BAB III PERHITUNGAN KINERJA MOTOR BENSIN 4 TAK 1 SILINDER STARKE GX 200 6,5 HP

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB III PERHITUNGAN KINERJA MOTOR BENSIN 4 TAK 1 SILINDER STARKE GX 200 6,5 HP"

Transkripsi

1 BAB III PERHIUNGAN KINERJA OOR BENSIN 4 AK SILINDER SARKE GX 6,5 HP 3. PENGERIAN Phitunn uln untuk mnthui kinj di sutu msin ( Stk CC, pkh kmmpun kj di msin tsbut msih ssui dnn klykn pmkin tu plu didkn pbikn st pnntin kmpnn-kmpnn msin dpt dipsikn mksiml. Phitunn uln di mt bnsin Stk GX 6.5 HP. Ini mliputi : Phitunn Dy Phitunn Pmkin Bhn Bk Phitunn N Pns 3. PEROLEHAN DAA 3.. Spsifiksi sin yp sin : GX Jumlh Silind : silind Kpsits sin : 96 Klsifiksi sin : Bnsin, 4 lnkh Dimt x lnkh : 68 x 54 mm Pbndinn Kmpsi : 7 n ksimum : 6,5 / 4 (HP/pm mn mximum :,35 / 5 k.m/p 3.. Dt itis mptu ud lu ( Dnn mmphitunkn tmptu ud skit, dimbil : 3 33 K

2 knn ud lu ( P knn ud lu dlh : P tm knn s pd pmuln kmpsi ( P H P {tknn ud dikhi lnkh isp untuk mt 4 lnkh bkis nt (,85,9 x P tm}. Untuk phitunn ini dimbil : P, 9tm (3 Knikn h tmptu ud di dlm silind kibt suhu dindin silind ( t w H ( t w bkis nt - K. Untuk phitunn dimbil : K untuk s K (3 t w knn di s bks ( y Kfisin s bks untuk msin 4 lnkh :,3-,4. Untuk phitunn dimbil : y,4 (33 knn s pd khi pmbunn ( P sin kbut, Dimbil : P,3, 8tm P, 8tm (34 mptu s bun ( sin kbut, 8 K dimbil : 8 K 57 C. ( Kfisin klbihn ud (α N. Ptsky, Pf. D S.in Cmbustin Enin, Hl.7 sin lbid, hl. kbut, 8 α,-,3. Dimbil : 3 lbid, hl. 9 4 Α lbid,, hl. 3 (36 Fkt kksi di dim (φ sin 4 lnkh, φ,95-,97. Dimbil :

3 Φ,95... (37 Efisinsi mknis ( η m sin kbut 4 lnkh, η,8-,85. Dimbil : m η,8. (38 m Kfisin pnunn pns hsil pmbkn ( ξ t bnsin, ξ,85-,95. Dimbil : ξ,85. (39 Ekspnn plitpis kspnsi ( n Nili n bkis nt,5-,3. Untuk phitunn dimbil : n,5 (4 s jnis bnsin,73 /m³,73 k/lt (4 3.3 PERHIUNGAN Vlum Lnkh Adlh bsny un bk yn ditmpuh lh pistn slm mlkukn lnkh kj. V. π. D. V.. (4 4 Dimn : D Dimt silind (m L Pnjn Lnkh pistn (m ( 6, V. π 4 5 lbid, hl. 3 6 lbid, hl lbid, hl. 5, Vlum un bk ( ( V Vlum un bk dlh lum un bk di silind hd dn lum di skt. V V + V sh

4 V dlh lum yn disbbkn ktbln skt dnn tbl. V (, m V. π. D. L 4 V. π. 4 V 3, 69 ( 6,8., V dlh lum un bk di silind hd sh V sh V + 3,69 7 V sh V ,69 7 3,69 3,69 + 3,69 35,58 mptu wl kmpsi ( Adlh tmptu mpun ud-bhn bk yn bd dlm st pistn muli mlkukn lnkh kmpsi. + t + w + γ (. γ Dimn : 43 lbid, hl. 5, mptu ud lu... (43 t Knikn tmptu dlm silind kibt suhu dindin silind. w γ Kfisin s bks. mptu s bun. + t + w + γ (. γ

5 ,4 ( 8.,4 34,346 K Stndissi di bkis 3-35ºK... (44 Efisinsi pmsukn ( η h Adlh si nt jumlh pmsukn ud s sbnny yn dikmpsikn didlm silind msin yn sdn bkj dn jumlh yn mn kn sudh diisi didlm lum silind yn bkj ( V Pd tknn d dn tmptu ud lu ( P dn tu pbndinn nt lum mpun ud-bhn bk pd tknn dn tmptu sklilinny (P dn diubh k P dn dnn lum lnkh. η h η h η h ε P.. ε P 7,9.. 7 ( + γ 33 7., ,4.,4 34,346 (45 ( +,4 98,9 78,96, knn khi kmpsi ( P 43 N. Ptsky, Pf. D S.in Cmbu stin Enin, Hl.9 44 N. Ptsky, Pf. D S.in Cmbustin Enin, Hl.3 45 N. Ptsky, knn Pf. khi D S.in kmpsi Cmbustin dlh Enin, tknn Hl mpun.3 ud-bhn bk pd khi lnkh kmptsi.bdskn hsil di pnukunbsny tknn kmpsi sbs,8 x 5 P (,499 tm n P. ε.. (46,499,9. 7 n 7 n,499,9,6655 l7 n l,6655 n l7,6655

6 l,6655 n l7.4 Dimn n dlh kspnn plytpik. Dlm pss kj tidk d pns msuk tupun klu ( dibtik mptu khi kmpsi ( Adlh tmptu bhn bk sblum pmbkn (pd khi lnkh kmpsi. n. ε.. ( ,4. 7 (,4-349,4. 7 (,4 73,99 ºK Stndissi untuk mt bnsin bkis nt 55-75ºK. Nili kl pmbkn bhn bk ( Adlh jumlh pns yn mpu dihsilkn dlm pmbkn k bhn bk. Pd msin bnsin diunkn bnsin ( C sbi bhn bk 8 H 8 Bnsin mmiliki kmpsisi sbi bikut : C 87% H % O % Untuk bnsin (slin, bsny 953 Kkl /k (48 46 Ibid hl 3 47 lbid, hl. 35 Kbutuhn ud titis L ' 48 N. Ptsky, Pf. D S.in Cmbustin Enin, Hl.43 Dnn jumlh ksin didlm tmsf % bnykny ud ttis yn dibutuhkn untuk pmbkn smpun di k bhn bk dlh O ' : L... (49, h L + +, 4 3,87,,,99375 L, 473ml, , Jumlh ud ttikl ud dlm stun bt ( L

