Model-model Variogram

Ukuran: px
Mulai penontonan dengan halaman:

Download "Model-model Variogram"

Transkripsi

1 Model-model Variogram Sebuah model matematika harus disesuaikan pada variogram, sebelum variogram dapat dipakai dalam estimasi. Variogram yang dipilih harus memenuhi suatu kondisi tertentu. Kekeliruan dalam memilih variogram dapat menyebabkan terjadinya variansi negatif. Variansi dari kombinasi linier Estimator-estimator, biasanya merupakan kombinasi linier (rata-rata dengan pemberatan) sehingga perlu dihitung variansinya. Diketahui variabel stasioner Z(x) dengan kovariansi C(h) Kombinasi linier Z adalah Z = λ i Z(x i ) i Typeset by FoilTEX 1

2 dengan λ i adalah pembobotan dan x i adalah lokasi-lokasi sampel. Perdefinisi, variansinya adalah Var(Z ) = E (Z E(Z )) 2 Bila nilai menengah Z(x) adalah m, maka E(Z ) = m λ i. i Sehingga Var(Z ) = E ( i ) 2 λ i (Z(x i ) m) = λ 2 1 C(x 1 x 1 ) + λ 2 2 C(x 2 x 2 ) λ 2 n C(x n x n ) +2λ 1 λ 2 C(x 1 x 2 ) λ n 1 λ n C(x n 1 x n ) atau Var(Z ) = λ i λ j C(x i x j ) i j Nilai Var(Z ) ini harus positif berapapun titik maupun pembobotannya. fungsi C(h) yang memenuhi kondisi ini disebut definit positif. Typeset by FoilTEX 2

3 Situasi berbeda bila muncul kasus variabel intrinsik tetapi tidak stasioner dimana variansi untuk kombinasi linier antara (arbitrary) tidak harus ada. Tetapi, variansi pasti ada untuk kombinasi linier perubahan (x i x j ). Kombinasi disebut admissible bila jumlah dari pembobotannya adalah nol. λi = 0 Setiap kombinasi linier dari penubahan akan memenuhi kondisi ini karena setiap perubahan tunggal melibatkan bobot -1 dan +1. Sebaliknya juga, setiap kombinasi yang memenuhi kondisi ini dapat ditulis sebagai satu kombinasi linier perubahan. Karena kovariansi tidak perlu muncul dalam fungsi acak intrinsik, maka rumusan harus ditulis dalam bentuk variogram Typeset by FoilTEX 3

4 ) Var( λi Z(x i ) = λ i λ j γ(x i x j ) karena variansi ini harus non-negatif, maka model variogram harus memenuhi kondisi: Untuk suatu himpunan titik-titik x 1, x 2,..., x n, suatu himpunan pembobotan λ 1, λ 2,..., λ n, sedemikian rupa sehingga λ i = 0 disyaratkan λ i λ j γ (x i x j ) 0 selanjutnya, λ ini disebut sebagai definit positif kondisional. Kondisi ini lebih lemah daripada kovariansi sebelumnya, yang harus mengakomodir semua bobot yang mungkin, karena kovariansi ini hanya harus mengakomodir himpunan bobot yang jumlahnya nol. konsekwensinya, kelas variogram admissible lebih kaya dibandingkan untuk kovariansi. Kovariogram ini mengandung variogram terbatas (bounded variogram) yang berhubungan dengan kovariansi dan juga yang tanpa batas yang Typeset by FoilTEX 4

5 tidak memiliki pasangan kovariansi. Kesimpulan: ada trade-off antara kedua hipotesa. Hipotesa intrinsik memperbolehkan penggunaan variogram dengan rentang lebar, tetapi jumlah pembobotan harus nol. Rentang model variogram admissible lebih terbatas untuk hipotesa stasioner tetapi dengan bobot berapa saja. Typeset by FoilTEX 5

6 Model-model admissible Karena cukup sulit untuk mengenali fungsi-fungsi yang memenuhi persyaratan di atas, maka yang paling mudah adalah memilih modelmodel variogram dari sejumlah rentang fungsi-fungsi yang cocok daripada membentuk sendiri. Beberapa model dapat saling dijumlahkan untuk memperoleh model admissible lain karena hal ini sama saja dengan penambahan fungsifungsi acak independen, tetapi pengurangan tidak diperbolehkan. Juga tidak bisa digabungkan sebagian. Sebuah fungsi dapat ditentukan negatif atau positif definitnya dengan menghitung tranformasi Fourier-nya. Typeset by FoilTEX 6

7 Model-model Variogram 1. Model Nugget (Nugget effect) { 0 h = 0 γ(h) C h > 0 Model ini berhubungan dengan fenomena yang murni acak (white noise) dengan tanpa-korelasi antar nilai-nilainya. 2. Model bola (Spherical model) ( ) 3 h C 2 a γ(h) 1 h 3 2 h < a a 3 C h 0 Typeset by FoilTEX 7

8 Merupakan model yang paling umum dipakai. Model ini menggunakan ekspresi polinomial yang sederhana dan bentuknya sesuai dengan berbagai jenis fenomena yang diamati: Satu pertumbuhan yang hampir linier sampai pada satu jarak tertentu, kemudian tercapai stabilitas. Garis singgung (tangen) pada titik asal (origin) berpotongan dengan sill pada satu titik dengan absis 2a Model eksponensial (Exponential model) ( ) γ(h) = C 1 e h a Range (a) praktis untuk model ini adalah 3a, karena nilai ini adalah jarak ketika nilai batas mencapai 95%. Garis singgung di titik asal memotong nilai sill pada satu titik dengan absis a. Dibandingkan dengan model spherical, model eksponensial pada awalnya meningkat lebih cepat tetapi hanya mengarah pada sill dan tidak betul-betul mencapai nilai tersebut. Typeset by FoilTEX 8

9 4. Fungsi pangkat (Power functions) γ(h) = C h α dengan 0 < α 2 model linier γ(h) = h adalah satu kasus khusus. 5. Model Gaussian (Gaussian model) ( «) γ(h) = C 1 e h 2 a 2 Range praktis adalah 1.73a. Model ini menggambarkan fenomena yang sangat kontinyu. Hasil eksperimen memperlihatkan bahwa ketidakstabilan secara numeris seringkali muncul bilamana digunakan tanpa efek nugget. 6. Model kubus (Cubic model) Typeset by FoilTEX 9

10 γ(h) r = h/a { C ( 7r r r ) r < 1 C yang lain Model ini memiliki sifat parabolik di titik asal dan secara umum mirip dengan model gaussian, kecuali bahwa model ini tidak diferensiabel secara tak terbatas, 7. Model efek lubang 2D (2D hole effect model) γ(h) = C ( 1 e ( r ) J 0 (2πr 2 ) ) dengan r = h/2, r 2 = h/λ, dan J 0 adalah fungsi Bessel. nilai λ mengatur magnitude efek lubang. 8. Model sinus Cardinal (Cardinal sine model) Typeset by FoilTEX 10

