Model-model Variogram

Ukuran: px
Mulai penontonan dengan halaman:

Download "Model-model Variogram"

Transkripsi

1 Model-model Variogram Sebuah model matematika harus disesuaikan pada variogram, sebelum variogram dapat dipakai dalam estimasi. Variogram yang dipilih harus memenuhi suatu kondisi tertentu. Kekeliruan dalam memilih variogram dapat menyebabkan terjadinya variansi negatif. Variansi dari kombinasi linier Estimator-estimator, biasanya merupakan kombinasi linier (rata-rata dengan pemberatan) sehingga perlu dihitung variansinya. Diketahui variabel stasioner Z(x) dengan kovariansi C(h) Kombinasi linier Z adalah Z = λ i Z(x i ) i Typeset by FoilTEX 1

2 dengan λ i adalah pembobotan dan x i adalah lokasi-lokasi sampel. Perdefinisi, variansinya adalah Var(Z ) = E (Z E(Z )) 2 Bila nilai menengah Z(x) adalah m, maka E(Z ) = m λ i. i Sehingga Var(Z ) = E ( i ) 2 λ i (Z(x i ) m) = λ 2 1 C(x 1 x 1 ) + λ 2 2 C(x 2 x 2 ) λ 2 n C(x n x n ) +2λ 1 λ 2 C(x 1 x 2 ) λ n 1 λ n C(x n 1 x n ) atau Var(Z ) = λ i λ j C(x i x j ) i j Nilai Var(Z ) ini harus positif berapapun titik maupun pembobotannya. fungsi C(h) yang memenuhi kondisi ini disebut definit positif. Typeset by FoilTEX 2

3 Situasi berbeda bila muncul kasus variabel intrinsik tetapi tidak stasioner dimana variansi untuk kombinasi linier antara (arbitrary) tidak harus ada. Tetapi, variansi pasti ada untuk kombinasi linier perubahan (x i x j ). Kombinasi disebut admissible bila jumlah dari pembobotannya adalah nol. λi = 0 Setiap kombinasi linier dari penubahan akan memenuhi kondisi ini karena setiap perubahan tunggal melibatkan bobot -1 dan +1. Sebaliknya juga, setiap kombinasi yang memenuhi kondisi ini dapat ditulis sebagai satu kombinasi linier perubahan. Karena kovariansi tidak perlu muncul dalam fungsi acak intrinsik, maka rumusan harus ditulis dalam bentuk variogram Typeset by FoilTEX 3

4 ) Var( λi Z(x i ) = λ i λ j γ(x i x j ) karena variansi ini harus non-negatif, maka model variogram harus memenuhi kondisi: Untuk suatu himpunan titik-titik x 1, x 2,..., x n, suatu himpunan pembobotan λ 1, λ 2,..., λ n, sedemikian rupa sehingga λ i = 0 disyaratkan λ i λ j γ (x i x j ) 0 selanjutnya, λ ini disebut sebagai definit positif kondisional. Kondisi ini lebih lemah daripada kovariansi sebelumnya, yang harus mengakomodir semua bobot yang mungkin, karena kovariansi ini hanya harus mengakomodir himpunan bobot yang jumlahnya nol. konsekwensinya, kelas variogram admissible lebih kaya dibandingkan untuk kovariansi. Kovariogram ini mengandung variogram terbatas (bounded variogram) yang berhubungan dengan kovariansi dan juga yang tanpa batas yang Typeset by FoilTEX 4

5 tidak memiliki pasangan kovariansi. Kesimpulan: ada trade-off antara kedua hipotesa. Hipotesa intrinsik memperbolehkan penggunaan variogram dengan rentang lebar, tetapi jumlah pembobotan harus nol. Rentang model variogram admissible lebih terbatas untuk hipotesa stasioner tetapi dengan bobot berapa saja. Typeset by FoilTEX 5

6 Model-model admissible Karena cukup sulit untuk mengenali fungsi-fungsi yang memenuhi persyaratan di atas, maka yang paling mudah adalah memilih modelmodel variogram dari sejumlah rentang fungsi-fungsi yang cocok daripada membentuk sendiri. Beberapa model dapat saling dijumlahkan untuk memperoleh model admissible lain karena hal ini sama saja dengan penambahan fungsifungsi acak independen, tetapi pengurangan tidak diperbolehkan. Juga tidak bisa digabungkan sebagian. Sebuah fungsi dapat ditentukan negatif atau positif definitnya dengan menghitung tranformasi Fourier-nya. Typeset by FoilTEX 6

7 Model-model Variogram 1. Model Nugget (Nugget effect) { 0 h = 0 γ(h) C h > 0 Model ini berhubungan dengan fenomena yang murni acak (white noise) dengan tanpa-korelasi antar nilai-nilainya. 2. Model bola (Spherical model) ( ) 3 h C 2 a γ(h) 1 h 3 2 h < a a 3 C h 0 Typeset by FoilTEX 7

8 Merupakan model yang paling umum dipakai. Model ini menggunakan ekspresi polinomial yang sederhana dan bentuknya sesuai dengan berbagai jenis fenomena yang diamati: Satu pertumbuhan yang hampir linier sampai pada satu jarak tertentu, kemudian tercapai stabilitas. Garis singgung (tangen) pada titik asal (origin) berpotongan dengan sill pada satu titik dengan absis 2a Model eksponensial (Exponential model) ( ) γ(h) = C 1 e h a Range (a) praktis untuk model ini adalah 3a, karena nilai ini adalah jarak ketika nilai batas mencapai 95%. Garis singgung di titik asal memotong nilai sill pada satu titik dengan absis a. Dibandingkan dengan model spherical, model eksponensial pada awalnya meningkat lebih cepat tetapi hanya mengarah pada sill dan tidak betul-betul mencapai nilai tersebut. Typeset by FoilTEX 8

9 4. Fungsi pangkat (Power functions) γ(h) = C h α dengan 0 < α 2 model linier γ(h) = h adalah satu kasus khusus. 5. Model Gaussian (Gaussian model) ( «) γ(h) = C 1 e h 2 a 2 Range praktis adalah 1.73a. Model ini menggambarkan fenomena yang sangat kontinyu. Hasil eksperimen memperlihatkan bahwa ketidakstabilan secara numeris seringkali muncul bilamana digunakan tanpa efek nugget. 6. Model kubus (Cubic model) Typeset by FoilTEX 9

