TOLERANSI UNJUK PENGENALAN JARINGAN SYARAF TIRUAN PADA PENAMBAHAN DERAU DAN SUDUT PUTARAN TERHADAP POLA KARAKTER TULISAN TANGAN JENIS ANGKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "TOLERANSI UNJUK PENGENALAN JARINGAN SYARAF TIRUAN PADA PENAMBAHAN DERAU DAN SUDUT PUTARAN TERHADAP POLA KARAKTER TULISAN TANGAN JENIS ANGKA"

Transkripsi

1 Iwan Suhardi, Toleransi Jaringan Syaraf Tiruan TOLERANSI UNJUK PENGENALAN JARINGAN SYARAF TIRUAN PADA PENAMBAHAN DERAU DAN SUDUT PUTARAN TERHADAP POLA KARAKTER TULISAN TANGAN JENIS ANGKA Iwan Suhardi Jurusan Pendidikan Teknik Elektro Fakultas Teknik Universitas Negeri Makassar ABSTRAK Permasalahan yang dihadapi dalam mengenali pola tulisan tangan sangat kompleks, dikarenakan antara lain banyaknya variasi model tulisan tangan, pena untuk menulis, dan ukuran tulisan tangan. ini akan bertambah kerumitannya bila pola yang akan dikenali ditambah dengan derau dan diputar. Penelitian ini menganalisis sampai seberapa besar penambahan derau dan sudut putaran pada pola angka tulisan tangan yang masih dapat ditoleransi oleh arsitektur jaringan syaraf tiruan. Hasil penelitian menunjukkan jaringan syaraf tiruan memberikan unjuk pengenalan pola angka tulisan tangan mencapai 90%. Pada penambahan derau 10%, jaringan masih mampu memberikan unjuk pengenalan sebesar 75%. Pada penambahan sudut putaran 5 o, jaringan masih mampu memberikan unjuk pengenalan sebesar 73%. Pengaruh gabungan penambahan derau dan besarnya sudut putaran akan menurunkan unjuk pengenalan dibandingkan dengan pengaruh penambahan derau dan sudut putaran secara terpisah (sendiri-sendiri). Jaringan hanya mampu memberikan unjuk 72% pada gabungan penambahan derau 5% dan sudut putaran 5 o. Kata Kunci : Jaringan syaraf tiruan, derau, sudut putaran, pengenalan pola JARINGAN SYARAF TIRUAN Pembacaan suatu karakter dengan komputer yang dikenal sebagai Optical Character Recognition (OCR), merupakan topik yang hangat diteliti selama bertahun-tahun. Solusi untuk permasalahan ini pada umumnya didasarkan pada proses segmentasi masukan menjadi karakterkarakter. Sistem OCR telah dikomersialkan secara luas untuk pemrosesan dokumen-dokumen hasil cetakan, namun teknik-teknik untuk membaca tulisan tangan belum sukses diaplikasikan. Hal ini dikarenakan permasalahan yang dihadapi untuk pengenalan tulisan tangan sangat kompleks, seperti bervariasinya model tulisan tangan, pena untuk menulis, dan lain lain. Jaringan syaraf tiruan diilhami oleh jaringan syaraf manusia yang dapat belajar dari pengalaman, melakukan generalisasi berdasarkan contoh yang diperolehnya dan mengabstraksi karakteristik esensial dari masukan yang mengandung informasi yang mungkin kurang relevan. Jaringan ini dapat menyelesaikan persoalan kompleks yang sulit atau bahkan tidak mungkin jika diselesaikan dengan menggunakan komputasi secara konvensional. Saat ini jaringan syaraf tiruan berkembang dan telah diupayakan untuk berbagai bentuk aplikasi, salah satu aplikasinya yaitu pengenalan pola tulisan tangan. Algoritma perambatan-balik (backpropagation) telah dikembangkan untuk melatih jaringan syaraf tiruan yang sampai pada suatu tingkat tertentu dapat melakukan generalisasi. Kemampuan jaringan syaraf tiruan dalam mengabaikan derau dan distorsi melatarbelakangi penulis untuk mengadakan studi sampai sejauh mana pengaruh besarnya derau, sudut putaran serta gabungan penambahan derau dan sudut putaran masih dapat ditoleransi oleh jaringan syaraf tiruan dalam mengenal pola tulisan tangan jenis angka. Algoritma Jaringan Perambatan Balik Jaringan syaraf lapis-jamak (multilayer) sudah terbukti handal dipakai untuk aplikasi umum. Yang termasuk jaringan lapis-jamak 1

2 MEDIA ELEKTRIK, Volume 5, Nomor 1, Juni 2010 antara lain jaringan perambatan-balik (backpropagation). Metode pelatihan perambatanbalik secara sederhana adalah metode gradient descent (penurunan gradien) untuk meminimalkan total galat kuadrat keluaran. Aplikasi jaringan ini melibatkan pemetaan sekumpulan masukan terhadap sekumpulan target keluaran, sehingga termasuk kategori jaringan dengan pelatihan terbimbing. Pelatihan jaringan perambatan balik melibatkan tiga tahap yaitu umpan-maju pelatihan pola masukan, komputasi dan perambatan-balik galat, serta perubahan bobot. Setelah pelatihan, aplikasi jaringan hanya melibatkan tahap komputasi umpan-maju. Walaupun proses pelatihan jaringan berlangsung relatif lambat, namun jaringan yang telah dilatih dapat menghasilkan keluaran dengan sangat cepat. pada hubungan unit-unit dengan keluaran selalu satu. Hanya aliran informasi umpan-maju yang diperlihatkan pada gambar. Selama fase pelatihan perambatan-balik, sinyal dikirim pada arah yang berlawanan. Praproses Data Karakter Tulisan Tangan Langkah-langkah praproses pengenalan karakter melibatkan proses normalisasi ukuran karakter dan dekomposisi dengan menggunakan filter wavelet Haar. Praproses menggunakan program bantu Matlab khususnya Wavelet Toolbox. Normalisasi ukuran karakter dilakukan karena tidak samanya ukuran karakter penulis yang satu dengan lainnya. Seluruh ukuran karakter dinormalisasi menjadi ukuran 16x16 piksel. Praproses tahap kedua melibatkan 1 1 v 01 w 01 X 1 v 11 Z 1 w 11 Y 1 v 1j w 0k X i v i1 v 1j v ij Z j w i1 w 1k wjk Y k v 1p w jm v n1 v nj v ip v 0p w p1 wpk w jm w 0m X n v np Z p w pm Y m Gambar 1. Jaringan syaraf perambatan-balik dengan satu lapisan tersembunyi Jaringan syaraf lapis-jamak dengan satu lapisan tersembunyi (unit Z) diperlihatkan pada Gambar 1. Unit keluaran (unit Y) dan unit-unit tersembunyi serta bias diperlihatkan. Bias pada unit keluaran Y k dilambangkan dengan w 0k, bias pada unit tersembunyi Z j dilambangkan dengan v 0j. Istilah bias-bias ini berlaku sebagai bobot dekomposisi filter wavelet pola 16x16 piksel hasil normalisasi menggunakan filter wavelet Haar dua-dimensi. Dekomposisi level pertama menghasilkan empat subband yang masingmasing berukuran 8x8 piksel yaitu subband yang membawa informasi pola aproksimasi, subband yang membawa informasi horisontal, subband

3 Iwan Suhardi, Toleransi Jaringan Syaraf Tiruan yang membawa informasi vertikal dan subband yang membawa informasi diagonal. Pada dekomposisi berikutnya yaitu level 2 dihasilkan subband-subband dengan ukuran 4x4 piksel. Dari hasil dekomposisi, terlihat bahwa semakin tinggi level dekomposisinya akan membuat semakin kehilangan cirinya. Oleh karena itu, sebagai pola masukan jaringan neural digunakan dekomposisi level 2 yaitu subband informasi aproksimasi sehingga jumlah neuron pada lapisan masukan ada 4x4 buah. METODE Pola yang dianalisis yaitu pola karakter angka tulisan tangan, yaitu 0, 1, 2, 3, 4, 5, 6, 7, 8, dan 9. Sebagai masukan adalah vektor yang dihasilkan dari pengolahan citra asli. Citra asli dipayar, dan diproses menjadi citra biner (mempunyai nilai 0 dan 1 ). Pada masukan tersebut dicoba dikenali kelas karakter yang telah dilatih dengan menggunakan jaringan neural perambatan-balik. Langkah-langkah praproses pengenalan karakter di sini melibatkan proses normalisasi dan dekomposisi. dengan penambahan variasi derau dansudut putaran secara sendiri-sendiri dan gabungan derau dan putaran secara bersama-sama. Sebagai target pengenalan karakter-karakter tulisan tangan digunakan format kode ASCII 8 bit. Tabel 1 menyatakan kesesuaian target pengenalan jaringan dengan format kode ASCII 8 bit. HASIL DAN PEMBAHASAN Pelatihan dan Pengujian Sebelum dilakukan pelatihan dan pengujian yang sesungguhnya, jaringan diujicoba dengan 200 pola untuk pelatihan dan 100 pola untuk pengujian yang berbeda. Ujicoba jaringan syaraf tiruan mempunyai 2 tujuan. Yang pertama yaitu untuk mengetahui apakah jaringan yang dibangun dapat berfungsi dengan baik atau tidak. Tujuan yang kedua yaitu mencari parameter-parameter jaringan syaraf tiruan yang dapat menghasilkan unjuk pengenalan yang optimal antara lain fungsi aktivasi dan kemiringan, sehingga dapat mengurangi jumlah komputasi pada saat Masukan Citra Angka Tulisan Tangan Praproses data karakter Normalisasi ukuran karakter Karakter Jaringan Neural Efek Derau dan Putaran Dekomposisi dengan Wavelet Angka Keluaran Gambar 2. Diagram blok pengenalan karakter Jaringan yang dirancang adalah jaringan perambatan-balik. Arsitektur jaringan yang dibangun memiliki dua komponen, komponen pertama melibatkan neuron masukan dan keluaran dengan jumlah tetap yaitu sebanyak 4x4 neuron masukan dan 8 neuron keluaran, dan komponen yang melibatkan neuron pada lapisan tersembunyi yang jumlahnya akan dicari sampai didapatkan hasil yang optimal. Setelah jaringan syaraf tiruan mengalami proses pelatihan, selanjutnya diuji pelatihan dan pengujian jaringan yang sesungguhnya. Dari hasil uji coba ini didapatkan bahwa fungsi aktivasi sigmoid bipolar dengan derajad kemiringan 0,8 menghasilkan kemungkinan unjuk pengenalan yang terbaik. Setelah ujicoba dianggap berhasil, dilakukan pelatihan dan pengujian atas serangkaian pola dengan penambahan derau dan besarnya sudut putaran. Pada proses pelatihan melibatkan 1000 pola dan proses pengujian melibatkan 200 pola. 3

