BAB III PERHITUNGAN KINERJA MOTOR BENSIN 4 TAK 1 SILINDER STARKE GX 200 6,5 HP

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB III PERHITUNGAN KINERJA MOTOR BENSIN 4 TAK 1 SILINDER STARKE GX 200 6,5 HP"

Transkripsi

1 BAB III PERHIUNGAN KINERJA OOR BENSIN 4 AK SILINDER SARKE GX 6,5 HP 3. PENGERIAN Phitunn uln untuk mnthui kinj di sutu msin ( Stk CC, pkh kmmpun kj di msin tsbut msih ssui dnn klykn pmkin tu plu didkn pbikn st pnntin kmpnn-kmpnn msin dpt dipsikn mksiml. Phitunn uln di mt bnsin Stk GX 6.5 HP. Ini mliputi : Phitunn Dy Phitunn Pmkin Bhn Bk Phitunn N Pns 3. PEROLEHAN DAA 3.. Spsifiksi sin yp sin : GX Jumlh Silind : silind Kpsits sin : 96 Klsifiksi sin : Bnsin, 4 lnkh Dimt x lnkh : 68 x 54 mm Pbndinn Kmpsi : 7 n ksimum : 6,5 / 4 (HP/pm mn mximum :,35 / 5 k.m/p 3.. Dt itis mptu ud lu ( Dnn mmphitunkn tmptu ud skit, dimbil : 3 33 K

2 knn ud lu ( P knn ud lu dlh : P tm knn s pd pmuln kmpsi ( P H P {tknn ud dikhi lnkh isp untuk mt 4 lnkh bkis nt (,85,9 x P tm}. Untuk phitunn ini dimbil : P, 9tm (3 Knikn h tmptu ud di dlm silind kibt suhu dindin silind ( t w H ( t w bkis nt - K. Untuk phitunn dimbil : K untuk s K (3 t w knn di s bks ( y Kfisin s bks untuk msin 4 lnkh :,3-,4. Untuk phitunn dimbil : y,4 (33 knn s pd khi pmbunn ( P sin kbut, Dimbil : P,3, 8tm P, 8tm (34 mptu s bun ( sin kbut, 8 K dimbil : 8 K 57 C. ( Kfisin klbihn ud (α N. Ptsky, Pf. D S.in Cmbustin Enin, Hl.7 sin lbid, hl. kbut, 8 α,-,3. Dimbil : 3 lbid, hl. 9 4 Α lbid,, hl. 3 (36 Fkt kksi di dim (φ sin 4 lnkh, φ,95-,97. Dimbil :

3 Φ,95... (37 Efisinsi mknis ( η m sin kbut 4 lnkh, η,8-,85. Dimbil : m η,8. (38 m Kfisin pnunn pns hsil pmbkn ( ξ t bnsin, ξ,85-,95. Dimbil : ξ,85. (39 Ekspnn plitpis kspnsi ( n Nili n bkis nt,5-,3. Untuk phitunn dimbil : n,5 (4 s jnis bnsin,73 /m³,73 k/lt (4 3.3 PERHIUNGAN Vlum Lnkh Adlh bsny un bk yn ditmpuh lh pistn slm mlkukn lnkh kj. V. π. D. V.. (4 4 Dimn : D Dimt silind (m L Pnjn Lnkh pistn (m ( 6, V. π 4 5 lbid, hl. 3 6 lbid, hl lbid, hl. 5, Vlum un bk ( ( V Vlum un bk dlh lum un bk di silind hd dn lum di skt. V V + V sh

4 V dlh lum yn disbbkn ktbln skt dnn tbl. V (, m V. π. D. L 4 V. π. 4 V 3, 69 ( 6,8., V dlh lum un bk di silind hd sh V sh V + 3,69 7 V sh V ,69 7 3,69 3,69 + 3,69 35,58 mptu wl kmpsi ( Adlh tmptu mpun ud-bhn bk yn bd dlm st pistn muli mlkukn lnkh kmpsi. + t + w + γ (. γ Dimn : 43 lbid, hl. 5, mptu ud lu... (43 t Knikn tmptu dlm silind kibt suhu dindin silind. w γ Kfisin s bks. mptu s bun. + t + w + γ (. γ

5 ,4 ( 8.,4 34,346 K Stndissi di bkis 3-35ºK... (44 Efisinsi pmsukn ( η h Adlh si nt jumlh pmsukn ud s sbnny yn dikmpsikn didlm silind msin yn sdn bkj dn jumlh yn mn kn sudh diisi didlm lum silind yn bkj ( V Pd tknn d dn tmptu ud lu ( P dn tu pbndinn nt lum mpun ud-bhn bk pd tknn dn tmptu sklilinny (P dn diubh k P dn dnn lum lnkh. η h η h η h ε P.. ε P 7,9.. 7 ( + γ 33 7., ,4.,4 34,346 (45 ( +,4 98,9 78,96, knn khi kmpsi ( P 43 N. Ptsky, Pf. D S.in Cmbu stin Enin, Hl.9 44 N. Ptsky, Pf. D S.in Cmbustin Enin, Hl.3 45 N. Ptsky, knn Pf. khi D S.in kmpsi Cmbustin dlh Enin, tknn Hl mpun.3 ud-bhn bk pd khi lnkh kmptsi.bdskn hsil di pnukunbsny tknn kmpsi sbs,8 x 5 P (,499 tm n P. ε.. (46,499,9. 7 n 7 n,499,9,6655 l7 n l,6655 n l7,6655

6 l,6655 n l7.4 Dimn n dlh kspnn plytpik. Dlm pss kj tidk d pns msuk tupun klu ( dibtik mptu khi kmpsi ( Adlh tmptu bhn bk sblum pmbkn (pd khi lnkh kmpsi. n. ε.. ( ,4. 7 (,4-349,4. 7 (,4 73,99 ºK Stndissi untuk mt bnsin bkis nt 55-75ºK. Nili kl pmbkn bhn bk ( Adlh jumlh pns yn mpu dihsilkn dlm pmbkn k bhn bk. Pd msin bnsin diunkn bnsin ( C sbi bhn bk 8 H 8 Bnsin mmiliki kmpsisi sbi bikut : C 87% H % O % Untuk bnsin (slin, bsny 953 Kkl /k (48 46 Ibid hl 3 47 lbid, hl. 35 Kbutuhn ud titis L ' 48 N. Ptsky, Pf. D S.in Cmbustin Enin, Hl.43 Dnn jumlh ksin didlm tmsf % bnykny ud ttis yn dibutuhkn untuk pmbkn smpun di k bhn bk dlh O ' : L... (49, h L + +, 4 3,87,,,99375 L, 473ml, , Jumlh ud ttikl ud dlm stun bt ( L

7 L 8,95. L k ud p k bhn bk (5 Dimn 8,95 k/ml dlh bt mlul di ud. L 8,95,473 3, 69335k. Ud p k bhn bk. Jumlh ud sbnny (L L α.l.. (5 L, 3, , 6685k. Ud p k bhn bk. Kfisin kimi di pubhn ml stlh pmbkn ( µ Adlh pubhn lum s dlm silind slm pmbkn (pbndinn di jumlh ml di pmsukn s sblum pmbkn µ ( µ α.l 49 N. Ptsky, Pf. D S.in Cmbustin Enin, Hl.3 5 N. Ptsky, Pf. D S.in Cmbustin Enin, Hl.37 5 lbid, hl. Dimn 38 5 lbid, hl. 39 Jumlh ml di s stlh pmbkn ( kuwlits ttl di pmbkn s bsh dlm ml p K bhn bk (53 µ H N h + + α. L,. L,87,54847.,473, + + (,.,4 (,.,473,54 Kffisin di pubhn ml ( µ,54847ml Adlh pubhn jumlh sbnny di ml s stlh pmbkn ( µ µ µ + γ + γ (54

