a. Ruang Sampel dan Titik Sampel Dalam himpunan ruang sampel disebut Semesta S = 1, 2, 3, 4,5, 6

Ukuran: px
Mulai penontonan dengan halaman:

Download "a. Ruang Sampel dan Titik Sampel Dalam himpunan ruang sampel disebut Semesta S = 1, 2, 3, 4,5, 6"

Transkripsi

1 1. Kejadian a. Ruang Sampel dan Titik Sampel Ruang Sampel adalah himpunan dari semua hasil yang mungkin dari suatu kegiatan Contoh : Kegiatan melempar sebuah dadu hasil atau angka yang mungkin muncul adalah 1, 2, 3, 4,5, 6 Dalam himpunan ruang sampel disebut Semesta S 1, 2, 3, 4,5, 6 Titik Sampel adalah adalah anggota anggota dari ruang sampel Titik sampel pada contoh di atas adalah 1, 2, 3, 4, 5 dan 6 Dalam himpunan titik sampel adalah anggota himpunan yang membentuk himpunan b. Kejadian/Peristiwa/Event Kejadian atau Peristiwa adalah himpunan bagian dari ruang sampel. Kejadian Sederhana adalah kejadian yang hanya mempunyai 1 titik sampel Pada kegiatan melempar dadu contoh kejadian sederhana adalah 1, 2, 3, 4, 5 dan 6 Kejadian Majemuk adalah kejadian yang mempunyai lebih dari 1 titik sampel Pada kegiatan melempar dadu contoh kejadian majemuk adalah 1, 3, 2, 3, 4

2 c. Kejadian Saling Lepas dan Saling Bebas Kejadian Saling Lepas adalah dua atau lebih kejadian yang tidak dapat terjadi secara bersamaan Contoh : Pada pelemparan sebuah dadu sebanyak satu kali saat angka 1 muncul maka angka 2, 3, 4, 5 atau 6 tidak akan muncul pada saat yang sama Kejadian munculnya angka 1, 2, 3, 4, 5 atau 6 pada pelemparan dadu sebanyak satu kali dikatakan saling lepas. Jumlah kemungkinan kejadian yang muncul adalah 6 kejadian yaitu munculnya angka 1, 2, 3, 4, 5 atau 6 Jumlah pengabungan kejadian yang saling lepas sama dengan jumlah dari masing masing kejadian individu Kejadian Saling Bebas adalah dua atau lebih kejadian yang dapat terjadi secara bersamaan dan tidak saling terpengaruh Contoh : Pelemparan 2 dadu secara bersamaan pasangan kejadian angka yang muncul pada dadu I dan dadu II tidak saling berpengaruh. Jika angka 1 muncul pada dadu I maka sembarang angka pada dadu II bisa muncul bersamaan. Kejadian pada dadu I dikatakan saling bebas dengan kejadian pada dadu II Jumlah pasangan kejadian pada dua dadu yang dilempar secara bersamaan adalah pasang kejadian yaitu 1, 1, 1, 2,..., 6, 5, 6, 6 Jumlah pengabungan kejadian yang saling bebas sama dengan perkalian dari masing masing kejadian individu

3 d. Kejadian Bersyarat dan Permutasi Misalkan Adi, Budi dan Catur akan dipilih menjadi Ketua dan Wakil Ketua kelas dan tidak diperbolehkan seseorang merangkap jabatan, maka kemungkinan pasangannya adalah Kejadian Gabungan Ketua Wakil Ketua 1 Adi Budi 2 Adi Catur 3 Budi Adi 4 Budi Catur 5 Catur Adi 6 Catur Budi Perhatikan gabungan nomor 1 dan 3. Urutan Adi ketua dan Budi wakil ketua berbeda dengan Budi ketua dan Adi wakil ketua. Urutan disini menjadi penting Ada 3 calon untuk menempati posisi ketua (Adi, Budi dan Catur) maka akan ada 3 kemungkinan kejadian nama murid menempati posisi ketua. Jika seseorang telah dipilih menjadi ketua maka calon untuk menempati posisi wakil ketua tersisa 2 calon saja. Jumlah kemungkinan pasangan yang terpilih untuk posisi ketua dan wakil adalah Permasalahan di atas dikenal dengan permutasi Permutasi adalah cara penggabungan kejadian dari dari beberapa kejadian dengan cara memperhatikan urutan Jumlah permutasi atau penggabungan r kejadian dari n kejadian Dimana n disebut faktorial P n n r n n 2 n 1 n dan 1 1 dan 0 0

4 Untuk contoh di atas ada 2 posisi yang akan diisi 𝑟 2 yaitu ketua dan wakil ketua oleh 𝑛 3 calon 𝑃 6 Berapa banyak kata yang berbeda dapat dibuat dari huruf KAKAK? Jika masing masing huruf dianggap berbeda maka ada 𝑃 120 cara mengurutkan Anggap A berbeda yaitu A dan A dan perhatikan KA KA K dianggap berbeda dengan KA KA K Pada kasus di atas urutan 2 huruf A yang sama dihitung 2 kali 𝑃 2 Begitu juga dengan 2 huruf K yang sama dihitung 6 kali 𝑃 6 Sehingga jumlah kata yang dapat dibuat dari huruf KAKAK adalah "# 10 Secara umum jika ada 𝒏 titik sampel yang akan diurutkan dan ada 𝒏𝟏, 𝒏𝟐, 𝒏𝒊 titik sampel yang sama, maka banyaknya cara mengurutkan adalah 𝑛 𝑃,,, 𝑛 𝑛 𝑛

5 Tiga orang duduk di meja bundar seperti pada gambar di bawah Urutan duduk ketiga orang adalah sama pada ketiga gambar Sebelah kiri A duduk B dan sebelah kanan A duduk C pada ketiga gambar walaupun menempati kursi yang berbeda Permasalahan di atas dikenal dengan permutasi siklis Jika r 3 orang akan menduduki n 3 kursi maka banyaknya cara adalah P 3 Tetapi ada 3 urutan yang sama pada meja bundar maka hasilnya harus di bagi 3 P "#$" 2 Pada permutasi siklis berlaku P "#$" n 1

6 e. Kejadian Bersyarat dan Kombinasi Misalkan Adi, Budi dan Catur adalah penggemar bulutangkis dan mereka akan membentuk team ganda buluntangkis. Team ganda yang terdiri dari Adi dan Budi atau Budi dan Adi dianggap satu. Urutan disini tidak diperhatikan seperti pada kasus ketua dan wakil ketua. Team Ganda Nama Pasangan 1 Adi - Budi 2 Adi - Catur 3 Budi - Catur Permasalahan di atas dikenal dengan permutasi Kombinasi adalah cara penggabungan kejadian dari dari beberapa kejadian dengan cara tidak memperhatikan urutan Jumlah kombinasi atau penggabungan r kejadian dari n kejadian adalah C n r n r Untuk contoh di atas dibutuhkan r 2 orang untuk membentuk team ganda bulutangkis yang dipilih dari n 3 pemain C 3