4 MEDIA ELEKTRIK, Volume 5, Nomor 1, Juni 2010 Tabel 1. Kesesuaian target pengenalan jaringan dengan format ASCII Karakter ASCII 8 bit Target pengenalan jaringan syaraf Ket: Kesesuaian ini dapat dilihat dari kode 0 dan 1 pada kode ASCII menjadi -0.8 dan 0.8 pada target pengenalan Hasil pengujian ditunjukkan pada tabel 2. Berdasarkan tabel terlihat bahwa arsitektur jaringan yang menghasilkan unjuk pengenalan pada proses pengujian yang terbaik yaitu : , dimana dengan dipilihnya arsitektur jaringan tersebut akan menghasilkan unjuk pengenalan karakter angka sebesar 90%. Tabel 2. pelatihan dan pengujian karakter angka Arsitektur Proses Pelatihan Proses Pengujian Satu lapisan tersembunyi ,6 % 67 % ,2 % 69 % ,8 % 72 % ,8 % 68 % ,9 % 74 % ,2 % 70 % Dua lapisan tersembunyi ,5 % 82% ,6 % 82 % ,4 % 84 % ,1 % 82 % % 80 % ,6 % 82 % ,4 % 87 % ,6 % 81 % ,7 % 86 % ,3 % 81 % ,7 % 79 % ,6 % 81% ,5 % 86% ,7 % 81% ,4 % 85 % ,4 % 83 % ,5 % 83 % ,6 % 85 % ,5 % 81% ,7 % 85 % ,7 % 84 % ,2 % 82 % ,7 % 86 % ,6 % 83 % ,7 % 90 % ,3 % 84 % Ket: Tabel 2 diperoleh dengan nilai laju pelatihan = 0,001, momentum = 0,001, toleransi galatnya = 0,005, dan menggunakan fungsi aktivasi sigmoid bipolar Variasi Derau dan Sudut Putaran Beberapa variasi derau dan sudut putaran pola karakter tulisan tangan jenis angka disajikan pada Gambar 3 berikut.

5 Iwan Suhardi, Toleransi Jaringan Syaraf Tiruan 15 % 69 % 24 % 20 % 61 % 32 % 25 % 44 % 51 % 30 % 40 % 56 % 35 % 28 % 69 % Dari Tabel 3 dan Tabel 4 dapat dilihat bahwa semakin besar tingkat deraunya maka unjuk pengenalannya akan menurun. Jaringan masih dapat menghasilkan unjuk pengenalan 75% pada penambahan derau 10%. Berarti walaupun sekitar 10% nilai-nilai biner yang terkandung dalam sampel-sampel data tersebut bertukar secara random jaringan masih mempunyai unjuk pengenalan sebesar 75%. Tabel 5. Pengaruh besarnya variasi putaran terhadap unjuk pengenalan Gambar 3. Variasi putaran, derau dan gabungan variasi derau - putaran dari tulisan tangan angka 9 Untuk mengetahui pengaruh besarnya variasi sudut putaran dan derau terhadap unjuk jaringan dilakukan pada arsitektur Hasilnya disajikan sebagai berikut : Tabel 3. Pengaruh besarnya variasi derau terhadap unjuk pengenalan Besar Variasi Derau 0 % 90 % 5 % 81 % 10 % 75 % 15 % 69 % 20 % 61 % 25 % 44 % 30 % 40 % 35 % 28 % Tabel 4. Laju penurunan unjuk pengenalan terhadap penambahan variasi derau Besarnya Variasi Derau Penurunan 0 % 90 % 0 % 5 % 81 % 10 % 10 % 75 % 17 % Variasi Sudut Putaran (derajad) 0 90 % 5 73 % % % % % % % % % % % % % Tabel 6. Laju penurunan unjuk pengenalan terhadap variasi sudut putaran Variasi Sudut Putaran (derajad) Penurunan 0 90 % 0% 5 73 % 19% % 26% % 51% % 72% % 87% % 89% % 80% % 12% % 20% 5

6 MEDIA ELEKTRIK, Volume 5, Nomor 1, Juni % 46% % 66% % 86% % 90% 30 % 20 % 18 % 35 % 20 % 12 % Pengujian dengan variasi < 22 % lainnya Pengaruh besarnya derajad sudut putaran dapat dilihat pada Tabel 5 dan 6. Besar variasi sudut positif artinya sampel-sampel data diputar berlawanan dengan arah jarum jam, sedangkan besar variasi sudur negatif artinya sampel-sampel data searah jarum jam. Sama seperti dengan adanya penambahan derau, semakin besar sudut putaran yang diberikan akan membuat unjuk pengenalan yang lebih kecil. Dari tabel dapat dilihat bahwa jaringan masih dapat menunjukkan unjuk 73% pada penambahan besar putaran 5 0. Yang menarik dapat diketahui bahwa pada saat diputaran 180 0, sampel angka 0 dan 1 dikenali, sedangkan angka 6 terbaca menjadi angka 9 dan angka 9 terbaca menjadi angka 6. Pada penambahan variasi putaran yang bernilai negatif (searah dengan jarum jam) akan menghasilkan unjuk pengenalan yang lebih tinggi dibandingkan dengan variasi putaran yang bernilai positif, hal ini dikarenakan banyak sampel data yang digunakan pada penelitian ini penulisannya agak miring ke kiri, sehingga bila karakter jenis angka tersebut diputarankan searah dengan jarum jam akan menjadi data karakter angka yang tegak. Tabel 7. Pengaruh gabungan variasi derau dan putaran terhadap unjuk Variasi Derau Variasi Sudut Putaran 5 % 5 % 72 % 10 % 5 % 63 % 15 % 5 % 57 % 25 % 5 % 36 % 30 % 5 % 31 % 35 % 5 % 22 % 5 % 10 % 59 % 10 % 10 % 53 % 15 % 10 % 39 % 25 % 10 % 33 % 30 % 10 % 27 % 35 % 10 % 21 % 5 % 20 % 33 % 10 % 20 % 30% 15 % 20 % 27 % 25 % 20 % 22 % Berdasarkan Tabel 7, dapat diamati bahwa adanya gabungan penambahan derau dan putaran akan membuat unjuk pengenalan jaringan menjadi menurun. Gabungan penambahan derau dan besarnya putaran akan menurunkan unjuk pengenalan dibandingkan dengan pengaruh penambahan derau dan besarnya putaran secara terpisah (sendiri sendiri). Jaringan hanya mampu memberikan unjuk 72% pada gabungan penambahan derau 5% dan sudut putaran 5 o. SIMPULAN Berdasarkan hasil penelitian dan pembahasan, dapat ditarik kesimpulan bahwa : 1. Jaringan syaraf tiruan dengan pemakaian format ASCII 8 bit sebagai target pengenalan karakter tulisan tangan jenis angka memberikan unjuk pengenalan yang cukup baik dengan mencapai unjuk 90% 2. pola karakter angka dengan penambahan derau yang makin besar akan menurunkan unjuk pengenalan pola, karena dengan semakin besar penambahan derau akan semakin mengurangi informasi pada pola sehingga akan mengurangi unjuk pengenalannya. Jaringan masih mampu memberikan unjuk pengenalan sebesar 75% pada penambahan derau 10%. 3. pola karakter dengan penambahan sudut putaran yang makin besar akan menurunkan unjuk pengenalan pola. Jaringan masih mampu memberikan unjuk pengenalan sebesar 73% pada penambahan sudut putaran 5 o. 4. Gabungan penambahan derau dan besarnya putaran akan menurunkan unjuk pengenalan dibandingkan dengan pengaruh penambahan derau dan besarnya putaran secara terpisah (sendiri sendiri). Jaringan hanya mampu memberikan unjuk 72% pada gabungan penambahan derau 5% dan sudut putaran 5 o. DAFTAR PUSTAKA De Leone, R., Capparuccia, R., and Merelli, E., 1998, A Succsessive Overrelaxation