8 µ,54 +,4 +,4,5 mptu s pd khi pmbkn ( Z Adlh tmptu s hsil pmbkn mpun ud bhn bk untuk mt bnsin yn mmiliki siklus lum ttp Dpt di i dnn umus : ξ O α. + ( m mix µ (. L.( + γ Dimn ; m. (55 ( m mix kpsits ml iskhik t t di ud yn bmpu N. Ptsky, dnn Pf. s D S.in bks di Cmbustin smpi Enin, KHl N. Ptsky, Pf. D S.in Cmbustin Enin, Hl.4 55 lbid, hl. 46 ( m 4, x (56 mix ( m : kpsits pns ml iskhik t t di hsil pmbkn di smpi K. m m m m + m (57 ( x ( + h( h + N ( ( Isi lumti lti di unsu pkk dlm hsil pmbkn. (58 V,87 x,54847,39 h. (59 m h h, x,54847 h,8 V,79. α. L (6 N V

9 ,79x, x,479,54847 N V V O.7494,( α. L (6 V,(,,473,5484,8 nuut N. GGll ( kpsits pns ml iskhiik t t di lbid, hl N. Ptsky, hsil Pf. D pmbkn S.in Cmbustin di k Enin, K Hl : lbid, hl N. Ptsky, ( Pf. md S.in 7,8 + 5 Cmbustin x Enin, Kl Hl /ml.39 p C 6 lbid, hl N. Ptsky, Pf. D S.in Cmbustin Enin, ( m 5, Hl.39 Kl /ml p C 6 lbid, hl. 47 H O ( m 4, Kl / ml p C N ( m 4, Kl / ml p C O Di psmn dits diplh : ( m V ( m + V ( m + V ( m + V ( m H O H O N N O O ( m,39.( 7, ,8.( 5, ,7494.( 4, ,8.(4, ( m, , , ,796.. ( m 5, ,434. ξ O Shin : + ( m α L ( + γ. mix µ., (4, ,.,473.( +,4,586 +,336. +, , ( m,5.(5, , ,5,54 + (4, , ,

10 497,986 (4,6.579, , (579,53 5, ,5356 5, , , , ,5356 b ± b, 4 Untuk dimbil psitif (+ : b ± b, 4 5, (5, (7, , ( 785, ,77 K knn khi pmbkn ( ( P ( P P. P Z µ.. (6 47,77,49.,5. 36,6tm 73,99 K Pbndinn tknn didlm silind slm pmbkn ( λ p 36,6 λ 3,59.. (63 p,49 Pbndinn kspnsi ( ρ Rsi yn mnunjukkn pubhn yn tjdi s hsil pmbkn mpun ud bhn bk pd wl lnkh kmpsi Pbndin kspnsi pndhulun dpt di i d nn umus : µ λ ρ... ( N. Ptsky,,5 ρ Pf..73,99 D S.in, Cmbustin Enin, Hl.5 63 lbid, hl. 4 3,59 64 N. Ptsky, Pf. D S.in Cmbustin Enin, Hl.5

11 Pbndinn kspnsi slnjutny ( δ Adlh pbndinn ti yn mnunjukkn pubhn pd s hsil pmbkn slm lnkh kspnsi : ε δ.. (65 ρ 7 δ 7 knn s pd khi kspnsi ( P b P b P (66 n δ 36,6 P b 7,5 3,8 mptu s pd khi kspnsi ( b b n δ 47,77 848, 76 K b 7,5..(67 knn indikt t- t titis ( P it Adlh bs tknn t t yn di hsilkn lh pmbkn mpun bhn bk yn bkj pd pistn ssui phitunn: P it P λ (68 ε δ n n n n ε,5 P 3, it,5 7 7,5,5 7,34 65 lbid, hl lbid, hl N. Ptsky, P it Pf. 9 D, S.in 488 tmintnl Cmbustin Enin, Hl.55 knn indikt t t ( P it

12 Adlh bsny tknn t t yn di hsilkn pmbkn bhn mpun bk. P ϕ. (69 i P it P i,95 x9,488 9,36 k / m Nili P i ini untuk mt bnsin bkis nt 7 K / m knn fktif t t P P ηm. P... (7 i P,8 x9,36 7,k / m. P. V. n. N i. (7 i /.9, N 8, 65 i N 8, 65 HP. i N : Dy indit ( HP P : knn Indikt 3 V : Vlum silind ( K / m n : Putn tip mnit ( pm : Jum,lh silind : Jumlh pss kj msin 4 tk / Dy fktif. ( N. HP N η.. (7 m n Jik η m, 8 69 N. Ptsky, Pf. D S.in mk N xn Intnl Cmbustin Enin, Hl.55 7 lbid, hl. 56 ηm 7 lbid, hl. 6 7 bid, hl. N6,8 x 8, 65 N 6, 6 HP Knsumsi bhn bk spsifik indit ( F Adlh jumlh bhn bk ym dibutuhkn untuk mnhsilkn tknn indit.

13 F η P 38,4 P α. l. h.. (73 I F 38,4, ,36.,., F,96 K / HP. jm Knsumsi bhn bk spsifik fktif ( F Adlh jumlh knsumsi bhn bk yn di butuhkn untuk mnhsilkn kj fktif. F F F. (74 η m,96,8 F,45 K/ HP.Jm Knsumsi bhn bk pjm ( F h F F. (75 h N F,36. 5,,54 K/jm h,44 F h, lit /, 73 jm Ht bln ttl ( f. Adlh jumlh kstimbnn kl yn tpki dnn kun kuin kl yn tjdi bik kibt di kuin mknis, kuin kibt 74 (75 lbid, hl. 67 pndininn mupun kuin kl yn tbw s bun. + F (76 f h f 953 x, , Kkl / jm f Ht yn tsp ( l l,3 x f (77 l,3 x 373, l 44,86 Kkl / jm

14 Ht yn di bw s bun ( W W p W mix. C p. (78 Dimn : W : Jumlh di s bun ( K / jm. W mix : Jumlh di mpun s ( tu ud ( K/ jm W p : Pns spsifik di mpun s dlm K kl / K C :,56 K kl / K C C p : Pns spsifik di mpun s dlm K kl / K C :,8 K kl / K C : mptu di s bun dlm C : 77 C : mptu di mpun s dlm W mix : 3 C α.. Fh. th Adlh jumlh titis di ud yn dikiim untuk pmbkn di 76 N. Ptsky, th Pf. D S.in Cmbustin Enin, Hl.5 77 N. Ptsky, Pf. D S.in Cmbustin Enin, Hl.5 78 N. Ptsky, Pf. K D bhn S.in bk Intnl. Cmbustin Enin, Hl C + 8. H th,3 8 th 8., ,, 3,86,3 3 C W mix,.3,86., 3,9 k / jm W W + F mix h W 3,9 +, 34,K / jm mk : ( 34,.,56.77 ( 3,9.,8.3

15 655,6Kkl / jm. Psnts : 655,6, , f Ht yn diubh mnjdi kj un. (. 63. N ( , 3969,96 Kkl / jm. Psnts : 3969,96,7 7 % 4676, f s f l , 3968,96 44,86 655,6 49, s % s f 49, 4676,, % s Ht kn pnn dn skn tu ht sis yn tbw kmpnn