10 γ(h) r = h/a { C ( 7r r r ) r < 1 C yang lain Model ini memiliki sifat parabolik di titik asal dan secara umum mirip dengan model gaussian, kecuali bahwa model ini tidak diferensiabel secara tak terbatas, 7. Model efek lubang 2D (2D hole effect model) γ(h) = C ( 1 e ( r ) J 0 (2πr 2 ) ) dengan r = h/2, r 2 = h/λ, dan J 0 adalah fungsi Bessel. nilai λ mengatur magnitude efek lubang. 8. Model sinus Cardinal (Cardinal sine model) Typeset by FoilTEX 10

11 γ(h) = C ( 1 sin r r ) dengan r = h/a. Model ini termasuk model yang langka dengan sebuah efek lubang 3D, dan berhubungan dengan struktur yang kontinyu. 9. Model Prismato Model Prismato-magnetic ( ) 1 γ(h) = C 1 (1+r 2 ) 1.5 dengan r = h/a Model Prismato-gravimetric ( ) 1 γ(h) = C 1 (1+r 2 ) 0.5 dengan r = h/a Typeset by FoilTEX 11

12 Kedua model ini dipakai untuk memodelkan jenis data anomali gravimetris atau magnetik. Variogram-variogram eksperimental. gd4113-4c.tex Typeset by FoilTEX 12

BAB III PEMBAHASAN. Metode kriging digunakan oleh G. Matheron pada tahun 1960-an, untuk

BAB III PEMBAHASAN. Metode kriging digunakan oleh G. Matheron pada tahun 1960-an, untuk BAB III PEMBAHASAN 3.1. Kriging Metode kriging digunakan oleh G. Matheron pada tahun 1960-an, untuk menonjolkan metode khusus dalam moving average terbobot (weighted moving average) yang meminimalkan variansi

Lebih terperinci

BAB 2 LANDASAN TEORI. variabel untuk mengestimasi nilainya di masa yang akan datang. Peramalan Merupakan

BAB 2 LANDASAN TEORI. variabel untuk mengestimasi nilainya di masa yang akan datang. Peramalan Merupakan BAB 2 LANDASAN TEORI 2.1. Peramalan Peramalan adalah penggunaan data masa lalu dari sebuah variabel atau kumpulan variabel untuk mengestimasi nilainya di masa yang akan datang. Peramalan Merupakan bagian

Lebih terperinci

BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT

BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT Model fungsi transfer multivariat merupakan gabungan dari model ARIMA univariat dan analisis regresi berganda, sehingga menjadi suatu model yang mencampurkan pendekatan

Lebih terperinci

Hitung Perataan Kuadrat Terkecil (Least Squares Adjustment)

Hitung Perataan Kuadrat Terkecil (Least Squares Adjustment) Hitung Perataan Kuadrat Terkecil (Least Squares Adjustment) Metoda Kuadrat Terkecil adalah salah satu metoda yang paling populer dalam menyelesaikan masalah hitung perataan. Aplikasi pertama perataan kuadrat

Lebih terperinci

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f. Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan

Lebih terperinci

BAB 2 LANDASAN TEORI Pengertian Data Deret Berkala

BAB 2 LANDASAN TEORI Pengertian Data Deret Berkala BAB 2 LANDASAN TEORI 2.1. Pengertian Data Deret Berkala Suatu deret berkala adalah himpunan observasi yang terkumpul atau hasil observasi yang mengalami peningkatan waktu. Data deret berkala adalah serangkaian

Lebih terperinci

II TINJAUAN PUSTAKA. Geostatistik adalah metode statistik yang digunakan untuk melihat hubungan

II TINJAUAN PUSTAKA. Geostatistik adalah metode statistik yang digunakan untuk melihat hubungan 4 II TINJAUAN PUSTAKA 2.1 Geostatistik Geostatistik adalah metode statistik yang digunakan untuk melihat hubungan antar variabel yang diukur pada titik tertentu dengan variabel yang sama diukur pada titik

Lebih terperinci

Institut Manajemen Telkom

Institut Manajemen Telkom Institut Manajemen Telkom Osa Omar Sharif JENIS JENIS FUNGSI1 JENIS JENIS FUNGSI 2 Jenis Fungsi Gambar 1. FUNGSI POLINOM mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x 2

Lebih terperinci

ORDINARY KRIGING DALAM ESTIMASI CURAH HUJAN DI KOTA SEMARANG

ORDINARY KRIGING DALAM ESTIMASI CURAH HUJAN DI KOTA SEMARANG ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 3, Nomor 2, Tahun 2014, Halaman 151-159 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian ORDINARY KRIGING DALAM ESTIMASI CURAH HUJAN DI KOTA SEMARANG

Lebih terperinci

TINJAUAN PUSTAKA. Gunung Merapi

TINJAUAN PUSTAKA. Gunung Merapi 5 TINJAUAN PUSTAKA Gunung Merapi Gunung Merapi merupakan salah satu gunung api yang paling aktif di Indonesia. Merapi mempunyai ciri-ciri sebagai berikut (BPPTK). 1. Tipe : Strato-volcano 2. Petrologi

Lebih terperinci

ANALISIS DATA GEOSTATISTIK MENGGUNAKAN METODE ORDINARY KRIGING

ANALISIS DATA GEOSTATISTIK MENGGUNAKAN METODE ORDINARY KRIGING ANALISIS DATA GEOSTATISTIK MENGGUNAKAN METODE ORDINARY KRIGING Oleh: Wira Puspita (1) Dewi Rachmatin (2) Maman Suherman (2) ABSTRAK Geostatistika merupakan suatu jembatan antara statistika dan Geographic

Lebih terperinci

Turunan Fungsi. Penggunaan Konsep dan Aturan Turunan ; Penggunaan Turunan untuk Menentukan Karakteristik Suatu Fungsi

Turunan Fungsi. Penggunaan Konsep dan Aturan Turunan ; Penggunaan Turunan untuk Menentukan Karakteristik Suatu Fungsi 8 Penggunaan Konsep dan Aturan Turunan ; Penggunaan Turunan untuk Menentukan Karakteristik Suatu Fungsi ; Model Matematika dari Masala yang Berkaitan dengan ; Ekstrim Fungsi Model Matematika dari Masala