STATISTIK DESKRIPTIF

STATISTIK DESKRIPTIF PENGANTAR TEORI PELUANG OLEH HERDIAN S.Pd., M.Pd. SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER (STIMIK) PRINGSEWU NOTASI FAKTORIAL (!) adalah hasil kali bilangan asli berurutan dari 1 sampai n. dirumuskan

Lebih terperinci

KOMBINATORIKA SEDERHANA

KOMBINATORIKA SEDERHANA KOMBINATORIKA SEDERHANA Kaidah Penjumlahan Misal suatu peristiwa dapat terjadi dalam cara yang berlainan (saling asing ). Dalam cara pertama terdapat kemungkinan hasil yang berbeda. Cara kedua memberikan

Lebih terperinci

PENCACAHAN RUANG SAMPEL

PENCACAHAN RUANG SAMPEL PENCACAHAN RUANG SAMPEL PERTEMUAN VII EvanRamdan PENDAHULUAN Tanpa kita sadari kehidupan kita sehari-hari selalu berhubungan dengan matematika, khususnya peluang. Misalnya dalam pemilihan umum terdapat

Lebih terperinci

Peluang Aturan Perkalian, Permutasi, dan Kombinasi dalam Pemecahan Masalah Ruang Sampel Suatu Percobaan Peluang Suatu Kejadian dan Penafsirannya

Peluang Aturan Perkalian, Permutasi, dan Kombinasi dalam Pemecahan Masalah Ruang Sampel Suatu Percobaan Peluang Suatu Kejadian dan Penafsirannya 2 Aturan Perkalian, Permutasi, dan Kombinasi dalam ; Pemecahan Masalah Ruang Sampel Suatu Percobaan ; Suatu Kejadian dan Penafsirannya ; Pada era demokrasi saat ini untuk menduduki suatu jabatan tertentu

Lebih terperinci

LEMBAR AKTIVITAS SISWA PELUANG

LEMBAR AKTIVITAS SISWA PELUANG Nama Siswa : LEMBAR AKTIVITAS SISWA PELUANG 2 2. Kelas : Kompetensi Dasar (KURIKULUM 2013): 3.16 Memahami dan menerapkan berbagai aturan pencacahan melalui beberapa contoh nyata serta menyajikan alur perumusan

Lebih terperinci

MATERI BAB I RUANG SAMPEL DAN KEJADIAN. A. Pendahuluan Dari jaman dulu sampai sekarang orang sering berhadapan dengan peluang.

MATERI BAB I RUANG SAMPEL DAN KEJADIAN. A. Pendahuluan Dari jaman dulu sampai sekarang orang sering berhadapan dengan peluang. MATERI BAB I RUANG SAMPEL DAN KEJADIAN Pendahuluan Ruang Sampel Kejadian Dua Kejadian Yang Saling Lepas Operasi Kejadian BAB II MENGHITUNG TITIK SAMPEL Prinsip Perkalian/ Aturan Dasar Notasi Faktorial

Lebih terperinci

Konsep Dasar Peluang

Konsep Dasar Peluang Konsep Dasar Peluang Pendahuluan Prediksi kejadian sangat diperlukan dan diminati dalam berbagai bidang kehidupan. Seperti peramalan cuaca, penelitian ilmiah, permainan, bisnis, dll. Ruang contoh : Himpunan

Lebih terperinci

PELUANG. n cara yang berbeda. Contoh 1: Ali mempunyai 2 celana dan 3 baju yang berbeda. Berapa stelan celana dan baju berbeda yang dipunyai Ali?

PELUANG. n cara yang berbeda. Contoh 1: Ali mempunyai 2 celana dan 3 baju yang berbeda. Berapa stelan celana dan baju berbeda yang dipunyai Ali? -1- PELUANG 1. KAIDAH PENCACAHAN 1.1 Aturan Pengisian Tempat Jika beberapa peristiwa dapat terjadi dengan n1, n2, n3,... cara yang berbeda, maka keseluruhan peristiwa itu dapat terjadi dengan n n......

Lebih terperinci

peluang Contoh 6.1 Ali mempunyai 2 celana dan 3 baju yang berbeda. Berapa stelan celana dan baju berbeda yang dipunyai Ali? Matematika Dasar Page 46

peluang Contoh 6.1 Ali mempunyai 2 celana dan 3 baju yang berbeda. Berapa stelan celana dan baju berbeda yang dipunyai Ali? Matematika Dasar Page 46 peluang 6.1 Kaidah Pencacahan A. Aturan Perkalian Misal suatu plat nomor sepeda motor terdiri atas dua huruf berbeda yang diikuti tiga angka dengan angka pertama bukan 0. Berapa banyak plat nomor berbeda

Lebih terperinci

BAB 2 PELUANG. Menggunakan aturan statistika, kaidah pencacahan, dan sifat-sifat peluang dalam pemecahan masalah.

BAB 2 PELUANG. Menggunakan aturan statistika, kaidah pencacahan, dan sifat-sifat peluang dalam pemecahan masalah. Standar Kompetensi 2 PELUNG Menggunakan aturan statistika, kaidah pencacahan, dan sifat-sifat peluang dalam pemecahan masalah. Kompetensi Dasar 1. Menggunakan aturan perkalian, permutasi, dan kombinasi

Lebih terperinci

BAB 2 PELUANG. Menggunakan aturan statistika, kaidah pencacahan, dan sifat-sifat peluang dalam pemecahan masalah.