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c Integrl Tk Tentu INTEGRAL. Rumus Integrl Fungsi Aljr. k x n k n +. ( x + n ( n +. x ln x + x n + + ; n - n+ (x+ + ; dn 4. ( f ( x ± g( x f ( x ± g ( x n - n. os (x+sin(x+ ( n + n+ os (x+ + ( + (. sin x

Lebih terperinci

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c BAB XVI. INTEGRAL A. Integrl Tk Tentu. Rumus Integrl Fungsi Aljr. k k n = n +. ( + ) n = ( n + ). = ln + n + + ; n - n+ (+) + ; dn n -. ( f ( ) ± g( ) ) f ( ) ± g ( ) n. os (+)sin(+) = ( n + ) os n + (+)

Lebih terperinci

,, % ,, % -0: 0 -0: 0! 2 % 26, &

,, % ,, % -0: 0 -0: 0! 2 % 26, & PERSAMAAN LINIER GAUSS-SIEDEL METHOD Simultneous Liner Equtions Oleh : Purwnto,S.Si Bentuk Umum x + x + 3 x 3 + + n x n = b Sebuh persmn linier dengn : n peubh : x, x, x 3,, x n n konstnt :,, 3,, n Contoh

Lebih terperinci

STRUKTUR BETON BERTULANG I. Tulangan Rangkap. Oleh Resmi Bestari Muin

STRUKTUR BETON BERTULANG I. Tulangan Rangkap. Oleh Resmi Bestari Muin MODUL KULIAH STRUKTUR BETON BERTULANG I Minggu ke : 9 Tulngn Rngkp Oleh Resmi Bestri Muin PRODI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL dn PERENCANAAN UNIVERSITAS MERCU BUANA 2010 DAFTAR ISI DAFTAR ISI i IX

Lebih terperinci

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini: ) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut

Lebih terperinci

LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memperebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 2011

LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memperebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 2011 LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Mempereutkn Pil Guernur Sumter Seltn Mei 0 PENYISIHAN I PERORANGAN LCCM TINGKAT SMA. Dikethui kuus ABCD.EFGH dengn rusuk 6 cm. Jik

Lebih terperinci

12. LUAS DAERAH DAN INTEGRAL

12. LUAS DAERAH DAN INTEGRAL 12. LUAS DAERAH DAN INTEGRAL 12.1 Lus Derh di Bwh Kurv Mslh menentukn lus derh (dn volume rung) telh dipeljri sejk er Pythgors dn Zeno, pd thun 500-n SM. Konsep integrl (yng terkit ert dengn lus derh)

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN 3. LIMIT DAN KEKONTINUAN 1 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi di =1, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp

Lebih terperinci

PEMANTAPAN BELAJAR SMA BBS INTEGRAL

PEMANTAPAN BELAJAR SMA BBS INTEGRAL BAB I PEMANTAPAN BELAJAR SMA BBS INTEGRAL I A RANGKUMAN INTEGRAL. Pengertin Apil terdpt fungsi F() yng dpt didiferensilkn pd selng I sedemikin hingg F () = f(), mk nti turunn (integrl) dri f() dlh F()

Lebih terperinci

Aljabar Linear. Pertemuan 12_14 Aljabar Vektor (Perkalian vektor)

Aljabar Linear. Pertemuan 12_14 Aljabar Vektor (Perkalian vektor) Aljbr Liner Pertemun 12_14 Aljbr Vektor (Perklin vektor) Pembhsn Perklin vektor dengn sklr Rung vektor Perklin Vektor dengn Vektor: Dot Product - Model dot product - Sift dot product Pendhulun Penmbhn

Lebih terperinci

15. INTEGRAL SEBAGAI LIMIT

15. INTEGRAL SEBAGAI LIMIT 15. INTEGRAL SEBAGAI LIMIT 15.1 Jumlh Riemnn Dlm kulih Klkulus pd thun pertm, integrl Riemnn bisny diperkenlkn sebgi limit dri jumlh Riemnn, tidk mellui integrl Riemnn ts dn integrl Riemnn bwh. Hl ini

Lebih terperinci

Matematika SKALU Tahun 1978

Matematika SKALU Tahun 1978 Mtemtik SKALU Thun 978 MA-78-0 Persmn c + b + = 0, mempunyi kr-kr dn, mk berlku A. + = b B. + = c C. = c = c = c MA-78-0 Akr dri persmn 5 - = 7 + dlh A. B. C. 4 5 MA-78-0 Hrg dri log b. b log c. c log

Lebih terperinci

Gaya dan Medan Magnet

Gaya dan Medan Magnet Gy dn Medn Mgnet Kutub ut mgnetik Kutub ut gegfi Medn mgnet Sumbu tsi Sumbu mgnetik Sebgimn hlny dengn knsep medn listik, knsep medn mgnet jug dipelukn untuk menjelskn gy nt du bend yng tidk sling besentuhn.

Lebih terperinci

ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE)

ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Mcm Mtriks Mtriks Nol () Mtriks yng semu entriny nol. Ex: Mtriks Identits (I) Mtriks persegi dengn entri pd digonl utmny dn pd tempt lin.

Lebih terperinci

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN DFTR ISI BB I. MTRIKS BB II. DETERMINN BB III. INVERS MTRIKS BB IV. PENYELESIN PERSMN LINER SIMULTN BB I. MTRIKS Mtriks erup sekelompok ilngn yng disusun empt persegi dn ditsi tnd terdiri dri ris dn kolom

Lebih terperinci

INTEGRAL TAK TENTU. x x x

INTEGRAL TAK TENTU. x x x INTEGRAL TAK TENTU Definisi : Fungsi F diktkn nti turunn dri fungsi f pd selng I jik F () = f() untuk semu di I. Notsi : F() = f() Integrl tk tentu dlh Anti/Invers/Kelikn turunn. c c Integrl tk tentu dlh

Lebih terperinci

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan LUAS DAERAH APLIKASI INTEGRAL TENTU Indiktor Pencpin Hsil Beljr Mhsisw menunjukkn kemmpun dlm :. Menghitung lus pd idng dtr Ringksn Mteri Perkulihn Jik sutu derh ditsi oleh kurv f(), g(), gris dn dengn

Lebih terperinci

Graf Berarah (Digraf)

Graf Berarah (Digraf) Grf Berrh (Digrf) Di dlm situsi yng dinmis, seperti pd komputer digitl tupun pd sistem lirn (flow system), konsep grf errh leih sering digunkn dindingkn dengn konsep grf tk errh. Apil rus sutu grf errh

Lebih terperinci

KINEMATIKA Kelas XI. Terdiri dari sub bab : 1. persamaan gerak 2. Gerak Parabola 3. Gerak Melingkar

KINEMATIKA Kelas XI. Terdiri dari sub bab : 1. persamaan gerak 2. Gerak Parabola 3. Gerak Melingkar Terdiri dri sub bb : 1. persmn gerk. Gerk Prbol 3. Gerk Melingkr KINEMATIKA Kels XI 1. PERSAMAAN GERAK Membhs tentng posisi, perpindhn, keceptn dn perceptn dengn menggunkn vector stun. Pembhnsn meliputi

Lebih terperinci

E. INTEGRASI BAGIAN ( PARSIAL )

E. INTEGRASI BAGIAN ( PARSIAL ) E. INTEGRASI BAGIAN ( PARSIAL ) Integrsi gin (prsil) digunkn untuk mengintegrsikn sutu perklin fungsi yng msing-msing fungsiny ukn koefisien diferensil dri yng lin ( seperti yng sudh dihs pd su. B. D )