Lebih terperinci

PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI

PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI FUNGSI PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI PENGERTIAN FUNGSI Sebuah fungsi f dari himpunan A ke himpunan B adalah suatu aturan yang memasangkan setiap X anggota A dengan tepat

Lebih terperinci

S - 4 IDENTIFIKASI DATA RATA-RATA CURAH HUJAN PER-JAM DI BEBERAPA LOKASI

S - 4 IDENTIFIKASI DATA RATA-RATA CURAH HUJAN PER-JAM DI BEBERAPA LOKASI S - 4 IDENTIFIKASI DATA RATA-RATA CURAH HUJAN PER-JAM DI BEBERAPA LOKASI Astutik, S., Solimun, Widandi, Program Studi Statistika, Jurusan Matematika FMIPA, Universitas Brawiaya, Malang, Jurusan Teknik

Lebih terperinci

3.9 Fungsi Autokovariansi Proses Linear Stasioner

3.9 Fungsi Autokovariansi Proses Linear Stasioner 3.9. FUNGSI AUTOKOVARIANSI PROSES LINEAR STASIONER jika D(z) = a z kausal maka z = a > a < maka a j 0; j sehingga akan berhingga X t = h jε t j stasioner. 3.9 Fungsi Autokovariansi Proses Linear Stasioner

Lebih terperinci

TKS 4003 Matematika II. Nilai Ekstrim. (Extreme Values) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

TKS 4003 Matematika II. Nilai Ekstrim. (Extreme Values) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4003 Matematika II Nilai Ekstrim (Extreme Values) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan Jika diberikan suatu fungsi f dan daerah asal S seperti gambar di samping.

Lebih terperinci

PENAKSIRAN KANDUNGAN CADANGAN BAUKSIT DI DAERAH MEMPAWAH MENGGUNAKAN ORDINARY KRIGING DENGAN SEMIVARIOGRAM ANISOTROPIK PUTU JAYA ADNYANA WIDHITA

PENAKSIRAN KANDUNGAN CADANGAN BAUKSIT DI DAERAH MEMPAWAH MENGGUNAKAN ORDINARY KRIGING DENGAN SEMIVARIOGRAM ANISOTROPIK PUTU JAYA ADNYANA WIDHITA PENAKSIRAN KANDUNGAN CADANGAN BAUKSIT DI DAERAH MEMPAWAH MENGGUNAKAN ORDINARY KRIGING DENGAN SEMIVARIOGRAM ANISOTROPIK PUTU JAYA ADNYANA WIDHITA 0 3 0 3 0 1 0 3 0 3 UNIVERSITAS INDONESIA FAKULTAS MATEMATIKA

Lebih terperinci

BEBERAPA MACAM FUNGSI DALAM ALJABAR

BEBERAPA MACAM FUNGSI DALAM ALJABAR BEBEAA MACAM FUNGI DALAM ALJABA 1. Fungsi Komposisi Dari dua jenis fungsi f dan g kita dapat membentuk sebuah fungsi baru dengan menggunakan sistem operasi komposisi. operasi komposisi biasa dilambangkan

Lebih terperinci

II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan

II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Differential Equation Fungsi mendeskripsikan bahwa nilai variabel y ditentukan oleh nilai variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Distribusi Normal Salah satu distribusi frekuensi yang paling penting dalam statistika adalah distribusi normal. Distribusi normal berupa kurva berbentuk lonceng setangkup yang

Lebih terperinci

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang BAB II LANDASAN TEORI 2.1 Konsep Dasar Peluang Pada dasarnya statistika berkaitan dengan penyajian dan penafsiran hasil yang berkemungkinan (hasil yang belum dapat ditentukan sebelumnya) yang muncul dalam

Lebih terperinci

Analisis Regresi Spline Kuadratik

Analisis Regresi Spline Kuadratik Analisis Regresi Spline Kuadratik S 2 Oleh: Agustini Tripena Program Studi Matematika, Fakultas Sains dan Teknik, Univesitas Jenderal Soedirman, Purwokerto tripena1960@yahoo.co.id Abstrak Regresi spline

Lebih terperinci

Matematika Proyek Perintis I Tahun 1979

Matematika Proyek Perintis I Tahun 1979 Matematika Proyek Perintis I Tahun 979 MA-79-0 Irisan himpunan : A = { x x < } dan himpunan B = { x < x < 8 } ialah himpunan A. { x x < 8 } { x x < } { x < x < 8 } { x < x < } { x < x } MA-79-0 Apabila

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun oleh berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan,

Lebih terperinci

5 F U N G S I. 1 Matematika Ekonomi

5 F U N G S I. 1 Matematika Ekonomi 5 F U N G S I Pemahaman tentang konsep fungsi sangat penting dalam mempelajari ilmu ekonomi, mengingat kajian ekonomi banyak bekerja dengan fungsi. Fungsi dalam matematika menyatakan suatu hubungan formal

Lebih terperinci

PENGGUNAAN ALGORITMA BOOTSTRAP UNTUK PENENTU SELANG KADAR EMAS DAN PERAK PADA LOKASI PENGGALIAN DENGAN METODE SIMPLE KRIGING

PENGGUNAAN ALGORITMA BOOTSTRAP UNTUK PENENTU SELANG KADAR EMAS DAN PERAK PADA LOKASI PENGGALIAN DENGAN METODE SIMPLE KRIGING PENGGUNAAN ALGORITMA BOOTSTRAP UNTUK PENENTU SELANG KADAR EMAS DAN PERAK PADA LOKASI PENGGALIAN DENGAN METODE SIMPLE KRIGING Siti Rahmah Madusari 1, Sri Suryani,S.Si.,M.Si. 2, Rian Febrian Umbara,S.Si.,M.Si.

Lebih terperinci

Model Runtun Waktu Stasioner

Model Runtun Waktu Stasioner Chapter 3 Model Runtun Waktu Stasioner Proses-proses stasioner (W-S) yang penting adalah sebagai berikut: White Noise Moving Average: MA(), MA(q), MA( ) Autoregressive: AR(), AR(p), AR( ) Autoregressive

Lebih terperinci

Course Note Numerical Method Akar Persamaan Tak Liniear.

