a. Ruang Sampel dan Titik Sampel Dalam himpunan ruang sampel disebut Semesta S = 1, 2, 3, 4,5, 6

Ukuran: px
Mulai penontonan dengan halaman:

Download "a. Ruang Sampel dan Titik Sampel Dalam himpunan ruang sampel disebut Semesta S = 1, 2, 3, 4,5, 6"

Transkripsi

1 1. Kejadian a. Ruang Sampel dan Titik Sampel Ruang Sampel adalah himpunan dari semua hasil yang mungkin dari suatu kegiatan Contoh : Kegiatan melempar sebuah dadu hasil atau angka yang mungkin muncul adalah 1, 2, 3, 4,5, 6 Dalam himpunan ruang sampel disebut Semesta S 1, 2, 3, 4,5, 6 Titik Sampel adalah adalah anggota anggota dari ruang sampel Titik sampel pada contoh di atas adalah 1, 2, 3, 4, 5 dan 6 Dalam himpunan titik sampel adalah anggota himpunan yang membentuk himpunan b. Kejadian/Peristiwa/Event Kejadian atau Peristiwa adalah himpunan bagian dari ruang sampel. Kejadian Sederhana adalah kejadian yang hanya mempunyai 1 titik sampel Pada kegiatan melempar dadu contoh kejadian sederhana adalah 1, 2, 3, 4, 5 dan 6 Kejadian Majemuk adalah kejadian yang mempunyai lebih dari 1 titik sampel Pada kegiatan melempar dadu contoh kejadian majemuk adalah 1, 3, 2, 3, 4

2 c. Kejadian Saling Lepas dan Saling Bebas Kejadian Saling Lepas adalah dua atau lebih kejadian yang tidak dapat terjadi secara bersamaan Contoh : Pada pelemparan sebuah dadu sebanyak satu kali saat angka 1 muncul maka angka 2, 3, 4, 5 atau 6 tidak akan muncul pada saat yang sama Kejadian munculnya angka 1, 2, 3, 4, 5 atau 6 pada pelemparan dadu sebanyak satu kali dikatakan saling lepas. Jumlah kemungkinan kejadian yang muncul adalah 6 kejadian yaitu munculnya angka 1, 2, 3, 4, 5 atau 6 Jumlah pengabungan kejadian yang saling lepas sama dengan jumlah dari masing masing kejadian individu Kejadian Saling Bebas adalah dua atau lebih kejadian yang dapat terjadi secara bersamaan dan tidak saling terpengaruh Contoh : Pelemparan 2 dadu secara bersamaan pasangan kejadian angka yang muncul pada dadu I dan dadu II tidak saling berpengaruh. Jika angka 1 muncul pada dadu I maka sembarang angka pada dadu II bisa muncul bersamaan. Kejadian pada dadu I dikatakan saling bebas dengan kejadian pada dadu II Jumlah pasangan kejadian pada dua dadu yang dilempar secara bersamaan adalah pasang kejadian yaitu 1, 1, 1, 2,..., 6, 5, 6, 6 Jumlah pengabungan kejadian yang saling bebas sama dengan perkalian dari masing masing kejadian individu

3 d. Kejadian Bersyarat dan Permutasi Misalkan Adi, Budi dan Catur akan dipilih menjadi Ketua dan Wakil Ketua kelas dan tidak diperbolehkan seseorang merangkap jabatan, maka kemungkinan pasangannya adalah Kejadian Gabungan Ketua Wakil Ketua 1 Adi Budi 2 Adi Catur 3 Budi Adi 4 Budi Catur 5 Catur Adi 6 Catur Budi Perhatikan gabungan nomor 1 dan 3. Urutan Adi ketua dan Budi wakil ketua berbeda dengan Budi ketua dan Adi wakil ketua. Urutan disini menjadi penting Ada 3 calon untuk menempati posisi ketua (Adi, Budi dan Catur) maka akan ada 3 kemungkinan kejadian nama murid menempati posisi ketua. Jika seseorang telah dipilih menjadi ketua maka calon untuk menempati posisi wakil ketua tersisa 2 calon saja. Jumlah kemungkinan pasangan yang terpilih untuk posisi ketua dan wakil adalah Permasalahan di atas dikenal dengan permutasi Permutasi adalah cara penggabungan kejadian dari dari beberapa kejadian dengan cara memperhatikan urutan Jumlah permutasi atau penggabungan r kejadian dari n kejadian Dimana n disebut faktorial P n n r n n 2 n 1 n dan 1 1 dan 0 0

4 Untuk contoh di atas ada 2 posisi yang akan diisi ๐‘Ÿ 2 yaitu ketua dan wakil ketua oleh ๐‘› 3 calon ๐‘ƒ 6 Berapa banyak kata yang berbeda dapat dibuat dari huruf KAKAK? Jika masing masing huruf dianggap berbeda maka ada ๐‘ƒ 120 cara mengurutkan Anggap A berbeda yaitu A dan A dan perhatikan KA KA K dianggap berbeda dengan KA KA K Pada kasus di atas urutan 2 huruf A yang sama dihitung 2 kali ๐‘ƒ 2 Begitu juga dengan 2 huruf K yang sama dihitung 6 kali ๐‘ƒ 6 Sehingga jumlah kata yang dapat dibuat dari huruf KAKAK adalah "# 10 Secara umum jika ada ๐’ titik sampel yang akan diurutkan dan ada ๐’๐Ÿ, ๐’๐Ÿ, ๐’๐’Š titik sampel yang sama, maka banyaknya cara mengurutkan adalah ๐‘› ๐‘ƒ,,, ๐‘› ๐‘› ๐‘›

5 Tiga orang duduk di meja bundar seperti pada gambar di bawah Urutan duduk ketiga orang adalah sama pada ketiga gambar Sebelah kiri A duduk B dan sebelah kanan A duduk C pada ketiga gambar walaupun menempati kursi yang berbeda Permasalahan di atas dikenal dengan permutasi siklis Jika r 3 orang akan menduduki n 3 kursi maka banyaknya cara adalah P 3 Tetapi ada 3 urutan yang sama pada meja bundar maka hasilnya harus di bagi 3 P "#$" 2 Pada permutasi siklis berlaku P "#$" n 1

6 e. Kejadian Bersyarat dan Kombinasi Misalkan Adi, Budi dan Catur adalah penggemar bulutangkis dan mereka akan membentuk team ganda buluntangkis. Team ganda yang terdiri dari Adi dan Budi atau Budi dan Adi dianggap satu. Urutan disini tidak diperhatikan seperti pada kasus ketua dan wakil ketua. Team Ganda Nama Pasangan 1 Adi - Budi 2 Adi - Catur 3 Budi - Catur Permasalahan di atas dikenal dengan permutasi Kombinasi adalah cara penggabungan kejadian dari dari beberapa kejadian dengan cara tidak memperhatikan urutan Jumlah kombinasi atau penggabungan r kejadian dari n kejadian adalah C n r n r Untuk contoh di atas dibutuhkan r 2 orang untuk membentuk team ganda bulutangkis yang dipilih dari n 3 pemain C 3

