VARIANCE

MENENTUKAN PORTOFOLIO OPTIMAL MENGGUNAKAN MODEL CONDITIONAL MEAN VARIANCE E-Jurnal Matematika Vol. 5 (3), Agustus 2016, pp. 82-89 ISSN: 2303-1751 MENENTUKAN PORTOFOLIO OPTIMAL MENGGUNAKAN MODEL CONDITIONAL MEAN VARIANCE I Gede Ery Niscahyana 1, Komang Dharmawan 2, I Nyoman Widana

Lebih terperinci

PERAMALAN JUMLAH WISATAWAN DI AGROWISATA KUSUMA BATU MENGGUNAKAN METODE ANALISIS SPEKTRAL. Oleh: Niswatul Maghfiroh NRP.

PERAMALAN JUMLAH WISATAWAN DI AGROWISATA KUSUMA BATU MENGGUNAKAN METODE ANALISIS SPEKTRAL. Oleh: Niswatul Maghfiroh NRP. PERAMALAN JUMLAH WISATAWAN DI AGROWISATA KUSUMA BATU MENGGUNAKAN METODE ANALISIS SPEKTRAL Oleh: Niswatul Maghfiroh NRP. 1208100065 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT

Lebih terperinci

BAB III. Metode Penelitian. Penelitian ini menggunakan pendekatan kuantitatif yaitu data yang diukur dalam skala

BAB III. Metode Penelitian. Penelitian ini menggunakan pendekatan kuantitatif yaitu data yang diukur dalam skala BAB III Metode Penelitian A. Pendekatan Penelitian Penelitian ini menggunakan pendekatan kuantitatif yaitu data yang diukur dalam skala numerik, berdasarkan data time series yang berhubungan dengan inflasi,suku

Lebih terperinci

III. METODE PENELITIAN. Jenis data yang digunakan dalam penelitian ini adalah data sekunder deret waktu

III. METODE PENELITIAN. Jenis data yang digunakan dalam penelitian ini adalah data sekunder deret waktu III. METODE PENELITIAN A. Jenis dan Data Jenis data yang digunakan dalam penelitian ini adalah data sekunder deret waktu (time-series data) bulanan dari periode 2004:01 2011:12 yang diperoleh dari PT.

Lebih terperinci

MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI

MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI Diajukan Kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta

Lebih terperinci

BAB III ERROR CORRECTION MODEL (ECM) Suatu analisis yang biasa dipakai dalam ekonometrika adalah analisis

BAB III ERROR CORRECTION MODEL (ECM) Suatu analisis yang biasa dipakai dalam ekonometrika adalah analisis BAB III ERROR CORRECTION MODEL (ECM) 3.1 Teori Error Correction Model (ECM) Suatu analisis yang biasa dipakai dalam ekonometrika adalah analisis regresi yang pada dasarnya adalah studi atas ketergantungan

Lebih terperinci

BAB IV METODE PENELITIAN. dilakukan secara sengaja (purposive) melihat bahwa propinsi Jawa Barat

BAB IV METODE PENELITIAN. dilakukan secara sengaja (purposive) melihat bahwa propinsi Jawa Barat 4.1. Waktu dan Tempat Penelitian BAB IV METODE PENELITIAN Penelitian dilakukan dalam lingkup wilayah Jawa Barat. Pemilihan lokasi dilakukan secara sengaja (purposive) melihat bahwa propinsi Jawa Barat

Lebih terperinci

Gambar 2.1 Klasifikasi Metode Dependensi dan Interdependensi Analisis Multivariat

Gambar 2.1 Klasifikasi Metode Dependensi dan Interdependensi Analisis Multivariat Bab Landasan Teori.1 Analisis Multivariat Analisis statistik multivariat merupakan metode dalam melakukan penelitian terhadap lebih dari dua variable secara bersamaan. Dengan menggunakan teknik analisis