Lebih terperinci

Universitas Esa Unggul

Universitas Esa Unggul ALJABAR LINIER DAN MATRIKS BHAN KULIAH DRA SURYARI PURNAMA, MM Universits Es Unggul Minggu I Mtriks Pokok Bhsn Sub Pokok Bhsn Tujun Instruksionl Umum Tujun Instruksionl Khusus : Pendhulun Mtriks : A. Pengertin

Lebih terperinci

PERTEMUAN 4 Metode Simpleks Kasus Maksimum

PERTEMUAN 4 Metode Simpleks Kasus Maksimum PERTEMUAN 4 Metode Simpleks Ksus Mksimum Untuk menyelesikn Persoln Progrm Linier dengn Metode Simpleks untuk fungsi tujun memksimumkn dn meminimumkn crny ered Model mtemtik dri Permslhn Progrm Linier dpt

Lebih terperinci

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1)

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1) BAB: PENERAPAN INTEGRAL Topik: Volume Bend Putr (Khusus Klkulus ) Kompetensi yng diukur dlh kemmpun mhsisw menghitung volume bend putr dengn metode cincin, metode ckrm, tu metode kulit tbung.. UAS Klkulus,

Lebih terperinci

17. PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) (0, a) y 2. y 1. (x 1, y 1 ) (b, 0) X. x 1

17. PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) (0, a) y 2. y 1. (x 1, y 1 ) (b, 0) X. x 1 17. PROGRAM LINEAR A. Persmn Gris Lurus y 1 (x 1, y 1 ) y 2 y 1 (x 1, y 1 ) (x 2, y 2 ) (0, ) 0 x 1 x 1 0 x 2 (b, 0) 0 b. Persmn gris yng bergrdien m dn mellui titik (x 1, y 1 ) dlh: y y 1 = m(x x 1 )

Lebih terperinci

VEKTOR. Adri Priadana. ilkomadri.com

VEKTOR. Adri Priadana. ilkomadri.com VEKTOR Adri Pridn ilkomdri.com Pengertin Dlm Fisik dikenl du buh besrn, yitu 1. Besrn Sklr. Besrn Vektor Pengertin Besrn Sklr dlh sutu besrn yng hny mempunyi nili dn dinytkn dengn sutu bilngn tunggl diserti

Lebih terperinci

ALJABAR LINIER _1 Matrik. Ira Prasetyaningrum

ALJABAR LINIER _1 Matrik. Ira Prasetyaningrum LJR LINIER _ Mtrik Ir Prsetyningrum DEFINISI MTRIKS pkh yng dimksud dengn Mtriks? kumpuln ilngn yng disjikn secr tertur dlm ris dn kolom yng mementuk sutu persegi pnjng, sert termut dintr sepsng tnd kurung.

Lebih terperinci

Yijk = µ + Ai + Bj(i) + є ijk

Yijk = µ + Ai + Bj(i) + є ijk XI. RANCANGAN ACAK LENGKAP POLA TERSARANG Rncngn Ack Lengkp Pol Tersrng dlh rncngn percon dengn mteri homogen t tnp peh penggngg, terdiri dri d peh es t fktor dlm klsfiksi tersrng yit Fktor A terdiri dri

Lebih terperinci

BAB III METODE METODE DEFUZZYFIKASI

BAB III METODE METODE DEFUZZYFIKASI Fuy Logi Metode Metode Deuyiksi BAB III METODE METODE DEFUYFIKASI Seperti yng telh dihs dlm, hw untuk meruh kelurn uy menjdi nili risp mk diperlukn sutu proses yng leih dikenl dengn istilh deuyiksi Dlm

Lebih terperinci

Integral Kompleks (Bagian Kesatu)

Integral Kompleks (Bagian Kesatu) Integrl Kompleks (Bgin Kestu) Supm Jurusn Mtemtik, FMIPA UGM Yogykrt 55281, INDONESIA Emil:mspomo@yhoo.com, supm@ugm.c.id (Pertemun Minggu XI) Outline 1 Fungsi Bernili Kompleks 2 Lintsn tu Kontur 3 Integrl

Lebih terperinci

Sistem Bilangan dan Kesalahan. Metode Numerik

Sistem Bilangan dan Kesalahan. Metode Numerik Sistem Bilg d Keslh Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Cotoh : 673 * 3 6* 7* 3* Bilg ult deg ilg dsr c didefiisik segi : ( )... c N c

Lebih terperinci

FUNGSI EKSPONENSIAL DAN FUNGSI LOGARITMIK

FUNGSI EKSPONENSIAL DAN FUNGSI LOGARITMIK M AT E M AT I K A E K O N O M I FUNGSI EKSPONENSIAL DAN FUNGSI LOGARITMIK TO N I BAKHTIAR I N S TITUT P ERTA N I A N BOGOR 2 0 2 Pgkt Jik sutu bilg diklik diri sdiri sbk kli mk ditulis Bilg disbut kspo

Lebih terperinci

UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 1 (UTAMA) SELASA, 11 MEI 2004 Pukul

UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 1 (UTAMA) SELASA, 11 MEI 2004 Pukul 0-0 D0-P-0- DOKUMEN NEGARA SANGAT RAHASIA UJIAN NASIONAL TAHUN PELAJARAN 00/00 SMA/MA Mtemtik (D0) PROGRAM STUDI IPA PAKET (UTAMA) SELASA, MEI 00 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL Hk Cipt

Lebih terperinci

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII Kesumwti Prodi Sttistik FMIPA-UII Mrch 25, 205 Sutu integrl tertentu b f (x)dx () diktkn wjr jik i memenuhi du syrt berikut: i. Bts integrsi dn b merupkn bilngn berhingg ii. fungsi f (x) terbts pd intervl

Lebih terperinci

POTENSIAL LISTRIK Oleh : Sabar Nurohman,M.Pd

POTENSIAL LISTRIK Oleh : Sabar Nurohman,M.Pd POTNSIL LISTRIK Oleh : S Nuohmn,M.Pd Ke Menu Utm Liht Tmpiln eikut: POTNSIL LISTRIK il seuh ptikel emutn egek dlm seuh medn listik, mk medn itu kn mengehkn seuh gy yng dpt melkukn kej pd ptikel teseut.

Lebih terperinci

MATEMATIKA IPA PAKET A KUNCI JAWABAN

MATEMATIKA IPA PAKET A KUNCI JAWABAN MATEMATIKA IPA PAKET A KUNCI JAWABAN. Jwbn : A Mislkn : p : Msyrkt membung smph pd temptny. q: Kesehtn msyrkt terjg. Diperoleh: Premis : ~q ~p p q Premis : p Kesimpuln : q Jdi, kesimpuln dri premis-premis

Lebih terperinci

1. Luas daerah yang dibatasi oleh kurva y = x 2 dan garis x + y = 6 adalah satuan luas. a. 54 b. 32. d. 18 e.

1. Luas daerah yang dibatasi oleh kurva y = x 2 dan garis x + y = 6 adalah satuan luas. a. 54 b. 32. d. 18 e. . Lus derh yng ditsi oleh kurv y = x dn gris x + y = dlh stun lus... c. d. 8 e. Sol Ujin Nsionl Thun 7 Kurv y = x dn gris x + y = ( y = x ) Sustikn nili y pd y = x sehingg didpt : x = x x = x x + x = (

Lebih terperinci

METODE ANALISIS. Tentukan arus pada masing-masing tahanan dengan menggunakan metode arus cabang untuk rangkaian seperti pada Gambar 1.