BAB 2 PELUANG. Menggunakan aturan statistika, kaidah pencacahan, dan sifat-sifat peluang dalam pemecahan masalah. Standar Kompetensi 2 PELUNG Menggunakan aturan statistika, kaidah pencacahan, dan sifat-sifat peluang dalam pemecahan masalah. Kompetensi Dasar 1. Menggunakan aturan perkalian, permutasi, dan kombinasi

Lebih terperinci

KOMBINATORIKA. (Latihan Soal) Kus Prihantoso Krisnawan. August 30, 2012 PEMBINAAN OLIMPIADE MATEMATIKA SMA 1 KALASAN

KOMBINATORIKA. (Latihan Soal) Kus Prihantoso Krisnawan. August 30, 2012 PEMBINAAN OLIMPIADE MATEMATIKA SMA 1 KALASAN KOMBINATORIKA (Latihan Soal) Kus Prihantoso August 30, 2012 PEMBINAAN OLIMPIADE MATEMATIKA SMA 1 KALASAN Teori Faktorial Teori Faktorial n! = n (n 1) (n 2) (n 3) 2 1 0! = 1 Teori Faktorial n! = n (n 1)

Lebih terperinci

B. Aturan Permutasi ATURAN PENCACAHAN 7/8/2015. B. Aturan Permutasi

B. Aturan Permutasi ATURAN PENCACAHAN 7/8/2015. B. Aturan Permutasi Jurnal Materi W22b B. Aturan Permutasi Daftar Hadir Materi B SoalLKS SoalLatihan ATURAN PENCACAHAN Kelas XI, Semester 4 B. Aturan Permutasi Notasi faktorial : n! = n (n - 1) (n - 2) (n - 3) 3. 2. 1 dimana

Lebih terperinci

PELUANG KEJADIAN. Macam-macam permutasi 1. Permutasi n unsur dari n unsur n. P n. 2. Permutasi dengan beberapa unsur yang sama

PELUANG KEJADIAN. Macam-macam permutasi 1. Permutasi n unsur dari n unsur n. P n. 2. Permutasi dengan beberapa unsur yang sama PELUANG KEJADIAN A. Aturan Perkalian/Pengisian Tempat Jika kejadian pertama dapat terjadi dalam a cara berbeda, kejadian kedua dapat terjadi dalam b cara berbeda, kejadian ketiga dapat terjadi dalam c

Lebih terperinci

King s Learning Be Smart Without Limits

King s Learning Be Smart Without Limits NAMA: KELAS: A. KAIDAH PENCACAHAN Kaidah pencacahan adalah suatu cara/aturan untuk menghitung semua kemungkinan yang terjadi dalam suatu percobaan tertentu. Ada tiga metode pencacahan yang digunakan yaitu,

Lebih terperinci

B. Aturan Permutasi ATURAN PENCACAHAN 11/20/2015. B. Aturan Permutasi

B. Aturan Permutasi ATURAN PENCACAHAN 11/20/2015. B. Aturan Permutasi Jurnal Materi Umum B. Aturan Permutasi Daftar Hadir Materi B SoalLatihan ATURAN PENCACAHAN Kelas XI, Semester 4 B. Aturan Permutasi Notasi faktorial : n! = n (n - 1) (n - 2) (n - 3) 3. 2. 1 dimana n bilangan

Lebih terperinci

SOAL PELUANG KELAS XI MATEMATIKANET.COM 1.! B. 4 2 C. 2 2 D. E. 2 2 A. 840 B. 504 C. 162 D. 84 E. 168

SOAL PELUANG KELAS XI MATEMATIKANET.COM 1.! B. 4 2 C. 2 2 D. E. 2 2 A. 840 B. 504 C. 162 D. 84 E. 168 SOAL PELUANG KELAS XI MATEMATIKANET.COM 1.!!. A. B. 4 2 C. 2 2 D. 2 2 2.!!!. A. 840 B. 504 C. 162 D. 84 168 3. Untuk menuju kota C dari Kota A harus melewati kota B. Dari kota A menuju kota B melewati

Lebih terperinci

Hidup penuh dengan ketidakpastian

Hidup penuh dengan ketidakpastian BAB 2 Probabilitas Hidup penuh dengan ketidakpastian Tidak mungkin bagi kita untuk dapat mengatakan dengan pasti apa yang akan terjadi dalam 1 menit ke depan tapi Probabilitas akan memprediksikan masa

Lebih terperinci

PELUANG. Standar kompetensi : Menggunakan aturan statistika, kaidah, pencacahan, dan sifatsifat peluang dalam pemecahan masalah

PELUANG. Standar kompetensi : Menggunakan aturan statistika, kaidah, pencacahan, dan sifatsifat peluang dalam pemecahan masalah 1 PELUANG Standar kompetensi : Menggunakan aturan statistika, kaidah, pencacahan, dan sifatsifat peluang dalam pemecahan masalah Kompetensi Dasar : Menggunakan aturan perkalian, permutasi dan kombinasi

Lebih terperinci

UJIAN SEMESTER GANJIL. Mata Pelajaran : Matematika Waktu : Menit Kelas/Jurusan : XI IPA Hari/Tanggal :

UJIAN SEMESTER GANJIL. Mata Pelajaran : Matematika Waktu : Menit Kelas/Jurusan : XI IPA Hari/Tanggal : UJIAN SEMESTER GANJIL Mata Pelajaran : Matematika Waktu : Menit Kelas/Jurusan : XI IPA Hari/Tanggal : Pilihlah jawaban a, b, c, d dan e yang menurut anda benar!. Nilai rataan hitung dari data : 4, 0, 7,

Lebih terperinci

Percobaan : proses yang menghasilkan data Ruang Contoh (S) : himpunan yang memuat semua kemungkinan hasil percobaan

Percobaan : proses yang menghasilkan data Ruang Contoh (S) : himpunan yang memuat semua kemungkinan hasil percobaan Probabilitas = Peluang (Bagian I) 1. Pendahuluan Percobaan : proses yang menghasilkan data Ruang Contoh (S) : himpunan yang memuat semua kemungkinan hasil percobaan Comment [sls1]: Page: 1 Misal : a. Ruang

Lebih terperinci

PERMUTASI & KOMBINASI ARUM H. PRIMANDARI

PERMUTASI & KOMBINASI ARUM H. PRIMANDARI PERMUTASI & KOMBINASI ARUM H. PRIMANDARI ATURAN PENGALIAN ATURAN 1 ATURAN 2 MENGHITUNG TITIK SAMPEL Dasar dari prinsip menghitung titik sampel sering di diartikan sebagai aturan pengalian. Aturan 1: Jika

Lebih terperinci

CONTOH BAHAN AJAR PENDEKATAN INDUKTIF-DEDUKTIF

CONTOH BAHAN AJAR PENDEKATAN INDUKTIF-DEDUKTIF CONTOH BAHAN AJAR PENDEKATAN INDUKTIF-DEDUKTIF 1 2 ATURAN PERKALIAN LEMBAR KERJA SISWA KE-1 Perhatikan soal yang berkaitan dengan perjalanan berikut ini. Pak Zidan dengan mobilnya akan bepergian dari kota

Lebih terperinci

KOMBINATORIKA DAN PELUANG. Jika n adalah bilangan asli, maka n factorial, ditulis n! diartikan sebagai