Lebih terperinci

1. Latar Belakang. Gambar 1 Plot Produksi Tembakau Indonesia. Gambar 2 Plot Harga Tembakau Indonesia

1. Latar Belakang. Gambar 1 Plot Produksi Tembakau Indonesia. Gambar 2 Plot Harga Tembakau Indonesia 1. Latar Belakang Tembakau merupakan komoditas yang mempunyai arti penting karena memberikan manfaat ekonomi bagi Indonesia. Meskipun demikian, komoditi tembakau di Indonesia menghadapi berbagai permasalahan,

Lebih terperinci

BAB III INTEGRATED GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROCEDASTICITY (IGARCH)

BAB III INTEGRATED GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROCEDASTICITY (IGARCH) BAB III INTEGRATED GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROCEDASTICITY (IGARCH) 3.1 Proses IGARCH Saat mengestimasi model GARCH, sering ditemukan bahwa jumlah koefisien parameter selalu sama dengan

Lebih terperinci

BAB I PENDAHULUAN. Peramalan keadaan pada suatu waktu merupakan hal penting. Hal itu

BAB I PENDAHULUAN. Peramalan keadaan pada suatu waktu merupakan hal penting. Hal itu BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Peramalan keadaan pada suatu waktu merupakan hal penting. Hal itu dikarenakan peramalan dapat digunakan sebagai rujukan dalam menentukan tindakan yang akan

Lebih terperinci

Model Regresi Multivariat untuk Menentukan Tingkat Kesejahteraan Kabupaten dan Kota di Jawa Timur

Model Regresi Multivariat untuk Menentukan Tingkat Kesejahteraan Kabupaten dan Kota di Jawa Timur JURNAL SAINS DAN SENI POMITS Vol. 2, No.1, (2013) 2337-3520 (2301-928X Print) 1 Model Regresi Multivariat untuk Menentukan Tingkat Kesejahteraan Kabupaten dan Kota di Jawa Timur M.Fariz Fadillah Mardianto,

Lebih terperinci

The 4 th Univesity Research Coloquium 2016 PERBANDINGAN MODEL ARIMA DAN WINTER PADA PERAMALAN DATA SAHAM BANK

The 4 th Univesity Research Coloquium 2016 PERBANDINGAN MODEL ARIMA DAN WINTER PADA PERAMALAN DATA SAHAM BANK PERBANDINGAN MODEL ARIMA DAN WINTER PADA PERAMALAN DATA SAHAM BANK Moh. Yamin Darsyah 1, Muhammad Saifudin Nur 2 1,2 Progam Studi Statistika Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Muhammadiyah

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN 47 BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. Deskripsi Unit Analisis Data 1. Data Hasil Penelitian Pada bagian ini akan dibahas mengenai proses pengolahan data untuk menguji hipotesis yang telah dibuat

Lebih terperinci

Ekonometrika Deret Waktu: Teori dan Aplikasi

Ekonometrika Deret Waktu: Teori dan Aplikasi Ekonometrika Deret Waktu: Teori dan Aplikasi Bambang Juanda, Junaidi Ekonometrika telah berkembang cukup pesat dalam 15 tahun terakhir,terutama dalam bidang analisis data deret waktu (time series ), termasuk

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Jenis Penelitian Dalam buku Sugiono, menurut tingkat explanasinya atau tingkat penjelas yaitu dimana penelitian yang menjelaskan kedudukan variabelvariabel yang diteliti serta

Lebih terperinci

PERAMALAN HASIL PRODUKSI ALUMINIUM BATANGAN PADA PT INALUM DENGAN METODE ARIMA

PERAMALAN HASIL PRODUKSI ALUMINIUM BATANGAN PADA PT INALUM DENGAN METODE ARIMA Saintia Matematika Vol. 1, No. 1 (2013), pp. 1 10. PERAMALAN HASIL PRODUKSI ALUMINIUM BATANGAN PADA PT INALUM DENGAN METODE ARIMA Lukas Panjaitan, Gim Tarigan, Pengarapen Bangun Abstrak. Dalama makalah