STATISTIK DESKRIPTIF

STATISTIK DESKRIPTIF PENGANTAR TEORI PELUANG OLEH HERDIAN S.Pd., M.Pd. SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER (STIMIK) PRINGSEWU NOTASI FAKTORIAL (!) adalah hasil kali bilangan asli berurutan dari 1 sampai n. dirumuskan

Lebih terperinci

STATISTIK DESKRIPTIF

STATISTIK DESKRIPTIF PENGANTAR TEORI PELUANG OLEH HERDIAN S.Pd., M.Pd. SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER (STIMIK) PRINGSEWU NOTASI FAKTORIAL (!) adalah hasil kali bilangan asli berurutan dari 1 sampai n. dirumuskan

Lebih terperinci

Peluang. Menentukan ruang sampel suatu percobaan. Kombinasi

Peluang. Menentukan ruang sampel suatu percobaan. Kombinasi Menggunakan aturan perkalian permutasi dan kombinasi Menentukan ruang sampel suatu percobaan Menentukan peluang suatu kejadian dan penafsiran Aturan perkalian Permutasi Kombinasi Definisi peluang suatu

Lebih terperinci

Peluang Aturan Perkalian, Permutasi, dan Kombinasi dalam Pemecahan Masalah Ruang Sampel Suatu Percobaan Peluang Suatu Kejadian dan Penafsirannya

Peluang Aturan Perkalian, Permutasi, dan Kombinasi dalam Pemecahan Masalah Ruang Sampel Suatu Percobaan Peluang Suatu Kejadian dan Penafsirannya 2 Aturan Perkalian, Permutasi, dan Kombinasi dalam ; Pemecahan Masalah Ruang Sampel Suatu Percobaan ; Suatu Kejadian dan Penafsirannya ; Pada era demokrasi saat ini untuk menduduki suatu jabatan tertentu

Lebih terperinci

LEMBAR AKTIVITAS SISWA PELUANG

LEMBAR AKTIVITAS SISWA PELUANG Nama Siswa : LEMBAR AKTIVITAS SISWA PELUANG 2 2. Kelas : Kompetensi Dasar (KURIKULUM 2013): 3.16 Memahami dan menerapkan berbagai aturan pencacahan melalui beberapa contoh nyata serta menyajikan alur perumusan

Lebih terperinci

MATERI BAB I RUANG SAMPEL DAN KEJADIAN. A. Pendahuluan Dari jaman dulu sampai sekarang orang sering berhadapan dengan peluang.

MATERI BAB I RUANG SAMPEL DAN KEJADIAN. A. Pendahuluan Dari jaman dulu sampai sekarang orang sering berhadapan dengan peluang. MATERI BAB I RUANG SAMPEL DAN KEJADIAN Pendahuluan Ruang Sampel Kejadian Dua Kejadian Yang Saling Lepas Operasi Kejadian BAB II MENGHITUNG TITIK SAMPEL Prinsip Perkalian/ Aturan Dasar Notasi Faktorial

Lebih terperinci

KOMBINATORIKA. (Latihan Soal) Kus Prihantoso Krisnawan. August 30, 2012 PEMBINAAN OLIMPIADE MATEMATIKA SMA 1 KALASAN

KOMBINATORIKA. (Latihan Soal) Kus Prihantoso Krisnawan. August 30, 2012 PEMBINAAN OLIMPIADE MATEMATIKA SMA 1 KALASAN KOMBINATORIKA (Latihan Soal) Kus Prihantoso August 30, 2012 PEMBINAAN OLIMPIADE MATEMATIKA SMA 1 KALASAN Teori Faktorial Teori Faktorial n! = n (n 1) (n 2) (n 3) 2 1 0! = 1 Teori Faktorial n! = n (n 1)

Lebih terperinci

PELUANG KEJADIAN. Macam-macam permutasi 1. Permutasi n unsur dari n unsur n. P n. 2. Permutasi dengan beberapa unsur yang sama

PELUANG KEJADIAN. Macam-macam permutasi 1. Permutasi n unsur dari n unsur n. P n. 2. Permutasi dengan beberapa unsur yang sama PELUANG KEJADIAN A. Aturan Perkalian/Pengisian Tempat Jika kejadian pertama dapat terjadi dalam a cara berbeda, kejadian kedua dapat terjadi dalam b cara berbeda, kejadian ketiga dapat terjadi dalam c

Lebih terperinci

SOAL PELUANG KELAS XI MATEMATIKANET.COM 1.! B. 4 2 C. 2 2 D. E. 2 2 A. 840 B. 504 C. 162 D. 84 E. 168

SOAL PELUANG KELAS XI MATEMATIKANET.COM 1.! B. 4 2 C. 2 2 D. E. 2 2 A. 840 B. 504 C. 162 D. 84 E. 168 SOAL PELUANG KELAS XI MATEMATIKANET.COM 1.!!. A. B. 4 2 C. 2 2 D. 2 2 2.!!!. A. 840 B. 504 C. 162 D. 84 168 3. Untuk menuju kota C dari Kota A harus melewati kota B. Dari kota A menuju kota B melewati

Lebih terperinci

King s Learning Be Smart Without Limits

King s Learning Be Smart Without Limits NAMA: KELAS: A. KAIDAH PENCACAHAN Kaidah pencacahan adalah suatu cara/aturan untuk menghitung semua kemungkinan yang terjadi dalam suatu percobaan tertentu. Ada tiga metode pencacahan yang digunakan yaitu,

Lebih terperinci

Hidup penuh dengan ketidakpastian

Hidup penuh dengan ketidakpastian BAB 2 Probabilitas Hidup penuh dengan ketidakpastian Tidak mungkin bagi kita untuk dapat mengatakan dengan pasti apa yang akan terjadi dalam 1 menit ke depan tapi Probabilitas akan memprediksikan masa

Lebih terperinci

B. Aturan Permutasi ATURAN PENCACAHAN 7/8/2015. B. Aturan Permutasi

B. Aturan Permutasi ATURAN PENCACAHAN 7/8/2015. B. Aturan Permutasi Jurnal Materi W22b B. Aturan Permutasi Daftar Hadir Materi B SoalLKS SoalLatihan ATURAN PENCACAHAN Kelas XI, Semester 4 B. Aturan Permutasi Notasi faktorial : n! = n (n - 1) (n - 2) (n - 3) 3. 2. 1 dimana

Lebih terperinci

C n r. h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m. P n. P ( n, n ) = n P n = P n n!