KOMBINATORIKA DAN PELUANG. Jika n adalah bilangan asli, maka n factorial, ditulis n! diartikan sebagai KOMBINATORIKA DAN PELUANG Faktorial Jika n adalah bilangan asli, maka n factorial, ditulis n! diartikan sebagai n(n-1)(n-2).3.2.1 dan didefinisikan 0!=1 Permutasi Permutasi dari n unsur adalah banyaknya

Lebih terperinci

BAB 3 Teori Probabilitas

BAB 3 Teori Probabilitas BAB 3 Teori Probabilitas A. HIMPUNAN a. Penulisan Hipunan Cara Pendaftaran Cara Pencirian 1) A = {a,i,u,e,o} 1) A = {X: x huruf vokal } 2) B = {1,2,3,4,5} menghasilkan data diskrit 2) B = {X: 1 x 2} menghasilkan

Lebih terperinci

Probabilitas dan Statistika Ruang Sampel. Adam Hendra Brata

Probabilitas dan Statistika Ruang Sampel. Adam Hendra Brata dan Statistika Ruang Adam Hendra Brata adalah suatu ilmu untuk memprediksi suatu kejadian (event) atau dapat disebut peluang suatu kejadian berdasarkan pendekatan matematis. Dengan ilmu probabilitas, kita

Lebih terperinci

C n r. h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m. P n. P ( n, n ) = n P n = P n n!

C n r. h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m. P n. P ( n, n ) = n P n = P n n! Ringkasan Materi : Kaidah Pencacahan. Aturan Perkalian Jika sesuatu objek dapat diselesaikan dalam n cara berbeda, dan sesuatu objek yang lain dapat diselesaikan dalam n cara berbeda, maka kedua objek

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dibahas beberapa konsep dasar seperti teorema dan beberapa definisi yang akan penulis gunakan sebagai landasan berpikir dalam melakukan penelitian ini sehingga mempermudah

Lebih terperinci

PERMUTASI. Yaitu : penyusunan obyek-obyek yang ada ke dalam suatu urutan tertentu.

PERMUTASI. Yaitu : penyusunan obyek-obyek yang ada ke dalam suatu urutan tertentu. PERMUTASI Merupakan suatu analisis yang mempunyai peranan penting dalam matematika modern, khususnya dalam menentukan banyaknya alternatif yang mungkin terjadi didalam pengambilan keputusan. Yaitu : penyusunan

Lebih terperinci

Kombinatorial. Oleh: Panca Mudjirahardjo. Definisi dan tujuan. Kombinatorial adalah cabang matematika yang mempelajari pengaturan objek-objek

Kombinatorial. Oleh: Panca Mudjirahardjo. Definisi dan tujuan. Kombinatorial adalah cabang matematika yang mempelajari pengaturan objek-objek Kombinatorial Oleh: Panca Mudjirahardjo Definisi dan tujuan Kombinatorial adalah cabang matematika yang mempelajari pengaturan objek-objek Menentukan jumlah cara pengaturan objek tersebut 1 Ilustrasi 1

Lebih terperinci

Probabilitas = Peluang

Probabilitas = Peluang 1. Pendahuluan Probabilitas = Peluang Percobaan : proses yang menghasilkan data Ruang Contoh (S) : himpunan yang memuat semua kemungkinan hasil percobaan Kejadian = Event : himpunan bagian dari ruang contoh

Lebih terperinci

Evaluasi Belajar Tahap Akhir Nasional TAHUN 1990 Matematika

Evaluasi Belajar Tahap Akhir Nasional TAHUN 1990 Matematika Evaluasi Belajar Tahap Akhir Nasional TAHUN 0 Matematika EBTANAS-IPS-0-0 x Nilai x R yang memenuhi ( ) = 8 EBTANAS-IPS-0-0 Bentuk sederhana dari + ( + ) 5 ( + 7 + EBTANAS-IPS-0-0 Ordinat titik balik grafik

Lebih terperinci

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA B TROUT UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA TAHUN PELAJARAN 04/05 MATEMATIKA IPS Hasil Kerja Sama dengan Mata Pelajaran : Matematika IPS Jenjang : SMA/MA MATA PELAJARAN Hari, tanggal : Selasa,

Lebih terperinci

MODUL PELUANG MATEMATIKA SMA KELAS XI

MODUL PELUANG MATEMATIKA SMA KELAS XI KATA PENGANTAR Segala puji syukur bagi Allah SWT yang senantiasa melimpahkan rahmat dan karunia-nya. Sebaik-baiknya shalawat serta salam semoga Allah SWT limpahkan kepada Nabi Besar Muhammad SAW, beserta

Lebih terperinci

BAB I PELUANG A. PERCOBAAN dan RUANG SAMPEL PERCOBAAN adalah setiap proses mengamati/mengukur yang menghasilkan data

BAB I PELUANG A. PERCOBAAN dan RUANG SAMPEL PERCOBAAN adalah setiap proses mengamati/mengukur yang menghasilkan data BAB I PELUANG A. PERCOBAAN dan RUANG SAMPEL PERCOBAAN adalah setiap proses mengamati/mengukur yang menghasilkan data Contoh : 1. Melempar mata uang, menghasilkan 2 hasil yaitu munculnya sisi gambar atau

Lebih terperinci

Solusi dan Penyelesaian. Kombinatorik. (b)

Solusi dan Penyelesaian. Kombinatorik. (b) Solusi dan Penyelesaian Kombinatorik # Ralat Soal Soal 17. (b) (a 2b + c) 2 Soal 30. Peluang Jevon bisa mengerjakan Bagian A Solusi Solusi 1. (a) 4500 (b) 5832 Solusi 16*. 1152 Solusi 2. (a) 2240 (b*)

Lebih terperinci

PELUANG. A Aturan Pengisian Tempat. B Permutasi

PELUANG. A Aturan Pengisian Tempat. B Permutasi PELUANG KAIDAH PENCACAHAN kaidah pencacahan didefinisikan sebagai suatu cara atau aturan untuk menghitung semua kemungkinan yang dapat terjadi dalam suatu percobaan tertentu. Ada beberapa metode pencacahan,

Lebih terperinci

Pembahasan Contoh Soal PELUANG

Pembahasan Contoh Soal PELUANG Pembahasan Contoh Soal PELUANG 1. Nomor rumah yang dimaksud terdiri atas dua angka. Ini berarti ada dua tempat yang harus diisi, yaitu PULUHAN dan SATUAN. Karena nomor rumah harus ganjil, maka tempat Satuan

Lebih terperinci

Peluang. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas LOGO

Peluang. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas LOGO Peluang Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas LOGO Kompetensi menjelaskan mengenai ruang contoh, titik contoh dan kejadian mencacah titik contoh menghitung peluang