7 L 8,95. L k ud p k bhn bk (5 Dimn 8,95 k/ml dlh bt mlul di ud. L 8,95,473 3, 69335k. Ud p k bhn bk. Jumlh ud sbnny (L L α.l.. (5 L, 3, , 6685k. Ud p k bhn bk. Kfisin kimi di pubhn ml stlh pmbkn ( µ Adlh pubhn lum s dlm silind slm pmbkn (pbndinn di jumlh ml di pmsukn s sblum pmbkn µ ( µ α.l 49 N. Ptsky, Pf. D S.in Cmbustin Enin, Hl.3 5 N. Ptsky, Pf. D S.in Cmbustin Enin, Hl.37 5 lbid, hl. Dimn 38 5 lbid, hl. 39 Jumlh ml di s stlh pmbkn ( kuwlits ttl di pmbkn s bsh dlm ml p K bhn bk (53 µ H N h + + α. L,. L,87,54847.,473, + + (,.,4 (,.,473,54 Kffisin di pubhn ml ( µ,54847ml Adlh pubhn jumlh sbnny di ml s stlh pmbkn ( µ µ µ + γ + γ (54

8 µ,54 +,4 +,4,5 mptu s pd khi pmbkn ( Z Adlh tmptu s hsil pmbkn mpun ud bhn bk untuk mt bnsin yn mmiliki siklus lum ttp Dpt di i dnn umus : ξ O α. + ( m mix µ (. L.( + γ Dimn ; m. (55 ( m mix kpsits ml iskhik t t di ud yn bmpu N. Ptsky, dnn Pf. s D S.in bks di Cmbustin smpi Enin, KHl N. Ptsky, Pf. D S.in Cmbustin Enin, Hl.4 55 lbid, hl. 46 ( m 4, x (56 mix ( m : kpsits pns ml iskhik t t di hsil pmbkn di smpi K. m m m m + m (57 ( x ( + h( h + N ( ( Isi lumti lti di unsu pkk dlm hsil pmbkn. (58 V,87 x,54847,39 h. (59 m h h, x,54847 h,8 V,79. α. L (6 N V

9 ,79x, x,479,54847 N V V O.7494,( α. L (6 V,(,,473,5484,8 nuut N. GGll ( kpsits pns ml iskhiik t t di lbid, hl N. Ptsky, hsil Pf. D pmbkn S.in Cmbustin di k Enin, K Hl : lbid, hl N. Ptsky, ( Pf. md S.in 7,8 + 5 Cmbustin x Enin, Kl Hl /ml.39 p C 6 lbid, hl N. Ptsky, Pf. D S.in Cmbustin Enin, ( m 5, Hl.39 Kl /ml p C 6 lbid, hl. 47 H O ( m 4, Kl / ml p C N ( m 4, Kl / ml p C O Di psmn dits diplh : ( m V ( m + V ( m + V ( m + V ( m H O H O N N O O ( m,39.( 7, ,8.( 5, ,7494.( 4, ,8.(4, ( m, , , ,796.. ( m 5, ,434. ξ O Shin : + ( m α L ( + γ. mix µ., (4, ,.,473.( +,4,586 +,336. +, , ( m,5.(5, , ,5,54 + (4, , ,

10 497,986 (4,6.579, , (579,53 5, ,5356 5, , , , ,5356 b ± b, 4 Untuk dimbil psitif (+ : b ± b, 4 5, (5, (7, , ( 785, ,77 K knn khi pmbkn ( ( P ( P P. P Z µ.. (6 47,77,49.,5. 36,6tm 73,99 K Pbndinn tknn didlm silind slm pmbkn ( λ p 36,6 λ 3,59.. (63 p,49 Pbndinn kspnsi ( ρ Rsi yn mnunjukkn pubhn yn tjdi s hsil pmbkn mpun ud bhn bk pd wl lnkh kmpsi Pbndin kspnsi pndhulun dpt di i d nn umus : µ λ ρ... ( N. Ptsky,,5 ρ Pf..73,99 D S.in, Cmbustin Enin, Hl.5 63 lbid, hl. 4 3,59 64 N. Ptsky, Pf. D S.in Cmbustin Enin, Hl.5

11 Pbndinn kspnsi slnjutny ( δ Adlh pbndinn ti yn mnunjukkn pubhn pd s hsil pmbkn slm lnkh kspnsi : ε δ.. (65 ρ 7 δ 7 knn s pd khi kspnsi ( P b P b P (66 n δ 36,6 P b 7,5 3,8 mptu s pd khi kspnsi ( b b n δ 47,77 848, 76 K b 7,5..(67 knn indikt t- t titis ( P it Adlh bs tknn t t yn di hsilkn lh pmbkn mpun bhn bk yn bkj pd pistn ssui phitunn: P it P λ (68 ε δ n n n n ε,5 P 3, it,5 7 7,5,5 7,34 65 lbid, hl lbid, hl N. Ptsky, P it Pf. 9 D, S.in 488 tmintnl Cmbustin Enin, Hl.55 knn indikt t t ( P it

12 Adlh bsny tknn t t yn di hsilkn pmbkn bhn mpun bk. P ϕ. (69 i P it P i,95 x9,488 9,36 k / m Nili P i ini untuk mt bnsin bkis nt 7 K / m knn fktif t t P P ηm. P... (7 i P,8 x9,36 7,k / m. P. V. n. N i. (7 i /.9, N 8, 65 i N 8, 65 HP. i N : Dy indit ( HP P : knn Indikt 3 V : Vlum silind ( K / m n : Putn tip mnit ( pm : Jum,lh silind : Jumlh pss kj msin 4 tk / Dy fktif. ( N. HP N η.. (7 m n Jik η m, 8 69 N. Ptsky, Pf. D S.in mk N xn Intnl Cmbustin Enin, Hl.55 7 lbid, hl. 56 ηm 7 lbid, hl. 6 7 bid, hl. N6,8 x 8, 65 N 6, 6 HP Knsumsi bhn bk spsifik indit ( F Adlh jumlh bhn bk ym dibutuhkn untuk mnhsilkn tknn indit.

13 F η P 38,4 P α. l. h.. (73 I F 38,4, ,36.,., F,96 K / HP. jm Knsumsi bhn bk spsifik fktif ( F Adlh jumlh knsumsi bhn bk yn di butuhkn untuk mnhsilkn kj fktif. F F F. (74 η m,96,8 F,45 K/ HP.Jm Knsumsi bhn bk pjm ( F h F F. (75 h N F,36. 5,,54 K/jm h,44 F h, lit /, 73 jm Ht bln ttl ( f. Adlh jumlh kstimbnn kl yn tpki dnn kun kuin kl yn tjdi bik kibt di kuin mknis, kuin kibt 74 (75 lbid, hl. 67 pndininn mupun kuin kl yn tbw s bun. + F (76 f h f 953 x, , Kkl / jm f Ht yn tsp ( l l,3 x f (77 l,3 x 373, l 44,86 Kkl / jm

14 Ht yn di bw s bun ( W W p W mix. C p. (78 Dimn : W : Jumlh di s bun ( K / jm. W mix : Jumlh di mpun s ( tu ud ( K/ jm W p : Pns spsifik di mpun s dlm K kl / K C :,56 K kl / K C C p : Pns spsifik di mpun s dlm K kl / K C :,8 K kl / K C : mptu di s bun dlm C : 77 C : mptu di mpun s dlm W mix : 3 C α.. Fh. th Adlh jumlh titis di ud yn dikiim untuk pmbkn di 76 N. Ptsky, th Pf. D S.in Cmbustin Enin, Hl.5 77 N. Ptsky, Pf. D S.in Cmbustin Enin, Hl.5 78 N. Ptsky, Pf. K D bhn S.in bk Intnl. Cmbustin Enin, Hl C + 8. H th,3 8 th 8., ,, 3,86,3 3 C W mix,.3,86., 3,9 k / jm W W + F mix h W 3,9 +, 34,K / jm mk : ( 34,.,56.77 ( 3,9.,8.3