C n r. h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m. P n. P ( n, n ) = n P n = P n n! Ringkasan Materi : Kaidah Pencacahan. Aturan Perkalian Jika sesuatu objek dapat diselesaikan dalam n cara berbeda, dan sesuatu objek yang lain dapat diselesaikan dalam n cara berbeda, maka kedua objek

Lebih terperinci

Evaluasi Belajar Tahap Akhir Nasional TAHUN 1990 Matematika

Evaluasi Belajar Tahap Akhir Nasional TAHUN 1990 Matematika Evaluasi Belajar Tahap Akhir Nasional TAHUN 0 Matematika EBTANAS-IPS-0-0 x Nilai x R yang memenuhi ( ) = 8 EBTANAS-IPS-0-0 Bentuk sederhana dari + ( + ) 5 ( + 7 + EBTANAS-IPS-0-0 Ordinat titik balik grafik

Lebih terperinci

Percobaan : proses yang menghasilkan data Ruang Contoh (S) : himpunan yang memuat semua kemungkinan hasil percobaan

Percobaan : proses yang menghasilkan data Ruang Contoh (S) : himpunan yang memuat semua kemungkinan hasil percobaan Probabilitas = Peluang (Bagian I) 1. Pendahuluan Percobaan : proses yang menghasilkan data Ruang Contoh (S) : himpunan yang memuat semua kemungkinan hasil percobaan Comment [sls1]: Page: 1 Misal : a. Ruang

Lebih terperinci

KOMBINATORIKA DAN PELUANG. Jika n adalah bilangan asli, maka n factorial, ditulis n! diartikan sebagai

KOMBINATORIKA DAN PELUANG. Jika n adalah bilangan asli, maka n factorial, ditulis n! diartikan sebagai KOMBINATORIKA DAN PELUANG Faktorial Jika n adalah bilangan asli, maka n factorial, ditulis n! diartikan sebagai n(n-1)(n-2).3.2.1 dan didefinisikan 0!=1 Permutasi Permutasi dari n unsur adalah banyaknya

Lebih terperinci

n N n : banyak titik contoh penyusun Kejadian N : banyak titik contoh dalam Ruang Contoh (S)

n N n : banyak titik contoh penyusun Kejadian N : banyak titik contoh dalam Ruang Contoh (S) Probabilitas Peluang 1. Pendahuluan Percobaan : proses yang menghasilkan data Ruang Contoh (S) : himpunan yang memuat semua kemungkinan hasil percobaan Kejadian Event : himpunan bagian dari ruang contoh

Lebih terperinci

Probabilitas dan Statistika Ruang Sampel. Adam Hendra Brata

Probabilitas dan Statistika Ruang Sampel. Adam Hendra Brata dan Statistika Ruang Adam Hendra Brata adalah suatu ilmu untuk memprediksi suatu kejadian (event) atau dapat disebut peluang suatu kejadian berdasarkan pendekatan matematis. Dengan ilmu probabilitas, kita

Lebih terperinci

Probabilitas = Peluang

Probabilitas = Peluang 1. Pendahuluan Probabilitas = Peluang Percobaan : proses yang menghasilkan data Ruang Contoh (S) : himpunan yang memuat semua kemungkinan hasil percobaan Kejadian = Event : himpunan bagian dari ruang contoh

Lebih terperinci

PENERAPAN TEORI KOMBINATORIAL, PELUANG DISKRIT, DAN POHON KEPUTUSAN DALAM PERMAINAN YAHTZEE

PENERAPAN TEORI KOMBINATORIAL, PELUANG DISKRIT, DAN POHON KEPUTUSAN DALAM PERMAINAN YAHTZEE PENERAPAN TEORI KOMBINATORIAL, PELUANG DISKRIT, DAN POHON KEPUTUSAN DALAM PERMAINAN YAHTZEE Gifari Kautsar 13512020 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

10. PELUANG A. Kaidah Pencacahan 1. Aturan perkalian

10. PELUANG A. Kaidah Pencacahan 1. Aturan perkalian 0. PELUANG A. Kaidah Pencacahan. Aturan perkalian Apabila suatu peristiwa dapat terjadi dengan n tahap yang berurutan, dimana tahap pertama terdapat a cara yang berbeda dan seterusnya sampai dengan tahap

Lebih terperinci

PREDIKSI UN SMA IPS MATEMATIKA 2012

PREDIKSI UN SMA IPS MATEMATIKA 2012 Prediksi Matematika UN SMA IPS 01 PREDIKSI UN SMA IPS MATEMATIKA 01 1. Diketahui dua pernyataan p dan q p : bernilai besar q : bernilai salah Pernyataan majemuk di bawah ini bernilai benar, kecuali. A.

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMK Mata Pelajaran : Matematika Kelas : XII (Dua Belas) Program : Teknologi, Kesehatan, dan Pertanian Standar Kompetensi Kompetensi Dasar : 13. Memecahkan

Lebih terperinci

BAB II PROBABILITAS Ruang sampel (sample space)

BAB II PROBABILITAS Ruang sampel (sample space) BAB II ROBABILITAS 2.1. Ruang sampel (sample space) Data diperoleh baik dari pengamatan kejadian yang tak dapat dikendalikan atau dari percobaan yang dikendalikan dalam laboratorium. Untuk penyederhanaan

Lebih terperinci

BAB I PELUANG A. PERCOBAAN dan RUANG SAMPEL PERCOBAAN adalah setiap proses mengamati/mengukur yang menghasilkan data

BAB I PELUANG A. PERCOBAAN dan RUANG SAMPEL PERCOBAAN adalah setiap proses mengamati/mengukur yang menghasilkan data BAB I PELUANG A. PERCOBAAN dan RUANG SAMPEL PERCOBAAN adalah setiap proses mengamati/mengukur yang menghasilkan data Contoh : 1. Melempar mata uang, menghasilkan 2 hasil yaitu munculnya sisi gambar atau

Lebih terperinci

PELUANG. A Aturan Pengisian Tempat. B Permutasi

PELUANG. A Aturan Pengisian Tempat. B Permutasi PELUANG KAIDAH PENCACAHAN kaidah pencacahan didefinisikan sebagai suatu cara atau aturan untuk menghitung semua kemungkinan yang dapat terjadi dalam suatu percobaan tertentu. Ada beberapa metode pencacahan,

Lebih terperinci

Peluang. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas LOGO

Peluang. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas LOGO Peluang Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas LOGO Kompetensi menjelaskan mengenai ruang contoh, titik contoh dan kejadian mencacah titik contoh menghitung peluang