7 Iwan Suhardi, Toleransi Jaringan Syaraf Tiruan Backpropagation Algorithm for Neural- Network Training, IEEE Transactions on Neural Networks, vol. 9, pp Demuth, H., Beale, M., 1998, Neural Network Toolbox, The Math Work. Inc. Fausett, L., 1994, Fundamentals of Neural Networks : Architectures, Algorithms, and Applications, Prentice Hall, New Jersey. Jain, A.K., 1995, Fundamentals of Digital Image Processing, Prentice Hall, New Delhi. Kröse, Ben, and Van der Smagt, Patrick, 1996, Introduction to Neural Networks, ed. 9, University of Amsterdam. Misiti, M., Oppenheim, G., and Poggi, J., 1996, Wavelet Toolbox, The Math Work. Inc. Rao, B. Valluru dan Rao, V. Hayagriva, 1993, C ++ Neural Networks and Fuzzy Logic, Management Information Source, Inc., New York. 7

TOLERANSI UNJUK PENGENALAN JARINGAN SYARAF TIRUAN PADA PENAMBAHAN DERAU DAN SUDUT PUTARAN TERHADAP POLA KARAKTER TULISAN TANGAN JENIS ANGKA

TOLERANSI UNJUK PENGENALAN JARINGAN SYARAF TIRUAN PADA PENAMBAHAN DERAU DAN SUDUT PUTARAN TERHADAP POLA KARAKTER TULISAN TANGAN JENIS ANGKA Iwan Suhardi, Toleransi Jaringan Syaraf Tiruan TOLERANSI UNJUK PENGENALAN JARINGAN SYARAF TIRUAN PADA PENAMBAHAN DERAU DAN SUDUT PUTARAN TERHADAP POLA KARAKTER TULISAN TANGAN JENIS ANGKA Iwan Suhardi Jurusan

Lebih terperinci

ANALISIS HUBUNGAN TINGKAT PENGENALAN POLA DENGAN TINGKAT VARIASI POLA : STUDI KASUS PENGENALAN POLA KARAKTER HURUF DENGAN JARINGAN SYARAF TIRUAN)

ANALISIS HUBUNGAN TINGKAT PENGENALAN POLA DENGAN TINGKAT VARIASI POLA : STUDI KASUS PENGENALAN POLA KARAKTER HURUF DENGAN JARINGAN SYARAF TIRUAN) ISSN: 1693-6930 1 ANALISIS HUBUNGAN TINGKAT PENGENALAN POLA DENGAN TINGKAT VARIASI POLA : STUDI KASUS PENGENALAN POLA KARAKTER HURUF DENGAN JARINGAN SYARAF TIRUAN) Iwan Suhardi Jurusan Teknik Elektro Fakultas

Lebih terperinci

DETEKSI JENIS KAYU CITRA FURNITURE UKIRAN JEPARA MENGGUNAKAN JST BACKPROPAGATION

DETEKSI JENIS KAYU CITRA FURNITURE UKIRAN JEPARA MENGGUNAKAN JST BACKPROPAGATION No Makalah : 299 Konferensi Nasional Sistem Informasi 2012, STMIK - STIKOM Bali 23-25 Pebruari 2012 DETEKSI JENIS KAYU CITRA FURNITURE UKIRAN JEPARA MENGGUNAKAN JST BACKPROPAGATION Ratri Dwi Atmaja 1,

Lebih terperinci

Bulu mata. Generalisasi= Jumlah pola dikenali dengan benar x 100% Jumlah total pola

Bulu mata. Generalisasi= Jumlah pola dikenali dengan benar x 100% Jumlah total pola Generalisasi Hasil penelitian ini diukur menggunakan nilai konvergen dan generalisasi. Nilai konvergen adalah tingkat kecepatan jaringan untuk mempelajari pola input yang dinyatakan dalam satuan iterasi

Lebih terperinci

SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON

SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON Jurnal Informatika Mulawarman Vol. 7 No. 3 Edisi September 2012 105 SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON Anindita Septiarini Program Studi Ilmu Komputer FMIPA,

Lebih terperinci

APLIKASI JARINGAN SYARAF TIRUAN UNTUK MENGENALI TULISAN TANGAN HURUF A, B, C, DAN D PADA JAWABAN SOAL PILIHAN GANDA

APLIKASI JARINGAN SYARAF TIRUAN UNTUK MENGENALI TULISAN TANGAN HURUF A, B, C, DAN D PADA JAWABAN SOAL PILIHAN GANDA APLIKASI JARINGAN SYARAF TIRUAN UNTUK MENGENALI TULISAN TANGAN HURUF A, B, C, DAN D PADA JAWABAN SOAL PILIHAN GANDA (Studi Eksplorasi Pengembangan Pengolahan Lembar Jawaban Ujian Soal Pilihan Ganda di

Lebih terperinci

KLASIFIKASI SIDIKJARI DENGAN PEMROSESAN AWAL TRANSFORMASI WAVELET Minarni *

KLASIFIKASI SIDIKJARI DENGAN PEMROSESAN AWAL TRANSFORMASI WAVELET Minarni * KLASIFIKASI SIDIKJARI DENGAN PEMROSESAN AWAL TRANSFORMASI WAVELET Minarni * Abstrak Penelitian ini membahas sistem klasifikasi sidikjari. Citra sidikjari diproses awal dengan transformasi wavelet sehingga

Lebih terperinci

Perbaikan Metode Prakiraan Cuaca Bandara Abdulrahman Saleh dengan Algoritma Neural Network Backpropagation

Perbaikan Metode Prakiraan Cuaca Bandara Abdulrahman Saleh dengan Algoritma Neural Network Backpropagation 65 Perbaikan Metode Prakiraan Cuaca Bandara Abdulrahman Saleh dengan Algoritma Neural Network Backpropagation Risty Jayanti Yuniar, Didik Rahadi S. dan Onny Setyawati Abstrak - Kecepatan angin dan curah

Lebih terperinci

Neural Network (NN) Keuntungan penggunaan Neural Network : , terdapat tiga jenis neural network Proses Pembelajaran pada Neural Network

Neural Network (NN) Keuntungan penggunaan Neural Network : , terdapat tiga jenis neural network Proses Pembelajaran pada Neural Network Neural Network (NN) adalah suatu prosesor yang melakukan pendistribusian secara besar-besaran, yang memiliki kecenderungan alami untuk menyimpan suatu pengenalan yang pernah dialaminya, dengan kata lain

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.6. Jaringan Syaraf Tiruan Jaringan syaraf tiruan atau neural network merupakan suatu sistem informasi yang mempunyai cara kerja dan karakteristik menyerupai jaringan syaraf pada

Lebih terperinci

JURNAL SAINS DAN SENI POMITS Vol. 2, No.1, (2013) 1-6 1

JURNAL SAINS DAN SENI POMITS Vol. 2, No.1, (2013) 1-6 1 JURNAL SAINS DAN SENI POMITS Vol. 2, No.1, (2013) 1-6 1 Pengenalan Tulisan Tangan Huruf Latin Bersambung Secara Real Time Menggunakan Algoritma Learning Vector Quantization Ulir Rohwana dan M Isa Irawan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dielaskan mengenai teori-teori yang berhubungan dengan penelitian ini, sehingga dapat diadikan sebagai landasan berpikir dan akan mempermudah dalam hal pembahasan

Lebih terperinci

PERAMALAN HARGA SAHAM PERUSAHAAN MENGGUNAKAN ARTIFICIAL NEURAL NETWORK DAN AKAIKE INFORMATION CRITERION

PERAMALAN HARGA SAHAM PERUSAHAAN MENGGUNAKAN ARTIFICIAL NEURAL NETWORK DAN AKAIKE INFORMATION CRITERION Seminar Nasional Aplikasi Teknologi Informasi 20 (SNATI 20) ISSN: 19-5022 Yogyakarta, 16 Juni 20 PERAMALAN HARGA SAHAM PERUSAHAAN MENGGUNAKAN ARTIFICIAL NEURAL NETWORK DAN AKAIKE INFORMATION CRITERION

Lebih terperinci

PENGENALAN PLAT NOMOR KENDARAAN DALAM SEBUAH CITRA MENGUNAKAN JARINGAN SARAF TIRUAN ABSTRAK

PENGENALAN PLAT NOMOR KENDARAAN DALAM SEBUAH CITRA MENGUNAKAN JARINGAN SARAF TIRUAN ABSTRAK PENGENALAN PLAT NOMOR KENDARAAN DALAM SEBUAH CITRA MENGUNAKAN JARINGAN SARAF TIRUAN Decy Nataliana [1], Sabat Anwari [2], Arief Hermawan [3] Jurusan Teknik Elektro Fakultas Teknologi Industri Institut