METODE ANALISIS. Tentukan arus pada masing-masing tahanan dengan menggunakan metode arus cabang untuk rangkaian seperti pada Gambar 1. 1. Anlisis Arus Cng METODE ANALSS Metode rus ng dlh slh stu metode penyelesin nlisis rngkin il rngkin terdiri dri du tu leih sumer. Pd metode rus ng ini, kn diperoleh rus pd setip ng dri sutu rngkin yng

Lebih terperinci

Hukum Gerak Newton FIS 1 A. PENDAHULUAN B. HUKUM NEWTON I C. HUKUM NEWTON II KINEMATIKA GERAK (I) materi78.co.nr

Hukum Gerak Newton FIS 1 A. PENDAHULUAN B. HUKUM NEWTON I C. HUKUM NEWTON II KINEMATIKA GERAK (I) materi78.co.nr tei78.co.n Huku Gek ewton A. PEDAHULUA Huku gek ewton enjelskn hubungn gy dn gek yng dikibtkn oleh gy tesebut. Huku gek ewton tedii di huku kelebn, huku ewton II dn huku ksieksi. B. HUKUM EO I Huku ewton

Lebih terperinci

TRIGONOMETRI. cos ec. sec. cot an

TRIGONOMETRI. cos ec. sec. cot an TRIGONOMETRI Bb. Perbndingn Trigonometri Y y r r tn y. Hubungn fungsi-fungsi trigonometri r T(,b y X ctg ec tn sec tg ;ctg co s co s ec sec cot n tn Ltihn. Titik-titik sudut segitig sm kki ABC terletk

Lebih terperinci

Aljabar Linier & Matriks. Tatap Muka 3

Aljabar Linier & Matriks. Tatap Muka 3 Aljbr Linier & Mtriks Ttp Muk Eliminsi Guss-Jordn Sistem persmn linier dengn n vribel dn m persmn secr umum dinytkn sbg: Sistem persmn linier tsb dpt dinytkn dlm bentuk mtriks sbb: A x X = b dengn A dlh

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bb berikut ini kn disjikn mteri pendukung yng dpt membntu penulis untuk menyelesikn permslhn yng kn dibhs pd bb selnjutny. Adpun mteri pendukungny dlh pengertin mtriks, jenis-jenis

Lebih terperinci

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0 PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh c 0,,,c R, 0 Penyelesin Persmn Kudrt. Rumus c Rumus menentukn kr persmn kudrt c 0;,, c R dn 0, = ± 4c. Memfktorkn

Lebih terperinci

Matematika EBTANAS Tahun 1992

Matematika EBTANAS Tahun 1992 Mtemtik EBTANAS Thun 99 EBT-SMA-9-0 Grfik fungsi kudrt yng persmnny y = x 5x memotong sumu x. Slh stu titik potongny dlh (, 0), mk nili sm dengn EBT-SMA-9-0 Persmn x px + 5 = 0 kr-krny sm. Nili p 0 tu

Lebih terperinci

theresiaveni.wordpress.com NAMA : KELAS :

theresiaveni.wordpress.com NAMA : KELAS : thereiveni.wordpre.om NM : KELS : BB TRIGONOMETRI thereiveni.wordpre.om Pengukurn Sudut d du tun pengukurn udut yitu : derjt dn rdin Stun derjt Definii : = putrn 36 Ingt : putrn = 36 Jdi : putrn = 8 putrn

Lebih terperinci

BAB IV METODA ANALISIS RANGKAIAN

BAB IV METODA ANALISIS RANGKAIAN 6 BAB METODA ANALSS RANGKAAN Metod nlss rngkn sebenrny merupkn slh stu lt bntu untuk menyeleskn sutu permslhn yng muncul dlm mengnlss sutu rngkn, blmn konsep dsr tu hukum-hukum dsr sepert Hukum Ohm dn

Lebih terperinci

UN SMA IPA 2004 Matematika

UN SMA IPA 2004 Matematika UN SMA IPA Mtemtik Kode Sol P Doc. Version : - hlmn. Persmn kudrt ng kr-krn dn - dlh... ² + + = ² - + = ² + + = ² + - = ² - - =. Tinggi h meter dri sebuh peluru ng ditembkkn ke ts setelh t detik dintkn

Lebih terperinci

Optik Moderen. S3 Fisika

Optik Moderen. S3 Fisika O M S F I. Glg M II. I Glg M g M III. Rfl Rf Glg g IV. MI RLPIS ISOTROPIK V. MI RLPIS PRIOIK - 7. GLOMNG TRPNU LM MI RLPIS 8. OPTIK NONLINIR . P Mwll H J ρ 4 ρ u I. Glg M 5 6 ε μ H v l; H v g v g l l h;

Lebih terperinci

http://meetied.wordpress.com Mtemtik X Semester 1 SMAN 1 Bone-Bone Reutlh st ini. Ap pun yng is And lkukn tu And impikn Mulilh!!! Keernin mengndung kejeniusn, kekutn dn kejin. Lkukn sj dn otk And kn muli

Lebih terperinci

det DEFINISI Jika A 0 disebut matriks non singular

det DEFINISI Jika A 0 disebut matriks non singular DETERINAN DEFINISI Untuk setip mtriks persegi (bujur sngkr), d stu bilngn tertentu yng disebut determinn Determinn dlh jumlh semu hsil kli elementer bertnd dri sutu mtriks bujur sngkr. Disimbolkn dengn:

Lebih terperinci

2. Paman mempunyai sebidang tanah yang luasnya 5 hektar. Tanah itu dibagikan kepada 3. Luas tanah yang diterima oleh mereka masing-masing = 5 :3 1

2. Paman mempunyai sebidang tanah yang luasnya 5 hektar. Tanah itu dibagikan kepada 3. Luas tanah yang diterima oleh mereka masing-masing = 5 :3 1 . Hitunglh 7 5. : b. 5 : c. 8 : 6 d. 8 9 7 7 7 5 77 77 77. : c. 8 : 6 : 6 6 9 9 9 6 54 8 40 7 b. 5: 5 d. 4: 4: 4 6 8 7 95 Husein Tmpoms, Rumus-rumus Dsr Mtemtik 4 :. Pmn mempunyi sebidng tnh yng lusny

Lebih terperinci

1. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II)

1. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II) MATA KULIAH KODE MK Dosen : FISIKA DASAR II : EL-22 : Dr. Budi Mulynti, MSi Pertemun ke-6 CAKUPAN MATERI. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II) SUMBER-SUMBER:.

Lebih terperinci

Bilangan. Bilangan Nol. Bilangan Bulat (Z )

Bilangan. Bilangan Nol. Bilangan Bulat (Z ) Bilngn Bilngn Asli (N) (,2,, ) Bilngn Nol (0) Bilngn Negtif (,, 2, ) Bilngn Bult (Z ) Bilngn Pechn ( 2 ; 5 ; 5%; 6,82; ) 7 A. Bilngn Asli (N) Bilngn Asli dlh himpunn bilngn bult positif (nol tidk termsuk).