Lebih terperinci

www.matematika-pas.blogspot.com E-learning matematika, GRATIS

www.matematika-pas.blogspot.com E-learning matematika, GRATIS Penyusun Editor : Indyah Sulistyawati, S.Pd. ; Wiwik Hermawati, S.Si. : Drs. Keto Susanto, M.Si. M.T. ; Istijab, S.H. M.Hum. Imam Indra Gunawan, S.Si. ). Pengertian Kaidah Pencacahan (Counting Slots) Kaidah

Lebih terperinci

= 3 x maka (f g)(x) =.. Mata Pelajaran : MATEMATIKA. Petunjuk: A

= 3 x maka (f g)(x) =.. Mata Pelajaran : MATEMATIKA. Petunjuk: A Mata Pelajaran : MATEMATIKA Kelas/ Program : XII IPS Waktu : 0 menit Petunjuk: Pilih satu jawaban yang benar. Pernyataan yang senilai dengan Jika guru tidak datang maka semua siswa sedih. Adalah... Jika

Lebih terperinci

Beberapa Hukum Peluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Beberapa Hukum Peluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Beberapa Hukum Peluang Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Suatu kejadian dapat merupakan gabungan atau irisan dari dua atau

Lebih terperinci

Pembahasan Contoh Soal PELUANG

Pembahasan Contoh Soal PELUANG Pembahasan Contoh Soal PELUANG 1. Nomor rumah yang dimaksud terdiri atas dua angka. Ini berarti ada dua tempat yang harus diisi, yaitu PULUHAN dan SATUAN. Karena nomor rumah harus ganjil, maka tempat Satuan

Lebih terperinci

STATISTICS. WEEK 2 Hanung N. Prasetyo TELKOM POLYTECHNIC/HANUNGNP

STATISTICS. WEEK 2 Hanung N. Prasetyo TELKOM POLYTECHNIC/HANUNGNP STTISTICS WEEK 2 Hanung N. rasetyo OLYTECHNIC/HNUNGN Ruang sample dari suatu eksperimen merupakan suatu himpunan semua kemungkinan hasil suatu eksperimen. Ruang sample dinotasikan dengan ฮ Sedangkan kejadian

Lebih terperinci

WORKSHOP PEMBIMBINGAN OLIMPIADE MATEMATIKA & SAINS BIDANG MATEMATIKA SMP

WORKSHOP PEMBIMBINGAN OLIMPIADE MATEMATIKA & SAINS BIDANG MATEMATIKA SMP WORKSHOP PEMBIMBINGAN OLIMPIADE MATEMATIKA & SAINS BIDANG MATEMATIKA SMP Ilham Rizkianto FMIPA Universitas Negeri Yogyakarta Ilham_rizkianto@uny.ac.id Wonosari, 9 Mei 2014 MASALAH KOMBINATORIK Mengecoh,

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemuan IV Konsep Peluang Septian Rahardiantoro - STK IPB 1 Populasi Pengambilan contoh dari populasi untuk pendugaan parameter Contoh1 Parameter ฮผ Statistik x Setara

Lebih terperinci

Ruang Sampel, Titik Sampel dan Kejadian

Ruang Sampel, Titik Sampel dan Kejadian Dasar Dasar robabilitas DSR DSR ROILITS Ruang Sampel, Titik Sampel dan Kejadian Ruang sampel (sample space atau semesta (universe merupakan himpunan dari semua hasil (outcome yang mungkin dari suatu percobaan

Lebih terperinci

Perbedaan antara permutasi dan kombinasi adalah : Dalam permutasi, urutan objek dibedakan.

Perbedaan antara permutasi dan kombinasi adalah : Dalam permutasi, urutan objek dibedakan. erbedaan antara permutasi dan kombinasi adalah : Dalam permutasi, urutan objek dibedakan. Sedangkan dalam kombinasi, urutan objek yang dipilih tidak dibedakan. 1 Sebagai gambaran, misal dari 5 orang (

Lebih terperinci

25/09/2013. Semua kemungkinan nilai yang muncul S={123456} S={1,2,3,4,5,6} Semua kemungkinan nilai yang muncul S={G, A}

25/09/2013. Semua kemungkinan nilai yang muncul S={123456} S={1,2,3,4,5,6} Semua kemungkinan nilai yang muncul S={G, A} Pendahuluan Metode Statistika (STK211) Konsep Peluang (Probability Concept) Suatu fenomena dikatakan acak jika hasil dari suatu percobaan bersifat tidak pasti Fenomena acak sering mengikuti suatu pola

Lebih terperinci

Bab 9. Peluang Diskrit

Bab 9. Peluang Diskrit Bab 9. Peluang Diskrit Topik Definisi Peluang Diskrit Sifat Peluang Diskrit Probabilitas terbatas Konsep Teori Himpunan pada Peluang Diskrit Probabilitas Kejadian Majemuk A B dan A B DuaKejadianSalingLepas

Lebih terperinci

: METODE GRAFIK. Metode grafik hanya bisa digunakan untuk menyelesaikan permasalahan dimana hanya

: METODE GRAFIK. Metode grafik hanya bisa digunakan untuk menyelesaikan permasalahan dimana hanya LINEAR PROGRAMMING : METODE GRAFIK Metode grafik hanya bisa digunakan untuk menyelesaikan permasalahan dimana hanya terdapat dua variabel keputusan. Untuk menyelesaikan permasalahan tersebut, langkah pertama

Lebih terperinci

Aplikasi Kombinatorial dan Peluang dalam Permainan Four Card Draw

Aplikasi Kombinatorial dan Peluang dalam Permainan Four Card Draw Aplikasi Kombinatorial dan Peluang dalam Permainan Four Card Draw Hanifah Azhar 13509016 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

Pilihlah jawaban yang paling tepat!