11 γ(h) = C ( 1 sin r r ) dengan r = h/a. Model ini termasuk model yang langka dengan sebuah efek lubang 3D, dan berhubungan dengan struktur yang kontinyu. 9. Model Prismato Model Prismato-magnetic ( ) 1 γ(h) = C 1 (1+r 2 ) 1.5 dengan r = h/a Model Prismato-gravimetric ( ) 1 γ(h) = C 1 (1+r 2 ) 0.5 dengan r = h/a Typeset by FoilTEX 11

12 Kedua model ini dipakai untuk memodelkan jenis data anomali gravimetris atau magnetik. Variogram-variogram eksperimental. gd4113-4c.tex Typeset by FoilTEX 12

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f. Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan

Lebih terperinci

Hitung Perataan Kuadrat Terkecil (Least Squares Adjustment)

Hitung Perataan Kuadrat Terkecil (Least Squares Adjustment) Hitung Perataan Kuadrat Terkecil (Least Squares Adjustment) Metoda Kuadrat Terkecil adalah salah satu metoda yang paling populer dalam menyelesaikan masalah hitung perataan. Aplikasi pertama perataan kuadrat

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. penjelasan tentang pola hubungan (model) antara dua variabel atau lebih.. Dalam

BAB 2 TINJAUAN TEORITIS. penjelasan tentang pola hubungan (model) antara dua variabel atau lebih.. Dalam BAB 2 TINJAUAN TEORITIS 21 Pengertian Regresi Linier Pengertian regresi secara umum adalah sebuah alat statistik yang memberikan penjelasan tentang pola hubungan (model) antara dua variabel atau lebih

Lebih terperinci

F U N G S I A. PENGERTIAN DAN UNSUR-UNSUR FUNGSI

F U N G S I A. PENGERTIAN DAN UNSUR-UNSUR FUNGSI F U N G S I A. PENGERTIAN DAN UNSUR-UNSUR FUNGSI Fungsi Fungsi ialah suatu bentuk hubungan matematis yang menyatakan hubungan ketergantungan (hubungan fungsional) antara satu variabel dengan variabel lain.

Lebih terperinci

BAB II. REGRESI LINIER SEDERHANA

BAB II. REGRESI LINIER SEDERHANA .1 Pendahuluan BAB II. REGRESI LINIER SEDERHANA Gejala-gejala alam dan akibat atau faktor yang ditimbulkannya dapat diukur atau dinyatakan dengan dua kategori yaitu fakta atau data yang bersifat kuantitatif

Lebih terperinci

Fungsi, Persamaaan, Pertidaksamaan

Fungsi, Persamaaan, Pertidaksamaan Fungsi, Persamaaan, Pertidaksamaan Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 9 Agustus 004 di PPPG Matematika Oleh: Drs. Markaban, M.Si. Widyaiswara PPPG

Lebih terperinci

BAB IV PERSAMAAN TAKHOMOGEN

BAB IV PERSAMAAN TAKHOMOGEN BAB IV PERSAMAAN TAKHOMOGEN Kompetensi Mahasiswa mampu 1. Menentukan selesaian khusus PD tak homogen dengan metode koefisien tak tentu 2. Menentukan selesaian khusus PD tak homogen dengan metode variasi

Lebih terperinci

PENGANTAR ANALISA RUNTUN WAKTU

PENGANTAR ANALISA RUNTUN WAKTU DIKTAT KULIAH PENGANTAR ANALISA RUNTUN WAKTU Dr.rer.nat. Dedi Rosadi, M.Sc.Eng.Math. Email: dedirosadi@ugm.ac.id http://dedirosadi.staff.ugm.ac.id Program Studi Statistika Fakultas Matematika dan Ilmu

Lebih terperinci

BAB 5 PENGGUNAAN TURUNAN

BAB 5 PENGGUNAAN TURUNAN Diktat Kuliah TK Matematika BAB 5 PENGGUNAAN TURUNAN 5. Nilai Ekstrim Fungsi Nilai ekstrim fungsi adalah nilai yang berkaitan dengan maksimum atau minimum fungsi tersebut. Ada dua jenis nilai ekstrim,

Lebih terperinci

Buku Pendalaman Konsep. Trigonometri. Tingkat SMA Doddy Feryanto

Buku Pendalaman Konsep. Trigonometri. Tingkat SMA Doddy Feryanto Buku Pendalaman Konsep Trigonometri Tingkat SMA Doddy Feryanto Kata Pengantar Trigonometri merupakan salah satu jenis fungsi yang sangat banyak berguna di berbagai bidang. Di bidang matematika sendiri,

Lebih terperinci

BAB 3 PENYELESAIAN PERSAMAAN NON LINIER

BAB 3 PENYELESAIAN PERSAMAAN NON LINIER BAB 3 PENYELESAIAN PERSAMAAN NON LINIER 3.. Permasalahan Persamaan Non Linier Penyelesaian persamaan non linier adalah penentuan akar-akar persamaan non linier.dimana akar sebuah persamaan f(x =0 adalah

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 SINYAL DASAR ATAU FUNGSI SINGULARITAS Sinyal dasar atau fungsi singularitas adalah sinyal yang dapat digunakan untuk menyusun atau mempresentasikan sinyal-sinyal yang lain. Sinyal-sinyal

Lebih terperinci

ANALISA SINYAL DAN SISTEM TE 4230

ANALISA SINYAL DAN SISTEM TE 4230 ANALISA SINYAL DAN SISTEM TE 430 TUJUAN: Sinyal dan Sifat-sifat Sinyal Sistem dan sifat-sifat Sisterm Analisa sinyal dalam domain Waktu Analisa sinyal dalam domain frekuensi menggunakan Tools: Transformasi

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Mata Pelajaran : Matematika Kelas/ Semester: XI Program IPA/ Alokasi Waktu: jam Pelajaran (3 Pertemuan) A. Standar Kompetensi Menggunakan konsep limit ungsi dan turunan

Lebih terperinci

Pendahuluan. Angka penting dan Pengolahan data

Pendahuluan. Angka penting dan Pengolahan data Angka penting dan Pengolahan data Pendahuluan Pengamatan merupakan hal yang penting dan biasa dilakukan dalam proses pembelajaran. Seperti ilmu pengetahuan lain, fisika berdasar pada pengamatan eksperimen

Lebih terperinci

REGRESI LINEAR SEDERHANA

REGRESI LINEAR SEDERHANA REGRESI LINEAR SEDERHANA DAN KORELASI 1. Model Regresi Linear 2. Penaksir Kuadrat Terkecil 3. Prediksi Nilai Respons 4. Inferensi Untuk Parameter-parameter Regresi 5. Kecocokan Model Regresi 6. Korelasi