Course Note Numerical Method Akar Persamaan Tak Liniear. Course Note Numerical Method Akar Persamaan Tak Liniear. Dalam matematika terapan seringkali harus mencari selesaian persamaan yang berbentuk f() = 0 yakni bilangan o sedemikian sehingga f( o ) = 0. Dalam

Lebih terperinci

TEKS UTAMA MATEMATIKA

TEKS UTAMA MATEMATIKA SILABUS TEKS UTAMA MATEMATIKA SMA/MA KELAS XI PROGRAM IPS SILABUS KURIKULUM TINGKAT SATUAN PENDIDIKAN UNTUK SMA DAN MA Nama Sekolah : Mata Pelajaran : MATEMATIKA Kelas/Program : XI (sebelas) / IPS Semester

Lebih terperinci

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS Berbeda dengan variabel random diskrit, sebuah variabel random kontinyu adalah variabel yang dapat mencakup nilai pecahan maupun mencakup range/ rentang nilai tertentu. Karena terdapat

Lebih terperinci

Bab IV Analisis Statistik dan Distribusi Lubang Bor

Bab IV Analisis Statistik dan Distribusi Lubang Bor Bab IV Analisis Statistik dan Distribusi Lubang Bor 4.1. Analisis Statistik Analisis statistik dan geostatistik dalam penelitian ini hanya dilakukan pada saprolit dan limonit dari profil nikel laterit.

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2006/2007

UJIAN NASIONAL TAHUN PELAJARAN 2006/2007 UJIAN NASIONAL TAHUN PELAJARAN 006/007 PANDUAN MATERI SMA DAN MA M A T E M A T I K A PROGRAM STUDI IPA PUSAT PENILAIAN PENDIDIKAN BALITBANG DEPDIKNAS KATA PENGANTAR Dalam rangka sosialisasi kebijakan dan

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 UJIAN NASIONAL TAHUN PELAJARAN 007/008 PANDUAN MATERI SMA DAN MA M A T E M A T I K A PROGRAM STUDI IPA PUSAT PENILAIAN PENDIDIKAN BALITBANG DEPDIKNAS KATA PENGANTAR Dalam rangka sosialisasi kebijakan dan

Lebih terperinci

DISTRIBUSI PROBABILITAS

DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS Peluang terjadinya nilai variabel random X yang meliputi semua nilai ditentukan melalui distribusi peluang. Distribusi peluang suatu variabel random X adalah

Lebih terperinci

SISTEM PENGOLAHAN ISYARAT. Kuliah 2 Sinyal Acak

SISTEM PENGOLAHAN ISYARAT. Kuliah 2 Sinyal Acak TK 403 SISTM PNGOLAHAN ISYARAT Kuliah Sinyal Acak Indah Susilawati, S.T., M.ng. Program Studi Teknik lektro Fakultas Teknik dan Ilmu Komputer Universitas Mercu Buana Yogyakarta 009 KULIAH SISTM PNGOLAHAN

Lebih terperinci

KISI-KISI UJIAN SEKOLAH TAHUN 2016

KISI-KISI UJIAN SEKOLAH TAHUN 2016 KISI-KISI UJIAN SEKOLAH TAHUN 2016 MATA PELAJARAN : MATEMATIKA WAJIB Penyusun : Team MGMP Matematika JENJANG : SMA SMA DKI Jakarta KURIKULUM : Kurikulum 2013 No Urut Kompetensi Dasar Bahan Kls/Smt Materi

Lebih terperinci

PEMODELAN KURS RUPIAH TERHADAP MATA UANG EURO DENGAN PENDEKATAN REGRESI SPLINE. Sulton Syafii Katijaya 1, Suparti 2, Sudarno 3.

PEMODELAN KURS RUPIAH TERHADAP MATA UANG EURO DENGAN PENDEKATAN REGRESI SPLINE. Sulton Syafii Katijaya 1, Suparti 2, Sudarno 3. PEMODELAN KURS RUPIAH TERHADAP MATA UANG EURO DENGAN PENDEKATAN REGRESI SPLINE Sulton Syafii Katijaya 1, Suparti 2, Sudarno 3 1 Mahasiswa Jurusan Statistika FSM UNDIP 2,3 Staff Pengajar Jurusan Statistika

Lebih terperinci

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPA Materi Logika Matematika Kemampuan yang diuji UN 009 UN 00 Menentukan negasi pernyataan yang diperoleh dari penarikan kesimpulan Menentukan negasi pernyataan

Lebih terperinci

V. FUNGSI TRIGONOMETRI DAN FUNGSI INVERS TRIGONOMETRI

V. FUNGSI TRIGONOMETRI DAN FUNGSI INVERS TRIGONOMETRI V. FUNGSI TRIGONOMETRI DAN FUNGSI INVERS TRIGONOMETRI 5.1 Pendahuluan A. Tujuan Setelah mempelajari bagian ini diharapkan mahasiswa dapat: 1. menyebutkan definisi sinus, cosinus dan tangen dalam segitiga

Lebih terperinci

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Standar Kompetensi BAB 5 TEOREMA SISA Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Menggunakan algoritma pembagian sukubanyak untuk menentukan hasil bagi dan sisa pembagian

Lebih terperinci

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010 PREDIKSI UN 00 SMA IPA BAG. (Berdasar buku terbitan Istiyanto: Bank Soal Matematika-Gagas Media) Logika Matematika Soal UN 009 Materi KISI UN 00 Prediksi UN 00 Menentukan negasi pernyataan yang diperoleh

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Peramalan merupakan studi terhadap data historis untuk menemukan hubungan, kecenderungan dan pola data yang sistematis (Makridakis, 1999). Peramalan menggunakan pendekatan

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA BAB IV HASIL PENELITIAN DAN PEMBAHASAN Pada bab ini, akan dilakukan analisis dan pembahasan terhadap data runtun waktu. Adapun data yang digunakan dalam penelitian ini merupakan data sekunder, yaitu data

Lebih terperinci

BAB III REGRESI SPLINE = + dimana merupakan fungsi pemulus yang tidak spesifik, dengan adalah

BAB III REGRESI SPLINE = + dimana merupakan fungsi pemulus yang tidak spesifik, dengan adalah BAB III REGRESI SPLINE 3.1 Fungsi Pemulus Spline yaitu Fungsi regresi nonparametrik yang telah dituliskan pada bab sebelumnya = + dimana merupakan fungsi pemulus yang tidak spesifik, dengan adalah faktor