Lebih terperinci

BAB III METODE PEMULUSAN EKSPONENSIAL HOLT-WINTER DAN METODE DEKOMPOSISI KLASIK

BAB III METODE PEMULUSAN EKSPONENSIAL HOLT-WINTER DAN METODE DEKOMPOSISI KLASIK BAB III METODE PEMULUSAN EKSPONENSIAL HOLT-WINTER DAN METODE DEKOMPOSISI KLASIK 3.1 Metode Pemulusan Eksponensial Holt-Winter Metode rata-rata bergerak dan pemulusan Eksponensial dapat digunakan untuk

Lebih terperinci

PEMODELAN DAN PERAMALAN DATA DERET WAKTU DENGAN METODE SEASONAL ARIMA

PEMODELAN DAN PERAMALAN DATA DERET WAKTU DENGAN METODE SEASONAL ARIMA Jurnal Matematika UNAND Vol. 3 No. 3 Hal. 59 67 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PEMODELAN DAN PERAMALAN DATA DERET WAKTU DENGAN METODE SEASONAL ARIMA ANNISA UL UKHRA Program Studi Matematika,

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Analisis Regresi adalah analisis statistik yang mempelajari bagaimana memodelkan sebuah model fungsional dari data untuk dapat menjelaskan ataupun meramalkan suatu

Lebih terperinci

EKONOMETRI TIME SERIES SANJOYO

EKONOMETRI TIME SERIES SANJOYO EKONOMETRI TIME SERIES SANJOYO TOPIK - TOPIK 1. Pengertian Dasar 2. Pengujian Stasioneritas 3. ARMA & ARIMA 4. ARCH & GARCH 5. VAR 6. COINTEGRATION & ECM 7. SIMULTAN EQUATION ARMA & ARIMA(1) Metodologi

Lebih terperinci

PERAMALAN NILAI EKSPOR DI PROPINSI SUMATERA UTARA DENGAN METODE ARIMA BOX-JENKINS

PERAMALAN NILAI EKSPOR DI PROPINSI SUMATERA UTARA DENGAN METODE ARIMA BOX-JENKINS Saintia Matematika Vol. 1, No. 6 (2013), pp. 579 589. PERAMALAN NILAI EKSPOR DI PROPINSI SUMATERA UTARA DENGAN METODE ARIMA BOX-JENKINS Raisa Ruslan, Agus Salim Harahap, Pasukat Sembiring Abstrak. Dalam

Lebih terperinci

PENDETEKSIAN KRISIS KEUANGAN DI INDONESIA MENGGUNAKAN GABUNGAN MODEL VOLATILITAS DAN MARKOV SWITCHING BERDASARKAN INDIKATOR HARGA MINYAK

PENDETEKSIAN KRISIS KEUANGAN DI INDONESIA MENGGUNAKAN GABUNGAN MODEL VOLATILITAS DAN MARKOV SWITCHING BERDASARKAN INDIKATOR HARGA MINYAK PENDETEKSIAN KRISIS KEUANGAN DI INDONESIA MENGGUNAKAN GABUNGAN MODEL VOLATILITAS DAN MARKOV SWITCHING BERDASARKAN INDIKATOR HARGA MINYAK oleh APRILIA AYU WIDHIARTI M0111010 SKRIPSI ditulis dan diajukan

Lebih terperinci

PEMODELAN DATA RUNTUK WAKTU PADA DATA PRODUKSI SUSU SAPI DI AMERIKA SEJAK TAHUN

PEMODELAN DATA RUNTUK WAKTU PADA DATA PRODUKSI SUSU SAPI DI AMERIKA SEJAK TAHUN PEMODELAN DATA RUNTUK WAKTU PADA DATA PRODUKSI SUSU SAPI DI AMERIKA SEJAK TAHUN 1962 1975 Jantini Trianasari Natangku dan Fitria Puspitoningrum Mahasiswa Program Studi Matematika Fakultas Sains dan Matematika

Lebih terperinci

METODE PENELITIAN. Variabel-variabel yang digunakan dalam penelitian Respon PDB terhadap shock

METODE PENELITIAN. Variabel-variabel yang digunakan dalam penelitian Respon PDB terhadap shock 40 III. METODE PENELITIAN Variabel-variabel yang digunakan dalam penelitian Respon PDB terhadap shock kredit perbankan, pembiayaan pada lembaga keuangan non bank dan nilai emisi saham pada pasar modal