Pilihlah jawaban yang paling tepat! Pilihlah jawaban yang paling tepat!. Terdapat 0 anggota klub bola voli. Akan dibentuk Tim Voli yang terdiri dari 6 orang. Banyaknya variasi Tim Bola Voli yang dapat di susun ada A. 0 B. 200 20 22 E. 20

Lebih terperinci

Latihan Soal Ujian Nasional Sekolah Menengah Pertama / Madrasah Tsanawiyah. SMP / MTs Mata Pelajaran : Matematika

Latihan Soal Ujian Nasional Sekolah Menengah Pertama / Madrasah Tsanawiyah. SMP / MTs Mata Pelajaran : Matematika Latihan Soal Ujian Nasional 00 Sekolah Menengah Pertama / Madrasah Tsanawiyah SMP / MTs Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban

Lebih terperinci

Ruang Sampel. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Ruang Sampel. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Ruang Sampel Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Ruang Sampel (Sample Space) Ruang sampel: himpunan semua hasil (outcome) yang

Lebih terperinci

II. KONSEP DASAR PELUANG

II. KONSEP DASAR PELUANG II. KONSEP DASAR PELUANG Teori Peluang memberikan cara pengukuran kuantitatif tentang kemungkinan munculnya suatu kejadian tertentu dalam suatu percobaan/peristiwa. Untuk dapat menghitung peluang lebih

Lebih terperinci

Pertemuan Ke-1 BAB I PROBABILITAS

Pertemuan Ke-1 BAB I PROBABILITAS Pertemuan Ke-1 BAB I PROBABILITAS 1.1 Arti dan Pentingnya Probabilitas Probabilitas merupakan suatu nilai untuk mengukur besarnya tingkat kemungkinan terjadinya suatu kejadian yang acak. Kejadian Acak

Lebih terperinci

Unit 5 PELUANG. Clara Ika Sari Budhayanti. Pendahuluan

Unit 5 PELUANG. Clara Ika Sari Budhayanti. Pendahuluan Unit 5 PELUANG lara Ika Sari Budhayanti Pendahuluan P ada unit lima ini kita akan membahas peluang. Peluang merupakan salah satu cabang matematika yang mempelajari cara menghitung tingkat keyakinan seseorang

Lebih terperinci

PERMUTASI, KOMBINASI DAN PELUANG. Kaidah pencacahan membantu dalam memecahkan masalah untuk menghitung

PERMUTASI, KOMBINASI DAN PELUANG. Kaidah pencacahan membantu dalam memecahkan masalah untuk menghitung PERMUTASI, KOMBINASI DAN PELUANG A. KAIDAH PENCACAHAN Kaidah pencacahan membantu dalam memecahkan masalah untuk menghitung berapa banyaknya cara yang mungkjin terjadi dalam suatu percobaan. Kaidah pencacahan

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 PANDUAN MATERI MATEMATIKA Program Keahlian Akuntansi dan Penjualan PUSAT PENILAIAN PENDIDIKAN BALITBANG DEPDIKNAS Hak Cipta pada Pusat Penilaian Pendidikan BALITBANG

Lebih terperinci

Ruang Contoh dan Kejadian

Ruang Contoh dan Kejadian 2 N i 1 x i N 2 Ruang Contoh dan Kejadian Suatu fenomena dikatakan acak jika hasil dari suatu percobaan bersifat tidak pasti Fenomena acak sering mengikuti suatu pola tertentu Keteraturan acak dalam jangka

Lebih terperinci

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT.

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. EKSPERIMEN suatu percobaan yang dapat diulang-ulang dengan kondisi yang sama CONTOH : Eksperimen : melempar dadu 1 kali Hasilnya

Lebih terperinci

Aplikasi Kombinatorial dan Peluang Diskrit dalam Permainan Dadu Cee-Lo

Aplikasi Kombinatorial dan Peluang Diskrit dalam Permainan Dadu Cee-Lo Aplikasi Kombinatorial dan Peluang Diskrit dalam Permainan Dadu Cee-Lo Hendy - 13507011 Jurusan Teknik Informatika, ITB, Bandung 40116, email: if17011@students.if.itb.ac.id Abstract Makalah ini membahas

Lebih terperinci

PELUANG. P n,r, P r TEKNIK MENGHITUNG: PERKALIAN TEKNIK MENGHITUNG: PERMUTASI TEKNIK MENGHITUNG: PERKALIAN. P n,r =n n 1 n 2 n r 1 = n! n r!

PELUANG. P n,r, P r TEKNIK MENGHITUNG: PERKALIAN TEKNIK MENGHITUNG: PERMUTASI TEKNIK MENGHITUNG: PERKALIAN. P n,r =n n 1 n 2 n r 1 = n! n r! PELUANG TEKNIK MENGHITUNG: PERKALIAN Bab pembelajaran: 1. Teknik Menghitung a. Perkalian b. Permutasi c. Kombinasi 2. Peluang a. Dasar Peluang b. Peluang Bersyarat c. Kebebasan Oleh Ridha Ferdhiana, M.Sc

Lebih terperinci

Antiremed Kelas 9 Matematika

Antiremed Kelas 9 Matematika Antiremed Kelas 9 Matematika Persiapan Uas Matematika Doc. Name: AR09MAT0UAS Version : 205-05 halaman 0. Gambar di bawah ini adalah sebuah foto yang ditempel pada kertas karton berukuran 0cm x 40cm. Di

Lebih terperinci

Untuk soal (1) s/d (3) berhubungan dengan data berikut :

Untuk soal (1) s/d (3) berhubungan dengan data berikut : Untuk soal () s/d (3) berhubungan dengan data berikut : Sebanyak 30 siswa mengikuti test materi Statistik Skor hasil test dikelompokkan dalam tabulasi berikut. Nilai Frekuensi (f) 4 50 2 5 60 n 6 70 7

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

KATA PENGANTAR. Salatiga, Juni Penulis. iii

KATA PENGANTAR. Salatiga, Juni Penulis. iii KATA PENGANTAR Teori Probabilitas sangatlah penting dalam memberikan dasar pada Statistika dan Statistika Matematika. Di samping itu, teori probabilitas juga memberikan dasar-dasar dalam pembelajaran tentang

Lebih terperinci

PREDIKSI SOAL UAN MATEMATIKA KELOMPOK NON-TEKNIK

PREDIKSI SOAL UAN MATEMATIKA KELOMPOK NON-TEKNIK PREDIKSI SOAL UAN MATEMATIKA KELOMPOK NON-TEKNIK 1. Perhatikan gambar berikut ini! y 5 R 5 6 x Daerah R pada gambar di atas ini merupakan daerah penyelesain dari suatu sistem pertidaksamaan. Nilai minimum

Lebih terperinci

PREDIKSI SOAL UAN MATEMATIKA 2008 KELOMPOK NON-TEKNIK

PREDIKSI SOAL UAN MATEMATIKA 2008 KELOMPOK NON-TEKNIK PREDIKSI SOAL UAN MATEMATIKA 2008 KELOMPOK NON-TEKNIK 1. Perhatikan gambar berikut ini! y 5 R 5 6 x Daerah R pada gambar di atas ini merupakan daerah penyelesain dari suatu sistem pertidaksamaan. Nilai

Lebih terperinci

4. Himpunan penyelesaian dari sistem persamaan linear x + y = 5 dan x - 2y = -4 adalah... A.{ (1, 4) }

4. Himpunan penyelesaian dari sistem persamaan linear x + y = 5 dan x - 2y = -4 adalah... A.{ (1, 4) } 1. Diketahui himpunan P = ( bilangan prima kurang dari 13 ) Banyak himpunan bagian dari P adalah... 5 25 10 32 P = {Bilangan prima kurang dari 13} = {2, 3, 5, 7, 11} n(p) = 5 2. Dari diagram Venn di bawah,