15 655,6Kkl / jm. Psnts : 655,6, , f Ht yn diubh mnjdi kj un. (. 63. N ( , 3969,96 Kkl / jm. Psnts : 3969,96,7 7 % 4676, f s f l , 3968,96 44,86 655,6 49, s % s f 49, 4676,, % s Ht kn pnn dn skn tu ht sis yn tbw kmpnn

Isi Pembahasan Week 5: Antena Aperture. Mudrik Alaydrus, Univ. Mercu Buana, 2008 Presentasi 5 1

Isi Pembahasan Week 5: Antena Aperture. Mudrik Alaydrus, Univ. Mercu Buana, 2008 Presentasi 5 1 Isi Pmhsn Wk 5: Antn Aptu Mudik Alydus, Univ. Mcu Bun, 008 Psntsi 5 1 Antn Aptu/ Antn Bidng wvguid ptu Jnis lin: ntn clh (slt ntnn) clh clh Mudik Alydus, Univ. Mcu Bun, 008 Psntsi 5 Mudik Alydus, Univ.

Lebih terperinci

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c Integrl Tk Tentu INTEGRAL. Rumus Integrl Fungsi Aljr. k x n k n +. ( x + n ( n +. x ln x + x n + + ; n - n+ (x+ + ; dn 4. ( f ( x ± g( x f ( x ± g ( x n - n. os (x+sin(x+ ( n + n+ os (x+ + ( + (. sin x

Lebih terperinci

PENDAHULUAN. X dikatakan peubah acak kontinu, jika ada sebuah fungsi non negatif f, yang didefinisikan pada semua bilangan real, x (,

PENDAHULUAN. X dikatakan peubah acak kontinu, jika ada sebuah fungsi non negatif f, yang didefinisikan pada semua bilangan real, x (, EUBAH ACAK KONTINU ENDAHULUAN diktkn puh ck kontinu, jik d suh ungsi non ngti, yng didinisikn pd smu ilngn rl,,, Mmpunyi sit hw untuk smrng himpunn ilngn rl B B d B Fungsi disut sgi ungsi kpktn plung Brp

Lebih terperinci

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut: INTEGRAL.PENGERTIAN INTEGRAL Integrl dlh cr mencri sutu fungsi jik turunnn di kethui tu kelikn dri diferensil (turunn) ng diseut jug nti derivtif tu nti diferensil. Untuk menentukn integrl tidk semudh

Lebih terperinci

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat.

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat. Husn Arifh,M.Sc : Persmn Legendre Emil : husnrifh@uny.c.id Persmn diferensil Legendre (1) 1 x 2 y 2xy + n n + 1 y = 0 Prmeter n pd (1) dlh bilngn rill yng diberikn. Setip penyelesin dri (1) dinmkn fungsi

Lebih terperinci

Mengenal IIR Filter. Oleh: Tri Budi Santoso Lab Sinyal, EEPIS-ITS ITS 11/23/2006 1

Mengenal IIR Filter. Oleh: Tri Budi Santoso Lab Sinyal, EEPIS-ITS ITS 11/23/2006 1 Mngnl IIR Filtr Olh: Tri Budi Sntoso L Sinyl, EEPIS-ITS ITS /23/26 Konsp Dsr Infinit Impus Rspons IIR dlm hl ini ngn diphmi sgi sutu kondisi rspons impuls dri - ~ dn rkhir smpi ~ Lih tpt diphmi sgi sutu

Lebih terperinci

BAB III ANALISA DAN PERHITUNGAN

BAB III ANALISA DAN PERHITUNGAN BAB III ANALISA DAN PERHITUNGAN 3.1. Perhitungan Dalam perhitungan perlu diperhatikan hal-hal yang berkaitan dengan kemampuan mesin, meliputi : a. Perhitungan efisiensi bahan bakar b. Perhitungan sistem

Lebih terperinci

6. Himpunan Fungsi Ortogonal

6. Himpunan Fungsi Ortogonal 6. Himpunn Fungsi Ortogonl Mislkn f periodik dengn periode, dn mulus bgin demi bgin pd [ π, π]. Jik S f N (θ) = N n= N c ne inθ, n =,, 2,..., dlh jumlh prsil dri deret Fourier f, mk kit telh menunjukkn

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN . LIMIT DAN KEKONTINUAN . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

ω = kecepatan sudut poros engkol

ω = kecepatan sudut poros engkol Kerj Untuk Mengtsi Gesekn 1. Pomp Tnp Bejn Udr Telh dijelskn pd bgin muk bhw pd wl dn khir lngkh hisp mupun lngkh tekn, tidk terjdi kerugin hed kibt gesekn. Kerugin hed mksimum hny terjdi pd pertenghn

Lebih terperinci

BAB VI RANDOM VARIATE DISTRIBUSI KONTINU

BAB VI RANDOM VARIATE DISTRIBUSI KONTINU BAB VI ANDOM VAIATE DISTIBUSI KONTINU Dlm mlkukn simulsi komputr, hrus dpt dilkukn pnrikn rndom numr dri dn mllui progrm komputr. Pnrikn rndom numr mllui komputr ini sngt rgntung pd fungsi tu distriusi

Lebih terperinci

MATEMATIKA INTEGRAL TENTU DAN LUAS DAERAH

MATEMATIKA INTEGRAL TENTU DAN LUAS DAERAH MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 5 Sesi N INTEGRAL TENTU DAN LUAS DAERAH A. DEFINISI INTEGRAL TENTU Bentuk integrl f d = f + c diseut segi integrl tk tentu kren hsil dri pengintegrlnn msih erup

Lebih terperinci

Two-Stage Nested Design

Two-Stage Nested Design Mteri #13 TIN309 DESAIN EKSPERIMEN Two-Stge Nested Design Nested design dlh slh stu ksus dri desin multi fktor dimn level dri slh stu fktor (misl: fktor B) serup tpi tidk identik untuk setip level yng

Lebih terperinci

BAB IX TANAH BERTULANG

BAB IX TANAH BERTULANG BAB IX TANAH BERTULANG I. PENDAHULUAN Penulngn tnh bnyk digunkn pd : 1. Dinding penhn tnh. Pngkl jembtn 3. Timbunn bdn jln 4. Penhn glin 5. Perbikn stbilits lereng lm 6. Tnggul 7. Bendungn 8. Fondsi rkit

Lebih terperinci

Prestasi itu diraih bukan didapat!!!

Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 00 TIM OLIMPIADE MATEMATIKA INDONESIA 00 Prestsi itu dirih ukn didpt!!! SOLUSI SOAL Bidng Mtemtik Disusun oleh : Olimpide Mtemtik Tk Kupten/Kot 00 BAGIAN PERTAMA.