Lebih terperinci

OPTIMASI PRODUKSI UNTUK PRODUK PESANAN PADA PERUSAHAAN PESTISIDA MENGGUNAKAN METODE GOAL PROGRAMMING. Oleh: Rossy Susanti ( )

OPTIMASI PRODUKSI UNTUK PRODUK PESANAN PADA PERUSAHAAN PESTISIDA MENGGUNAKAN METODE GOAL PROGRAMMING. Oleh: Rossy Susanti ( ) OPTIMASI PRODUKSI UNTUK PRODUK PESANAN PADA PERUSAHAAN PESTISIDA MENGGUNAKAN METODE GOAL PROGRAMMING Oleh: Rossy Susanti (1207 100 007) Dosen Pembimbing: Drs. Suharmadi S., DiplSc.,MPhil JURUSAN MATEMATIKA

Lebih terperinci

ANALISIS PENGARUH KURS RUPIAH TERHADAP INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN DISTRIBUTED LAG MODEL

ANALISIS PENGARUH KURS RUPIAH TERHADAP INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN DISTRIBUTED LAG MODEL ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 5, Nomor 1, Tahun 2016, Halaman 221-227 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian ANALISIS PENGARUH KURS RUPIAH TERHADAP INDEKS HARGA SAHAM GABUNGAN

Lebih terperinci

Tugas Akhir. Peramalan Penjualan Produk Minuman TB Wilayah Pemasaran Jawa Timur dengan Menggunakan Metode VARIMA. Oleh : C. Ade Kurniawan

Tugas Akhir. Peramalan Penjualan Produk Minuman TB Wilayah Pemasaran Jawa Timur dengan Menggunakan Metode VARIMA. Oleh : C. Ade Kurniawan Tugas Akhir Peramalan Penjualan Produk Minuman TB Wilayah Pemasaran Jawa Timur dengan Menggunakan Metode VARIMA Oleh : C. Ade Kurniawan 1304100022 Latar Belakang Ketidakpastian dalam aliran hulu supply

Lebih terperinci

PENERAPAN MODEL AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE (ARFIMA) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI)

PENERAPAN MODEL AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE (ARFIMA) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) PENERAPAN MODEL AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE (ARFIMA) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) Oleh LIANA KUSUMA NINGRUM M0105047 SKRIPSI ditulis dan diajukan

Lebih terperinci

BAB III PARTIAL ADJUSTMENT MODEL (PAM) Pada dasarnya semua model regresi mengasumsikan bahwa hubungan

BAB III PARTIAL ADJUSTMENT MODEL (PAM) Pada dasarnya semua model regresi mengasumsikan bahwa hubungan BAB III PARTIAL ADJUSTMENT MODEL (PAM) 3.1 Model Distribusi Lag Pada dasarnya semua model regresi mengasumsikan bahwa hubungan antara peubah tak bebas dan peubah-peubah bebas bersifat serentak. Hal ini

Lebih terperinci

IV. METODE PENELITIAN. Penelitian dilakukan di Desa Tugu Utara dan Kelurahan Cisarua,

IV. METODE PENELITIAN. Penelitian dilakukan di Desa Tugu Utara dan Kelurahan Cisarua, IV. METODE PENELITIAN 4.1. Lokasi dan Waktu Penelitian Penelitian dilakukan di Desa Tugu Utara dan Kelurahan Cisarua, Kecamatan Cisarua, Kabupaten Bogor, Provinsi Jawa Barat. Pemilihan lokasi dilakukan

Lebih terperinci

METODE PENELITIAN. deposito berjangka terhadap suku bunga LIBOR, suku bunga SBI, dan inflasi

METODE PENELITIAN. deposito berjangka terhadap suku bunga LIBOR, suku bunga SBI, dan inflasi III. METODE PENELITIAN Variabel-variabel yang digunakan dalam penelitian ini adalah tingkat suku bunga deposito berjangka terhadap suku bunga LIBOR, suku bunga SBI, dan inflasi pada bank umum di Indonesia.