Lebih terperinci

LOKALISASI ORE. Lucia Ratnasari Jurusan Matematika FMIPA UNDIP Jl. Prof. H. Soedarto, S.H, Semarang 50275

LOKALISASI ORE. Lucia Ratnasari Jurusan Matematika FMIPA UNDIP Jl. Prof. H. Soedarto, S.H, Semarang 50275 LOKALA OE Luci ti Juu Mtmtik FMPA UNDP Jl Pof H odto, H, mg 575 Abtct Lt b ocommuttiv ig d b multiplictiv ubt of Th ight lft ig of quotit do ot xit fo vy A cy coditio of xitc ight lft ig of quotit i ight

Lebih terperinci

RUANG VEKTOR UMUM. Dosen Pengampu : Darmadi S.Si M.Pd. Disusun oleh :

RUANG VEKTOR UMUM. Dosen Pengampu : Darmadi S.Si M.Pd. Disusun oleh : RUNG VEKTOR UMUM Dosen Pengmpu : Drmdi S.Si M.Pd Disusun oleh : 1. gung Dwi Chyono (84.56) 2. rdie Kusum (84.73) 3. Heri Chyono (84.145) 4. Lingg Nio Prdn (84.18) 5. Yudh Sofyn Mhmudi (84.293) PROGRM STUDI

Lebih terperinci

(Suatu Aplikasi dari Faktorisasi Tunggal Pada Z[X])

(Suatu Aplikasi dari Faktorisasi Tunggal Pada Z[X]) DADU SICHERMAN (Sutu Apliksi dri Fktorissi Tunggl Pd Z[X]) Elh Nurlelh Jurusn Pendidikn Mtemtik Fkults Pendidikn Mtemtik dn Ilmu Pengethun Alm Universits Pendidikn Indonesi *) ABSTRACT An interesting ppliction

Lebih terperinci

TRIGONOMETRI. . Nilai dari Sin ( 2π. - A) o adalah. 6. Segitiga PQR siku-siku di Q. Jika panjang PR = 15 cm dan sec < P = 35

TRIGONOMETRI. . Nilai dari Sin ( 2π. - A) o adalah. 6. Segitiga PQR siku-siku di Q. Jika panjang PR = 15 cm dan sec < P = 35 TRIGONOMETRI. Dri segitig ABC dikethui sudut A = 0, sudut B= 0 dn AC = cm, njng sisi BC =.. Krdint cntesius dri titik (,0 ) dlh. (, -) (-, -) (, - ) (-, - ) (-, ). Cs 0 senili dengn. cs 0 cs 0 sin 0 cs

Lebih terperinci

POKOK BAHASAN: PERMINTAAN, DAN HARGA. Suharyanto

POKOK BAHASAN: PERMINTAAN, DAN HARGA. Suharyanto POKOK BAHASAN: PERMINTAAN, PENAWARAN DAN HARGA Suhrynto Tujun Perkulihn ini: Mhsisw dpt mengnlisis kondisi psr berdsrkn konsep dsr permintn, penwrn dn hrg dlm meknisme psr. Bhn bcn: Smuelson, Pul A. &

Lebih terperinci

Vektor translasi dpt ditunjukkan oleh bil. berurutan yang ditulis dlm bentuk matriks kolom

Vektor translasi dpt ditunjukkan oleh bil. berurutan yang ditulis dlm bentuk matriks kolom TRANSFORMASI GEOMETRI BAB Sutu trnsformsi idng dlh sutu pemetn dri idng Krtesius ke idng ng lin tu T : R R (,) ( ', ') Jenis-jenis trnsformsi ntr lin : Trnsformsi Isometri itu trnsformsi ng tidk menguh

Lebih terperinci

LAMPIRAN I. Alfabet Yunani

LAMPIRAN I. Alfabet Yunani LAMPIRAN I Alfabet Yunani Alha Α Nu Ν Beta Β Xi Ξ Gamma Γ Omicron Ο Delta Δ Pi Π Esilon Ε Rho Ρ Zeta Ζ Sigma Σ Eta Η Tau Τ Theta Θ Usilon Υ Iota Ι hi Φ, Kaa Κ Chi Χ Lambda Λ Psi Ψ Mu Μ Omega Ω LAMPIRAN

Lebih terperinci

Logaritma. maka tentukan nilai x yang memenuhi persamaan. log + = + 1 = x x. x Jawab : = b maka tentukan 12. Jawab : Jawab : Jawab :

Logaritma. maka tentukan nilai x yang memenuhi persamaan. log + = + 1 = x x. x Jawab : = b maka tentukan 12. Jawab : Jawab : Jawab : Logit Jik k tentukn Jik dn k tentukn Tentukn nili ng eenuhi pesn Jik dn, k tentukn nili ng eenuhi pesn tidk eenuhi Jik dn eenuhi pesn k tentukn p p c p Tentukn penelesin petksn < < < < < St : < < tu

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN

NILAI EIGEN DAN VEKTOR EIGEN Hl di 9 NILAI EIGEN DAN VEKTOR EIGEN 7. Definisi Sebuh mtiks buju sngk dengn ode n n mislkn A, dn sebuh vekto kolom X. Vekto X dlh vekto dlm ung Euklidin dengn sebuh pesmn: n R yng dihubungkn AX X (7.)

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Analisa Kestabilan Routh

Institut Teknologi Sepuluh Nopember Surabaya. Analisa Kestabilan Routh Intitut Teknologi Sepuluh Nopemer Sury Anli Ketiln Routh Pengntr Mteri Contoh Sol Ringkn Ltihn Aemen Pengntr Mteri Contoh Sol Konep Stil Proedur Ketiln Routh Ringkn Ltihn Aemen Pengntr Pengntr Mteri Contoh

Lebih terperinci

dapat dilakukan dengan menhitung luas bidang di bawah kurva. UJIAN AKHIR SEMESTER MATA PELAJARAN FISIKA PERIODE 2006/2007 v (km/jam)

dapat dilakukan dengan menhitung luas bidang di bawah kurva. UJIAN AKHIR SEMESTER MATA PELAJARAN FISIKA PERIODE 2006/2007 v (km/jam) UJIN KHIR SMSR M JRN ISIK RIOD 6/7 Sutu sei ept setel diukur denn enunkn lt yn ered denn pnjn, dn ler, Mk lus sei ept terseut denn penulisn nk pentin dl p x l, x,,, pil siste di ts erd dl keinn, k r tenn

Lebih terperinci

BAB 2 SISTEM BILANGAN DAN KESALAHAN

BAB 2 SISTEM BILANGAN DAN KESALAHAN Metode Numerik Segi Algoritm Komputsi 5 BAB SISTEM BILANGAN DAN KESALAHAN.. Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik : N ( )...... Cotoh : 67. 6. 7.. Bilg

Lebih terperinci

MATRIKS. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah.

MATRIKS. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah. MATRIKS Stndr Kompetensi : Menggunkn konsep mtriks, vektor, dn trnsformsi dlm pemechn mslh Kompetensi Dsr : Menggunkn sift-sift dn opersi mtriks untuk menentukn invers mtriks persegi Menggunkn determinn

Lebih terperinci

4. Perkalian Matriks. Riki 3 2 Fera 2 5. Data harga bolpoin dan buku (dinyatakan oleh matriks Q), yaitu

4. Perkalian Matriks. Riki 3 2 Fera 2 5. Data harga bolpoin dan buku (dinyatakan oleh matriks Q), yaitu Sift-Sift Perklin Sklr Mislkn dn b sklr, D dn H mtriks sebrng dengn ordo sm, mk berlku sift-sift sebgi berikut. D + H (D + H) 2. D + bd ( + b)d 3. (bd) (b)d 4. Perklin Mtriks Du buh mtriks tu lebih selin

Lebih terperinci

MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT. Supriyono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo.

MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT. Supriyono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo. MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT Supriyono Jurusn Pendidikn Mtemtik FKIP Universits Muhmmdiyh Purworejo Abstrk Tulisn ini terdiri bgin yitu () bgin pendhulun yng membhs bentuk umum persmn pngkt

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI. Mtriks Definisi. (Anton, Howrd. ). Mtriks dlh sutu susunn bilngn berbentuk segi empt. Bilngn-bilngn dlm susunn itu disebut nggot dlm mtriks tersebut. Ukurn (size) sutu mtriks dinytkn

Lebih terperinci

2.Matriks & Vektor (1)

2.Matriks & Vektor (1) .triks & Vektor () t Kulih: ljbr Liner dn triks Semester Pendek T. / S Teknik Informtik Dosen Pengmpu: Heri Sismoro,.Kom. STIK IKO YOGYKRT Jl. Ringrod Utr Condong Ctur Yogykrt. Telp. 7 88 Fx 7-888 Website:

Lebih terperinci

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A.