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Anlisis Rel Hendr Gunwn* *http://hgunwn82.wordpress.com Anlysis nd Geometry Group Bndung Institute of Technology Bndung, INDONESIA Progrm Studi S1 Mtemtik ITB, Semester II 2016/2017 HG* (*ITB Bndung)

Lebih terperinci

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c BAB XVI. INTEGRAL A. Integrl Tk Tentu. Rumus Integrl Fungsi Aljr. k k n = n +. ( + ) n = ( n + ). = ln + n + + ; n - n+ (+) + ; dn n -. ( f ( ) ± g( ) ) f ( ) ± g ( ) n. os (+)sin(+) = ( n + ) os n + (+)

Lebih terperinci

,, % ,, % -0: 0 -0: 0! 2 % 26, &

,, % ,, % -0: 0 -0: 0! 2 % 26, & PERSAMAAN LINIER GAUSS-SIEDEL METHOD Simultneous Liner Equtions Oleh : Purwnto,S.Si Bentuk Umum x + x + 3 x 3 + + n x n = b Sebuh persmn linier dengn : n peubh : x, x, x 3,, x n n konstnt :,, 3,, n Contoh

Lebih terperinci

BAB III. PERANCANGAN ANTENA BRICK 2,4 GHz

BAB III. PERANCANGAN ANTENA BRICK 2,4 GHz BAB III PERANCANGAN ANTENA BRICK, GHZ BAB III PERANCANGAN ANTENA BRICK, GHz 3. Pernnn Anten Brik Bb ini menjelskn proses pernnn nten brik denn melkukn beberp perhitunn yn terdiri dri beberp prmeter yn

Lebih terperinci

STRUKTUR BETON BERTULANG I. Tulangan Rangkap. Oleh Resmi Bestari Muin

STRUKTUR BETON BERTULANG I. Tulangan Rangkap. Oleh Resmi Bestari Muin MODUL KULIAH STRUKTUR BETON BERTULANG I Minggu ke : 9 Tulngn Rngkp Oleh Resmi Bestri Muin PRODI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL dn PERENCANAAN UNIVERSITAS MERCU BUANA 2010 DAFTAR ISI DAFTAR ISI i IX

Lebih terperinci

D E F I N I S I. Contoh 1: 08/11/2015. Anita T. Kurniawati. Mendefinisikan fungsi f yang mengawankan bilangan dengan bilangan x

D E F I N I S I. Contoh 1: 08/11/2015. Anita T. Kurniawati. Mendefinisikan fungsi f yang mengawankan bilangan dengan bilangan x 08//05 Anit T. Kurniwti disebut unsi dri jik dpt ditentukn sutu hubunn ntr dn SDH untuk setip nili menentukn secr tunl nili. Hubunn ntr dn bisn ditulis : Contoh : ) ) Mendeinisikn unsi n menwnkn bilnn

Lebih terperinci

II. TINJAUAN PUSTAKA. pasangan itu dengan operasi-operasi tertentu yang sesuai padanya dapat

II. TINJAUAN PUSTAKA. pasangan itu dengan operasi-operasi tertentu yang sesuai padanya dapat 3 II. TINJUN PUSTK. Sistm ilnn Komplks Sistm ilnn komplks dpt dinytkn scr orml dnn mnunkn konsp psnn trurut ordrd pir ilnn riil,. Himpunn smu psnn itu dnn oprsi-oprsi trtntu yn ssui pdny dpt didinisikn

Lebih terperinci

RUMUS RUMUS PENTING FISIKA TOPIK : LISTRIK Tutor : Santo Edi S

RUMUS RUMUS PENTING FISIKA TOPIK : LISTRIK Tutor : Santo Edi S UMUS UMUS PENTING FISIKA TOPIK : LISTIK Tut : Snt Edi S I. LISTIK STATIS Pinsip supe psisi kut medn listik I.. Hukum ulmb F q q q q F Mk F k q q q Dimn ; k 4 = Pemitivits eltif medium > Untuk medium ud

Lebih terperinci

STATIKA (Reaksi Perletakan)

STATIKA (Reaksi Perletakan) STTIK (Reksi erletkn) Meknik Rekys I Norm uspit, ST.MT. Tumpun Tumpun merupkn tempt perletkn konstruksi tu dukungn bgi konstruksi dlm meneruskn gy gyyng bekerj ke pondsi Dlm ilmu Meknik Rekys dikenl 3

Lebih terperinci

ANALISIS NUMERIK. Inter polasi. SPL simultan. Akar Persama. linear

ANALISIS NUMERIK. Inter polasi. SPL simultan. Akar Persama. linear ANALISIS NUMERIK Inter polsi SPL simultn Akr Persm n Non liner INTERPOLASI Tujun Interpolsi bergun untuk menksir hrg-hrg tengh ntr titik dt yng sudh tept. Interpolsi mempunyi orde tu derjt. Mcm Interpolsi

Lebih terperinci

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L.

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L. INTEGRAL FOURIER Disumsikn syrt-syrt berikut pd f(x):. f x memenuhi syrt Dirichlet pd setip intervl terhingg L, L.. f x dx konvergen, yitu f(x) dpt diintegrsikn secr mutlk dlm (, ). Selnjutny, Teorem integrl

Lebih terperinci

DT-51 Application Note

DT-51 Application Note DT- Applition Not AN Eltroni Puzzl Olh: Tim IE & Gtut Eko Dryni (Univrsits Ktholik Wiy Mnl) Apliksi ini irnn si prminn puzzl lktronik x. Sistm ini mnunkn moul DT MinSys Vr.., Pushutton n Svn Smnt. Mto

Lebih terperinci

3.1 Permutasi. Secara umum, bilangan-bilangan pada {1, 2,, n} akan mempunyai n! permutasi

3.1 Permutasi. Secara umum, bilangan-bilangan pada {1, 2,, n} akan mempunyai n! permutasi BB Determinn . Permutsi Definisi Permutsi: (i) Sutu permutsi dri bilngn-bilngn bult {,,,, n} dlh penyusunn bilngn-bilngn tersebut dengn urutn tnp pengulngn. (ii) Brisn bilngn ( j, j,.., j n ) dimn j i

Lebih terperinci

Isi Pembahasan Wek 3: Elektromagnetika pada Antenna. Solusi untuk antena elementar. Antena hertz loop

Isi Pembahasan Wek 3: Elektromagnetika pada Antenna. Solusi untuk antena elementar. Antena hertz loop si mbhsn Wk 3: lkmgnik pd Annn Slusi unuk nn lmn Ann hz dipl Ann hz lp Mudik Alydus, Univ. Mcu Bun, 008 snsi 3 lkmgnik pd Ann smn Mxwll dngnsinylhmnis smn Mxwll dngnsinylhmnis J ε μ μ ε 0 Vk yning (Dy

Lebih terperinci

PEMBAHASAN SOAL OSN MATEMATIKA SMP 2013 TINGKAT KABUPATEN

PEMBAHASAN SOAL OSN MATEMATIKA SMP 2013 TINGKAT KABUPATEN www.sip-osn.blogspot.com @Mret 0 PEMBAHASAN SOAL OSN MATEMATIKA SMP 0 TINGKAT KABUPATEN. B. x ( x ) ( x + )( x ) ( x ( ) )( x ) ( x + )( x )( x + )( x ) (d fktor) Tidk d penjelsn tentng fktor hrus bilngn

Lebih terperinci

ELIPS. A. Pengertian Elips

ELIPS. A. Pengertian Elips ELIPS A. Pengertin Elips Elips dlh tempt kedudukn titik-titik yng jumlh jrkny terhdp du titik tertentu mempunyi nili yng tetp. Kedu titik terseut dlh titik focus / titik pi. Elips jug didefinisikn segi