Lebih terperinci

BAB I PENGANTAR MATEMATIKA EKONOMI

BAB I PENGANTAR MATEMATIKA EKONOMI BAB I PENGANTAR MATEMATIKA EKONOMI 1.1 Matematika Ekonomi Aktivitas ekonomi merupakan bagian dari kehidupan manusia ribuan tahun yang lalu. Kata economics berasal dari kata Yunani klasik yang artinya household

Lebih terperinci

KORELASI DAN REGRESI LINIER SEDERHANA

KORELASI DAN REGRESI LINIER SEDERHANA KORELASI DAN REGRESI LINIER SEDERHANA 1. Pendahuluan Istilah "regresi" pertama kali diperkenalkan oleh Sir Francis Galton pada tahun 1886. Galton menemukan adanya tendensi bahwa orang tua yang memiliki

Lebih terperinci

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPA

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPA PEMBAHASAN UN SMA TAHUN PELAJARAN 009/00 MATEMATIKA PROGRAM STUDI IPA PEMBAHAS :. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si. 3. Marfuah, M.T. 4. Rohmitawati, S.Si. PPPPTK MATEMATIKA 00 . Perhatikan

Lebih terperinci

MEKANIKA KUANTUM DALAM TIGA DIMENSI

MEKANIKA KUANTUM DALAM TIGA DIMENSI MEKANIKA KUANTUM DALAM TIGA DIMENSI Sebelumnya telah dibahas mengenai penerapan Persamaan Schrödinger dalam meninjau sistem kuantum satu dimensi untuk memperoleh fungsi gelombang serta energi dari sistem.

Lebih terperinci

POLINOM (SUKU BANYAK) Menggunakan aturan suku banyak dalam penyelesaian masalah.

POLINOM (SUKU BANYAK) Menggunakan aturan suku banyak dalam penyelesaian masalah. POLINOM (SUKU BANYAK) Standar Kompetensi: Menggunakan aturan suku banyak dalam penyelesaian masalah. Kompetensi Dasar: 1. Menggunakan algoritma pembagian suku banyak untuk menentukan hasil bagi dan sisa

Lebih terperinci

Jenis Jenis--jenis jenis fungsi dan fungsi linier Hafidh Munawir

Jenis Jenis--jenis jenis fungsi dan fungsi linier Hafidh Munawir Jenis-jenis fungsi dan fungsi linier Hafidh Munawir Diskripsi Mata Kuliah Memperkenalkan unsur-unsur fungsi ialah variabel bebas dan variabel terikat, koefisien, dan konstanta, yang saling berkaitan satu

Lebih terperinci

BAB I VEKTOR DALAM BIDANG

BAB I VEKTOR DALAM BIDANG BAB I VEKTOR DALAM BIDANG I. KURVA BIDANG : Penyajian secara parameter Suatu kurva bidang ditentukan oleh sepasang persamaan parameter. ; dalam I dan kontinue pada selang I, yang pada umumnya sebuah selang

Lebih terperinci

PENGENDALIAN VARIABEL PENGGANGGU / CONFOUNDING DENGAN ANALISIS KOVARIANS Oleh : Atik Mawarni

PENGENDALIAN VARIABEL PENGGANGGU / CONFOUNDING DENGAN ANALISIS KOVARIANS Oleh : Atik Mawarni PENGENDALIAN VARIABEL PENGGANGGU / CONFOUNDING DENGAN ANALISIS KOVARIANS Oleh : Atik Mawarni Pendahuluan Dalam seluruh langkah penelitian, seorang peneliti perlu menjaga sebaik-baiknya agar hubungan yang

Lebih terperinci

MAT. 05. Relasi dan Fungsi

MAT. 05. Relasi dan Fungsi MAT. 05. Relasi dan Fungsi i Kode MAT. 05 Relasi dan fungsi BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN PENDIDIKAN

Lebih terperinci

Pengantar Kecerdasan Buatan (AK045218) Logika Fuzzy

Pengantar Kecerdasan Buatan (AK045218) Logika Fuzzy Logika Fuzzy Pendahuluan Alasan digunakannya Logika Fuzzy Aplikasi Himpunan Fuzzy Fungsi keanggotaan Operator Dasar Zadeh Penalaran Monoton Fungsi Impilkasi Sistem Inferensi Fuzzy Basis Data Fuzzy Referensi

Lebih terperinci

4. Himpunan penyelesaian dari sistem persamaan linear x + y = 5 dan x - 2y = -4 adalah... A.{ (1, 4) }

4. Himpunan penyelesaian dari sistem persamaan linear x + y = 5 dan x - 2y = -4 adalah... A.{ (1, 4) } 1. Diketahui himpunan P = ( bilangan prima kurang dari 13 ) Banyak himpunan bagian dari P adalah... 5 25 10 32 P = {Bilangan prima kurang dari 13} = {2, 3, 5, 7, 11} n(p) = 5 2. Dari diagram Venn di bawah,

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis Komponen Utama (AKU, Principal Componen Analysis) bermula dari

BAB 2 LANDASAN TEORI. Analisis Komponen Utama (AKU, Principal Componen Analysis) bermula dari BAB 2 LANDASAN TEORI 21 Analisis Komponen Utama 211 Pengantar Analisis Komponen Utama (AKU, Principal Componen Analysis) bermula dari tulisan Karl Pearson pada tahun 1901 untuk peubah non-stokastik Analisis

Lebih terperinci

PERAMALAN DATA NILAI EKSPOR NON MIGAS INDONESIA KE WILAYAH ASEAN MENGGUNAKAN MODEL EGARCH

PERAMALAN DATA NILAI EKSPOR NON MIGAS INDONESIA KE WILAYAH ASEAN MENGGUNAKAN MODEL EGARCH PERAMALAN DATA NILAI EKSPOR NON MIGAS INDONESIA KE WILAYAH ASEAN MENGGUNAKAN MODEL EGARCH, Universitas Negeri Malang E-mail: die_gazeboy24@yahoo.com Abstrak: Penelitian ini bertujuan untuk mengetahui model

Lebih terperinci

VARIABEL BEBAS DAN VARIABEL TERIKAT. Oleh : Amin Budiamin

VARIABEL BEBAS DAN VARIABEL TERIKAT. Oleh : Amin Budiamin VARIABEL BEBAS DAN VARIABEL TERIKAT Oleh : Amin Budiamin Capter 12 Mendesain dan Mengevaluasi Variabel Bebas Cepter 13 Mendesain atau Memilih Variabel Terikat Mendesain dan Mengevaluasi Variabel Bebas

Lebih terperinci

SOAL UJIAN NASIONAL. PROGRAM STUDI IPA ( kode P 45 ) TAHUN PELAJARAN 2008/2009

SOAL UJIAN NASIONAL. PROGRAM STUDI IPA ( kode P 45 ) TAHUN PELAJARAN 2008/2009 SOAL UJIAN NASIONAL PROGRAM STUDI IPA ( kode P 4 ) TAHUN PELAJARAN 8/9. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh

Lebih terperinci

PERBANDINGAN ANALISIS VARIANSI DENGAN ANALISIS KOVARIANSI DALAM RANCANGAN PETAK-PETAK TERBAGI PADA RANCANGAN ACAK KELOMPOK DENGAN DATA HILANG

PERBANDINGAN ANALISIS VARIANSI DENGAN ANALISIS KOVARIANSI DALAM RANCANGAN PETAK-PETAK TERBAGI PADA RANCANGAN ACAK KELOMPOK DENGAN DATA HILANG PERBANDINGAN ANALISIS VARIANSI DENGAN ANALISIS KOVARIANSI DALAM RANCANGAN PETAKPETAK TERBAGI PADA RANCANGAN ACAK KELOMPOK DENGAN DATA HILANG Sri Wahyuningsih R 1, Anisa 2, Raupong ABSTRAK Analisis variansi

Lebih terperinci

Catatan Kuliah KALKULUS II BAB V. INTEGRAL

Catatan Kuliah KALKULUS II BAB V. INTEGRAL BAB V. INTEGRAL Anti-turunan dan Integral TakTentu Persamaan Diferensial Sederhana Notasi Sigma dan Luas Daerah di Bawah Kurva Integral Tentu Teorema Dasar Kalkulus Sifat-sifat Integral Tentu Lebih Lanjut

Lebih terperinci

SILABUS INDIKATOR MATERI PEMBELAJARAN KEGIATAN PEMBELAJARAN PENILAIAN KHARAKTER

SILABUS INDIKATOR MATERI PEMBELAJARAN KEGIATAN PEMBELAJARAN PENILAIAN KHARAKTER SILABUS NAMA SEKOLAH : SMK Negeri 1 Surabaya MATA PELAJARAN : MATEMATIKA (Kelompok Teknologi Informasi) KELAS / SEMESTER : X / 1 STANDAR : Memecahkan masalah berkaitan dengan konsep operasi bilangan riil

Lebih terperinci

Suku Banyak. A. Pengertian Suku Banyak B. Menentukan Nilai Suku Banyak C. Pembagian Suku Banyak D. Teorema Sisa E. Teorema Faktor

Suku Banyak. A. Pengertian Suku Banyak B. Menentukan Nilai Suku Banyak C. Pembagian Suku Banyak D. Teorema Sisa E. Teorema Faktor Bab 5 Sumber: www.in.gr Setelah mempelajari bab ini, Anda harus mampu menggunakan konsep, sifat, dan aturan fungsi komposisi dalam pemecahan masalah; menggunakan konsep, sifat, dan aturan fungsi invers

Lebih terperinci

Beberapa Benda Ruang Yang Beraturan

Beberapa Benda Ruang Yang Beraturan Beberapa Benda Ruang Yang Beraturan Kubus Tabung rusuk kubus = a volume = a³ panjang diagonal bidang = a 2 luas = 6a² panjang diagonal ruang = a 3 r = jari-jari t = tinggi volume = π r² t luas = 2πrt Prisma

Lebih terperinci

POPULASI, SAMPLING DAN BESAR SAMPEL

POPULASI, SAMPLING DAN BESAR SAMPEL POPULASI, SAMPLING DAN BESAR SAMPEL Didik Budijanto Pusdatin Kemkes RI Alur Berpikir dalam Metodologi Research: Masalah Identifikasi Mslh [ Batasan ] Rumusan Masalah - Tujuan Penelitian/ Manfaat Tinjauan

Lebih terperinci

Macam-macam fungsi. Fungsi Polinomial. Fungsi Linier. Grafik Fungsi Linier. Fungsi

Macam-macam fungsi. Fungsi Polinomial. Fungsi Linier. Grafik Fungsi Linier. Fungsi Fungsi Macam-macam fungsi Polinomial (sampai dengan derajat 2) Akar kuadrat Rasional Ekponensial Logaritma Fungsi Polinomial Bentuk Umum: f (x) = a 0 + a 1 x + a 2 x 2 + + a n x n, dengan a 0, a 1, a 2,

Lebih terperinci

! "#$"# "%& '(&) *)+ )"$*& ***,-. / 0 + ' / 01. 1 + 2 / 3-, + / 33 3 + ' / 4- - / 13 4 $ */ 1, 5 ( / 01. % / 00 6 $ + ' / 4

! #$# %& '(&) *)+ )$*& ***,-. / 0 + ' / 01. 1 + 2 / 3-, + / 33 3 + ' / 4- - / 13 4 $ */ 1, 5 ( / 01. % / 00 6 $ + ' / 4 BAB 4 METODE PENELITIAN 4.1. Rancangan Penelitian Penelitian ini termasuk jenis penelitian eksplanatori, yang bertujuan untuk menjelaskan pengaruh tingkat kecerdasan emosi dan sikap pada budaya organisasi

Lebih terperinci

BAB V PEMBAHASAN DAN DISKUSI HASIL PENELITIAN. Pada BAB V ini, peneliti akan membahas hasil penelitian dan diskusi hasil

BAB V PEMBAHASAN DAN DISKUSI HASIL PENELITIAN. Pada BAB V ini, peneliti akan membahas hasil penelitian dan diskusi hasil 67 BAB V PEMBAHASAN DAN DISKUSI HASIL PENELITIAN Pada BAB V ini, peneliti akan membahas hasil penelitian dan diskusi hasil penelitian. Pembahasan hasil penelitian berdasarkan deskripsi data tentang strategi

Lebih terperinci

BAB III PD LINIER HOMOGEN

BAB III PD LINIER HOMOGEN BAB III PD LINIER HOMOGEN Kompetensi Mahasiswa diharapkan. Mampu menentukan selesaian umum dari PD linier homogen orde dua dengan jenis akarakar karakteristik yang berbeda-beda. Memahami pengertian kebebaslinieran

Lebih terperinci

Aplikasi System Dynamic pada Model Perhitungan Indikator Millennium Development Goals (MDGs)

Aplikasi System Dynamic pada Model Perhitungan Indikator Millennium Development Goals (MDGs) 45 Aplikasi System Dynamic pada Model Perhitungan Indikator Millennium Development Goals (MDGs) A Mufti Kepala Bagian Data & Informasi Kantor Utusan Khusus Presiden Republik Indonesia untuk Millennium

Lebih terperinci

MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI EKSPONENSIAL SKRIPSI

MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI EKSPONENSIAL SKRIPSI MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI EKSPONENSIAL SKRIPSI Oleh : WINDA FAATI KARTIKA J2E 006 039 PRODI STATISTIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

KERANGKA ISI LAPORAN PENELITIAN

KERANGKA ISI LAPORAN PENELITIAN KERANGKA ISI LAPORAN PENELITIAN 1) JUDUL, Pernyataan mengenai maksud penulisan laporan penelitian 2) Nama dan tim peneliti 3) KATA PENGANTAR 4) ABSTRAK 5) DAFTAR ISI 6) DAFTAR TABEL 7) DAFTAR GAMBAR 8)

Lebih terperinci

BAB 2 FUNGSI MEAN RESIDUAL LIFE

BAB 2 FUNGSI MEAN RESIDUAL LIFE BB 2 FUNGSI MEN RESIDUL LIFE 2. Sifat-Sifat Peluang 2.. Identitas dasar Pertama akan ditunjukkan sebuah hubungan dasar di antara fungsi survival dan momen dari distribusi. Untuk sebuah random variabel

Lebih terperinci

Melukis Grafik Fungsi yang Rumit dengan Mudah

Melukis Grafik Fungsi yang Rumit dengan Mudah Kaunia, Vol. IX, No. 2, Oktober 2013 Melukis Grafik Fungsi yang Rumit dengan Mudah Faiz Ahyaningsih Dosen FMIPA Matematika UNIMED Abstract This paper aim how to sketch the complicated curve y = f(x) easily.