Lebih terperinci

PERANCANGAN ALGORITMA KRIPTOGRAFI KUNCI SIMETRI DENGAN MENGGUNAKAN JARINGAN SARAF TIRUAN

PERANCANGAN ALGORITMA KRIPTOGRAFI KUNCI SIMETRI DENGAN MENGGUNAKAN JARINGAN SARAF TIRUAN PERANCANGAN ALGORITMA KRIPTOGRAFI KUNCI SIMETRI DENGAN MENGGUNAKAN JARINGAN SARAF TIRUAN Ibrahim Arief NIM : 13503038 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 10, Bandung

Lebih terperinci

KLASIFIKASI POLA MENGGUNAKAN JARINGAN PROBABILISTIK

KLASIFIKASI POLA MENGGUNAKAN JARINGAN PROBABILISTIK KLASIFIKASI POLA MENGGUNAKAN JARINGAN PROBABILISTIK Sri Kusumadewi Teknik Informatika Universitas Islam Indonesia Jl. Kaliurang Km 4,5 Yogyakarta cicie@fti.uii.ac.id ABSTRACT More application often used

Lebih terperinci

BAB II. Penelitian dengan jaringan syaraf tiruan propagasi balik. dalam bidang kesehatan sebelumnya pernah dilakukan oleh

BAB II. Penelitian dengan jaringan syaraf tiruan propagasi balik. dalam bidang kesehatan sebelumnya pernah dilakukan oleh BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1. Tinjauan Pustaka Penelitian dengan jaringan syaraf tiruan propagasi balik dalam bidang kesehatan sebelumnya pernah dilakukan oleh Sudharmadi Bayu Jati Wibowo

Lebih terperinci

BAB III METODE PENELITIAN. menjawab segala permasalahan yang ada dalam penelitian ini.

BAB III METODE PENELITIAN. menjawab segala permasalahan yang ada dalam penelitian ini. BAB III METODE PENELITIAN Pada bab ini akan dijelaskan bahan yang digunakan dalam membantu menyelesaikan permasalahan, dan juga langkah-langkah yang dilakukan dalam menjawab segala permasalahan yang ada

Lebih terperinci

BAB 2 LANDASAN TEORI. Pengenalan suara (voice recognition) dibagi menjadi dua jenis, yaitu

BAB 2 LANDASAN TEORI. Pengenalan suara (voice recognition) dibagi menjadi dua jenis, yaitu BAB 2 LANDASAN TEORI 2.1 Pengenalan Suara. Pengenalan suara (voice recognition) dibagi menjadi dua jenis, yaitu speech recognition dan speaker recognition. Speech recognition adalah proses yang dilakukan

Lebih terperinci

NEURAL NETWORK BAB II

NEURAL NETWORK BAB II BAB II II. Teori Dasar II.1 Konsep Jaringan Saraf Tiruan (Artificial Neural Network) Secara biologis jaringan saraf terdiri dari neuron-neuron yang saling berhubungan. Neuron merupakan unit struktural

Lebih terperinci

ALGORITMA BACK PROPAGATION NEURAL NETWORK UNTUK PENGENALAN POLA KARAKTER HURUF JAWA

ALGORITMA BACK PROPAGATION NEURAL NETWORK UNTUK PENGENALAN POLA KARAKTER HURUF JAWA Nazla Nurmila, Aris Sugiharto, Eko Adi Sarwoko ALGORITMA BACK PROPAGATION NEURAL NETWORK UNTUK PENGENALAN POLA KARAKTER HURUF JAWA Nazla Nurmila, Aris Sugiharto, dan Eko Adi Sarwoko Prodi Ilmu Komputer

Lebih terperinci

ANALISIS PENAMBAHAN MOMENTUM PADA PROSES PREDIKSI CURAH HUJAN KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK

ANALISIS PENAMBAHAN MOMENTUM PADA PROSES PREDIKSI CURAH HUJAN KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK Seminar Nasional Informatika 0 ANALISIS PENAMBAHAN MOMENTUM PADA PROSES PREDIKSI CURAH HUJAN KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK Yudhi Andrian, Purwa Hasan Putra Dosen Teknik Informatika,

Lebih terperinci

PENERAPAN JARINGAN PERAMBATAN-BALIK UNTUK PENGENALAN KODE POS TULISAN TANGAN

PENERAPAN JARINGAN PERAMBATAN-BALIK UNTUK PENGENALAN KODE POS TULISAN TANGAN PENERAPAN JARINGAN PERAMBATAN-BALIK UNTUK PENGENALAN KODE POS TULISAN TANGAN Tesis untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S-2 Program Studi Teknik Elektro Jurusan Ilmu-ilmu Teknik

Lebih terperinci

SISTEM PENGENALAN BARCODE MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION

SISTEM PENGENALAN BARCODE MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION SISTEM PENGENALAN BARCODE MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION Barcode Rcognition System Using Backpropagation Neural Networks M. Kayadoe, Francis Yuni Rumlawang, Yopi Andry Lesnussa * Jurusan

Lebih terperinci

Jaringan Syaraf Tiruan Bidirectional Associative Memory (BAM) Sebagai Identifikasi Pola Sidik jari Manusia

Jaringan Syaraf Tiruan Bidirectional Associative Memory (BAM) Sebagai Identifikasi Pola Sidik jari Manusia Jurnal Informatika Mulawarman Vol 4 No. 1 Feb 2009 21 Jaringan Syaraf Tiruan Bidirectional Associative Memory (BAM) Sebagai Identifikasi Pola Sidik jari Manusia ZAINAL ARIFIN Program Studi Ilmu Komputer,

Lebih terperinci

Penerapan Jaringan Saraf Tiruan Metode Backpropagation Menggunakan VB 6

Penerapan Jaringan Saraf Tiruan Metode Backpropagation Menggunakan VB 6 Penerapan Jaringan Saraf Tiruan Metode Backpropagation Menggunakan VB 6 Sari Indah Anatta Setiawan SofTech, Tangerang, Indonesia cu.softech@gmail.com Diterima 30 November 2011 Disetujui 14 Desember 2011

Lebih terperinci

KLASIFIKASI CITRA BERDASARKAN TEKSTUR MENGGUNAKAN JARINGAN SARAF TIRUAN PERAMBATAN BALIK

KLASIFIKASI CITRA BERDASARKAN TEKSTUR MENGGUNAKAN JARINGAN SARAF TIRUAN PERAMBATAN BALIK MAKALAH SEMINAR TUGAS AKHIR KLASIFIKASI CITRA BERDASARKAN TEKSTUR MENGGUNAKAN JARINGAN SARAF TIRUAN PERAMBATAN BALIK Panji Novia Pahludi*, Achmad Hidayatno**, R. Rizal Isnanto** Abstrak Selain ukuran,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Jaringan Syaraf Biologi Jaringan Syaraf Tiruan merupakan suatu representasi buatan dari otak manusia yang dibuat agar dapat mensimulasikan apa yang dipejalari melalui proses pembelajaran

Lebih terperinci

PENGENALAN POLA GARIS DASAR KALIMAT PADA TULISAN TANGAN UNTUK MENGETAHUI KARAKTER SESEORANG DENGAN MENGGUNAKAN ALGORITMA RESILIENT BACKPROPAGATION

PENGENALAN POLA GARIS DASAR KALIMAT PADA TULISAN TANGAN UNTUK MENGETAHUI KARAKTER SESEORANG DENGAN MENGGUNAKAN ALGORITMA RESILIENT BACKPROPAGATION PENGENALAN POLA GARIS DASAR KALIMAT PADA TULISAN TANGAN UNTUK MENGETAHUI KARAKTER SESEORANG DENGAN MENGGUNAKAN ALGORITMA RESILIENT BACKPROPAGATION ABSTRAK Juventus Suharta (0722026) Jurusan Teknik Elektro

Lebih terperinci

Hardisk 80 GB Perangkat lunak Window XP Profesional MATLAB 7.0.1

Hardisk 80 GB Perangkat lunak Window XP Profesional MATLAB 7.0.1 Hardisk 8 GB Perangkat lunak Window XP Profesional MATLAB 7..1 HASIL DAN PEMBAHASAN Percobaan yang dilakukan pada penelitian ini terdiri atas dua macam, yaitu citra yang akan mengalami proses pengenalan

Lebih terperinci

Mohammad Akram Ardi 1, Angga Rusdinar 2, Nur Andini 3

Mohammad Akram Ardi 1, Angga Rusdinar 2, Nur Andini 3 DETEKSI PERUBAHAN GARIS PANTAI MENGGUNAKAN METODE WAVELET NEURAL NETWORK BACKPROPAGATION DETECTION OF SHORELINE CHANGE USING WAVELET NEURAL NETWORK BACKPROPAGATION METHOD Mohammad Akram Ardi 1, Angga Rusdinar

Lebih terperinci

ANALISIS JARINGAN SARAF TIRUAN BACKPROPAGATION TERHADAP PERAMALAN NILAI TUKAR MATA UANG RUPIAH DAN DOLAR

ANALISIS JARINGAN SARAF TIRUAN BACKPROPAGATION TERHADAP PERAMALAN NILAI TUKAR MATA UANG RUPIAH DAN DOLAR Jurnal Barekeng Vol. 8 No. Hal. 7 3 (04) ANALISIS JARINGAN SARAF TIRUAN BACKPROPAGATION TERHADAP PERAMALAN NILAI TUKAR MATA UANG RUPIAH DAN DOLAR Analysis of Backpropagation Artificial Neural Network to