Lebih terperinci

= 3 x maka (f g)(x) =.. Mata Pelajaran : MATEMATIKA. Petunjuk: A

= 3 x maka (f g)(x) =.. Mata Pelajaran : MATEMATIKA. Petunjuk: A Mata Pelajaran : MATEMATIKA Kelas/ Program : XII IPS Waktu : 0 menit Petunjuk: Pilih satu jawaban yang benar. Pernyataan yang senilai dengan Jika guru tidak datang maka semua siswa sedih. Adalah... Jika

Lebih terperinci

PENERAPAN TEORI KOMBINATORIAL, PELUANG DISKRIT, DAN POHON KEPUTUSAN DALAM PERMAINAN YAHTZEE

PENERAPAN TEORI KOMBINATORIAL, PELUANG DISKRIT, DAN POHON KEPUTUSAN DALAM PERMAINAN YAHTZEE PENERAPAN TEORI KOMBINATORIAL, PELUANG DISKRIT, DAN POHON KEPUTUSAN DALAM PERMAINAN YAHTZEE Gifari Kautsar 13512020 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

Probabilitas suatu peristiwa adalah harga angka yang menunjukkan seberapa besar kemungkinan suatu peristiwa terjadi.

Probabilitas suatu peristiwa adalah harga angka yang menunjukkan seberapa besar kemungkinan suatu peristiwa terjadi. TEORI ROBBILITS robabilitas suatu peristiwa adalah harga angka yang menunjukkan seberapa besar kemungkinan suatu peristiwa terjadi. robabilitas peristiwa nilainya antara 0 hingga 1 Konsep probabilitas

Lebih terperinci

PELUANG. Standar kompetensi : Menggunakan aturan statistika, kaidah, pencacahan, dan sifatsifat peluang dalam pemecahan masalah

PELUANG. Standar kompetensi : Menggunakan aturan statistika, kaidah, pencacahan, dan sifatsifat peluang dalam pemecahan masalah 1 PELUANG Standar kompetensi : Menggunakan aturan statistika, kaidah, pencacahan, dan sifatsifat peluang dalam pemecahan masalah Kompetensi Dasar : Menggunakan aturan perkalian, permutasi dan kombinasi

Lebih terperinci

www.matematika-pas.blogspot.com E-learning matematika, GRATIS

www.matematika-pas.blogspot.com E-learning matematika, GRATIS Penyusun Editor : Indyah Sulistyawati, S.Pd. ; Wiwik Hermawati, S.Si. : Drs. Keto Susanto, M.Si. M.T. ; Istijab, S.H. M.Hum. Imam Indra Gunawan, S.Si. ). Pengertian Kaidah Pencacahan (Counting Slots) Kaidah

Lebih terperinci

10. PELUANG A. Kaidah Pencacahan 1. Aturan perkalian

10. PELUANG A. Kaidah Pencacahan 1. Aturan perkalian 0. PELUANG A. Kaidah Pencacahan. Aturan perkalian Apabila suatu peristiwa dapat terjadi dengan n tahap yang berurutan, dimana tahap pertama terdapat a cara yang berbeda dan seterusnya sampai dengan tahap

Lebih terperinci

PREDIKSI UN SMA IPS MATEMATIKA 2012

PREDIKSI UN SMA IPS MATEMATIKA 2012 Prediksi Matematika UN SMA IPS 01 PREDIKSI UN SMA IPS MATEMATIKA 01 1. Diketahui dua pernyataan p dan q p : bernilai besar q : bernilai salah Pernyataan majemuk di bawah ini bernilai benar, kecuali. A.

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMK Mata Pelajaran : Matematika Kelas : XII (Dua Belas) Program : Teknologi, Kesehatan, dan Pertanian Standar Kompetensi Kompetensi Dasar : 13. Memecahkan

Lebih terperinci

BANK SOAL MATEMATIKA IPS

BANK SOAL MATEMATIKA IPS BANK SOAL MATEMATIKA IPS Tim Guru Matematika SMAN 1 Kendari KENDARI 2013 1. Bentuk sederhana dari adalah... A. B. E. Jawaban : E Bentuk sederhana dari : 2. Nilai x yang memenuhi persamaan adalah... A.

Lebih terperinci

BAB II PROBABILITAS Ruang sampel (sample space)

BAB II PROBABILITAS Ruang sampel (sample space) BAB II ROBABILITAS 2.1. Ruang sampel (sample space) Data diperoleh baik dari pengamatan kejadian yang tak dapat dikendalikan atau dari percobaan yang dikendalikan dalam laboratorium. Untuk penyederhanaan

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemuan IV Konsep Peluang Septian Rahardiantoro - STK IPB 1 Populasi Pengambilan contoh dari populasi untuk pendugaan parameter Contoh1 Parameter μ Statistik x Setara

Lebih terperinci

OPERASI HIMPUNAN. (Minggu ke-10 dan 11)

OPERASI HIMPUNAN. (Minggu ke-10 dan 11) OPERASI HIMPUNAN (Minggu ke-10 dan 11) Definisi 1. Irisan dari dua himpunan H dan K dengan notasi HK adalah himpunan yang anggota-anggotanya menjadi anggota H sekaligus menjadi anggota K, Notasi matematisnya

Lebih terperinci

Aturan Pencacahan MATERI MATEMATIKA SMA KELAS XI MIA PERMUTASI SAPTANA SURAHMAT. Penyusun : Sub-pokok Bahasan:

Aturan Pencacahan MATERI MATEMATIKA SMA KELAS XI MIA PERMUTASI SAPTANA SURAHMAT. Penyusun : Sub-pokok Bahasan: Aturan Pencacahan MATERI MATEMATIKA SMA KELAS XI MIA Sub-pokok Bahasan: PERMUTASI 1 Penyusun : SAPTANA SURAHMAT Target Kompetensi *) Dikutif dari Lampiran Peraturan Mentri Nomor 58 Tahun 2014 tentang Kurikulum

Lebih terperinci

STK 211 Metode statistika. Materi 3 Konsep Dasar Peluang

STK 211 Metode statistika. Materi 3 Konsep Dasar Peluang STK 211 Metode statistika Materi 3 Konsep Dasar Peluang 1 Pendahuluan Banyak kejadian-kejadian di dunia ini yang tidak pasti Misal: Akankah hujan sore hari ini? Akankah PSSI menang? dll Nilai Kejadian

Lebih terperinci

WORKSHOP PEMBIMBINGAN OLIMPIADE MATEMATIKA & SAINS BIDANG MATEMATIKA SMP

WORKSHOP PEMBIMBINGAN OLIMPIADE MATEMATIKA & SAINS BIDANG MATEMATIKA SMP WORKSHOP PEMBIMBINGAN OLIMPIADE MATEMATIKA & SAINS BIDANG MATEMATIKA SMP Ilham Rizkianto FMIPA Universitas Negeri Yogyakarta Ilham_rizkianto@uny.ac.id Wonosari, 9 Mei 2014 MASALAH KOMBINATORIK Mengecoh,