Lebih terperinci

BAB 2. TINJAUAN PUSTAKA

BAB 2. TINJAUAN PUSTAKA DAFTAR ISI Sampul Depan... i Sampul Dalam... ii Prasyarat Gelar... iii Persetujuan... iv Penetapan Panitia... v Ucapan Terima Kasih... viii Ringkasan... x Summary... xiii Abstract... xiv DAFTAR ISI...

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Jenis Penelitian Jenis penelitian ini adalah penelitian pra eksperimental yaitu jenis penelitian yang belum merupakan eksperimen sungguh-sungguh karena masih terdapat variabel

Lebih terperinci

Tablet I x Tablet II y Batasan Vitamin A 5 10 Minimal 20 Vitamin B 3 1 Minimal 5 Harga/Biji 4 8

Tablet I x Tablet II y Batasan Vitamin A 5 10 Minimal 20 Vitamin B 3 1 Minimal 5 Harga/Biji 4 8 2. Program Linier a. Defenisi Program linier adalah metode untuk mendapatkan penyelesaian optimum dari suatu fungsi sasaran yang mengandung kendala atau batasan yang dapat dibuat dalam bentuk sistem pertidaksamaan

Lebih terperinci

BAB IV ANALISIS DATA. dengan menggunakan bantuan program SPSS, sebagaimana telah diketahui

BAB IV ANALISIS DATA. dengan menggunakan bantuan program SPSS, sebagaimana telah diketahui BAB IV ANALISIS DATA A. Pengujian Hipotesis Sebelum menjabarkan tentang analisis data dalam bentuk perhitungan dengan menggunakan bantuan program SPSS, sebagaimana telah diketahui hipotesapenelitian sebagai

Lebih terperinci

Representasi Ruang Sinyal

Representasi Ruang Sinyal Representasi Ruang Sinyal Galdita A. Chulafak, 33024-TI Aditya Rizki Yudiantika, 33045-TI Udi Hartono, 33317-TI Jurusan Teknik Elektro dan Teknologi Informasi, Fakultas Teknik UGM, Yogyakarta Bab ini mendiskusikan

Lebih terperinci

MODUL REGRESI LINIER SEDERHANA

MODUL REGRESI LINIER SEDERHANA MODUL REGRESI LINIER SEDERHANA Tujuan Praktikum: Membantu mahasiswa memahami materi Pegambilan keputusan dari suatu kasus dengan menggunakan kaidah dan persamaan I. Pendahuluan Di dalam analisa ekonomi

Lebih terperinci

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN 2008 MATEMATIKA NON-TEKNOLOGI SESI 1 (PILIHAN GANDA DAN ISIAN SINGKAT) WAKTU : 120 MENIT

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN 2008 MATEMATIKA NON-TEKNOLOGI SESI 1 (PILIHAN GANDA DAN ISIAN SINGKAT) WAKTU : 120 MENIT OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN 2008 MATEMATIKA NON-TEKNOLOGI SESI (PILIHAN GANDA DAN ISIAN SINGKAT) WAKTU : 20 MENIT I. Soal Pilihan Ganda, ada 0 soal dalam test ini. Petunjuk

Lebih terperinci

oleh: Tri Budi Santoso Signal Processing Group Electronic Engineering Polytechnic Institute of Surabaya-ITS

oleh: Tri Budi Santoso Signal Processing Group Electronic Engineering Polytechnic Institute of Surabaya-ITS Dasar Statistik untuk Pemodelan dan Simulasi oleh: Tri Budi Santoso Signal Processing Group Electronic Engineering Polytechnic Institute of Surabaya-ITS . Probabilitas Probabilitas=Peluang, bisa diartikan

Lebih terperinci

Model Matematika dari Sistem Dinamis

Model Matematika dari Sistem Dinamis Model Matematika dari Sistem Dinamis September 2012 () Model Matematika dari Sistem Dinamis September 2012 1 / 60 Pendahuluan Untuk analisis dan desain sistem kontrol, sistem sis harus dibuat model sisnya.

Lebih terperinci

Dasar Pemrograman. Kondisi dan Perulangan. By : Hendri Sopryadi, S.Kom, M.T.I

Dasar Pemrograman. Kondisi dan Perulangan. By : Hendri Sopryadi, S.Kom, M.T.I Dasar Pemrograman Kondisi dan Perulangan By : Hendri Sopryadi, S.Kom, M.T.I Kondisi dan Perulangan Pendahuluan Dalam sebuah proses program, biasanya terdapat kode penyeleksian kondisi, kode pengulangan

Lebih terperinci

BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI

BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI LAMPIRAN 5 BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI Laporan 2 Pelaksanaan OSN-PERTAMINA 2012 69 Olimpiade Sains Nasional Pertamina 2012 Petunjuk : 1. Tuliskan secara lengkap Nama, Nomor

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas teori yang berkaitan dengan pemrosesan data untuk sistem pengenalan gender pada skripsi ini, meliputi cropping dan resizing ukuran citra, konversi citra

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang. Aktivitas fisik merupakan pergerakan tubuh yang dihasilkan oleh otot rangka

BAB I PENDAHULUAN. A. Latar Belakang. Aktivitas fisik merupakan pergerakan tubuh yang dihasilkan oleh otot rangka 1 BAB I PENDAHULUAN A. Latar Belakang Aktivitas fisik merupakan pergerakan tubuh yang dihasilkan oleh otot rangka yang memerlukan pengeluaran energi (WHO, 2011). Menurut Departemen Kesehatan RI (2007),

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Untuk SMA/MA Kelas X Mata Pelajaran : Matematika (Wajib) Penerbit dan Percetakan Jl. Tengah No. 37, Bumi Asri Mekarrahayu Bandung-40218 Telp. (022) 5403533 e-mail:srikandiempat@yahoo.co.id