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A. Bb DETERMINAN MATRIKS Determinn sutu mtriks dlh sutu fungsi sklr dengn domin mtriks bujur sngkr. Dengn kt lin, determinn merupkn pemetn dengn domin berup mtriks bujur sngkr, sementr kodomin berup sutu

Lebih terperinci

tema 1 diri sendiri liburan ke kota

tema 1 diri sendiri liburan ke kota tem 1 diri sendiri liburn ke kot ku nik ke kels 2 selm liburn ku dijk ke kot ku berlibur ke rumh kkek di kot bnyk kendrn d bus tksi dn sebginy ku meliht bus bernomor 105 d pul tksi bernomor 153 ku bis

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) : 2 jam tatap muka dan 2 jam tugas terstruktur

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) : 2 jam tatap muka dan 2 jam tugas terstruktur RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nm Sekolh : SMAN 78 JAKARTA Mt Peljrn : Mtemtik 4 Ben Beljr : 4 sks Aloksi wktu : 2 jm ttp muk dn 2 jm tugs terstruktur Aspek Stndr Kompetensi Kompetensi Dsr Indiktor

Lebih terperinci

THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM. Prepared by: Romli Shodikin, M.Pd sabtu., 23 November 2013 Pertemuan 7

THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM. Prepared by: Romli Shodikin, M.Pd sabtu., 23 November 2013 Pertemuan 7 THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM Prepred y: Romli Shodikin, M.Pd stu., 3 Novemer 013 Pertemun 7 TEOREMA SISA dn TEOREMA FAKTOR Teorem Sis untuk Pemgin Bentuk Liner Teorem Sis : 1.Jik sutu

Lebih terperinci

BAB VI. FUNGSI TRANSENDEN

BAB VI. FUNGSI TRANSENDEN BAB VI. FUNGSI TRANSENDEN 6.. FUNGSI LOGARITMA NATURAL ASLI) 6.. FUNGSI INVERS DAN TURUNANNYA 6.3. FUNGSI EKSPONEN NATURAL 6.4. FUNGSI EKSPONEN DAN LOGARITMA UMUM 6.5. PENGGUNAAN FUNGSI LOGARITMA DAN EKSPONEN

Lebih terperinci

MATRIKS A. Pengertian, Notasi dan Bagian Dalam Matriks

MATRIKS A. Pengertian, Notasi dan Bagian Dalam Matriks MATRIKS A. Pengertin, Notsi dn Bgin Dlm Mtriks Dlm kehidupn sehri-hri kit sering menemui dt tu informsi dlm entuk tel, seperti tel pertndingn sepkol, tel sensi kels, tel hrg tiket keret pi dn seginy..

Lebih terperinci

Kalkulus 2. Deret Pangkat dan Uji Konvergensi. Department of Chemical Engineering Semarang State University. Dhoni Hartanto S.T., M.T., M.Sc.

Kalkulus 2. Deret Pangkat dan Uji Konvergensi. Department of Chemical Engineering Semarang State University. Dhoni Hartanto S.T., M.T., M.Sc. Klkulus Deret Pgkt d Uji Kovergesi Dhoi Hrtto S.T., M.T., M.S. Deprtmet o Chemil Egieerig Semrg Stte Uiversity Eperimetl Deret Pgkt Urut d deret sequees d series). Urut gk merupk rgki gk tk terbts jumlh

Lebih terperinci

SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI. Prasetyo Budi Darmono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo

SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI. Prasetyo Budi Darmono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI Prsetyo Budi Drmoo Jurus Pedidik Mtemtik FKIP Uiversits Muhmmdiyh Purworejo Abstrk Persm lier dlm vribel 1, 2, 3,.. sebgi sebuh persm yg dpt diytk dlm

Lebih terperinci

RANGKUMAN MATERI ' maupun F(x) = Pengerjaan f(x) sehingga memperoleh F(x) + c disebut mengintegralkan f(x) ke x dengan notasi:

RANGKUMAN MATERI ' maupun F(x) = Pengerjaan f(x) sehingga memperoleh F(x) + c disebut mengintegralkan f(x) ke x dengan notasi: INTEGRAL RANGKUMAN MATERI A. ANTIDERIVATIF DAN INTEGRAL TAK TENTU Jik kit mengmil uku dri temptny mk kit dpt mengemliknny lgi ke tempt semul. Opersi yng kedu menghpus opersi yng pertm. Kit ktkn hw du opersi

Lebih terperinci

BAB IV HASIL PENELITIAN DAN ANALISIS

BAB IV HASIL PENELITIAN DAN ANALISIS Dri Gmbr 4.7, Gmbr 4.8, dn Gmbr 4.9 di ts dpt diliht bhw hybrid film yng terbentuk menglmi retkn (crck). Hl ini sm seperti yng terjdi pd hybrid film presintered dn hybrid film dengn 5% wt PDMS terhdp TEOS

Lebih terperinci

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik Hiperol 7.1. Persmn Hiperol Bentuk Bku Hiperol dlh himpunn semu titik (, ) pd idng sedemikin hingg selisih positif jrk titik (, ) terhdp psngn du titik tertentu ng diseut titik fokus (foci) dlh tetp. Untuk

Lebih terperinci

BAB IV PERHITUNGAN. 4.1 Siklus Gabungan (dual combustion Cycle) Pada Turbocharger ini memakai siklus gabungan yang disebut juga

BAB IV PERHITUNGAN. 4.1 Siklus Gabungan (dual combustion Cycle) Pada Turbocharger ini memakai siklus gabungan yang disebut juga BAB IV PERHITUNGAN 4.1 Siklus Gabungan (dual combustion Cycle) Pada Turbocharger ini memakai siklus gabungan yang disebut juga Dual Combustion Cycle, karena siklus ini lebih mendekati siklus yang sebenarnya

Lebih terperinci

INTEGRAL. Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

INTEGRAL. Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. INTEGRAL Instruktur : Ferry Whyu Wibowo, S.Si., M.Cs. . Integrl tk tentu b. Integrl tertentu Contoh : Tentukn turunn berikut ini. y b. y. y d. y y y d. - y y. y y b. y y. Jwb: F() F () ---------- C ---

Lebih terperinci

METODE PENELITIAN. Penelitian dilaksanakan pada bulan Oktober sampai dengan November 2011

METODE PENELITIAN. Penelitian dilaksanakan pada bulan Oktober sampai dengan November 2011 III. METODE PENELITIAN 3.1. Tempt dn Wktu Penelitin Penelitin dilksnkn pd buln Oktober smpi dengn November 2011 bertempt di Lbortorium Rekys Bioproses dn Psc Pnen, Jurusn Teknik Pertnin, Fkults Pertnin,

Lebih terperinci

KULIAH 5-3 MARET 2009

KULIAH 5-3 MARET 2009 ULIAH 5- MARET 2009 ELAYAAN TITRASI ASAM-BASA Sutu Rx dpt digunkn dlm st titrsi jik 1. Rx tsb sempurn keknn pd TE dpl. nili >>> Contoh: Asm lemh HA dititrsi dgn bs kut HA H- A- H 2 Mkin besr nili : Reksi