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Statistika adalah ilmu yang mempelajari bagaimana merencanakan, mengumpulkan, menganalisis, menginterpretasi, dan mempresentasikan data. Singkatnya, statistika adalah

Lebih terperinci

KALKULUS UNTUK STATISTIKA

KALKULUS UNTUK STATISTIKA Mulyana f( ) g( ).8.9.9 KALKULUS UNTUK STATISTIKA.8 8. BUKU AJAR g ( ) h ( ).. 8. UNIVERSITAS PADJADJARAN FAKULTAS MIPA JURUSAN STATISTIKA BANDUNG Kata Pengantar Diktat ini disusun dalam upaya pengadaan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Regresi Linier Sederhana Dalam beberapa masalah terdapat dua atau lebih variabel yang hubungannya tidak dapat dipisahkan karena perubahan nilai suatu variabel tidak selalu terjadi

Lebih terperinci

1. Dengan merasionalkan penyebut, bentuk sederhana dari adalah... D E

1. Dengan merasionalkan penyebut, bentuk sederhana dari adalah... D E 1. Dengan merasionalkan penyebut, bentuk sederhana dari adalah... A. 3-3 + 21-7 21-21 + 7 2. Persamaan (2m - 4)x² + 5x + 2 = 0 mempunyai akar-akar real berkebalikan, maka nilai m adalah... A. -3-3 6 Kunci

Lebih terperinci

Modul Matematika 2012

Modul Matematika 2012 Modul Matematika MINGGU V Pokok Bahasan : Fungsi Non Linier Sub Pokok Bahasan :. Pendahuluan. Fungsi kuadrat 3. Fungsi pangkat tiga. Fungsi Rasional 5. Lingkaran 6. Ellips Tujuan Instruksional Umum : Agar

Lebih terperinci

Modul Praktikum. Ekonomi Produksi Pertanian. Program Studi Agribisnis Fakultas Pertanian Universitas Brawijaya

Modul Praktikum. Ekonomi Produksi Pertanian. Program Studi Agribisnis Fakultas Pertanian Universitas Brawijaya Modul Praktikum Ekonomi Produksi Pertanian Program Studi Agribisnis Fakultas Pertanian Universitas Brawijaya 1 Membuat Grafik dengan Graphmatica Graphmatica merupakan perangkat lunak pembuat grafik yang

Lebih terperinci

MATEMATIKA EKONOMI DAN BISNIS MINGGU IX

MATEMATIKA EKONOMI DAN BISNIS MINGGU IX MATEMATIKA EKONOMI DAN BISNIS MINGGU IX KALKULUS DIFERENSIAL Prepared By : W. Rofianto ROFI 010 TINGKAT PERUBAHAN RATA-RATA Jakarta Km 0 jam Bandung Km 140 Kecepatan rata-rata s t 140Km jam 70Km / jam

Lebih terperinci

17. KOMPETENSI INTI DAN KOMPETENSI DASAR MATEMATIKA SMA/MA (PEMINATAN)

17. KOMPETENSI INTI DAN KOMPETENSI DASAR MATEMATIKA SMA/MA (PEMINATAN) 17. KOMPETENSI INTI DAN MATEMATIKA SMA/MA (PEMINATAN) KELAS: X bagian dari solusi atas berbagai peran dalam berinteraksi secara 3. Memahami, menerapkan, menganalisis pengetahuan faktual, konseptual, prosedural

Lebih terperinci

Penerapan Turunan MAT 4 D. PERSAMAAN GARIS SINGGUNG KURVA A. PENDAHULUAN B. DALIL L HÔPITAL C. PERSAMAAN PADA KINEMATIKA GERAK TURUNAN. materi78.co.

Penerapan Turunan MAT 4 D. PERSAMAAN GARIS SINGGUNG KURVA A. PENDAHULUAN B. DALIL L HÔPITAL C. PERSAMAAN PADA KINEMATIKA GERAK TURUNAN. materi78.co. Penerapan Turunan A. PENDAHULUAN Turunan dapat digunakan untuk: 1) Perhitungan nilai limit dengan dalil l Hôpital 2) Menentukan persamaan fungsi kecepatan dan percepatan dari persamaan fungsi posisi )

Lebih terperinci

FUNGSI DAN LIMIT FUNGSI

FUNGSI DAN LIMIT FUNGSI 2 FUNGSI DAN LIMIT FUNGSI 2.1 Fungsi dan Grafiknya Definisi Sebuah fungsi f dari himpunan A ke himpunan B adalah suatu aturan yang memasangkan setiap x anggota A dengan tepat satu y anggota B. A disebut

Lebih terperinci

BAB I PENDAHULUAN. Kompetensi

BAB I PENDAHULUAN. Kompetensi BAB I PENDAHULUAN Kompetensi Mahasiswa diharapkan 1. Memiliki kesadaran tentang manfaat yang diperoleh dalam mempelajari materi kuliah persamaan diferensial. 2. Memahami konsep-konsep penting dalam persamaan

Lebih terperinci

Asimtot.wordpress.com FUNGSI TRANSENDEN

Asimtot.wordpress.com FUNGSI TRANSENDEN FUNGSI TRANSENDEN 7.1 Fungsi Logaritma Asli 7.2 Fungsi-fungsi Balikan dan Turunannya 7.3 Fungsi-fungsi Eksponen Asli 7.4 Fungsi Eksponen dan Logaritma Umum 7.5 Pertumbuhan dan Peluruhan Eksponen 7.6 Persamaan

Lebih terperinci

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran LINGKARAN Persamaan Persamaan garis singgung lingkaran Persamaan lingkaran berpusat di (0, 0) dan (a, b) Kedudukan titik dan garis terhadap lingkaran Merumuskan persamaan garis singgung yang melalui suatu

Lebih terperinci

Analisis Komponen Utama (Principal component analysis)

Analisis Komponen Utama (Principal component analysis) Analisis Komponen Utama (Principal component analysis) A. LANDASAN TEORI Misalkan χ merupakan matriks berukuran nxp, dengan baris-baris yang berisi observasi sebanyak n dari p-variat variabel acak X. Analisis

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Regresi pertama kali digunakan sebagi konsep statistika pada tahun 1877 oleh sir Francis Galton.