Lebih terperinci

7. Ruang L 2 (a, b) f(x) 2 dx < }.

7. Ruang L 2 (a, b) f(x) 2 dx < }. 7. Rung L (, b) Rung L (, b) didefinisikn sebgi rung semu fungsi f yng kudrtny terintegrlkn pd [, b], ykni L (, b) := {f : b f(x) dx < }. Rung ini menckup fungsi-fungsi f yng tk terbts pd [, b] tetpi f

Lebih terperinci

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT . PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT A. Persmn Kudrt. Bentuk umum persmn kudrt : x + bx + c = 0, 0. Nili determinn persmn kudrt : D = b c. Akr-kr persmn kudrt dpt dicri dengn memfktorkn tupun

Lebih terperinci

Skew- Semifield dan Beberapa Sifatnya 1

Skew- Semifield dan Beberapa Sifatnya 1 Skew- Semifield dn Beberp Siftny K r y t i Jurusn Pendidikn Mtemtik Fkults Mtemtik dn Ilmu Pengethun Alm Universits Negeri Yogykrt E-mil: ytiuny@yhoo.com Abstrk Sutu field ( lpngn ) F dlh struktur ljbr

Lebih terperinci

LIMIT FUNGSI. Tapi jika x hanya mendekati 1, f(x) mendekati nilai berapa..? x 0,9 0,99 0,999 0, ,0001 1,001 1,01 1,1

LIMIT FUNGSI. Tapi jika x hanya mendekati 1, f(x) mendekati nilai berapa..? x 0,9 0,99 0,999 0, ,0001 1,001 1,01 1,1 Rinksn Limit Funsi Kels XI IPS SMA Trknit Jkrt LIMIT FUNGSI Limit dlm kt-kt sehri-hri: Mendekti hmpir, sedikit li, tu hr bts, sesutu yn dekt tetpi tidk dpt dicpi. Ilustrsi it = = Funsi ini tk mempunyi

Lebih terperinci

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini: ) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut

Lebih terperinci

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar . LIMIT DAN KEKONTINUAN INF8 Klkulus Dsr . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn

Lebih terperinci

LIMIT DAN KONTINUITAS

LIMIT DAN KONTINUITAS LIMIT DAN KONTINUITAS Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

12. LUAS DAERAH DAN INTEGRAL

12. LUAS DAERAH DAN INTEGRAL 12. LUAS DAERAH DAN INTEGRAL 12.1 Lus Derh di Bwh Kurv Mslh menentukn lus derh (dn volume rung) telh dipeljri sejk er Pythgors dn Zeno, pd thun 500-n SM. Konsep integrl (yng terkit ert dengn lus derh)

Lebih terperinci

LIMIT FUNGSI DAN KEKONTINUAN

LIMIT FUNGSI DAN KEKONTINUAN LIMIT FUNGSI DAN KEKONTINUAN RANGKUMAN MATERI Sebelum memsuki mteri, perhtikn himpunn-himpunn berikut: ) Himpunn bilngn sli:,,,4,5,.... b) Himpunn bilngn bult:...,,,0,,,.... p c) Himpunn bilngn rsionl:

Lebih terperinci

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. Dikethui bhw,. Untuk k didefinisikn bhw k k k. Tentukn jumlh tk hingg dri. Kit mislkn S S. Dengn demikin kit dpt menuliskn Kedu

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN 3. LIMIT DAN KEKONTINUAN 1 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi di =1, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp

Lebih terperinci

LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memperebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 2011

LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memperebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 2011 LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Mempereutkn Pil Guernur Sumter Seltn Mei 0 PENYISIHAN I PERORANGAN LCCM TINGKAT SMA. Dikethui kuus ABCD.EFGH dengn rusuk 6 cm. Jik

Lebih terperinci

Soal-soal dan Pembahasan Matematika Dasar SBMPTN-SNMPTN 2006

Soal-soal dan Pembahasan Matematika Dasar SBMPTN-SNMPTN 2006 www.purwntowhyudi.com Hl- Sol-sol dn Pemhsn Mtemtik Dsr SBMPTN-SNMPTN 006. Jik > 0, > 0 dn mk A. C. E. B. D. Jw:. Jwnny dlh A. Jik p - dn q -, mk q p. A. C. E. B. D. Jw: q p Jwnny dlh A . Grfik y terletk

Lebih terperinci

INTEGRAL. Integral Tak Tentu Dan Integral Tertentu Dari Fungsi Aljabar

INTEGRAL. Integral Tak Tentu Dan Integral Tertentu Dari Fungsi Aljabar INTEGRAL Integrl Tk Tentu Dn Integrl Tertentu Dri Fungsi Aljr A. Integrl Tk Tentu Hitung integrl dlh kelikn dri hitung differensil. Pd hitung differensil yng dicri dlh fungsi turunnny, sedngkn pd hitung

Lebih terperinci

PEMANTAPAN BELAJAR SMA BBS INTEGRAL

PEMANTAPAN BELAJAR SMA BBS INTEGRAL BAB I PEMANTAPAN BELAJAR SMA BBS INTEGRAL I A RANGKUMAN INTEGRAL. Pengertin Apil terdpt fungsi F() yng dpt didiferensilkn pd selng I sedemikin hingg F () = f(), mk nti turunn (integrl) dri f() dlh F()

Lebih terperinci

kimia LARUTAN PENYANGGA K e l a s Kurikulum 2013 A. Pengenalan Larutan Penyangga dan Penggunaannya

kimia LARUTAN PENYANGGA K e l a s Kurikulum 2013 A. Pengenalan Larutan Penyangga dan Penggunaannya Kurikulum 2013 kimi K e l s XI LARUTAN PENYANGGA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi pengertin lrutn penyngg dn penggunnny dlm kehidupn sehri-hri.

Lebih terperinci

MODUL 6. Materi Kuliah New_S1

MODUL 6. Materi Kuliah New_S1 MODUL 6 Mteri Kulih New_S1 KULIAH 10 Spnning tree dn minimum spnning tree - Definisi spnning tree T diktkn spnning tree dri grph terhubung G bil T dlh sutu tree yng vertexvertexny sm dengn vertexny G dn

Lebih terperinci

15. INTEGRAL SEBAGAI LIMIT

15. INTEGRAL SEBAGAI LIMIT 15. INTEGRAL SEBAGAI LIMIT 15.1 Jumlh Riemnn Dlm kulih Klkulus pd thun pertm, integrl Riemnn bisny diperkenlkn sebgi limit dri jumlh Riemnn, tidk mellui integrl Riemnn ts dn integrl Riemnn bwh. Hl ini

Lebih terperinci

Aljabar Linear. Pertemuan 12_14 Aljabar Vektor (Perkalian vektor)

Aljabar Linear. Pertemuan 12_14 Aljabar Vektor (Perkalian vektor) Aljbr Liner Pertemun 12_14 Aljbr Vektor (Perklin vektor) Pembhsn Perklin vektor dengn sklr Rung vektor Perklin Vektor dengn Vektor: Dot Product - Model dot product - Sift dot product Pendhulun Penmbhn

Lebih terperinci

BAB III KERAPATAN FLUKS LISTRIK DAN HUKUM GAUSS -Q +Q. Muatan satu coulomb menimbulkan muatan listrik satu coulomb. (C/m 2 )