Lebih terperinci

Ekonometrika Deret Waktu: Teori dan Aplikasi

Ekonometrika Deret Waktu: Teori dan Aplikasi Ekonometrika Deret Waktu: Teori dan Aplikasi Bambang Juanda, Junaidi Ekonometrika telah berkembang cukup pesat dalam 15 tahun terakhir,terutama dalam bidang analisis data deret waktu (time series ), termasuk

Lebih terperinci

MENGHITUNG NILAI RATA-RATA SUATU DISTRIBUSI DATA

MENGHITUNG NILAI RATA-RATA SUATU DISTRIBUSI DATA MENGHITUNG NILAI RATA-RATA SUATU DISTRIBUSI DATA AMIYELLA ENDISTA SKG.MKM Email : amiyella.endista@yahoo.com Website : www.berandakami.wordpress.com Perhitungan Nilai Gejala Pusat Mean Median Modus Range

Lebih terperinci

pengumpulan data penelitian Kelompok Ilmiah Remaja (KIR) Delayota Experiment Team (D Expert) 2012

pengumpulan data penelitian Kelompok Ilmiah Remaja (KIR) Delayota Experiment Team (D Expert) 2012 pengumpulan data penelitian Kelompok Ilmiah Remaja (KIR) Delayota Experiment Team (D Expert) 2012 Variabel: suatu objek yang dapat memiliki lebih dari satu nilai. Contoh variabel: Jenis kelamin: ada dua

Lebih terperinci

PEMODELAN FREKUENSI NON SELECTIVE CHANNEL DENGAN EXTENDED SUZUKI PROSES TIPE II

PEMODELAN FREKUENSI NON SELECTIVE CHANNEL DENGAN EXTENDED SUZUKI PROSES TIPE II PEMODELAN FREKUENSI NON SELECTIVE CHANNEL DENGAN EXTENDED SUZUKI PROSES TIPE II Hendro S / 0422055 Jurusan Teknik Elektro, Fakultas Teknik, Univeristas Kristen Maranatha Jln. Prof. Drg. Suria Sumantri

Lebih terperinci

REGRESI LINIER OLEH: JONATHAN SARWONO

REGRESI LINIER OLEH: JONATHAN SARWONO REGRESI LINIER OLEH: JONATHAN SARWONO 1.1 Pengertian Apa yang dimaksud dengan regresi linier? Istilah regresi pertama kali dalam konsep statistik digunakan oleh Sir Francis Galton dimana yang bersangkutan

Lebih terperinci

Mahasiswa memahami konsep gerak parabola, jenis gerak parabola, emnganalisa dan membuktikan secara matematis gerak parabola

Mahasiswa memahami konsep gerak parabola, jenis gerak parabola, emnganalisa dan membuktikan secara matematis gerak parabola BAB 6. Gerak Parabola Tujuan Umum Mahasiswa memahami konsep gerak parabola, jenis gerak parabola, emnganalisa dan membuktikan secara matematis gerak parabola Tujuan Khusus Mahasiswa dapat memahami tentang

Lebih terperinci

BAB 5 KOMPONEN DASAR SISTEM KONTROL

BAB 5 KOMPONEN DASAR SISTEM KONTROL BAB 5 KOMPONEN ASAR SISTEM KONTROL 5. SENSOR AN TRANSMITER Sensor: menghasilkan fenomena, mekanik, listrik, atau sejenisnya yang berhubungan dengan variabel proses yang diukur. Trasmiter: mengubah fenomena

Lebih terperinci

MODEL PEMANENAN LOGISTIK DENGAN DAYA DUKUNG BERGANTUNG WAKTU

MODEL PEMANENAN LOGISTIK DENGAN DAYA DUKUNG BERGANTUNG WAKTU Jurnal Matematika UNAND Vol. 1 No. 2 Hal. 60 65 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND MODEL PEMANENAN LOGISTIK DENGAN DAYA DUKUNG BERGANTUNG WAKTU JOKO ALVENDAR, AHMAD IQBAL BAQI Program Studi

Lebih terperinci

SILABUS MATA PELAJARAN MATEMATIKA KELAS VII SEKOLAH MENENGAH PERTAMA/MADRASAH TSANAWIYAH KURIKULUM 2013

SILABUS MATA PELAJARAN MATEMATIKA KELAS VII SEKOLAH MENENGAH PERTAMA/MADRASAH TSANAWIYAH KURIKULUM 2013 SILABUS MATA PELAJARAN MATEMATIKA KELAS VII SEKOLAH MENENGAH PERTAMA/MADRASAH TSANAWIYAH KURIKULUM 2013 SILABUS MATA PELAJARAN MATEMATIKA SEKOLAH MENENGAH PERTAMA/ MADRASAH TSANAWIYAH KELAS VII KURIKULUM

Lebih terperinci

syarat tertentu yang diberikan. Atau bisa juga diartikan sebagai lintasan dari sebuah

syarat tertentu yang diberikan. Atau bisa juga diartikan sebagai lintasan dari sebuah 2 Tempat Kedudukan dan Persamaan 2.1. Tempat Kedudukan Tempat kedudukan (locus) adalah himpunan titik-titik yang memenuhi suatu syarat tertentu yang diberikan. Atau bisa juga diartikan sebagai lintasan

Lebih terperinci

Cara Pengacakan. Lina Marliani J-PAL SEA

Cara Pengacakan. Lina Marliani J-PAL SEA Cara Pengacakan Lina Marliani J-PAL SEA Ikhtisar Pelatihan 1. Apa yang dimaksud dengan evaluasi? Mengapa Mengevaluasi? 2. Mengapa melakukan pengacakan? 3. Cara pengacakan 4. Kendala dan Tantangan 5. Evaluasi

Lebih terperinci

TERAPAN POHON BINER 1

TERAPAN POHON BINER 1 TERAPAN POHON BINER 1 Terapan pohon biner di dalam ilmu komputer sangat banyak, diantaranya : 1. Pohon ekspresi 2. Pohon keputusan 3. Kode Prefiks 4. Kode Huffman 5. Pohon pencarian biner 2 Pohon Ekspresi

Lebih terperinci

POPULASI DAN SAMPEL. Gambar 1 POPULASI dan SAMPEL

POPULASI DAN SAMPEL. Gambar 1 POPULASI dan SAMPEL Pengertian Populasi dan Sampel POPULASI DAN SAMPEL Kata populasi (population/universe) dalam statistika merujuk pada sekumpulan individu dengan karakteristik khas yang menjadi perhatian dalam suatu penelitian

Lebih terperinci

BAB III EFEK GAMBAR PADA GIIMP

BAB III EFEK GAMBAR PADA GIIMP BAB III EFEK GAMBAR PADA GIIMP STANDARD KOMPETENSI Menggunakan perangkat lunak pembuat grafis bitmap dan vektor. KOMPETENSI DASAR Membuat dan mengedit gambar bitmap. Filters 1. Blur 2. Color 3. Noise 4.