BAB 2 TINJAUAN TEORITIS. Regresi pertama kali digunakan sebagi konsep statistika pada tahun 1877 oleh sir Francis Galton. BAB 2 TINJAUAN TEORITIS 2.1 Pengertian Regresi Regresi pertama kali digunakan sebagi konsep statistika pada tahun 1877 oleh sir Francis Galton. Beliau memperkenalkan model peramalan, penaksiran, atau pendugaan,

Lebih terperinci

Pembahasan Matematika IPA SNMPTN 2012 Kode 132

Pembahasan Matematika IPA SNMPTN 2012 Kode 132 Tutur Widodo Pembahasan Matematika IPA SNMPTN 0 Pembahasan Matematika IPA SNMPTN 0 Kode Oleh Tutur Widodo. Lingkaran (x 6) + (y + ) = menyinggung garis x = di titik... (, 6) d. (, ) (, 6) e. (, ) c. (,

Lebih terperinci

SILABUS. Standar Kompetensi : 1. Menggunakan aturan statistika, kaidah pencacahan dan sifat sifat peluang dalam pemecahan masalah. dengan tentang data

SILABUS. Standar Kompetensi : 1. Menggunakan aturan statistika, kaidah pencacahan dan sifat sifat peluang dalam pemecahan masalah. dengan tentang data SILABUS Nama Sekolah Mata Pelajaran Kelas / Semester : SMA Don Bosco Pag : Matematika : XI IPA / I Standar Kompetensi : 1. Menggunakan aturan statistika, kaidah pencacahan sifat sifat peluang dalam pemecahan

Lebih terperinci

BAB 3 TRIGONOMETRI. Gambar 3.1

BAB 3 TRIGONOMETRI. Gambar 3.1 Standar Kompetensi BAB TRIGONOMETRI Menurunkan rumus trigonometri dan penggunaannya. Kompetensi Dasar. Menggunakan rumus sinus dan kosinus jumlah dua sudut, selisih dua sudut, dan sudut ganda untuk menghitung

Lebih terperinci

BAB I PENDAHULUAN. memilih keputusan terbaik diantara bermacam-macam alternatif yang ada.

BAB I PENDAHULUAN. memilih keputusan terbaik diantara bermacam-macam alternatif yang ada. 1 BAB I PENDAHULUAN A. Latar Belakang Optimasi adalah pokok dari masalah yang melibatkan pengambilan keputusan, apakah itu dalam bidang teknik, dalam bidang ekonomi ataupun dalam bidang-bidang lainnya.

Lebih terperinci

Penggunaan Fungsi Non-Linear Dalam Ekonomi

Penggunaan Fungsi Non-Linear Dalam Ekonomi Modul 6 Penggunaan Fungsi Non-Linear Dalam Ekonomi Drs. Wahyu Widayat, M.Ec F PENDAHULUAN ungsi non-linier merupakan bagian yang penting dalam matematika untuk ekonomi, karena pada umumnya fungsi-fungsi

Lebih terperinci

Dosen Pengampu : Dwi Sulistyaningsih

Dosen Pengampu : Dwi Sulistyaningsih Dosen Pengampu : Dwi Sulistyaningsih Secara Umum : Pendahuluan Program linier merupakan salah satu teknik penyelesaian riset operasi dalam hal ini adalah khusus menyelesaikan masalah-masalah optimasi (memaksimalkan

Lebih terperinci

BAB III METODE PEMULUSAN EKSPONENSIAL HOLT-WINTER DAN METODE DEKOMPOSISI KLASIK

BAB III METODE PEMULUSAN EKSPONENSIAL HOLT-WINTER DAN METODE DEKOMPOSISI KLASIK BAB III METODE PEMULUSAN EKSPONENSIAL HOLT-WINTER DAN METODE DEKOMPOSISI KLASIK 3.1 Metode Pemulusan Eksponensial Holt-Winter Metode rata-rata bergerak dan pemulusan Eksponensial dapat digunakan untuk

Lebih terperinci

KISI-KISI LOGIC WAR. SK KD Indikator. Menentukan nilai kebenaran dari suatu pernyataan majemuk dan pernyataan berkuantor

KISI-KISI LOGIC WAR. SK KD Indikator. Menentukan nilai kebenaran dari suatu pernyataan majemuk dan pernyataan berkuantor KISI-KISI LOGIC WAR SK KD Indikator Menentukan nilai kebenaran dari suatu berkuantor membedakan mana pernyataan dan yang bukan pernyataan Menggunakan prinsip logika matematika yang berkaitan dengan berkuantor

Lebih terperinci

Fungsi Linear dan Fungsi Kuadrat

Fungsi Linear dan Fungsi Kuadrat Modul 1 Fungsi Linear dan Fungsi Kuadrat Drs. Susiswo, M.Si. K PENDAHULUAN ompetensi umum yang diharapkan, setelah mempelajari modul ini, adalah Anda dapat memahami konsep tentang persamaan linear dan

Lebih terperinci

KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA. BY : Drs. Abd. Salam, MM

KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA. BY : Drs. Abd. Salam, MM KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA BAHAN AJAR FUNGSI LINIER & KUADRAT SMK NEGERI 1 SURABAYA Halaman 1 BAB FUNGSI A. FUNGSI DAN RELASI Topik penting yang

Lebih terperinci

Sudaryatno Sudirham. Integral dan Persamaan Diferensial

Sudaryatno Sudirham. Integral dan Persamaan Diferensial Sudaratno Sudirham Integral dan Persamaan Diferensial Bahan Kuliah Terbuka dalam format pdf tersedia di www.buku-e.lipi.go.id dalam format pps beranimasi tersedia di www.ee-cafe.org Bahasan akan mencakup

Lebih terperinci

2. Memahami dan mampu menyelesaikan Permasalahan yang berkaitan dengan vektor di Ruang Tiga, yaitu Persamaan Bidang

2. Memahami dan mampu menyelesaikan Permasalahan yang berkaitan dengan vektor di Ruang Tiga, yaitu Persamaan Bidang TUJUAN EMBELAJARAN Agar pembaca memahami tentang Sistem Koordinat Kartesian beserta fungsinya yaitu titik, jarak dua titik, persamaan bola serta Vektor dalam ruang dimensi tiga beserta aplikasinya yaitu