Lebih terperinci

DIAGNOSA GANGGUAN SALURAN PERNAFASAN MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION

DIAGNOSA GANGGUAN SALURAN PERNAFASAN MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION DIAGNOSA GANGGUAN SALURAN PERNAFASAN MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION Bambang Yuwono 1), Heru Cahya Rustamaji 2), Usamah Dani 3) 1,2,3) Jurusan Teknik Informatika UPN "Veteran" Yogyakarta

Lebih terperinci

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) IMPLEMENTASI JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK MENGENALI MOTIF BATIK

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) IMPLEMENTASI JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK MENGENALI MOTIF BATIK IMPLEMENTASI JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK MENGENALI MOTIF BATIK Fany Hermawan Teknik Informatika Universitas Komputer Indonesia Jl. Dipatiukur 112-114 Bandung E-mail : evan.hawan@gmail.com

Lebih terperinci

PENERAPAN JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI TINGKAT PENGANGGURAN DI SUMATERA BARAT

PENERAPAN JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI TINGKAT PENGANGGURAN DI SUMATERA BARAT PENERAPAN JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI TINGKAT PENGANGGURAN DI SUMATERA BARAT Havid Syafwan Program Studi Manajemen Informatika, Amik Royal, Kisaran E-mail: havid_syafwan@yahoo.com ABSTRAK:

Lebih terperinci

PENGENALAN TEKS CETAK PADA CITRA TEKS BINER

PENGENALAN TEKS CETAK PADA CITRA TEKS BINER PENGENALAN TEKS CETAK PADA CITRA TEKS BINER Iwan Donal Paska Manurung Achmad Hidayatno Budi Setiyono Abstrak : Salah satu topik khusus pengolahan citra digital dibidang analisa citra adalah pengenalan

Lebih terperinci

Prediksi Pergerakan Harga Harian Nilai Tukar Rupiah (IDR) Terhadap Dollar Amerika (USD) Menggunakan Metode Jaringan Saraf Tiruan Backpropagation

Prediksi Pergerakan Harga Harian Nilai Tukar Rupiah (IDR) Terhadap Dollar Amerika (USD) Menggunakan Metode Jaringan Saraf Tiruan Backpropagation 1 Prediksi Pergerakan Harga Harian Nilai Tukar Rupiah (IDR) Terhadap Dollar Amerika (USD) Menggunakan Metode Jaringan Saraf Tiruan Backpropagation Reza Subintara Teknik Informatika, Ilmu Komputer, Universitas

Lebih terperinci

PENGENALAN POLA GARIS DASAR KALIMAT PADA TULISAN TANGAN UNTUK MENGETAHUI KARAKTER SESEORANG DENGAN MENGGUNAKAN ALGORITMA PROBABILISTIC NEURAL NETWORK

PENGENALAN POLA GARIS DASAR KALIMAT PADA TULISAN TANGAN UNTUK MENGETAHUI KARAKTER SESEORANG DENGAN MENGGUNAKAN ALGORITMA PROBABILISTIC NEURAL NETWORK PENGENALAN POLA GARIS DASAR KALIMAT PADA TULISAN TANGAN UNTUK MENGETAHUI KARAKTER SESEORANG DENGAN MENGGUNAKAN ALGORITMA PROBABILISTIC NEURAL NETWORK ABSTRAK Dwi Putra Alexander (0722067) Jurusan Teknik

Lebih terperinci

Pengenalan Pola Huruf Arab Tulis Tangan Menggunakan Jaringan Saraf Tiruan dengan Metode Perambatan Balik

Pengenalan Pola Huruf Arab Tulis Tangan Menggunakan Jaringan Saraf Tiruan dengan Metode Perambatan Balik Pengenalan Pola Huruf Arab Tulis Tangan Menggunakan Jaringan Saraf Tiruan dengan Metode Perambatan Balik Teguh Prakoso 1, Achmad Hidayatno 2, R.Rizal Isnanto 2 Jurusan Teknik Elektro, Fakultas Teknik Universitas

Lebih terperinci

ANALISIS PRODUKTIVITAS PEGAWAI MENGGUNAKAN JARINGAN SARAF TIRUAN PROPAGASI BALIK

ANALISIS PRODUKTIVITAS PEGAWAI MENGGUNAKAN JARINGAN SARAF TIRUAN PROPAGASI BALIK Jurnal Computech & Bisnis, Vol. 6, No. 2, Desember 2012, 69-74 ISSN 2442-4943 ANALISIS PRODUKTIVITAS PEGAWAI MENGGUNAKAN JARINGAN SARAF TIRUAN PROPAGASI BALIK Riffa Haviani Laluma STMIKMardira Indonesia,

Lebih terperinci

IMPLEMENTASI JARINGAN SYARAF TIRUAN PERAMBATAN BALIK UNTUK MEMPREDIKSI HARGA LOGAM MULIA EMAS MENGGUNAKAN ALGORITMA LEVENBERG MARQUARDT

IMPLEMENTASI JARINGAN SYARAF TIRUAN PERAMBATAN BALIK UNTUK MEMPREDIKSI HARGA LOGAM MULIA EMAS MENGGUNAKAN ALGORITMA LEVENBERG MARQUARDT IMPLEMENTASI JARINGAN SYARAF TIRUAN PERAMBATAN BALIK UNTUK MEMPREDIKSI HARGA LOGAM MULIA EMAS MENGGUNAKAN ALGORITMA LEVENBERG MARQUARDT Reza Najib Hidayat 1, R. Rizal Isnanto 2, Oky Dwi Nurhayati 2 Abstract

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini akan membahas landasan teori-teori yang bersifat ilmiah untuk mendukung penulisan skripsi ini. Teknik-teknik yang dibahas mengenai pengenalan pola, prapengolahan citra,

Lebih terperinci

PENGENALAN CITRA OBJEK SEDERHANA DENGAN JARINGAN SARAF TIRUAN METODE PERCEPTRON

PENGENALAN CITRA OBJEK SEDERHANA DENGAN JARINGAN SARAF TIRUAN METODE PERCEPTRON PENGENALAN CITRA OBJEK SEDERHANA DENGAN JARINGAN SARAF TIRUAN METODE PERCEPTRON Ardi Pujiyanta Program Studi Teknik Informatika, Fakultas Teknik Industri Universitas Ahmad Dahlan Yogyakarta ABSTRAK Konsep

Lebih terperinci

BAB VIIB BACKPROPAGATION dan CONTOH

BAB VIIB BACKPROPAGATION dan CONTOH BAB VIIB BACKPROPAGATION dan CONTOH 7B. Standar Backpropagation (BP) Backpropagation (BP) merupakan JST multi-layer. Penemuannya mengatasi kelemahan JST dengan layer tunggal yang mengakibatkan perkembangan

Lebih terperinci

Architecture Net, Simple Neural Net

Architecture Net, Simple Neural Net Architecture Net, Simple Neural Net 1 Materi 1. Model Neuron JST 2. Arsitektur JST 3. Jenis Arsitektur JST 4. MsCulloh Pitts 5. Jaringan Hebb 2 Model Neuron JST X1 W1 z n wi xi; i1 y H ( z) Y1 X2 Y2 W2

Lebih terperinci

yang standar. Tugas akhir ini lebih berorientasi pada pengenalan fiturnya, sehingga pembahasan lebih ditekankan pada ekstraksi fitur bentuk geometri.

yang standar. Tugas akhir ini lebih berorientasi pada pengenalan fiturnya, sehingga pembahasan lebih ditekankan pada ekstraksi fitur bentuk geometri. 1 PENGENALAN KARAKTER TEKS MENGGUNAKAN METODE NEURAL NETWORK BACKPROPAGATION Titis Hayuning Widya Pramesti, email: titishayuning@gmail.com Jurusan Teknik Elektro, Fakultas Teknik Universitas Brawijaya

Lebih terperinci

STUDI ANALISA PELATIHAN JARINGAN SYARAF TIRUAN DENGAN DAN TANPA ALGORITMA GENETIKA

STUDI ANALISA PELATIHAN JARINGAN SYARAF TIRUAN DENGAN DAN TANPA ALGORITMA GENETIKA STUDI ANALISA PELATIHAN JARINGAN SYARAF TIRUAN DENGAN DAN TANPA ALGORITMA GENETIKA (Agustinus N., et al. STUDI ANALISA PELATIHAN JARINGAN SYARAF TIRUAN DENGAN DAN TANPA ALGORITMA GENETIKA Agustinus Noertjahyana

Lebih terperinci

PENGENALAN HURUF TULISAN TANGAN BERBASIS CIRI SKELETON DAN STATISTIK MENGGUNAKAN JARINGAN SARAF TIRUAN. Disusun oleh : Mario Herryn Tambunan ( )

PENGENALAN HURUF TULISAN TANGAN BERBASIS CIRI SKELETON DAN STATISTIK MENGGUNAKAN JARINGAN SARAF TIRUAN. Disusun oleh : Mario Herryn Tambunan ( ) PENGENALAN HURUF TULISAN TANGAN BERBASIS CIRI SKELETON DAN STATISTIK MENGGUNAKAN JARINGAN SARAF TIRUAN Disusun oleh : Mario Herryn Tambunan (1022056) Jurusan Teknik Elektro, Fakultas Teknik, Universitas