Lebih terperinci

Xpedia Matematika. DP Probabilitas

Xpedia Matematika. DP Probabilitas Xpedia Matematika DP Probabilitas Doc. XPMAT1998 Doc. Version : 2013-03 halaman 1 01. Ada 7 buku yang berbeda akan saya masukkan ke rak buku yang berslot 4. Kalau 1 buku sudah pasti akan saya masukkan

Lebih terperinci

MATERI KULIAH STATISTIKA

MATERI KULIAH STATISTIKA MATERI KULIAH STATISTIKA III. TEORI PROBABILITAS 1. Operasi himpunan a. Gabungan atau union b. Interseksi atau irisan Contoh soal 1 : Dalam sebuah eksperimen pelemparan 1 buah dadu, terdapat kejadian :

Lebih terperinci

KARTU SOAL UJIAN NASIONAL MADRASAH ALIYAH NEGERI PANGKALPINANG

KARTU SOAL UJIAN NASIONAL MADRASAH ALIYAH NEGERI PANGKALPINANG Jumlah 50 Bentuk Pilihan Ganda Standar Kompetensi : Menggunakan logika matematika dalam pemecahan masalah yang berkaitan dengan pernyataan majemuk dan pernyataan berkuantor Kompetensi Dasar : Menggunakan

Lebih terperinci

REFRESH. Populasi 3/28/2012

REFRESH. Populasi 3/28/2012 EKO EFENDI 1 REFRESH. Populasi Populasi adalah seluruh obyek yang mungkin terpilih atau keseluruhan ciri yang dipelajari. Nilai sebenarnya dari sifat populasi disebut dengan parameter populasi, yang biasanya

Lebih terperinci

Learning Outcomes Ruang Contoh Kejadian Aksioma Peluang Latihan. Aksioma Peluang. Julio Adisantoso. 16 Pebruari 2014

Learning Outcomes Ruang Contoh Kejadian Aksioma Peluang Latihan. Aksioma Peluang. Julio Adisantoso. 16 Pebruari 2014 16 Pebruari 2014 Learning Outcome Mahasiswa dapat memahami ruang contoh, kejadian, dan koleksi Mahasiswa dapat melakukan operasi himpunan kejadian Mahasiswa dapat memahami aksioma peluang Mahasiswa dapat

Lebih terperinci

Konsep Peluang. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015

Konsep Peluang. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015 Konsep Peluang Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015 1 THE ROLE OF PROBABILITY IN STATISTICS Probability and statistics are related in an important way. Probability is used as a tool; it allows

Lebih terperinci

TEORI PROBABILITAS (KEMUNGKINAN) Saptawati Bardosono

TEORI PROBABILITAS (KEMUNGKINAN) Saptawati Bardosono TEORI PROBABILITAS (KEMUNGKINAN) Saptawati Bardosono Teori Kemungkinan (probabilitas) Untuk komunikasi informasi medis di antara para ahli dan antara seorang ahli dengan pasiennya dan untuk mencegah terjadinya

Lebih terperinci

KOMBINATORIK DAN PELUANG

KOMBINATORIK DAN PELUANG I TU URI HANDAY AN TW DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG LANJUT TAHUN 2009 KOMBINATORIK DAN PELUANG GY A Y O M AT E M A T AK A R DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENINGKATAN

Lebih terperinci

Pertemuan ke-5 : Kamis, 7 April : Nevi Narendrati, M.Pd. Prodi : Pendidikan Matematika, Kelas 21

Pertemuan ke-5 : Kamis, 7 April : Nevi Narendrati, M.Pd. Prodi : Pendidikan Matematika, Kelas 21 Pertemuan ke-5 : Kamis, 7 April 2016 Dosen : Nevi Narendrati, M.Pd. Prodi : Pendidikan Matematika, Kelas 21 Materi Teori Peluang: 1. Operasi Kejadian 2. Peluang: definisi dan sifat-sifatnya Operasi Kejadian

Lebih terperinci

KISI-KISI PENULISAN TRY OUT UJIAN NASIONAL TAHUN PELAJARAN 2010/2011

KISI-KISI PENULISAN TRY OUT UJIAN NASIONAL TAHUN PELAJARAN 2010/2011 KISI-KISI PENULISAN TRY OUT UJIAN NASIONAL TAHUN PELAJARAN 2010/2011 Jenis Sekolah : SMA/MA Alokasi Waktu : 120 menit Program Studi : Bahasa Jumlah Soal : 40 item Mata pelajaran : Matematika Penyusun :

Lebih terperinci

BAB V PENGANTAR PROBABILITAS

BAB V PENGANTAR PROBABILITAS BAB V PENGANTAR PROBABILITAS Istilah probabilitas atau peluang merupakan ukuran untuk terjadi atau tidak terjadinya sesuatu peristiwa. Ukuran ini merupakan acuan dasar dalam teori statistika. 1. Beberapa

Lebih terperinci

U n KOMBINATORIAL. A 1 atau A 2 atau... atau A n adalah (n 1 + n n n ). Dengan kata lain

U n KOMBINATORIAL. A 1 atau A 2 atau... atau A n adalah (n 1 + n n n ). Dengan kata lain KOMBINATORIAL Kombinatorial adalah cabang matematika yang mempelajari pengaturan objek objek Solusi yang ingin kita peroleh dari kombinatorial ini adalah jumlah cara pengaturan objek objek didalam kumpulanya

Lebih terperinci

PAKET 1 Berilah tanda silang (x) pada huruf A, B, C atau D di depan jawaban yang benar! 1. Hasil dari ( ) : (-8 + 6) adalah. a. -6 b. -5 c.