Lebih terperinci

PEMERINTAH KOTA YOGYAKARTA DINAS PENDIDIKAN

PEMERINTAH KOTA YOGYAKARTA DINAS PENDIDIKAN DOKUMEN NEGARA RAHASIA B TAHUN PELAJARAN 06/07 MATEMATIKA PEMERINTAH KOTA YOGYAKARTA DINAS PENDIDIKAN 07 tpm_un_smp_yk_mtk-i-b_06/07 MATA PELAJARAN Mata Pelajaran : Matematika PELAKSANAAN Hari/Tanggal

Lebih terperinci

Oleh: BAMBANG AVIP PRIATNA M

Oleh: BAMBANG AVIP PRIATNA M Oleh: BAMBANG AVIP PRIATNA M Pecobaan / eksperimen acak Ruang Sampel Peristiwa / kejadian / event Peluang peristiwa Sifat-sifat peluang Cara menghitung peluang 1. hasilnya tidak dapat diduga dengan tingkat

Lebih terperinci

9. 2 Menghitung peluang suatu kejadian

9. 2 Menghitung peluang suatu kejadian Sumber: Art and Gallery Standar Kompetensi Kompetensi Dasar. Memecahkan masalah dengan konsep teori peluang 9. Mendeskripsikan kaidah pencacahan, permutasi, dan kombinasi 9. 2 Menghitung peluang suatu

Lebih terperinci

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA A TROUT UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA TAHUN PELAJARAN 0/05 MATEMATIKA IPS Hasil Kerja Sama dengan Mata Pelajaran : Matematika IPS Jenjang : SMA/MA MATA PELAJARAN Hari, tanggal : Selasa,

Lebih terperinci

25/09/2013. Semua kemungkinan nilai yang muncul S={123456} S={1,2,3,4,5,6} Semua kemungkinan nilai yang muncul S={G, A}

25/09/2013. Semua kemungkinan nilai yang muncul S={123456} S={1,2,3,4,5,6} Semua kemungkinan nilai yang muncul S={G, A} Pendahuluan Metode Statistika (STK211) Konsep Peluang (Probability Concept) Suatu fenomena dikatakan acak jika hasil dari suatu percobaan bersifat tidak pasti Fenomena acak sering mengikuti suatu pola

Lebih terperinci

Bab 9. Peluang Diskrit

Bab 9. Peluang Diskrit Bab 9. Peluang Diskrit Topik Definisi Peluang Diskrit Sifat Peluang Diskrit Probabilitas terbatas Konsep Teori Himpunan pada Peluang Diskrit Probabilitas Kejadian Majemuk A B dan A B DuaKejadianSalingLepas

Lebih terperinci

Peluang. Ilham Rais Arvianto, M.Pd. STMIK AKAKOM Yogyakarta

Peluang. Ilham Rais Arvianto, M.Pd. STMIK AKAKOM Yogyakarta eluang Ilham Rais rvianto, M.d STMIK KKOM Yogyakarta Ruang Sampel dan Titik Sampel Ruang sampel adalah himpunan dari semua kejadian yang mungkin muncul pada suatu percobaan. Ruang sampel dilambangkan dengan

Lebih terperinci

Ruang Sampel. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Ruang Sampel. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Ruang Sampel Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Ruang Sampel (Sample Space) Ruang sampel: himpunan semua hasil (outcome) yang

Lebih terperinci

MODUL PROBABILITAS BAHAN AJAR MATEMATIKA DASAR 2 SMA NEGERI 10 MELATI SAMARINDA DI SUSUN OLEH : KHAIRUL BASARI, S.Pd

MODUL PROBABILITAS BAHAN AJAR MATEMATIKA DASAR 2 SMA NEGERI 10 MELATI SAMARINDA DI SUSUN OLEH : KHAIRUL BASARI, S.Pd MODUL ROBABILITAS BAHAN AJAR MATEMATIKA DASAR SMA NEGERI MELATI SAMARINDA DI SUSUN OLEH : KHAIRUL BASARI, S.d khairulfaiq.wordpress.com e-mail : muh_abas@yahoo.com age of 7 Kegiatan embelajaran A. STANDAR

Lebih terperinci

Pilihlah jawaban yang paling tepat!

Pilihlah jawaban yang paling tepat! Pilihlah jawaban yang paling tepat!. Terdapat 0 anggota klub bola voli. Akan dibentuk Tim Voli yang terdiri dari 6 orang. Banyaknya variasi Tim Bola Voli yang dapat di susun ada A. 0 B. 200 20 22 E. 20

Lebih terperinci

Pertemuan 4. Permutasi

Pertemuan 4. Permutasi Pertemuan 4 Permutasi Faktorial Faktorial dinotasikan atau dilambangkan dengan n! (dibaca n faktorial). n! adalah hasil perkalian semua bilangan asli dari 1 sampai n, sehingga didefinisikan sebagai berikut:

Lebih terperinci

Beberapa Hukum Peluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Beberapa Hukum Peluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Beberapa Hukum Peluang Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Suatu kejadian dapat merupakan gabungan atau irisan dari dua atau

Lebih terperinci

Aplikasi Kombinatorial dan Peluang dalam Permainan Four Card Draw

Aplikasi Kombinatorial dan Peluang dalam Permainan Four Card Draw Aplikasi Kombinatorial dan Peluang dalam Permainan Four Card Draw Hanifah Azhar 13509016 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI SIDAYU Jl. Pahlawan No.0 Telp./Fax. 0-0 Sidayu Gresik UJIAN SEKOLAH TAHUN PELAJARAN 00/0 Mata Pelajaran : Matematika Satuan Pendidikan : SMA Program

Lebih terperinci

STATISTICS. WEEK 2 Hanung N. Prasetyo TELKOM POLYTECHNIC/HANUNGNP

STATISTICS. WEEK 2 Hanung N. Prasetyo TELKOM POLYTECHNIC/HANUNGNP STTISTICS WEEK 2 Hanung N. rasetyo OLYTECHNIC/HNUNGN Ruang sample dari suatu eksperimen merupakan suatu himpunan semua kemungkinan hasil suatu eksperimen. Ruang sample dinotasikan dengan Ώ Sedangkan kejadian

Lebih terperinci

PERMUTASI, KOMBINASI DAN PELUANG. Kaidah pencacahan membantu dalam memecahkan masalah untuk menghitung

PERMUTASI, KOMBINASI DAN PELUANG. Kaidah pencacahan membantu dalam memecahkan masalah untuk menghitung PERMUTASI, KOMBINASI DAN PELUANG A. KAIDAH PENCACAHAN Kaidah pencacahan membantu dalam memecahkan masalah untuk menghitung berapa banyaknya cara yang mungkjin terjadi dalam suatu percobaan. Kaidah pencacahan

Lebih terperinci

ATURAN PENCACAHAN DAN PERMUTASI. Tujuan Pembelajaran

ATURAN PENCACAHAN DAN PERMUTASI. Tujuan Pembelajaran KTSP & K-13 matematika K e l a s XI ATURAN PENCACAHAN DAN PERMUTASI Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami aturan perkalian dan penjumlahan.