Lebih terperinci

PREDIKSI CURAH HUJAN DI KOTA SEMARANG DENGAN METODE KALMAN FILTER

PREDIKSI CURAH HUJAN DI KOTA SEMARANG DENGAN METODE KALMAN FILTER PREDIKSI CURAH HUJAN DI KOTA SEMARANG DENGAN METODE KALMAN FILTER Tika Dhiyani Mirawati 1, Hasbi Yasin 2, Agus Rusgiyono 3 1 Mahasiswa Jurusan Statistika FSM UNDIP 2,3 Staff Pengajar Jurusan Statistika

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian ini membahas tentang pengaruh inflasi, kurs, dan suku bunga kredit

BAB III METODE PENELITIAN. Penelitian ini membahas tentang pengaruh inflasi, kurs, dan suku bunga kredit BAB III METODE PENELITIAN A. Ruang Lingkup Penelitian Penelitian ini memiliki ruang lingkup ekspor mebel di Kota Surakarta, dengan mengambil studi kasus di Surakarta dalam periode tahun 1990-2014. Penelitian

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN 3. 1. Pendekatan Penelitian Pendekatan yang digunakan dalam penelitian ini adalah pendekatan kuantitatif deskriptif. Pendekatan kuantitatif menitikberatkan pada pembuktian hipotesis.

Lebih terperinci

Kata Kunci: Analisis Regresi Linier, Penduga OLS, Penduga GLS, Autokorelasi, Regresor Bersifat Stokastik

Kata Kunci: Analisis Regresi Linier, Penduga OLS, Penduga GLS, Autokorelasi, Regresor Bersifat Stokastik Jurnal Matematika UNAND Vol. 3 No. 4 Hal. 168 176 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PERBANDINGAN PENDUGA ORDINARY LEAST SQUARES (OLS) DAN GENERALIZED LEAST SQUARES (GLS) PADA MODEL REGRESI

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN III. METODE PENELITIAN A. Data dan Sumber Data 1. Data Variabel-variabel yang digunakan dalam penelitian Analisis Pengaruh Variabel Sektor Moneter dan Riil Terhadap Inflasi di Indonesia (Periode 2006:1

Lebih terperinci

ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER

ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER 1 ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER A. Musdalifa, Raupong, Anna Islamiyati Abstrak Estimasi parameter adalah merupakan hal

Lebih terperinci

PEMBANDINGAN METODE PENGHALUSAN EKSPONENSIAL HOLT-WINTERS

PEMBANDINGAN METODE PENGHALUSAN EKSPONENSIAL HOLT-WINTERS PEMBANDINGAN METODE PENGHALUSAN EKSPONENSIAL HOLT-WINTERS DENGAN METODE BOX-JENKINS PADA PERAMALAN DATA DERET WAKTU MUSIMAN (Studi Kasus Data Penumpang Bandara Soekarno Hatta 2007-2014) (Skripsi) Oleh

Lebih terperinci

Peramalan Laju Inflasi dan Nilai Tukar Rupiah Terhadap Dolar Amerika Menggunakan Model Vector Autoregressive (VAR)

Peramalan Laju Inflasi dan Nilai Tukar Rupiah Terhadap Dolar Amerika Menggunakan Model Vector Autoregressive (VAR) ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 3, Nomor 4, Tahun 2014, Halaman 673-682 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian Peramalan Laju Inflasi dan Nilai Tukar Rupiah Terhadap Dolar

Lebih terperinci

PENENTUAN VALUE AT RISK SAHAM KIMIA FARMA PUSAT MELALUI PENDEKATAN DISTRIBUSI PARETO TERAMPAT

PENENTUAN VALUE AT RISK SAHAM KIMIA FARMA PUSAT MELALUI PENDEKATAN DISTRIBUSI PARETO TERAMPAT ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 4, Nomor 3, Tahun 2015, Halaman 453-462 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PENENTUAN VALUE AT RISK SAHAM KIMIA FARMA PUSAT MELALUI PENDEKATAN

Lebih terperinci