Lebih terperinci

3 PANGKAT, AKAR, DAN LOGARITMA

3 PANGKAT, AKAR, DAN LOGARITMA PANGKAT, AKAR, DAN LOGARITMA.. Pngkt Pngkt dri seuh ilngn dlh sutu indeks ng menunjukkn nkn perklin ilngn ng sm secr eruntun. Notsi n errti hw hrus diklikn degn itu sendiri senk n kli. Notsi ilngn erpngkt

Lebih terperinci

VI. DEFLEKSI BALOK ELASTIS: METODE FUNGSI SINGULARITAS

VI. DEFLEKSI BALOK ELASTIS: METODE FUNGSI SINGULARITAS [Defleksi Blk Elstis: etde Fungsi Singulrits] VI. DEFEKSI BOK ESTIS: ETODE FUNGSI SINGUITS.. etde Fungsi Singulrits etde fungsi singulrits merupkn metde yng pling sederhn untuk perhitungn defleksi. etde

Lebih terperinci

DIFERENSIAL TOTAL. 1 Kalkulus Lanjut Blog: aswhat.wordpress.com. dz dx dy x y dx x y dy. dz , ,04 0,65

DIFERENSIAL TOTAL. 1 Kalkulus Lanjut   Blog: aswhat.wordpress.com. dz dx dy x y dx x y dy. dz , ,04 0,65 DIFERENSIAL TOTAL 1. Pendahuluan Ingat kembali konsep diferensial pada fungsi satu variabel y = f(x). suatu diferensial dx terhadap variabel bebas didefinisikan sebagai: dy = f (x) dx selanjutnya, misalkan

Lebih terperinci

Limit & Kontinuitas. Oleh: Hanung N. Prasetyo. Calculus/Hanung N. Prasetyo/Politeknik Telkom Bandung

Limit & Kontinuitas. Oleh: Hanung N. Prasetyo. Calculus/Hanung N. Prasetyo/Politeknik Telkom Bandung imit & Kontinuits Oleh: Hnung N. Prsetyo Clculus/Hnung N. Bb. IMIT.1. Du mslh undmentl klkulus... Gris Tngen.. Konsep imit.4. Teorem imit.5. Konsep kontinuits Clculus/Hnung N. Du Mslh Fundmentl Klkulus

Lebih terperinci

VECTOR DI BIDANG R 2 DAN RUANG R 3. Nurdinintya Athari (NDT)

VECTOR DI BIDANG R 2 DAN RUANG R 3. Nurdinintya Athari (NDT) VECTOR DI BIDANG R DAN RUANG R Nurdininty Athri (NDT) VEKTOR DI BIDANG (R ) DAN DI RUANG (R ) Pokok Bhsn :. Notsi dn Opersi Vektor. Perklin titik dn Proyeksi Ortogonl. Perklin silng dn Apliksiny Beerp

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEI Lds ori dlm skripsi ii risik ori-ori mdk dlh rd kovrsi dr Tlor mod Nwo d rd kovrsi mod srowski d rd kovrsi d irpolsi kdrik.. rd Kovrsi rd kovrsi mrpk s ik prp dlm plsi Prsm olir 0.

Lebih terperinci

[RUMUS CEPAT MATEMATIKA]

[RUMUS CEPAT MATEMATIKA] http://meetied.wordpress.com SMAN BoneBone, Luwu Utr, SulSel Keslhn teresr yng diut mnusi dlm kehidupnny dlh terusmenerus mers tkut hw merek kn melkukn keslhn (Elert Hud) [RUMUS CEPAT MATEMATIKA] Vektor

Lebih terperinci

Kompetensi 2 (Bagian 2) PERSAMAAN DAN FUNGSI KUADRAT

Kompetensi 2 (Bagian 2) PERSAMAAN DAN FUNGSI KUADRAT Kometensi (Bgin PERSAMAAN DAN FUNGSI KUADRAT PERSAMAAN KUADRAT Menentukn Jenis Akr-Akr Persmn Kudrt Menggunkn Diskriminn (D Bentuk Umum: D = - 4c + x + c ; 0 Pengertin: x = α dlh kr-kr ersmn + x + c α

Lebih terperinci

Minggu ke 3 : Lanjutan Matriks

Minggu ke 3 : Lanjutan Matriks inggu ke : Lnjutn triks Pokok Bhsn Sub Pokok Bhsn Tujun Instruksionl Umum Tujun Instruksionl Khusus : triks :. Trnsformsi Elementer. Trnsformsi Elementer pd bris dn kolom. triks Ekivlen. Rnk triks B. Determinn.

Lebih terperinci

Matematika Dasar INTEGRAL TENTU . 2. Partisi yang terbentuk merupakan segiempat dengan ukuran x dan f ( x k ) sebagai

Matematika Dasar INTEGRAL TENTU . 2. Partisi yang terbentuk merupakan segiempat dengan ukuran x dan f ( x k ) sebagai Mtemtik Dsr INTEGRAL TENTU Pegerti tu kosep itegrl tetu pertm kli dikelk oleh Newto d Leiiz. Nmu pegerti secr leih moder dikelk oleh Riem. Mteri pemhs terdhulu yki tetg itegrl tk tetu d otsi sigm k kit

Lebih terperinci

IX. RANCANGAN ACAK LENGKAP POLA FAKTORIAL AxB

IX. RANCANGAN ACAK LENGKAP POLA FAKTORIAL AxB Respons Respons IX. RANCANGAN ACAK LENGKAP POLA FAKTORIAL AxB Rncngn Ack Lengkp Pol Fktoril AxB dlh rncngn ck lengkp yng terdiri dri d peh es (Fktor dlm klsfiksi silng yit fktor A yng terdiri dri trf dn

Lebih terperinci

A x = b apakah solusi x

A x = b apakah solusi x MTRIKS INVERSI & SIFT-SIFTNY Bil, x, dlh sklr ilngn rel yng memenuhi x, mk x pil. Sekrng, untuk sistem persmn linier x pkh solusi x dpt diselesikn dengn x? Mtriks Identits Untuk sklr (rel numer dn ), mk.

Lebih terperinci

FUNGSI KUADRAT. . a 0, a, b, c bil real. ymax. ymin. , maka harga m= A. 0 B. 1 C. 2 D. 3 E. 4 Jawab : m mempunyai nilai minimum 1 5.

FUNGSI KUADRAT. . a 0, a, b, c bil real. ymax. ymin. , maka harga m= A. 0 B. 1 C. 2 D. 3 E. 4 Jawab : m mempunyai nilai minimum 1 5. FUNGSI KUADRAT Bb Bentuk Umum : x bx c. 0,, b, c bil rel b b c A. Titik Punck =, b Dengn sumbu simetri : x b c mx jik 0 Nili ekstrim : min jik 0 Jik fungsi x x m memuni nili minimum 8, mk hrg m= A. 0 B.

Lebih terperinci

BENTUK PANGKAT, AKAR DAN LOGARITMA

BENTUK PANGKAT, AKAR DAN LOGARITMA BENTUK PANGKAT, AKAR DAN LOGARITMA Stndr Kompetensi Memhmi dn menggunkn turn dn sift sert mnipulsi Aljr dlm pemechn mslh ng erkitn dengn entuk pngkt, kr dn logritm. Kompetensi Dsr Menggunkn sift, turn

Lebih terperinci

TEORI BAHASA DAN AUTOMATA

TEORI BAHASA DAN AUTOMATA MODUL IX TEORI BAHASA DAN AUTOMATA Tujun :. Mhsisw memhmi turn produksi sutu finite stte utomt dn dpt merekonstruksi kemli FSA dri sutu hs reguler. 2. Mhsisw mengenl pengemngn leih juh dri sutu mesin otomt

Lebih terperinci