Lebih terperinci

Bab 16. LIMIT dan TURUNAN. Motivasi. Limit Fungsi. Fungsi Turunan. Matematika SMK, Bab 16: Limit dan Turunan 1/35

Bab 16. LIMIT dan TURUNAN. Motivasi. Limit Fungsi. Fungsi Turunan. Matematika SMK, Bab 16: Limit dan Turunan 1/35 Bab 16 Grafik LIMIT dan TURUNAN Matematika SMK, Bab 16: Limit dan 1/35 Grafik Pada dasarnya, konsep limit dikembangkan untuk mengerjakan perhitungan matematis yang melibatkan: nilai sangat kecil; Matematika

Lebih terperinci

Bagian 4 Terapan Differensial

Bagian 4 Terapan Differensial Bagian 4 Terapan Differensial Dalam bagian 4 Terapan Differensial, kita akan mempelajari materi bagaimana konsep differensial dapat dipergunakan untuk mengatasi persoalan yang terjadi di sekitar kita.

Lebih terperinci

Modul Matematika MINGGU 4. g. Titik Potong fungsi linier

Modul Matematika MINGGU 4. g. Titik Potong fungsi linier MINGGU 4 Pokok Bahasan Sub Pokok Bahasan Tujuan Instruksional Umum : Hubungan dan : 1. Hubungan 2. a. Pengertian fungsi b. Jenis-jenis fungsi c. Diagram fungsi d. Pengertian fungsi linier e. Penggambaran

Lebih terperinci

1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah.

1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah. 1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah. Luas maksimum daerah yang dibatasi oleh kawat tersebut adalah... 3,00

Lebih terperinci

Prediksi 2 UN SMA IPS Matematika Kode Soal: 302

Prediksi 2 UN SMA IPS Matematika Kode Soal: 302 Prediksi UN SMA IPS Matematika Kode Soal: Doc. Version : -6 halaman. Negasi dari pernyataan Jika saya belajar dengan zenius maka saya lulus UN Jika saya lulus UN maka saya belajar dengan zenius Saya tidak

Lebih terperinci

BAB 5 PENGGUNAAN TURUNAN

BAB 5 PENGGUNAAN TURUNAN Diktat Kuliah TK Matematika BAB 5 PENGGUNAAN TURUNAN 5. Nilai Ekstrim Fungsi Nilai ekstrim fungsi adalah nilai yang berkaitan dengan maksimum atau minimum fungsi tersebut. Ada dua jenis nilai ekstrim,

Lebih terperinci

PENGUJIAN KESAMAAN BEBERAPA MODEL REGRESI NON LINIER GEOMETRI (Studi Kasus : Data Emisi CO 2 dan Gross Nation Product di Malaysia, Bhutan, dan Nepal)

PENGUJIAN KESAMAAN BEBERAPA MODEL REGRESI NON LINIER GEOMETRI (Studi Kasus : Data Emisi CO 2 dan Gross Nation Product di Malaysia, Bhutan, dan Nepal) PENGUJIAN KESAMAAN BEBERAPA MODEL REGRESI NON LINIER GEOMETRI (Studi Kasus : Data Emisi CO dan Gross Nation Product di Malaysia, Bhutan, dan Nepal) Yanti I 1, Islamiyati A, Raupong 3 Abstrak Regresi geometrik

Lebih terperinci

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers Komposisi fungsi dan invers fungsi mempelajari Fungsi komposisi menentukan Fungsi invers terdiri dari Syarat dan aturan fungsi yang dapat dikomposisikan Nilai fungsi komposisi dan pembentuknya Syarat agar

Lebih terperinci

BAB 2. FUNGSI & GRAFIKNYA

BAB 2. FUNGSI & GRAFIKNYA . Fungsi BAB. FUNGSI & GRAFIKNYA Seara intuitif, kita pandang sebagai fungsi dari jika terdapat aturan dimana nilai (tunggal) mengkait nilai. Contoh:. a. 5 b. Definisi: Suatu fungsi adalah suatu himpunan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan diuraikan mengenai landasan teori yang akan digunakan dalam bab selanjutnya. 2.1 Matriks Sebuah matriks, biasanya dinotasikan dengan huruf kapital tebal seperti A,

Lebih terperinci

Buku Pendalaman Konsep. Trigonometri. Tingkat SMA Doddy Feryanto

Buku Pendalaman Konsep. Trigonometri. Tingkat SMA Doddy Feryanto Buku Pendalaman Konsep Trigonometri Tingkat SMA Doddy Feryanto Kata Pengantar Trigonometri merupakan salah satu jenis fungsi yang sangat banyak berguna di berbagai bidang. Di bidang matematika sendiri,

Lebih terperinci

SOAL SEMIFINAL LCCM BEREGU TINGKAT SMA

SOAL SEMIFINAL LCCM BEREGU TINGKAT SMA SOAL SEMIFINAL LCCM BEREGU TINGKAT SMA By : Bayu Kencana PUTARAN Soal Tertulis. Dari segitiga samasisi ABC, diketahui panjang sisinya adalah. Titik A terletak pada sumbu- positif, titik B pada kuadran

Lebih terperinci

Pembahasan Simak UI Matematika Dasar 2012

Pembahasan Simak UI Matematika Dasar 2012 Pembahasan Simak UI Matematika Dasar 2012 PETUNJUK UMUM 1. Sebelum mengerjakan ujian, periksalah terlebih dulu, jumlah soal dan nomor halaman yang terdapat pada naskah soal. Naskah soal ini terdiri dari

Lebih terperinci

BAGIAN 1 SINTAK DASAR MATLAB

BAGIAN 1 SINTAK DASAR MATLAB BAGIAN 1 SINTAK DASAR MATLAB Pada bagian 1 ini, akan diuraikan tentang bagaimana mendefinisikan data, operasi data dan teknik mengakses data pada Matlab. Untuk lebih memahami, pembaca sebaiknya mecobanya

Lebih terperinci

Fungsi, Persamaaan, Pertidaksamaan

Fungsi, Persamaaan, Pertidaksamaan Fungsi, Persamaaan, Pertidaksamaan Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 9 Agustus 004 di PPPG Matematika Oleh: Drs. Markaban, M.Si. Widyaiswara PPPG