Lebih terperinci

Ruang Contoh dan Kejadian

Ruang Contoh dan Kejadian 2 N i 1 x i N 2 Ruang Contoh dan Kejadian Suatu fenomena dikatakan acak jika hasil dari suatu percobaan bersifat tidak pasti Fenomena acak sering mengikuti suatu pola tertentu Keteraturan acak dalam jangka

Lebih terperinci

II. KONSEP DASAR PELUANG

II. KONSEP DASAR PELUANG II. KONSEP DASAR PELUANG Teori Peluang memberikan cara pengukuran kuantitatif tentang kemungkinan munculnya suatu kejadian tertentu dalam suatu percobaan/peristiwa. Untuk dapat menghitung peluang lebih

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2012 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

Unit 5 PELUANG. Clara Ika Sari Budhayanti. Pendahuluan

Unit 5 PELUANG. Clara Ika Sari Budhayanti. Pendahuluan Unit 5 PELUANG lara Ika Sari Budhayanti Pendahuluan P ada unit lima ini kita akan membahas peluang. Peluang merupakan salah satu cabang matematika yang mempelajari cara menghitung tingkat keyakinan seseorang

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN JL. ARIF RAHMAN HAKIM 2 GRESIK TRY OUT UJIAN NASIONAL Tahun Pelajaran 2010/2011

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN JL. ARIF RAHMAN HAKIM 2 GRESIK TRY OUT UJIAN NASIONAL Tahun Pelajaran 2010/2011 PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN JL. ARIF RAHMAN HAKIM GRESIK TRY OUT UJIAN NASIONAL Tahun Pelajaran 00/0 Mata Pelajaran : Matematika Satuan Pendidikan : SMA/MA Program : Bahasa Hari/ Tanggal

Lebih terperinci

Kombinatorial. Matematika Diskrit Pertemuan ke - 4

Kombinatorial. Matematika Diskrit Pertemuan ke - 4 Kombinatorial Matematika Diskrit Pertemuan ke - 4 Pengertian Cabang matematika yang mempelajari pengaturan objek-objek Solusi yang diperoleh : jumlah cara pengaturan objek-objek tertentu dalam himpunan

Lebih terperinci

PELUANG. P n,r, P r TEKNIK MENGHITUNG: PERKALIAN TEKNIK MENGHITUNG: PERMUTASI TEKNIK MENGHITUNG: PERKALIAN. P n,r =n n 1 n 2 n r 1 = n! n r!

PELUANG. P n,r, P r TEKNIK MENGHITUNG: PERKALIAN TEKNIK MENGHITUNG: PERMUTASI TEKNIK MENGHITUNG: PERKALIAN. P n,r =n n 1 n 2 n r 1 = n! n r! PELUANG TEKNIK MENGHITUNG: PERKALIAN Bab pembelajaran: 1. Teknik Menghitung a. Perkalian b. Permutasi c. Kombinasi 2. Peluang a. Dasar Peluang b. Peluang Bersyarat c. Kebebasan Oleh Ridha Ferdhiana, M.Sc

Lebih terperinci

Aplikasi Kombinatorial dan Peluang Diskrit dalam Permainan Dadu Cee-Lo

Aplikasi Kombinatorial dan Peluang Diskrit dalam Permainan Dadu Cee-Lo Aplikasi Kombinatorial dan Peluang Diskrit dalam Permainan Dadu Cee-Lo Hendy - 13507011 Jurusan Teknik Informatika, ITB, Bandung 40116, email: if17011@students.if.itb.ac.id Abstract Makalah ini membahas

Lebih terperinci

MATEMATIKA (Paket 3) Waktu : 120 Menit

MATEMATIKA (Paket 3) Waktu : 120 Menit MATEMATIKA (Paket ) Waktu : 0 Menit (05) 477 606 Website : Pilihlah jawaban yang paling tepat!. Hasil dari 68 : ( 4) + 6 8 adalah.... A. 88. 65. D. 7. Hasil dari 4 : + 5 A. 8 5 adalah..... 6 5. 8 D. 6.

Lebih terperinci

Ruang Sampel, Titik Sampel dan Kejadian

Ruang Sampel, Titik Sampel dan Kejadian Dasar Dasar robabilitas DSR DSR ROILITS Ruang Sampel, Titik Sampel dan Kejadian Ruang sampel (sample space atau semesta (universe merupakan himpunan dari semua hasil (outcome yang mungkin dari suatu percobaan

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik PMRINTAH KABUPATN GRSIK DINAS PNDIDIKAN SMA NGRI SIDAYU Jl. Pahlawan No.0 Telp./Fax. 0-40 Sidayu Gresik UJIAN SKOLAH TAHUN PLAJARAN 00/0 Mata Pelajaran : Matematika Satuan Pendidikan : SMA Program : IPS

Lebih terperinci

BAB II KAJIAN PUSTAKA...

BAB II KAJIAN PUSTAKA... vi DAFTAR ISI Lembar Pengesahan... i Riwayat Hidup... Abstrak... i Kata pengantar... iv Daftar Isi... vi Daftar Gambar... x Daftar Tabel... xi Daftar Diagram... x Daftar Lampiran... xi BAB I PENDAHULUAN...