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Perangkat keras komputer berkembang dengan pesat setiap tahunnya selalu sudah ditemukan teknologi yang lebih baru. Meskipun demikian masih banyak hal yang belum dapat

Lebih terperinci

Aplikasi Jaringan Saraf Tiruan Sebagai Penterjemah Karakter Braille Ke Bentuk Abjad

Aplikasi Jaringan Saraf Tiruan Sebagai Penterjemah Karakter Braille Ke Bentuk Abjad The 13 th Industrial Electronics Seminar 2011 (IES 2011) Electronic Engineering Polytechnic Institute of Surabaya (EEPIS), Indonesia, October 26, 2011 Aplikasi Jaringan Saraf Tiruan Sebagai Penterjemah

Lebih terperinci

HUBUNGAN JUMLAH INPUT LAYER DAN OUTPUT LAYER NEURAL NETWORK TERHADAP TINGKAT AKURASI SISTEM HANDWRITING RECOGNITION DENGAN METODE BACKPROPAGATION

HUBUNGAN JUMLAH INPUT LAYER DAN OUTPUT LAYER NEURAL NETWORK TERHADAP TINGKAT AKURASI SISTEM HANDWRITING RECOGNITION DENGAN METODE BACKPROPAGATION HUBUNGAN JUMLAH INPUT LAYER DAN OUTPUT LAYER NEURAL NETWORK TERHADAP TINGKAT AKURASI SISTEM HANDWRITING RECOGNITION DENGAN METODE BACKPROPAGATION Harjono, Didik Warasto Politeknik Pratama Mulia Surakarta

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Dalam bab ini dibahas teori yang digunakan sebagai landasan pengerjaan pengenalan kata berdasarkan tulisan tangan huruf Korea (hangūl) menggunakan jaringan saraf tiruan propagasi balik.

Lebih terperinci

ANALISIS DAN PERANCANGAN JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION PADA APLIKASI PENGENALAN TANDA TANGAN

ANALISIS DAN PERANCANGAN JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION PADA APLIKASI PENGENALAN TANDA TANGAN Analisis dan Perancangan Tanda Tangan Wilis K, Fani W, Heru Cahya R ANALISIS DAN PERANCANGAN JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION PADA APLIKASI PENGENALAN TANDA TANGAN Wilis Kaswidjanti,

Lebih terperinci

SEGMENTASI HURUF TULISAN TANGAN BERSAMBUNG DENGAN VALIDASI JARINGAN SYARAF TIRUAN. Evelyn Evangelista ( )

SEGMENTASI HURUF TULISAN TANGAN BERSAMBUNG DENGAN VALIDASI JARINGAN SYARAF TIRUAN. Evelyn Evangelista ( ) SEGMENTASI HURUF TULISAN TANGAN BERSAMBUNG DENGAN VALIDASI JARINGAN SYARAF TIRUAN Evelyn Evangelista (1022004) Jurusan Teknik Elektro, Fakultas Teknik, Universitas Kristen Maranatha, Jl. Prof. Drg. Suria

Lebih terperinci

BAB VIII JARINGAN SYARAF TIRUAN

BAB VIII JARINGAN SYARAF TIRUAN BAB VIII JARINGAN SYARAF TIRUAN A. OTAK MANUSIA Otak manusia berisi berjuta-juta sel syaraf yang bertugas untuk memproses informasi. Tiaptiap sel bekerja seperti suatu prosesor sederhana. Masing-masing

Lebih terperinci

PREDIKSI PERHITUNGAN DOSIS RADIASI PADA PEMERIKSAAN MAMMOGRAFI MENGGUNAKAN ALGORITMA JARINGAN SYARAF TIRUAN PROPAGASI BALIK

PREDIKSI PERHITUNGAN DOSIS RADIASI PADA PEMERIKSAAN MAMMOGRAFI MENGGUNAKAN ALGORITMA JARINGAN SYARAF TIRUAN PROPAGASI BALIK Berkala Fisika ISSN : 1410-9662 Vol.18, No.4, Oktober 2015, hal 151-156 PREDIKSI PERHITUNGAN DOSIS RADIASI PADA PEMERIKSAAN MAMMOGRAFI MENGGUNAKAN ALGORITMA JARINGAN SYARAF TIRUAN PROPAGASI BALIK Zaenal

Lebih terperinci

PENGENALAN TULISAN TANGAN AKSARA BATAK TOBA MENGGUNAKAN JARINGAN SARAF TIRUAN BERBASIS MULTILAYER PERCEPTRON

PENGENALAN TULISAN TANGAN AKSARA BATAK TOBA MENGGUNAKAN JARINGAN SARAF TIRUAN BERBASIS MULTILAYER PERCEPTRON PENGENALAN TULISAN TANGAN AKSARA BATAK TOBA MENGGUNAKAN JARINGAN SARAF TIRUAN BERBASIS MULTILAYER PERCEPTRON Disusun oleh : Nama : J. Rio Sihombing NRP : 0322129 Jurusan Teknik Elektro, Fakultas Teknik,

Lebih terperinci

BAB I PENDAHULUAN. tangan dijadikan alat untuk menganalisis kepribadian pemiliknya. Sebuah

BAB I PENDAHULUAN. tangan dijadikan alat untuk menganalisis kepribadian pemiliknya. Sebuah BAB I PENDAHULUAN 1.1 Latar Belakang Tulisan tangan merupakan salah satu hal unik yang dapat dihasilkan oleh manusia selain tanda tangan. Seperti halnya tanda tangan, tulisan tangan juga dapat digunakan

Lebih terperinci

Prediksi Jumlah Penjualan Air Mineral Pada Perusahaan XYZ Dengan Jaringan Saraf Tiruan

Prediksi Jumlah Penjualan Air Mineral Pada Perusahaan XYZ Dengan Jaringan Saraf Tiruan Prediksi Jumlah Penjualan Air Mineral Pada Perusahaan XYZ Dengan Jaringan Saraf Tiruan Kusuma Dewangga, S.Kom. Jurusan Ilmu Komputer Universitas Gadjah Mada Jl. Bulaksumur, Yogyakarta kusumadewangga@gmail.com

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Kecerdasan Buatan Bagian dari teknik kompetitif yang lain dari kecerdasan buatan (Sistem pendukung keputusan, Sistem pakar, Komputer vision) seperti fuzzy logic, genetik algorithm

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini akan diuraikan materi yang mendukung dalam pembahasan evaluasi implementasi sistem informasi akademik berdasarkan pengembangan model fit HOT menggunakan regresi linier

Lebih terperinci

ANALISA SISTEM PENGENALAN KARAKTER MENGGUNAKAN JARINGAN SYARAF TIRUAN UNTUK PEMBACAAN DOKUMEN YANG RUSAK KARENA BANJIR

ANALISA SISTEM PENGENALAN KARAKTER MENGGUNAKAN JARINGAN SYARAF TIRUAN UNTUK PEMBACAAN DOKUMEN YANG RUSAK KARENA BANJIR ANALISA SISTEM PENGENALAN KARAKTER MENGGUNAKAN JARINGAN SYARAF TIRUAN UNTUK PEMBACAAN DOKUMEN YANG RUSAK KARENA BANJIR Arif Setiawan 1 Diana Laily Fitri 2 Nanik Susanti 3 ABSTRACT The purpose of this research

Lebih terperinci

PENGENALAN POLA TANDA TANGAN MENGGUNAKAN METODE MOMENT INVARIANT DAN JARINGAN SYARAF RADIAL BASIS FUNCTION (RBF)

PENGENALAN POLA TANDA TANGAN MENGGUNAKAN METODE MOMENT INVARIANT DAN JARINGAN SYARAF RADIAL BASIS FUNCTION (RBF) Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Yogyakarta, 14 Mei 2011 PENGENALAN POLA TANDA TANGAN MENGGUNAKAN METODE MOMENT INVARIANT DAN JARINGAN SYARAF

Lebih terperinci

PENGENALAN POLA TANDA TANGAN MENGGUNAKAN METODE MOMEN INVARIAN DAN RADIAL BASIS FUNCTION (RBF)

PENGENALAN POLA TANDA TANGAN MENGGUNAKAN METODE MOMEN INVARIAN DAN RADIAL BASIS FUNCTION (RBF) PENGENALAN POLA TANDA TANGAN MENGGUNAKAN METODE MOMEN INVARIAN DAN RADIAL BASIS FUNCTION (RBF) AINUN JARIAH 1209201721 DOSEN PEMBIMBING 1. Prof. Dr. Mohammad Isa Irawan, M.T 2. Dr Imam Mukhlas, S.Si, M.T

Lebih terperinci

IMPLEMENTASI JARINGAN SYARAF TIRUAN MULTI LAYER FEEDFORWARD DENGAN ALGORITMA BACKPROPAGATION SEBAGAI ESTIMASI NILAI KURS JUAL SGD-IDR

IMPLEMENTASI JARINGAN SYARAF TIRUAN MULTI LAYER FEEDFORWARD DENGAN ALGORITMA BACKPROPAGATION SEBAGAI ESTIMASI NILAI KURS JUAL SGD-IDR Seminar Nasional Teknologi Informasi dan Multimedia 205 STMIK AMIKOM Yogyakarta, 6-8 Februari 205 IMPLEMENTASI JARINGAN SYARAF TIRUAN MULTI LAYER FEEDFORWARD DENGAN ALGORITMA BACKPROPAGATION SEBAGAI ESTIMASI