Lebih terperinci

PENGUJIAN HETEROSKEDASTISITAS PADA REGRESI EKSPONENSIAL DENGAN MENGGUNAKAN UJI PARK

PENGUJIAN HETEROSKEDASTISITAS PADA REGRESI EKSPONENSIAL DENGAN MENGGUNAKAN UJI PARK PENGUJIAN HETEROSKEDASTISITAS PADA REGRESI EKSPONENSIAL DENGAN MENGGUNAKAN UJI PARK Asmin MM. 1, Saleh M., Islamiyati A. 3 Abstrak Model eksponensial merupakan regresi non linier yang dapat diubah bentuknya

Lebih terperinci

Simulasi Teknik Image Enhancement Menggunakan Matlab Yustina Retno Wahyu Utami 3)

Simulasi Teknik Image Enhancement Menggunakan Matlab Yustina Retno Wahyu Utami 3) Simulasi Teknik Image Enhancement Menggunakan Matlab Yustina Retno Wahyu Utami 3) ISSN : 1693 1173 Abstrak Penelitian ini menekankan pada pentingnya teknik simuasi pada pengolahan citra digital. Simulasi

Lebih terperinci

BAB 3 PENYELESAIAN PERSAMAAN NON LINIER

BAB 3 PENYELESAIAN PERSAMAAN NON LINIER BAB 3 PENYELESAIAN PERSAMAAN NON LINIER 3.. Permasalahan Persamaan Non Linier Penyelesaian persamaan non linier adalah penentuan akar-akar persamaan non linier.dimana akar sebuah persamaan f(x =0 adalah

Lebih terperinci

King s Learning Be Smart Without Limits. (4) Grafik Fungsi kuadrat: (3) Titik lain (jika diperlukan) X Y. (4) Grafik Fungsi kuadrat:

King s Learning Be Smart Without Limits. (4) Grafik Fungsi kuadrat: (3) Titik lain (jika diperlukan) X Y. (4) Grafik Fungsi kuadrat: Nama Siswa : LEMBAR AKTIVITAS SISWA FUNGSI KUADRAT - Hubungkan titik-titik tersebut sehingga terbentuk kurva atau grafik yang mulus. Kelas : A. FUNGSI KUADRAT Bentuk umum fungsi kuadrat adalah: y = f(x)

Lebih terperinci

F U N G S I A. PENGERTIAN DAN UNSUR-UNSUR FUNGSI

F U N G S I A. PENGERTIAN DAN UNSUR-UNSUR FUNGSI F U N G S I A. PENGERTIAN DAN UNSUR-UNSUR FUNGSI Fungsi Fungsi ialah suatu bentuk hubungan matematis yang menyatakan hubungan ketergantungan (hubungan fungsional) antara satu variabel dengan variabel lain.

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Mata Pelajaran : Matematika Kelas/ Semester: XI Program IPA/ Alokasi Waktu: jam Pelajaran (3 Pertemuan) A. Standar Kompetensi Menggunakan konsep limit ungsi dan turunan

Lebih terperinci

SILABUS. tentu. Menentukan integral tentu dengan menggunakan sifat-sifat integral. Menyelesaikan masalah

SILABUS. tentu. Menentukan integral tentu dengan menggunakan sifat-sifat integral. Menyelesaikan masalah SILABUS Nama Sekolah : SMA PGRI 1 AMLAPURA Mata Pelajaran : MATEMATIKA Kelas/Program : XII / IPA Semester : 1 STANDAR KOMPETENSI: 1. Menggunakan konsep integral dalam pemecahan masalah. KOMPETENSI DASAR

Lebih terperinci

1. Himpunan penyelesaian adalah {(x, y, z)}. Nilai dari y + z adalah... D. -4 E. -5

1. Himpunan penyelesaian adalah {(x, y, z)}. Nilai dari y + z adalah... D. -4 E. -5 1. Himpunan penyelesaian adalah {(x, y, z)}. Nilai dari y + z adalah... A. 5 3 2 Kunci : C 3x + y = 5 y - 2z = -7-3x + 2z = 12 2x + 2z = 10 - x = 2-4 -5 x + z = 5 2 + z = 5 z = 3 3x + y = 5 3. 2 + y =

Lebih terperinci

17

17 PAKET 3 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs 1. * Indikator. Menyelesaikan masalah berkaitan dengan bilangan berpangkat dan bentuk akar Menentukan hasil perpangkatan bilangan negative atau pecahan

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009

SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009 SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009 Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN

Lebih terperinci

Matematika EBTANAS Tahun 1999

Matematika EBTANAS Tahun 1999 Matematika EBTANAS Tahun 999 EBT-SMA-99-0 Akar-akar persamaan kuadrat + = 0 adalah α dan β. Persamaan kuadrat baru yang akar-akarnya (α + ) dan (β + ) + = 0 + 7 = 0 + = 0 + 7 = 0 + = 0 EBT-SMA-99-0 Akar-akar

Lebih terperinci

BAB II DASAR TEORI 2.1 Pengertian Tata Guna/Tutupan Lahan

BAB II DASAR TEORI 2.1 Pengertian Tata Guna/Tutupan Lahan BAB II DASAR TEORI Prediksi perubahan lahan merupakan salah satu informasi penting untuk mendukung perencanaan penggunaan lahan. Untuk itu perlu dibuat suatu model yang mampu mewakili prediksi perubahan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 10 BAB 2 LANDASAN TEORI 2.1 Analisa Regresi Regresi pertama kali dipergunakan sebagai konsep statistik pada tahun 1877 oleh Sir Francis Galton. Galton melakukan studi tentang kecenderungan tinggi badan

Lebih terperinci

Misalkan terdapat eksperimen. S disebut ruang sampel, adalah himpunan semua kemungkinan hasil dari eksperimen.

Misalkan terdapat eksperimen. S disebut ruang sampel, adalah himpunan semua kemungkinan hasil dari eksperimen. Peluang Peluang dan Kejadian Peluang Bersyarat Peubah Acak dan Nilai Harapan Kovarian dan Korelasi 1.1 PELUANG DAN KEJADIAN Misalkan terdapat eksperimen. S disebut ruang sampel, adalah himpunan semua kemungkinan

Lebih terperinci