Lebih terperinci

Untuk soal (1) s/d (3) berhubungan dengan data berikut :

Untuk soal (1) s/d (3) berhubungan dengan data berikut : Untuk soal () s/d (3) berhubungan dengan data berikut : Sebanyak 30 siswa mengikuti test materi Statistik Skor hasil test dikelompokkan dalam tabulasi berikut. Nilai Frekuensi (f) 4 50 2 5 60 n 6 70 7

Lebih terperinci

Analisis Kombinatorial

Analisis Kombinatorial 28 Februari 2017 Chandra Novtiar 085794801125 chandramathitb07@gmail.com PROGRAM STUDI PENDIDIKAN MATEMATIKA SEKOLAH TINGGI KEGURUAN DAN ILMU PENDIDIKAN (STKIP) SILIWANGI BANDUNG Garis Besar Pembahasan

Lebih terperinci

Permutations, Combinations, and Probability Jadug Norach Agna Parusa. Copyright 2014 Bimbingan Belajar Merlion BBMerlion.com

Permutations, Combinations, and Probability Jadug Norach Agna Parusa. Copyright 2014 Bimbingan Belajar Merlion BBMerlion.com Permutations, Combinations, and Probability Jadug Norach Agna Parusa Copyright 2014 Bimbingan Belajar Merlion BBMerlion.com 1 PERMUTATIONS & COMBINATIONS Objektif Mengenal konsep ( n P r ) dan ( n C r

Lebih terperinci

PELUANG. Jika seluruhnya ada banyak kegiatan, dan masing-masing berturut-turut dapat dilakukan dalam

PELUANG. Jika seluruhnya ada banyak kegiatan, dan masing-masing berturut-turut dapat dilakukan dalam PELUANG Prinsip Perkalian Bila suatu kegiatan dapat dilakukan dalam n 1 cara yang berbeda, dan kegiatan yang lain dapat dilakukan dalam n 2 cara yang berbeda, maka seluruh peristiwa tersebut dapat dikerjakan

Lebih terperinci

REFRESH. Populasi 3/28/2012

REFRESH. Populasi 3/28/2012 EKO EFENDI 1 REFRESH. Populasi Populasi adalah seluruh obyek yang mungkin terpilih atau keseluruhan ciri yang dipelajari. Nilai sebenarnya dari sifat populasi disebut dengan parameter populasi, yang biasanya

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik OKUMEN NEGARA PEMERINTAH KABUPATEN GRESIK INAS PENIIKAN SMA NEGERI SIAYU Jl. Pahlawan No. Telp./Fax. - Sidayu Gresik UJIAN SEKOLAH TAHUN PELAJARAN / Mata Pelajaran : Matematika Satuan Pendidikan : SMA

Lebih terperinci

Peluang. Jadi, Ruang Sampel sebanyak {6}. Pada Dadu, ada 1, 2, 3, 4, 5, 6. Pada Kartu Remi, ada : Jadi, Ruang Sampel sebanyak {52}.

Peluang. Jadi, Ruang Sampel sebanyak {6}. Pada Dadu, ada 1, 2, 3, 4, 5, 6. Pada Kartu Remi, ada : Jadi, Ruang Sampel sebanyak {52}. Peluang A. Populasi dan Sampel Populasi adalah himpunan semua obyek yang diteliti. Sampel adalah himpunan bagian dari populasi. Contoh: Dalam rangka menentukan tingkat kecerdasan rata-rata siswa SMP di

Lebih terperinci

SOAL-SOAL LATIHAN PELUANG

SOAL-SOAL LATIHAN PELUANG SOAL-SOAL LATIHAN PELUANG. Berapa banyak bilangan bulat positif lebih kecil dari 700, yang dapat disusun dari angka-angka,, 5, 7 dan 9. kalau tiap bilangan tidak boleh mengandung angka yang sama. 2. Pertanyaan

Lebih terperinci

U n KOMBINATORIAL. A 1 atau A 2 atau... atau A n adalah (n 1 + n n n ). Dengan kata lain

U n KOMBINATORIAL. A 1 atau A 2 atau... atau A n adalah (n 1 + n n n ). Dengan kata lain KOMBINATORIAL Kombinatorial adalah cabang matematika yang mempelajari pengaturan objek objek Solusi yang ingin kita peroleh dari kombinatorial ini adalah jumlah cara pengaturan objek objek didalam kumpulanya

Lebih terperinci

Ruko Jambusari No. 7A Yogyakarta Telp. : ; Fax. :

Ruko Jambusari No. 7A Yogyakarta Telp. : ; Fax. : HITUNG PELUANG UNTUK SMA Oleh : Endah Wahyuni, S.Si. Edisi Pertama Cetakan Pertama, 2013 Hak Cipta 2013 pada penulis, Hak Cipta dilindungi undang-undang. Dilarang memperbanyak atau memindahkan sebagian

Lebih terperinci

APLIKASI TEORI PELUANG PADA SALAH SATU GAME ONLINE

APLIKASI TEORI PELUANG PADA SALAH SATU GAME ONLINE APLIKASI TEORI PELUANG PADA SALAH SATU GAME ONLINE Restu Banowati 18209023 Program Studi Sistem dan Teknologi Informasi Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10

Lebih terperinci

TEORI PROBABILITAS (KEMUNGKINAN) Saptawati Bardosono

TEORI PROBABILITAS (KEMUNGKINAN) Saptawati Bardosono TEORI PROBABILITAS (KEMUNGKINAN) Saptawati Bardosono Teori Kemungkinan (probabilitas) Untuk komunikasi informasi medis di antara para ahli dan antara seorang ahli dengan pasiennya dan untuk mencegah terjadinya

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik DOKUMEN NEGR PEMERINTH KBUPTEN GRESIK DINS PENDIDIKN SM NEGERI SIDYU Jl. Pahlawan No. Telp./Fax. - Sidayu Gresik UJIN SEKOLH THUN PELJRN / Mata Pelajaran : Matematika Satuan Pendidikan : SM Program : IPS

Lebih terperinci

Konsep Peluang (Probability Concept)

Konsep Peluang (Probability Concept) Konsep Peluang (Probability Concept) Suatu fenomena dikatakan acak jika hasil dari suatu percobaan bersifat tidak pasti Fenomena acak sering mengikuti suatu pola tertentu Keteraturan acak dalam jangka

Lebih terperinci

: METODE GRAFIK. Metode grafik hanya bisa digunakan untuk menyelesaikan permasalahan dimana hanya

: METODE GRAFIK. Metode grafik hanya bisa digunakan untuk menyelesaikan permasalahan dimana hanya LINEAR PROGRAMMING : METODE GRAFIK Metode grafik hanya bisa digunakan untuk menyelesaikan permasalahan dimana hanya terdapat dua variabel keputusan. Untuk menyelesaikan permasalahan tersebut, langkah pertama

Lebih terperinci

SOAL ULANGAN SEMESTER GASAL KELAS XII

SOAL ULANGAN SEMESTER GASAL KELAS XII SOAL ULANGAN SEMESTER GASAL KELAS XII 1. Sebuah toko elektronika menjual laptop dengan harga Rp. 2.523.500,00, ternyata telah mendapatkan keuntungan 3 %, harga beli dari laptop tersebut adalah Rp. 8.411.700,00

Lebih terperinci