Lebih terperinci

Matematika Lanjut 1. Sistem Persamaan Linier Transformasi Linier. Matriks Invers. Ruang Vektor Matriks. Determinan. Vektor

Matematika Lanjut 1. Sistem Persamaan Linier Transformasi Linier. Matriks Invers. Ruang Vektor Matriks. Determinan. Vektor Matematika Lanjut 1 Vektor Ruang Vektor Matriks Determinan Matriks Invers Sistem Persamaan Linier Transformasi Linier 1 Dra. D. L. Crispina Pardede, DE. Referensi [1]. Yusuf Yahya, D. Suryadi. H.S., gus

Lebih terperinci

ARTIKEL CONTOH PENERAPAN MODEL PEMBELAJARAN BERBASIS MASALAH MATEMATIKA SMP KELAS VII

ARTIKEL CONTOH PENERAPAN MODEL PEMBELAJARAN BERBASIS MASALAH MATEMATIKA SMP KELAS VII ARTIKEL CONTOH PENERAPAN MODEL PEMBELAJARAN BERBASIS MASALAH MATEMATIKA SMP KELAS VII Oleh Adi Wijaya, S.Pd, MA PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN (PPPPTK) MATEMATIKA

Lebih terperinci

Kata Kunci : Jaringan Jalan, Metoda Penilaian Kualitas, Teori Graf, Konektivitas. ISBN No. 978-979-18342-0-9 C-146

Kata Kunci : Jaringan Jalan, Metoda Penilaian Kualitas, Teori Graf, Konektivitas. ISBN No. 978-979-18342-0-9 C-146 PENGGUNAAN KONSEP KONEKTIVITAS TEORI GRAF SEBAGAI PIJAKAN BAGI UPAYA PENYUSUNAN METODA PENILAIAN KUALITAS JARINGAN JALAN PRIMER Hitapriya Suprayitno Jurusan Teknik Sipil. Institut Teknologi Sepuluh Nopember

Lebih terperinci

Distribusi Normal. Statistika (MAM 4137) Syarifah Hikmah JS

Distribusi Normal. Statistika (MAM 4137) Syarifah Hikmah JS Distribusi Normal Statistika (MAM 4137) Syarifah Hikmah JS Outline Kurva normal Luas daerah di bawah kurva normal Penerapan sebaran normal DISTRIBUSI NORMAL model distribusi kontinyu yang paling penting

Lebih terperinci

a. Ruang Sampel dan Titik Sampel Dalam himpunan ruang sampel disebut Semesta S = 1, 2, 3, 4,5, 6

a. Ruang Sampel dan Titik Sampel Dalam himpunan ruang sampel disebut Semesta S = 1, 2, 3, 4,5, 6 1. Kejadian a. Ruang Sampel dan Titik Sampel Ruang Sampel adalah himpunan dari semua hasil yang mungkin dari suatu kegiatan Contoh : Kegiatan melempar sebuah dadu hasil atau angka yang mungkin muncul adalah

Lebih terperinci

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian :

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian : 1. Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm C. 26 cm B. 52 cm D. 13 cm 2. Gambar disamping adalah persegi panjang. Salah satu sifat persegi panjang adalah

Lebih terperinci

BAB II VEKTOR DAN GERAK DALAM RUANG

BAB II VEKTOR DAN GERAK DALAM RUANG BAB II VEKTOR DAN GERAK DALAM RUANG 1. KOORDINAT CARTESIUS DALAM RUANG DIMENSI TIGA SISTEM TANGAN KANAN SISTEM TANGAN KIRI RUMUS JARAK,,,, 16 Contoh : Carilah jarak antara titik,, dan,,. Solusi :, Persamaan

Lebih terperinci

PEMBELAJARAN BANGUN RUANG (1)

PEMBELAJARAN BANGUN RUANG (1) H. SufyaniPrabawant, M. Ed. Bahan Belajar Mandiri 5 PEMBELAJARAN BANGUN RUANG (1) Pendahuluan Bahan belajar mandiri ini menyajikan pembelajaran bangun-bangun ruang dan dibagi menjadi dua kegiatan belajar.

Lebih terperinci

Wahyu Setyawan. Pendahuluan. Lisensi Dokumen: Abstrak. Wahyu.gtx21@gmail.com http://wahyu-setyawan.blogspot.com

Wahyu Setyawan. Pendahuluan. Lisensi Dokumen: Abstrak. Wahyu.gtx21@gmail.com http://wahyu-setyawan.blogspot.com Uji Korelasi Wahyu Setyawan Wahyu.gtx1@gmail.com http://wahyu-setyawan.blogspot.com Lisensi Dokumen: m Seluruh dokumen di StatistikaPendidikan.Com dapat digunakan, dimodifikasi dan disebarkan secara bebas

Lebih terperinci

STATISTIKA DASAR. Oleh : Y. BAGUS WISMANTO

STATISTIKA DASAR. Oleh : Y. BAGUS WISMANTO STATISTIKA DASAR Oleh : Y. BAGUS WISMANTO FAKULTAS PSIKOLOGI UNIVERSITAS KATOLIK SOEGIJAPRANATA SEMARANG 007 DAFTAR ISI Halaman I. PENDAHULUAN A. Apa Statistika Itu? B. Pentingnya Penguasaan terhadap Statistika

Lebih terperinci

Outline 0 PENDAHULUAN 0 TAHAPAN PENGEMBANGAN MODEL 0 SISTEM ASUMSI 0 PENDEKATAN SISTEM

Outline 0 PENDAHULUAN 0 TAHAPAN PENGEMBANGAN MODEL 0 SISTEM ASUMSI 0 PENDEKATAN SISTEM Outline 0 PENDAHULUAN 0 TAHAPAN PENGEMBANGAN MODEL 0 SISTEM ASUMSI 0 PENDEKATAN SISTEM Pendahuluan 0 Salah satu dasar utama untuk mengembangkan model adalah guna menemukan peubah-peubah apa yang penting

Lebih terperinci

Proses Pembentukan dan Karakteristik Sinyal Ucapan

Proses Pembentukan dan Karakteristik Sinyal Ucapan Proses Pembentukan dan Karakteristik Sinyal Ucapan Oleh : Arry Akhmad Arman Dosen dan Peneliti di Departemen Teknik Elektro ITB email : aa@lss.ee.itb.ac.id, aa_arman@rocketmail.com 2.5.1 Sistem Pembentukan

Lebih terperinci

UN SMA IPA 2010 Matematika

UN SMA IPA 2010 Matematika UN SMA IPA 00 Matematika Kode Soal P0 Doc. Name: UNSMAIPA00MATP0 Doc. Version : 0-0 halaman 0. Akar-akar persamaan kuadrat x² + (a - ) x + =0 adalah α dan β. Jika a > 0 maka nilai a =. 8 x 0. Diketahui