Lebih terperinci

PERBAIKAN KUALITAS CITRA BERWARNA DENGAN METODE DISCRETE WAVELET TRANSFORM (DWT)

PERBAIKAN KUALITAS CITRA BERWARNA DENGAN METODE DISCRETE WAVELET TRANSFORM (DWT) PERBAIKAN KUALITAS CITRA BERWARNA DENGAN METODE DISCRETE WAVELET TRANSFORM (DWT) ABSTRAK Silvester Tena Jurusan Teknik Elektro Fakultas Sains dan Teknik, Universitas Nusa Cendana Jl. Adisucipto- Penfui

Lebih terperinci

Jaringan Syaraf Tiruan. Disusun oleh: Liana Kusuma Ningrum

Jaringan Syaraf Tiruan. Disusun oleh: Liana Kusuma Ningrum Jaringan Syaraf Tiruan Disusun oleh: Liana Kusuma Ningrum Susilo Nugroho Drajad Maknawi M0105047 M0105068 M01040 Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret

Lebih terperinci

PERBANDINGAN ANTARA METODE KOHONEN NEURAL NETWORK DAN LEARNING VECTOR QUANTIZATION PADA SISTEM PENGENALAN TULISAN TANGAN SECARA REAL TIME

PERBANDINGAN ANTARA METODE KOHONEN NEURAL NETWORK DAN LEARNING VECTOR QUANTIZATION PADA SISTEM PENGENALAN TULISAN TANGAN SECARA REAL TIME PERBANDINGAN ANTARA METODE KOHONEN NEURAL NETWORK DAN LEARNING VECTOR QUANTIZATION PADA SISTEM PENGENALAN TULISAN TANGAN SECARA REAL TIME Nama Mahasiswa : Asworo NRP : 205 00 077 Jurusan : Matematika FMIPA-ITS

Lebih terperinci

PERBANDINGAN ALGORITMA PARTICLE SWARM OPTIMIZATION DAN REGRESI PADA PERAMALAN WAKTU BEBAN PUNCAK

PERBANDINGAN ALGORITMA PARTICLE SWARM OPTIMIZATION DAN REGRESI PADA PERAMALAN WAKTU BEBAN PUNCAK Jurnal POROS TEKNIK, Volume 6, No. 2, Desember 2014 : 55-10 PERBANDINGAN ALGORITMA PARTICLE SWARM OPTIMIZATION DAN REGRESI PADA PERAMALAN WAKTU BEBAN PUNCAK Nurmahaludin (1) (1) Staff Pengajar Jurusan

Lebih terperinci

JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION UNTUK MENDETEKSI GANGGUAN PSIKOLOGI

JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION UNTUK MENDETEKSI GANGGUAN PSIKOLOGI Media Informatika, Vol. 2, No. 2, Desember 2004, 1-11 ISSN: 0854-4743 JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION UNTUK MENDETEKSI GANGGUAN PSIKOLOGI Kiki, Sri Kusumadewi Jurusan Teknik Informatika,

Lebih terperinci

SLOPE CORRECTION PADA TULISAN TANGAN MENGGUNAKAN JARINGAN SARAF TIRUAN ABSTRAK

SLOPE CORRECTION PADA TULISAN TANGAN MENGGUNAKAN JARINGAN SARAF TIRUAN ABSTRAK SLOPE CORRECTION PADA TULISAN TANGAN MENGGUNAKAN JARINGAN SARAF TIRUAN Disusun Oleh : Apriliyanto Taufik Betama (1022070) Jurusan Teknik Elektro, Fakultas Teknik, Jl. Prof. drg. Suria Sumantri, MPH, No.

Lebih terperinci

BAB I PENDAHULUAN. penelitian di dunia pendidikan. Dilaporkan sekitar 25-60% mahasiswa drop-out

BAB I PENDAHULUAN. penelitian di dunia pendidikan. Dilaporkan sekitar 25-60% mahasiswa drop-out BAB I PENDAHULUAN 1.1 Latar Belakang Pada tahun 1980, Student Engagement menjadi topik hangat dalam penelitian di dunia pendidikan. Dilaporkan sekitar 25-60% mahasiswa drop-out dikarenakan merasa bosan

Lebih terperinci

Pengenalan Karakter Tulisan Tangan Latin pada Jaringan Saraf Tiruan Metode Backpropagation dengan Input Citra Kamera Digital

Pengenalan Karakter Tulisan Tangan Latin pada Jaringan Saraf Tiruan Metode Backpropagation dengan Input Citra Kamera Digital Pengenalan Karakter Tulisan Tangan Latin pada Jaringan Saraf Tiruan Metode Backpropagation dengan Input Citra Kamera Digital Dompak Petrus Sinambela 1 Sampe Hotlan Sitorus 2 Universitas Mpu Tantular Jakarta.

Lebih terperinci

PERAMALAN JUMLAH KENDARAAN DI DKI JAKARTA DENGAN JARINGAN BACKPROPAGATION

PERAMALAN JUMLAH KENDARAAN DI DKI JAKARTA DENGAN JARINGAN BACKPROPAGATION PERAMALAN JUMLAH KENDARAAN DI DKI JAKARTA DENGAN JARINGAN BACKPROPAGATION (Forecast The Number of Vehicle in Jakarta Using Backpropagation Neural Net ) Zumrotus Sya diyah Universitas Darussalam Ambon,

Lebih terperinci

PERANCANGAN PERANGKAT LUNAK PENGENALAN POLA KARAKTER MENGGUNAKAN JARINGAN SYARAF TIRUAN PERCEPTRON

PERANCANGAN PERANGKAT LUNAK PENGENALAN POLA KARAKTER MENGGUNAKAN JARINGAN SYARAF TIRUAN PERCEPTRON Perancangan Perangkat Lunak Pengenalan Pola PERANCANGAN PERANGKAT LUNAK PENGENALAN POLA KARAKTER MENGGUNAKAN JARINGAN SYARAF TIRUAN PERCEPTRON DAVID Sekolah Tinggi Manajemen Informatika dan Komputer Pontianak

Lebih terperinci

ABSTRACT. Kata kunci: Fuzzy Tsukamoto, Jaringan Syaraf Tiruan, Backpropagation 1. LATAR BELAKANG MASALAH

ABSTRACT. Kata kunci: Fuzzy Tsukamoto, Jaringan Syaraf Tiruan, Backpropagation 1. LATAR BELAKANG MASALAH PERBANDINGAN PREDIKSI HARGA SAHAM DENGAN MENGGUNAKAN METODE JARINGAN SYARAF TIRUAN DAN FUZZY TSUKAMOTO COMPARISON OF SHARE PRICE PREDICTION USING ARTIFICIAL NEURAL NETWORK AND FUZZY TSUKAMOTO ABSTRACT

Lebih terperinci

Pengenalan Kata dengan Metode Linear Predictive Coding dan Jaringan Syaraf Tiruan Pada Mobile Robot

Pengenalan Kata dengan Metode Linear Predictive Coding dan Jaringan Syaraf Tiruan Pada Mobile Robot Pengenalan Kata dengan Metode Linear Predictive Coding dan Jaringan Syaraf Tiruan Pada Mobile Robot Irmawan 1, Hera hikmarika 1, Desi Windi Sari 1 dan M. Chaerul Tammimi 2 1 Staf Pengajar Teknik Elektro

Lebih terperinci

KOMPARASI HASIL KLASIFIKASI PENYAKIT DIABETES MELLITUS MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION DAN LEARNING VECTOR QUANTIZATION

KOMPARASI HASIL KLASIFIKASI PENYAKIT DIABETES MELLITUS MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION DAN LEARNING VECTOR QUANTIZATION Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 14 Mei 2011 KOMPARASI HASIL KLASIFIKASI PENYAKIT DIABETES MELLITUS MENGGUNAKAN JARINGAN

Lebih terperinci

PERANCANGAN SISTEM PENGENAL DIGIT ANGKA METER AIR MENGGUNAKAN JARINGAN SYARAF TIRUAN KOHONEN

PERANCANGAN SISTEM PENGENAL DIGIT ANGKA METER AIR MENGGUNAKAN JARINGAN SYARAF TIRUAN KOHONEN PERANCANGAN SISTEM PENGENAL DIGIT ANGKA METER AIR MENGGUNAKAN JARINGAN SYARAF TIRUAN KOHONEN Teguh Triantoro, F. Rizal Batubara, Fahmi Konsentrasi Teknik Komputer, Departemen Teknik Elektro Fakultas Teknik

Lebih terperinci

Implementasi Algoritma Canny dan Backpropagation dalam Pengenalan Pola Rumah Adat

Implementasi Algoritma Canny dan Backpropagation dalam Pengenalan Pola Rumah Adat Implementasi Algoritma Canny dan Backpropagation dalam Pengenalan Pola Rumah Adat Asep Nana Hermana [1], Meikel Sandy Juerman [1] Jurusan Teknik Informatika, Fakultas Teknologi Industri Institut Teknologi