BAB III KERAPATAN FLUKS LISTRIK DAN HUKUM GAUSS -Q +Q. Muatan satu coulomb menimbulkan muatan listrik satu coulomb. (C/m 2 ) BAB III KERAPATAN FLUKS LISTRIK DAN HUKUM GAUSS KERAPATAN FLUKS LISTRIK Fluk litik bemul di mutn poitif dn bekhi di mutn negtif ( tu bekhi di tk tehingg klu tidk d mutn negtif (b + - + -~ Gi fluk ( (b

Lebih terperinci

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn

Lebih terperinci

Matematika SKALU Tahun 1978

Matematika SKALU Tahun 1978 Mtemtik SKALU Thun 978 MA-78-0 Persmn c + b + = 0, mempunyi kr-kr dn, mk berlku A. + = b B. + = c C. = c = c = c MA-78-0 Akr dri persmn 5 - = 7 + dlh A. B. C. 4 5 MA-78-0 Hrg dri log b. b log c. c log

Lebih terperinci

Gaya dan Medan Magnet

Gaya dan Medan Magnet Gy dn Medn Mgnet Kutub ut mgnetik Kutub ut gegfi Medn mgnet Sumbu tsi Sumbu mgnetik Sebgimn hlny dengn knsep medn listik, knsep medn mgnet jug dipelukn untuk menjelskn gy nt du bend yng tidk sling besentuhn.

Lebih terperinci

Solusi Pengayaan Matematika Edisi 4 Januari Pekan Ke-4, 2007 Nomor Soal: 31-40

Solusi Pengayaan Matematika Edisi 4 Januari Pekan Ke-4, 2007 Nomor Soal: 31-40 Solusi Pengn Mtemtik Edisi 4 Jnuri Pekn Ke-4, 007 Nomor Sol: -40. Diberikn persmn 8 9 4 8 007 dn b, dengn b. Angk stun dri b dlh. A. B. C. D. 7 E. 9 Persmn 8 9 4 8 8 9 4 8 9 4 8 8 8 9 8 4 8 8 8 0 0 b tu

Lebih terperinci

5. Tampilan Menu Dosen terdiri dari beberapa bagian, yaitu:

5. Tampilan Menu Dosen terdiri dari beberapa bagian, yaitu: 1. Almt Server : http://si.unmuh..id/unmuh 2. Stndr Kode Thun Akdemik: 3. Tmpiln depn seperti terliht pd gmr erikut: 4. Inputkn Kode Login dn Pssword yng dierikn oleh Administrtor SIA (huungi Pust Sistem

Lebih terperinci

Materi IX A. Pendahuluan

Materi IX A. Pendahuluan Mteri IX Tujun :. Mhsisw dpt memhmi vektor. Mhsisw mmpu mengunkn vektor dlm persoln sederhn 3. Mhsisw mengimplementsikn konsep vektor pd rngkin listrik. Pendhulun Sudh menjdi kesepktn umum hw untuk menentukn

Lebih terperinci

ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE)

ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Mcm Mtriks Mtriks Nol () Mtriks yng semu entriny nol. Ex: Mtriks Identits (I) Mtriks persegi dengn entri pd digonl utmny dn pd tempt lin.

Lebih terperinci

Sebaran Kontinu Khusus

Sebaran Kontinu Khusus Sttistik Mtemtik I Sern Kontinu Khusus Hzmir Yozz Izzti rhmi HG Jurusn Mtemtik LOGO FMIPA Universits Andls SEBARAN SERAGAM KONTINU Definisi 4.1. Sutu peuh ck kontinu X diktkn memiliki sergm kontinu pd

Lebih terperinci

MATRIKS. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

MATRIKS. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ MTRIKS gustin Prdjningsih, M.Si. Jurusn Mtemtik FMIP UNEJ tinprdj.mth@gmil.com DEFINISI MTRIKS Sutu dftr bilngn-bilngn rel tu kompleks terdiri ts m bris dn n kolom, m dn n bilngn bult positip disebut mtriks

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 3 Sistem Persmn Liner Sistem Persmn Liner Su Pokok Bhsn Pendhulun Solusi SPL dengn OBE Solusi SPL dengn Invers mtriks dn Aturn Crmmer SPL Homogen Beerp Apliksi

Lebih terperinci

Grafik Komputer : Transformasi Geometri 2 Dimensi

Grafik Komputer : Transformasi Geometri 2 Dimensi Grfik Komputer dn Pengolhn Citr Grfik Komputer : rnsformsi Geometri Dimensi Universits Gundrm 6 Grfik Komputer : rnsformsi Geometri D / Grfik Komputer dn Pengolhn Citr triks dn rnsformsi Geometri Representsi

Lebih terperinci

matematika WAJIB Kelas X KUADRAN SUDUT Kurikulum 2013 A. Besar Sudut pada Setiap Kuadran

matematika WAJIB Kelas X KUADRAN SUDUT Kurikulum 2013 A. Besar Sudut pada Setiap Kuadran Kuikulum 03 Kels mtemtik WAJIB KUADRAN SUDUT Tujun Pembeljn Setelh mempelji ini, kmu dihpkn memiliki kemmpun beikut.. Memhmi bes sudut di setip kudn.. Memhmi pebndingn tigonometi sudut-sudut di setip kudn.

Lebih terperinci

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN DFTR ISI BB I. MTRIKS BB II. DETERMINN BB III. INVERS MTRIKS BB IV. PENYELESIN PERSMN LINER SIMULTN BB I. MTRIKS Mtriks erup sekelompok ilngn yng disusun empt persegi dn ditsi tnd terdiri dri ris dn kolom

Lebih terperinci

BAB 10. MATRIKS DAN DETERMINAN

BAB 10. MATRIKS DAN DETERMINAN Dessy Dwiynti, S.Si, MBA Mtemtik Ekonomi 1 BAB 10. MATRIKS DAN DETERMINAN 1. Pengertin mtriks Mtriks kumpuln bilngn yng disjikn secr tertur dlm bris dn kolom yng membentuk sutu persegi pnjng, sert termut

Lebih terperinci

11. PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) (0, a) y 2. y 1. (x 1, y 1 ) (b, 0) X. x 1

11. PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) (0, a) y 2. y 1. (x 1, y 1 ) (b, 0) X. x 1 11. PROGRAM LINEAR A. Persmn Gris Lurus y 1 (x 1, y 1 ) y 2 y 1 (x 1, y 1 ) (x 2, y 2 ) (, ) x 1 x 1 x 2 (b, ) b. Persmn gris yng bergrdien m dn mellui titik (x 1, y 1 ) dlh: y y 1 = m(x x 1 ) b. Persmn

Lebih terperinci

1. Luas daerah yang dibatasi oleh kurva y = x 2 dan garis x + y = 6 adalah

1. Luas daerah yang dibatasi oleh kurva y = x 2 dan garis x + y = 6 adalah . Lus derh yng ditsi oleh kurv y = x dn gris x + y = dlh stun lus... c. d. 8 Sol Ujin Nsionl Thun 7 Kurv y = x dn gris x + y = ( y = x ) Sustikn nili y pd y = x sehingg didpt : x = x x = x x + x = ( =,

Lebih terperinci

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan.