PAKET 1 Berilah tanda silang (x) pada huruf A, B, C atau D di depan jawaban yang benar! 1. Hasil dari ( ) : (-8 + 6) adalah. a. -6 b. -5 c. PAKET 1 Berilah tanda silang (x) pada huruf A, B, C atau D di depan jawaban yang benar! 1. Hasil dari (- + 11) : (-8 + 6) adalah. a. -6 b. -5 c. 5 d. 6. Pak Budi pada awal bulan menabung uang di koperasi

Lebih terperinci

Gugus dan Kombinatorika

Gugus dan Kombinatorika Bab 1 Gugus dan Kombinatorika 1.1 Gugus Gugus, atau juga disebut himpunan adalah kumpulan objek. Objek dalam sebuah himpunan disebut anggota atau unsur. Penulisan himpunan dapat dilakukan dengan dua cara,

Lebih terperinci

1.3 Pembuktian Tautologi dan Kontradiksi. Pernyataan majemuk yang selalu bernilai benar bagaimanapun nilai proposisi

1.3 Pembuktian Tautologi dan Kontradiksi. Pernyataan majemuk yang selalu bernilai benar bagaimanapun nilai proposisi 1.3 Pembuktian 1.3.1 Tautologi dan Kontradiksi Pernyataan majemuk yang selalu bernilai benar bagaimanapun nilai proposisi yang membentuknya disebut toutologi, sedangkan proposisi yang selalu bernilai salah

Lebih terperinci

PRAKATA. Modul Matematika Peluang 1

PRAKATA. Modul Matematika Peluang 1 PRAKATA Buku Modul Pembelajaran Matematika Peluang ini adalah buku yang memperkenalkan dan merangkum materi peluang dan memperkuat pemahamanpemahaman akan materi tersebut bagi siswa-siswa yang membutuhkan

Lebih terperinci

Kompetens n i s : Mahasiswa mam a pu p menjel enj a el s a ka k n gejala ekonomi dengan meng guna k n a konsep probabil i i l t i as

Kompetens n i s : Mahasiswa mam a pu p menjel enj a el s a ka k n gejala ekonomi dengan meng guna k n a konsep probabil i i l t i as Kompetensi: Mahasiswa mampu menjelaskan gejala ekonomi dengan menggunakan konsep probabilitas Hal. 9- Penelitian itu Penuh Kemungkinan (tdk pasti) Mengubah Saya tidak yakin Menjadi Saya yakin akan sukses

Lebih terperinci

Lampiran 1 Pembuktian Teorema 2.3

Lampiran 1 Pembuktian Teorema 2.3 LAMPIRAN 16 Lampiran 1 Pembuktian Teorema 2.3 Sebelum membuktikan Teorema 2.3, terlebih dahulu diberikan beberapa definisi yang berhubungan dengan pembuktian Teorema 2.3. Definisi 1 (Matriks Eselon Baris)

Lebih terperinci

RUANG SAMPEL DAN KEJADIAN TI2131 TEORI PROBABILITAS MINGGU KE-2

RUANG SAMPEL DAN KEJADIAN TI2131 TEORI PROBABILITAS MINGGU KE-2 RUANG SAMPEL DAN KEJADIAN TI2131 TEORI PROBABILITAS MINGGU KE-2 1 Definisi-definisi Himpunan (set) adalah kumpulan objek. Himpunan semua outcome yang mungkin muncul dalam suatu percobaan/pengamatan disebut

Lebih terperinci

UJI COBA UJIAN NASIONAL SMK. Tahun Pelajaran 2014 / 2015 PAKET 03 MATEMATIKA TEKNIK KELOMPOKTEKNOLOGI, KESEHATAN, DAN PERTANIAN (UTAMA)

UJI COBA UJIAN NASIONAL SMK. Tahun Pelajaran 2014 / 2015 PAKET 03 MATEMATIKA TEKNIK KELOMPOKTEKNOLOGI, KESEHATAN, DAN PERTANIAN (UTAMA) UJI COBA UJIAN NASIONAL SMK Tahun Pelajaran 014 / 015 MATEMATIKA TEKNIK KELOMPOKTEKNOLOGI, KESEHATAN, DAN PERTANIAN (UTAMA) Mata Pelajaran Kelompok 1 MATA PELAJARAN : MATEMATIKA : Teknologi, Kesehatan,

Lebih terperinci

IPS. Untuk Sekolah Menengah Atas. รพ Program Tahunan (Prota) รพ Program Semester (Promes) รพ Silabus. รพ Rencana Pelaksanaan Pembelajaran (RPP)

IPS. Untuk Sekolah Menengah Atas. รพ Program Tahunan (Prota) รพ Program Semester (Promes) รพ Silabus. รพ Rencana Pelaksanaan Pembelajaran (RPP) PEMBELAJARAN STANDAR ISI 2006 รพ Program Tahunan (Prota) รพ Program Semester (Promes) รพ Silabus รพ Rencana Pelaksanaan Pembelajaran (RPP) MATEMATIKA Untuk Sekolah Menengah Atas 11 IPS CV. SINDHUNATA Matematika

Lebih terperinci

Probabilitas (Peluang)

Probabilitas (Peluang) Probabilitas (Peluang) PERTEMUAN KE-5 Winda Aprianti PROBABILITAS Peluang atau Kemungkinan NAMA LAIN PROBABILITAS Konsep Ukuran numerik tentang seberapa sering peristiwa itu akan terjadi. Semakin besar

Lebih terperinci

Pencacahan. Learning is not child's play, we cannot learn without pain. Aristotle. Matema(ka Komputasi - Pencacahan. Agi Putra Kharisma, ST., MT.

Pencacahan. Learning is not child's play, we cannot learn without pain. Aristotle. Matema(ka Komputasi - Pencacahan. Agi Putra Kharisma, ST., MT. Pencacahan Learning is not child's play, we cannot learn without pain. Aristotle 1 Berapakah jumlah bilangan bulat dari 5 sampai 12? Jawaban: 8 m n 5 6 7 8 9 10 11 12 m m+1 m+2 m+3 m+4 m+5 m+6 m+7 1 2

Lebih terperinci

a b. 1.5 l c d. 1.75 l 2 l

a b. 1.5 l c d. 1.75 l 2 l 160 1. Sebuah batu yang massanya sama digantung pada seutas tali yang berbeda panjangnya. Gambar manakah yang akan menghasilkan jumlah ayunan terbanyak untuk selang waktu tertentu. a b. l 1.5 l c d. 1.75

Lebih terperinci

Aksioma Peluang. Bab Ruang Contoh

Aksioma Peluang. Bab Ruang Contoh Bab 2 Aksioma Peluang 2.1 Ruang Contoh Dalam suatu percobaan, kita tidak tahu dengan pasti apa hasil yang akan terjadi. Misalnya pada percobaan membeli lampu pijar, kita tidak tahu dengan pasti, apakah

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2009 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

FERRY FERDIANTO, S.T., M.Pd. PRODI PENDIDIKAN MATEMATIKA UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2011

FERRY FERDIANTO, S.T., M.Pd. PRODI PENDIDIKAN MATEMATIKA UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2011 FERRY FERDIANTO, S.T., M.Pd. PRODI PENDIDIKAN MATEMATIKA UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2011 Operasi Himpunan Operasi Himpunan Operasi Himpunan Operasi Himpunan Operasi Himpunan 4. Beda Setangkup

Lebih terperinci

PENGANTAR TEORI PELUANG. Pendahuluan

PENGANTAR TEORI PELUANG. Pendahuluan 1 Sufyani Prabawanto Bahan Belajar Mandiri 5 PENGANTAR TEORI PELUANG Pendahuluan Sebagai seorang guru, kita sering berhadapan dengan skor-skor hasil tes siswa. Misalkan seorang siswa memperoleh skor asli

Lebih terperinci

PELUANG. Menggunakan aturan statistika, kaidah pencacahan, dan sifat-sifat peluang dalam pemecahan masalah.