Lebih terperinci

SISTEM PERAMALAN PERSEDIAAN UNIT MOBIL MITSUBISHI PADA PT. SARDANA INDAH BERLIAN MOTOR DENGAN MENGGUNAKAN METODE EXPONENTIAL SMOOTHING

SISTEM PERAMALAN PERSEDIAAN UNIT MOBIL MITSUBISHI PADA PT. SARDANA INDAH BERLIAN MOTOR DENGAN MENGGUNAKAN METODE EXPONENTIAL SMOOTHING SISTEM PERAMALAN PERSEDIAAN UNIT MOBIL MITSUBISHI PADA PT. SARDANA INDAH BERLIAN MOTOR DENGAN MENGGUNAKAN METODE EXPONENTIAL SMOOTHING Afni Sahara (0911011) Mahasiswa Program Studi Teknik Informatika,

Lebih terperinci

RISIKO AUDIT DAN MATERIALITAS DALAM PELAKSANAAN AUDIT

RISIKO AUDIT DAN MATERIALITAS DALAM PELAKSANAAN AUDIT SA Seksi 312 RISIKO AUDIT DAN MATERIALITAS DALAM PELAKSANAAN AUDIT Sumber: PSA No. 25 PENDAHULUAN 01 Seksi ini memberikan panduan bagi auditor dalam mempertimbangkan risiko dan materialitas pada saat perencanaan

Lebih terperinci

DAFTAR ISI LEMBAR PENGESAHAN PERNYATAAN KEASLIAN SKRIPSI ABSTRAK ABSTRACT KATA PENGANTAR UCAPAN TERIMA KASIH

DAFTAR ISI LEMBAR PENGESAHAN PERNYATAAN KEASLIAN SKRIPSI ABSTRAK ABSTRACT KATA PENGANTAR UCAPAN TERIMA KASIH DAFTAR ISI LEMBAR PENGESAHAN PERNYATAAN KEASLIAN SKRIPSI ABSTRAK ABSTRACT KATA PENGANTAR i UCAPAN TERIMA KASIH ii DAFTAR ISI iv DAFTAR TABEL vii DAFTAR GAMBAR ix BAB I PENDAHULUAN 1.1 Latar Belakang Penelitian

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Teori dan Fungsi Produksi Produksi sering diartikan sebagai penciptaan guna, yaitu kemampuan barang dan jasa untuk memenuhi kebutuhan manusia.produksi dalam hal ini mencakup

Lebih terperinci

MODEL PEMILIHAN MODA ANTARA ANGKUTAN UMUM DAN SEPEDA MOTOR UNTUK MAKSUD KERJA. Karnawan Joko Setyono. Jurusan Teknik Sipil Politeknik Negeri Semarang

MODEL PEMILIHAN MODA ANTARA ANGKUTAN UMUM DAN SEPEDA MOTOR UNTUK MAKSUD KERJA. Karnawan Joko Setyono. Jurusan Teknik Sipil Politeknik Negeri Semarang MODEL PEMILIHAN MODA ANTARA ANGKUTAN UMUM DAN SEPEDA MOTOR UNTUK MAKSUD KERJA Abstract Karnawan Joko Setyono Jurusan Teknik Sipil Politeknik Negeri Semarang The objectives of this research are to calibrate

Lebih terperinci

BAB I PENDAHULUAN. Jalan raya Cibarusah Cikarang, Kabupaten Bekasi merupakan jalan kolektor

BAB I PENDAHULUAN. Jalan raya Cibarusah Cikarang, Kabupaten Bekasi merupakan jalan kolektor BAB I PENDAHULUAN 1.1 Latar Belakang Jalan raya Cibarusah Cikarang, Kabupaten Bekasi merupakan jalan kolektor primer yang menghubungkan antar Kecamatan di Bekasi sering diberitakan kerusakan yang terjadi

Lebih terperinci

DATA PREPROCESSING. Budi Susanto (versi 1.2)

DATA PREPROCESSING. Budi Susanto (versi 1.2) DATA PREPROCESSING Budi Susanto (versi 1.2) Kenali Data Anda Atribut Data Memahami tipe atribut Membantu membetulkan data saat integrasi data Deskripsi Statistik Data Memudahkan untuk mengisi nilai yang

Lebih terperinci

Bab 9. Peluang Diskrit

Bab 9. Peluang Diskrit Bab 9. Peluang Diskrit Topik Definisi Peluang Diskrit Sifat Peluang Diskrit Probabilitas terbatas Konsep Teori Himpunan pada Peluang Diskrit Probabilitas Kejadian Majemuk A B dan A B DuaKejadianSalingLepas

Lebih terperinci

Syarat Perlu dan Cukup Struktur Himpunan Transformasi Linear Membentuk Semigrup Reguler 1

Syarat Perlu dan Cukup Struktur Himpunan Transformasi Linear Membentuk Semigrup Reguler 1 Syarat Perlu dan Cukup Struktur Himpunan Transformasi Linear Membentuk Semigrup Reguler Karyati Jurusan Pendidikan Matematika Universitas Negeri Yogyakarta E-mail: yatiuny@yahoocom Abstrak Pada kajian

Lebih terperinci

BAB II TINJAUAN PUSTAKA. barang dan jasa untuk memenuhi kebutuhan manusia. Produksi dalam hal ini

BAB II TINJAUAN PUSTAKA. barang dan jasa untuk memenuhi kebutuhan manusia. Produksi dalam hal ini BAB II TINJAUAN PUSTAKA 2.1. Teori dan Fungsi Produksi Produksi sering diartikan sebagai penciptaan guna, yaitu kemampuan barang dan jasa untuk memenuhi kebutuhan manusia. Produksi dalam hal ini mencakup

Lebih terperinci

Sebelum pembahasan tentang invers matriks lebih lanjut, kita bahas dahulu beberapa pengertian-pengertian berikut ini.

Sebelum pembahasan tentang invers matriks lebih lanjut, kita bahas dahulu beberapa pengertian-pengertian berikut ini. . INVERS MTRIKS Sebelum pembahasan tentang invers matriks lebih lanjut, kita bahas dahulu beberapa pengertian-pengertian berikut ini. a. RNK MTRIKS Matriks tak nol dikatakan mempunyai rank r jika paling

Lebih terperinci

Bab 15. Interaksi antar dua spesies (Model Kerjasama)

Bab 15. Interaksi antar dua spesies (Model Kerjasama) Bab 15. Interaksi antar dua spesies (Model Kerjasama) Dalam hal ini diberikan dua spesies yang hidup bersama dalam suatu habitat tertutup. Kita ketahui bahwa terdapat beberapa jenis hubungan interaksi

Lebih terperinci

Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... A. 4

Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... A. 4 1. Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... A. 4 D. (8-2 ) cm B. (4 - ) cm E. (8-4 ) cm C. (4-2 ) cm Jawaban : E Diketahui segitiga sama kaki = AB = AC Misalkan : AB = AC = a

Lebih terperinci