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan. 1. Identits Trigonometri Pengertin Identits Trigonometri dlh kesmn yng memut entuk trigonometri dn erlku untuk semrng sudut yng dierikn. Jenis Identits Trigonometri 1. Identits trigonometri dsr erikut

Lebih terperinci

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan LUAS DAERAH APLIKASI INTEGRAL TENTU Indiktor Pencpin Hsil Beljr Mhsisw menunjukkn kemmpun dlm :. Menghitung lus pd idng dtr Ringksn Mteri Perkulihn Jik sutu derh ditsi oleh kurv f(), g(), gris dn dengn

Lebih terperinci

INTEGRAL TAK TENTU. x x x

INTEGRAL TAK TENTU. x x x INTEGRAL TAK TENTU Definisi : Fungsi F diktkn nti turunn dri fungsi f pd selng I jik F () = f() untuk semu di I. Notsi : F() = f() Integrl tk tentu dlh Anti/Invers/Kelikn turunn. c c Integrl tk tentu dlh

Lebih terperinci

KINEMATIKA Kelas XI. Terdiri dari sub bab : 1. persamaan gerak 2. Gerak Parabola 3. Gerak Melingkar

KINEMATIKA Kelas XI. Terdiri dari sub bab : 1. persamaan gerak 2. Gerak Parabola 3. Gerak Melingkar Terdiri dri sub bb : 1. persmn gerk. Gerk Prbol 3. Gerk Melingkr KINEMATIKA Kels XI 1. PERSAMAAN GERAK Membhs tentng posisi, perpindhn, keceptn dn perceptn dengn menggunkn vector stun. Pembhnsn meliputi

Lebih terperinci

Universitas Esa Unggul

Universitas Esa Unggul ALJABAR LINIER DAN MATRIKS BHAN KULIAH DRA SURYARI PURNAMA, MM Universits Es Unggul Minggu I Mtriks Pokok Bhsn Sub Pokok Bhsn Tujun Instruksionl Umum Tujun Instruksionl Khusus : Pendhulun Mtriks : A. Pengertin

Lebih terperinci

PREDIKSI UJIAN NASIONAL TAHUN PELAJARAN

PREDIKSI UJIAN NASIONAL TAHUN PELAJARAN PREDIKSI UJIAN NASIONAL TAHUN PELAJARAN - Mt Peljrn Progrm : Mtemtik (MA) : IPA Petunjuk : Pilihlh slh stu jwn yng pling tept!. Dikethui: 5. Dikethui log = dn log = y. Nili log P : Hri tidk hujn tu Rudi

Lebih terperinci

E. INTEGRASI BAGIAN ( PARSIAL )

E. INTEGRASI BAGIAN ( PARSIAL ) E. INTEGRASI BAGIAN ( PARSIAL ) Integrsi gin (prsil) digunkn untuk mengintegrsikn sutu perklin fungsi yng msing-msing fungsiny ukn koefisien diferensil dri yng lin ( seperti yng sudh dihs pd su. B. D )

Lebih terperinci

PERTEMUAN 4 Metode Simpleks Kasus Maksimum

PERTEMUAN 4 Metode Simpleks Kasus Maksimum PERTEMUAN 4 Metode Simpleks Ksus Mksimum Untuk menyelesikn Persoln Progrm Linier dengn Metode Simpleks untuk fungsi tujun memksimumkn dn meminimumkn crny ered Model mtemtik dri Permslhn Progrm Linier dpt

Lebih terperinci

Tahun. : halaman. Berikut. Tertulis 1 Baris ke 12. Hal. No 1. 2 Baris ke 4, maka. untuk a < 0. tertulis a > 0. 5 Baris ke 10 a.

Tahun. : halaman. Berikut. Tertulis 1 Baris ke 12. Hal. No 1. 2 Baris ke 4, maka. untuk a < 0. tertulis a > 0. 5 Baris ke 10 a. Cttn Kecil Untuk MMC Judul : MMC (Metode Menghitung Cept), Teknik cept dn unik dlm mengerjkn sol mtemtik untuk tingkt SMA. Penulis : It Puspit. Penerbit : PT NIR JAYA Bndung. Thun : 0. Tebl : 8 + 5 hlmn.

Lebih terperinci

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang VEKTOR 1. Pengertin Vektor dlh besrn yng memiliki besr (nili dn rh. Vektor merupkn sebuh rus gris yng P berrh dn memiliki pnjng. Pnjng rus gris tersebut dlh pnjng vektor. Rus gris dri titik P dn berujung

Lebih terperinci

MATRIKS Definisi: Matriks Susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Matriks ditulis sebagai berikut (1)...

MATRIKS Definisi: Matriks Susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Matriks ditulis sebagai berikut (1)... MATRIKS Definisi: Mtriks Susunn persegi pnjng dri ilngn-ilngn yng ditur dlm ris dn kolom. Mtriks ditulis segi erikut ()... m... m... n... n......... mn Susunn dits diseut mtriks m x n kren memiliki m ris

Lebih terperinci

17. PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) (0, a) y 2. y 1. (x 1, y 1 ) (b, 0) X. x 1

17. PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) (0, a) y 2. y 1. (x 1, y 1 ) (b, 0) X. x 1 17. PROGRAM LINEAR A. Persmn Gris Lurus y 1 (x 1, y 1 ) y 2 y 1 (x 1, y 1 ) (x 2, y 2 ) (0, ) 0 x 1 x 1 0 x 2 (b, 0) 0 b. Persmn gris yng bergrdien m dn mellui titik (x 1, y 1 ) dlh: y y 1 = m(x x 1 )

Lebih terperinci

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1)

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1) BAB: PENERAPAN INTEGRAL Topik: Volume Bend Putr (Khusus Klkulus ) Kompetensi yng diukur dlh kemmpun mhsisw menghitung volume bend putr dengn metode cincin, metode ckrm, tu metode kulit tbung.. UAS Klkulus,

Lebih terperinci

Yijk = µ + Ai + Bj(i) + є ijk

Yijk = µ + Ai + Bj(i) + є ijk XI. RANCANGAN ACAK LENGKAP POLA TERSARANG Rncngn Ack Lengkp Pol Tersrng dlh rncngn percon dengn mteri homogen t tnp peh penggngg, terdiri dri d peh es t fktor dlm klsfiksi tersrng yit Fktor A terdiri dri

Lebih terperinci

VEKTOR. Adri Priadana. ilkomadri.com

VEKTOR. Adri Priadana. ilkomadri.com VEKTOR Adri Pridn ilkomdri.com Pengertin Dlm Fisik dikenl du buh besrn, yitu 1. Besrn Sklr. Besrn Vektor Pengertin Besrn Sklr dlh sutu besrn yng hny mempunyi nili dn dinytkn dengn sutu bilngn tunggl diserti

Lebih terperinci

BAB 3 APLIKASI TAGUCHI LOSS FUNCTION

BAB 3 APLIKASI TAGUCHI LOSS FUNCTION BB III PIKSI TGUHI OSS FUNTION 6 BB 3 PIKSI TGUHI OSS FUNTION 3. Kitn Tguchi oss Function dengn indeks kpilits proses p Tguchi oss Function erkitn dengn indeks kpilits proses p. Rsio rt rt loss cost seelum