PELUANG. Menggunakan aturan statistika, kaidah pencacahan, dan sifat-sifat peluang dalam pemecahan masalah. PENDAHULUAN PELUANG Teori Peluang (probabilitas) merupakan cabang matematika yang banyak penerapannya dalam kehidupan sehari-hari. Atas kehendak Tuhan, Teori Peluang lahir dan berkembang dari dunia hitam

Lebih terperinci

MATEMATIKA Sekolah Menengah Kejuruan (SMK) Kelas XII

MATEMATIKA Sekolah Menengah Kejuruan (SMK) Kelas XII i MATEMATIKA Sekolah Menengah Kejuruan (SMK) Kelas XII Kelompok Penjualan dan Akuntansi To ali Pusat Perbukuan Departemen Pendidikan Nasional ii Hak Cipta pada Departemen Pendidikan Nasional Dilindungi

Lebih terperinci

Teori Probabilitas. Debrina Puspita Andriani /

Teori Probabilitas. Debrina Puspita Andriani    / Teori Probabilitas 5 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Konsep Probabilitas Ruang Sampel Komplemen Kejadian Probabilitas Bersyarat Teorema Bayes Berapa

Lebih terperinci

SILABUS PEMBELAJARAN JARAK JAUH BIDANG MATEMATIKA TERAPAN

SILABUS PEMBELAJARAN JARAK JAUH BIDANG MATEMATIKA TERAPAN A. Pembelajaran 2 1. Silabus SILABUS PEMBELAJARAN JARAK JAUH BIDANG MATEMATIKA TERAPAN N o STANDAR KOMPE TENSI KOMPE TENSI DASAR INDIKATOR MATERI TUGAS BUKTI BELAJAR KON TEN INDIKA TOR WA K- TU SUM- BER

Lebih terperinci

2. Hasil pengukuran panjang suatu benda 50,23 m. Salah mutlaknya adalah. a. 0,1 m b. 0,05 m c. 0,01 m d. 0,005 m e. 0,001 m

2. Hasil pengukuran panjang suatu benda 50,23 m. Salah mutlaknya adalah. a. 0,1 m b. 0,05 m c. 0,01 m d. 0,005 m e. 0,001 m 1. Harga satu meter sutera sama dengan tiga kali harga satu meter katun. Kakak membeli 5 meter sutera dan 4 meter katun dengan harga Rp 228.000. Harga satu meter sutera a. Rp 12.000 b. Rp 36.000 c. Rp

Lebih terperinci

( A) 1 BAB 2 LANDASAN TEORI Beberapa Definisi

( A) 1 BAB 2 LANDASAN TEORI Beberapa Definisi BAB 2 LANDASAN TEORI 2.1. Beberapa Definisi Kejadian tak pasti adalah kejadian yang munculnya tidak pasti sehingga tidak bisa diduga terlebih dahulu. Contohnya pada seperti pelemparan sebuah dadu, orang

Lebih terperinci

Problem A. Liga Adu Ayam

Problem A. Liga Adu Ayam Problem A Liga Adu Ayam Pak Buncit terkenal di kalangan teman-temannya sebagai seseorang yang gemar menonton adu ayam. Ia juga memiliki banyak sekali ayam petarung yang cukup tangguh sehingga ia cukup

Lebih terperinci

Allah Swt. menciptakan langit dan bumi beserta isinya.

Allah Swt. menciptakan langit dan bumi beserta isinya. Pelajaran 3 Allah Mahapencipta Allah Swt. menciptakan langit dan bumi beserta isinya. Kegiatanku Amatilah gambar berikut ini! Gambar 3.1 Gambar 3.2 Gambar 3.4 Gambar 3.3 1. Buatlah pertanyaan dari hasil

Lebih terperinci

PERATURAN PERTANDINGAN & LOMBA PORSENI III DPD PERPAMSI BANTEN MY PISITA RESORT PANTAI ANYER, 26 MEI 2011

PERATURAN PERTANDINGAN & LOMBA PORSENI III DPD PERPAMSI BANTEN MY PISITA RESORT PANTAI ANYER, 26 MEI 2011 PERATURAN PERTANDINGAN & LOMBA PORSENI III DPD PERPAMSI BANTEN MY PISITA RESORT PANTAI ANYER, 26 MEI 2011 PANITIA : Sekretariat Perpamsi Banten : Jl. Kisamaun No. 204 Tangerang 15118. Telp./Fax. 021 55794821

Lebih terperinci

BAB III HIMPUNAN. 2) Mahasiswa dapat menyebutkan relasi antara dua himpunan. 3) Mahasiswa dapat menentukan hasil operasi dari dua himpunan

BAB III HIMPUNAN. 2) Mahasiswa dapat menyebutkan relasi antara dua himpunan. 3) Mahasiswa dapat menentukan hasil operasi dari dua himpunan BAB III HIMPUNAN Tujuan Instruksional Umum Mahasiswa memahami pengertian himpunan, relasi antara himpunan, operasi himpunan, aljabar himpunan, pergandaan himpunan, serta himpunan kuasa. Tujuan Instruksional

Lebih terperinci

P E L U A N G. B. Peluang Kejadian Majemuk. Materi W12b. 1. Kejadian Majemuk saling Lepas 2. Kejadian Majemuk saling Bebas. Kelas X, Semester 2

P E L U A N G. B. Peluang Kejadian Majemuk. Materi W12b. 1. Kejadian Majemuk saling Lepas 2. Kejadian Majemuk saling Bebas. Kelas X, Semester 2 Materi W12b P E L U A N G Kelas X, Semester 2 B. Peluang Kejadian Majemuk 1. Kejadian Majemuk saling Lepas 2. Kejadian Majemuk saling Bebas www.yudarwi.com B. Peluang Kejadian Majemuk Kejadian majemuk

Lebih terperinci

Learning Outcomes Peluang Bersyarat Latihan-1 Hukum Penggandaan Hukum Total Peluang Latihan-2. Peluang Bersyarat. Julio Adisantoso.

Learning Outcomes Peluang Bersyarat Latihan-1 Hukum Penggandaan Hukum Total Peluang Latihan-2. Peluang Bersyarat. Julio Adisantoso. 2 Maret 2014 Learning Outcome Mahasiswa dapat memahami kejadian dan peluang bersyarat Mahasiswa dapat memahami hukum penggandaan Mahasiswa dapat memahami hukum total peluang Mahasiswa dapat memiliki dasar

Lebih terperinci