Lebih terperinci

III. LIMIT DAN KEKONTINUAN

III. LIMIT DAN KEKONTINUAN KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM PPDU TELKOM UNIVERSITY III. LIMIT DAN KEKONTINUAN 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi

Lebih terperinci

14. SIFAT-SIFAT INTEGRAL RIEMANN

14. SIFAT-SIFAT INTEGRAL RIEMANN 4. SIFAT-SIFAT INTEGRAL RIEMANN 4. Sift-sift Dsr Integrl Riemnn Pd bb ini kit kn mempeljri sift-sift dsr integrl Riemnn. Sift pertm dlh sift kelinern, yng dinytkn dlm Proposisi. Sepnjng bb ini, I menytkn

Lebih terperinci

E-LEARNING MATEMATIKA

E-LEARNING MATEMATIKA MODUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYADIN EKO RAHARJO, M.PD. NIP. 9705 00 00 Penulisn Modul e Lerning ini diiyi oleh dn DIPA BLU UNY TA 00 Sesui dengn Surt Perjnjin Pelksnn e Lerning Nomor

Lebih terperinci

ALJABAR LINIER _1 Matrik. Ira Prasetyaningrum

ALJABAR LINIER _1 Matrik. Ira Prasetyaningrum LJR LINIER _ Mtrik Ir Prsetyningrum DEFINISI MTRIKS pkh yng dimksud dengn Mtriks? kumpuln ilngn yng disjikn secr tertur dlm ris dn kolom yng mementuk sutu persegi pnjng, sert termut dintr sepsng tnd kurung.

Lebih terperinci

LIMIT FUNGSI. DEFINISI Notasi. dibaca. limit f(x) bila x mendekati a sama dengan L. atau. f(x) mendekati L bila x mendekati a.

LIMIT FUNGSI. DEFINISI Notasi. dibaca. limit f(x) bila x mendekati a sama dengan L. atau. f(x) mendekati L bila x mendekati a. DEFINISI Notsi dibc tu berrti bhw IMIT FUNGSI it bil mendekti sm dengn mendekti bil mendekti nili dpt dibut sedekt mungkin dengn bil cukup dekt dengn, tetpi tidk sm dengn. Perhtikn bhw dlm deinisi tersebut

Lebih terperinci

Integral Tak Tentu dan Integral Tertentu

Integral Tak Tentu dan Integral Tertentu Integrl Tk Tentu dn Integrl Tertentu Pengertin Integrl Jik F dlh fungsi umum yng ersift F = f, mk F merupkn ntiturunn tu integrl dri f. Pengintegrln fungsi f terhdp dinotsikn segi erikut : f d F c notsi

Lebih terperinci

Menerapkan konsep vektor dalam pemecahan masalah. Menerapkan konsep vektor pada bangun ruang

Menerapkan konsep vektor dalam pemecahan masalah. Menerapkan konsep vektor pada bangun ruang VEKTOR PADA BIDANG SK : Menerpkn konsep vektor dlm pemechn mslh KD : Menerpkn konsep vektor pd bidng dtr Menerpkn konsep vektor pd bngun rung TUJUAN PELATIHAN: Pesert memiliki kemmpun untuk mengembngkn

Lebih terperinci

Sistem Bilangan dan Kesalahan. Sistim Bilangan Metode Numerik 1

Sistem Bilangan dan Kesalahan. Sistim Bilangan Metode Numerik 1 Sistem Bilg d Keslh Sistim Bilg Metode Numerik Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Sistim Bilg Metode Numerik Cotoh : 673 * 3 6* 7* 3*

Lebih terperinci

BAB III METODE METODE DEFUZZYFIKASI

BAB III METODE METODE DEFUZZYFIKASI Fuy Logi Metode Metode Deuyiksi BAB III METODE METODE DEFUYFIKASI Seperti yng telh dihs dlm, hw untuk meruh kelurn uy menjdi nili risp mk diperlukn sutu proses yng leih dikenl dengn istilh deuyiksi Dlm

Lebih terperinci

Integral Kompleks (Bagian Kesatu)

Integral Kompleks (Bagian Kesatu) Integrl Kompleks (Bgin Kestu) Supm Jurusn Mtemtik, FMIPA UGM Yogykrt 55281, INDONESIA Emil:mspomo@yhoo.com, supm@ugm.c.id (Pertemun Minggu XI) Outline 1 Fungsi Bernili Kompleks 2 Lintsn tu Kontur 3 Integrl

Lebih terperinci

INTEGRAL. y dx. x dy. F(x)dx F(x)dx

INTEGRAL. y dx. x dy. F(x)dx F(x)dx Drs. Mtrisoni www.mtemtikdw.wordpress.om INTEGRAL PENGERTIAN Bil dikethui : = F() + C mk = F () dlh turunn dri sedngkn dlh integrl (nti turunn) dri dn dpt digmrkn : differensil differensil Y Y Y Integrl

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN MENGGUNAKAN DETERMINAN (ATURAN CRAMER)

PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN MENGGUNAKAN DETERMINAN (ATURAN CRAMER) PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN MENGGUNAKAN DETERMINAN (ATURAN CRAMER) Dikethui system Persmn Linier x+ x + x = x+ x + x = x+ x + x = dlm entuk mtriks x x x Penyelesin Dengn Aturn Crmer dlh

Lebih terperinci

Vektor di R 2 dan R 3

Vektor di R 2 dan R 3 Vektor di R dn R Pengertin Vektor dlh besrn yng mempunyi besr dn rh Vektor digmbrkn oleh rus gris yng dilengkpi dengn nk pnh vektor dimuli dri titik wl (initil point) dn dikhiri oleh titik khir (terminl

Lebih terperinci

FUNGSI EKSPONENSIAL DAN FUNGSI LOGARITMIK

FUNGSI EKSPONENSIAL DAN FUNGSI LOGARITMIK M AT E M AT I K A E K O N O M I FUNGSI EKSPONENSIAL DAN FUNGSI LOGARITMIK TO N I BAKHTIAR I N S TITUT P ERTA N I A N BOGOR 2 0 2 Pgkt Jik sutu bilg diklik diri sdiri sbk kli mk ditulis Bilg disbut kspo

Lebih terperinci

Sistem Bilangan dan Kesalahan. Metode Numerik

Sistem Bilangan dan Kesalahan. Metode Numerik Sistem Bilg d Keslh Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Cotoh : 673 * 3 6* 7* 3* Bilg ult deg ilg dsr c didefiisik segi : ( )... c N c

Lebih terperinci

BAB 7. LIMIT DAN LAJU PERUBAHAN

BAB 7. LIMIT DAN LAJU PERUBAHAN BAB 7. LIMIT DAN LAJU PERUBAHAN 7. LIMIT FUNGSI 7.. Limit fungsi di sutu titik Menggmbrkn perilku fungsi jik peubhn mendekti sutu titik Illustrsi: Dikethui f( ) f(), 3,30,0 3,030,00 3,003 3 f() = f() 3,000?

Lebih terperinci

Graf Berarah (Digraf)

Graf Berarah (Digraf) Grf Berrh (Digrf) Di dlm situsi yng dinmis, seperti pd komputer digitl tupun pd sistem lirn (flow system), konsep grf errh leih sering digunkn dindingkn dengn konsep grf tk errh. Apil rus sutu grf errh

Lebih terperinci