Lebih terperinci

IDENTIFIKASI TANDA TANGAN MENGGUNAKAN ALGORITMA DOUBLE BACKPROPAGATION ABSTRAK

IDENTIFIKASI TANDA TANGAN MENGGUNAKAN ALGORITMA DOUBLE BACKPROPAGATION ABSTRAK IDENTIFIKASI TANDA TANGAN MENGGUNAKAN ALGORITMA DOUBLE BACKPROPAGATION Disusun oleh: Togu Pangaribuan 0722087 Jurusan Teknik Elektro, Fakultas Teknik, Jl. Prof.Drg. Suria Sumantri, MPH No. 65, Bandung

Lebih terperinci

ALGORITMA BACKPROPAGATION PADA JARINGAN SARAF TIRUAN UNTUK PENGENALAN POLA WAYANG KULIT

ALGORITMA BACKPROPAGATION PADA JARINGAN SARAF TIRUAN UNTUK PENGENALAN POLA WAYANG KULIT ALGORITMA BACKPROPAGATION PADA JARINGAN SARAF TIRUAN UNTUK PENGENALAN POLA WAYANG KULIT Kristian Adi Nugraha 1), Albertus Joko Santoso 2), Thomas Suselo 3) 1,2,3) Program Studi Magister Teknik Informatika,

Lebih terperinci

PERANCANGAN PROGRAM PENGENALAN BENTUK MOBIL DENGAN METODE BACKPROPAGATION DAN ARTIFICIAL NEURAL NETWORK SKRIPSI

PERANCANGAN PROGRAM PENGENALAN BENTUK MOBIL DENGAN METODE BACKPROPAGATION DAN ARTIFICIAL NEURAL NETWORK SKRIPSI PERANCANGAN PROGRAM PENGENALAN BENTUK MOBIL DENGAN METODE BACKPROPAGATION DAN ARTIFICIAL NEURAL NETWORK SKRIPSI Oleh Nama : Januar Wiguna Nim : 0700717655 PROGRAM GANDA TEKNIK INFORMATIKA DAN MATEMATIKA

Lebih terperinci

Pengenalan Citra Porno Berbasis Kandungan Informasi Citra (Image Content)

Pengenalan Citra Porno Berbasis Kandungan Informasi Citra (Image Content) Jurnal Teknik Elektro Vol. 4, No. 2, September 24: 8-86 Pengenalan Citra Porno Berbasis Kandungan Informasi Citra (Image Content) I Gede Pasek Suta Wijaya, I B K Widiartha Fakultas Teknik, Jurusan Teknik

Lebih terperinci

PENGENALAN HURUF JAWA TULISAN TANGAN MENGGUNAKAN JARINGAN SARAF TIRUAN PERAMBATAN BALIK DENGAN FUZZY FEATURE EXTRACTION

PENGENALAN HURUF JAWA TULISAN TANGAN MENGGUNAKAN JARINGAN SARAF TIRUAN PERAMBATAN BALIK DENGAN FUZZY FEATURE EXTRACTION PENGENALAN HURUF JAWA TULISAN TANGAN MENGGUNAKAN JARINGAN SARAF TIRUAN PERAMBATAN BALIK DENGAN FUZZY FEATURE EXTRACTION Aditya Wibowo 1), Achmad Hidayatno 2), Ajub Ajulian 2) Jurusan Teknik Elektro, Fakultas

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 5 BAB 2 LANDASAN TEORI 2.1 Digital Image 2.1.1 Definisi Digital Image Menurut Gonzalez dan Woods (1992, p6), digital image adalah image f(x,y) yang telah dibedakan berdasarkan koordinat tata letak dan

Lebih terperinci

Jurnal Informatika Mulawarman Vol 5 No. 1 Februari

Jurnal Informatika Mulawarman Vol 5 No. 1 Februari Jurnal Informatika Mulawarman Vol 5 No. 1 Februari 2010 50 Penerapan Jaringan Syaraf Tiruan Untuk Memprediksi Jumlah Pengangguran di Provinsi Kalimantan Timur Dengan Menggunakan Algoritma Pembelajaran

Lebih terperinci

Kode/SKS : TEL 212/2 Prasyarat : -

Kode/SKS : TEL 212/2 Prasyarat : - Nama MatakuIiah : Teknik Neuro Fuzzy Kode/SKS : TEL 212/2 Prasyarat : - Status Mata Kuliah : Wajib Umum Deskripsi Singkat Mata Kuliah : Mata kuliah Teknik Neuro Fuzzy mempelajari penerapan kecerdasan dan

Lebih terperinci

Aplikasi Jaringan Saraf Tiruan Backpropagation untuk Memprediksi Prestasi Siswa SMA (Studi kasus: Prediksi Prestasi Siswa SMAN 4 Ambon)

Aplikasi Jaringan Saraf Tiruan Backpropagation untuk Memprediksi Prestasi Siswa SMA (Studi kasus: Prediksi Prestasi Siswa SMAN 4 Ambon) Jurnal Matematika Integratif ISSN 42-684 Volume No 2, Oktober 205, pp 49 60 Aplikasi Jaringan Saraf Tiruan Backpropagation untuk Memprediksi Prestasi Siswa SMA (Studi kasus: Prediksi Prestasi Siswa SMAN

Lebih terperinci

VIII.PENGANTAR JARINGAN SYARAF TIRUAN (JST)

VIII.PENGANTAR JARINGAN SYARAF TIRUAN (JST) VIII.PENGANTAR JARINGAN SYARAF TIRUAN (JST) 3 JARINGAN SYARAF BIOLOGIS (JSB) Otak manusia berisi sekitar 0 sel syaraf (neuron) yang bertugas untuk memproses informasi yang masuk. Tiap sel syaraf dihubungkan

Lebih terperinci

Puji Pangastuti. kemampuan jaringan dalam menentukan pola yang digunakan selama masa pelatihan diharapkan dapat mengoptimalkan hasil yang diinginkan.

Puji Pangastuti. kemampuan jaringan dalam menentukan pola yang digunakan selama masa pelatihan diharapkan dapat mengoptimalkan hasil yang diinginkan. METODE JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK MENGUKUR TINGKAT KORELASI PRESTASI MAHASISWA (STUDI KASUS PADA UNIVERSITAS DIAN NUSWANTORO SEMARANG) Puji Pangastuti Abstract - The university now increasingly

Lebih terperinci

RANCANG BANGUN ALAT BANTU PENENTU POLA DISTRIBUSI INPUT DENGAN MEMANFAATKAN JARINGAN SYARAF TIRUAN DENGAN MENGGUNAKAN PERSENTIL SEBAGAI PENCIRI

RANCANG BANGUN ALAT BANTU PENENTU POLA DISTRIBUSI INPUT DENGAN MEMANFAATKAN JARINGAN SYARAF TIRUAN DENGAN MENGGUNAKAN PERSENTIL SEBAGAI PENCIRI RANCANG BANGUN ALAT BANTU PENENTU POLA DISTRIBUSI INPUT DENGAN MEMANFAATKAN JARINGAN SYARAF TIRUAN DENGAN MENGGUNAKAN PERSENTIL SEBAGAI PENCIRI Aris Tjahyanto Jurusan Sistem Informasi, Fakultas Teknologi

Lebih terperinci

BAB III METODE PENELITIAN. Alam Universitas Lampung pada bulan Februari 2014 sampai Mei 2014.

BAB III METODE PENELITIAN. Alam Universitas Lampung pada bulan Februari 2014 sampai Mei 2014. 4 BAB III METODE PENELITIAN 3.. Waktu dan Tempat Pelaksanaan Penelitian ini dilaksanakan di Laboratorium Pemodelan Fisika dan Laboratorium Elektronika Dasar Jurusan Fisika Fakultas Matematika dan IImu

Lebih terperinci

Jaringan Syaraf Tiruan

Jaringan Syaraf Tiruan Jaringan Syaraf Tiruan Pendahuluan Otak Manusia Sejarah Komponen Jaringan Syaraf Arisitektur Jaringan Fungsi Aktivasi Proses Pembelajaran Pembelajaran Terawasi Jaringan Kohonen Referensi Sri Kusumadewi

Lebih terperinci

BAB VIII PENGANTAR JARINGAN SYARAF TIRUAN (JST)

BAB VIII PENGANTAR JARINGAN SYARAF TIRUAN (JST) BAB VIII PENGANTAR JARINGAN SYARAF TIRUAN (JST) 8.1 Komponen Jaringan Syaraf JARINGAN SYARAF BIOLOGIS (JSB) Otak manusia berisi sekitar 10 11 sel syaraf (neuron) yang bertugas untuk memproses informasi

Lebih terperinci

Metode Jaringan Saraf Tiruan Propagasi Balik Untuk Estimasi Curah Hujan Bulanan di Ketapang Kalimantan Barat

Metode Jaringan Saraf Tiruan Propagasi Balik Untuk Estimasi Curah Hujan Bulanan di Ketapang Kalimantan Barat Prosiding Semirata FMIPA Universitas Lampung, 2013 Metode Jaringan Saraf Tiruan Propagasi Balik Untuk Estimasi Curah Hujan Bulanan di Ketapang Kalimantan Barat Andi Ihwan Prodi Fisika FMIPA Untan, Pontianak

Lebih terperinci

Abstract. Keywords: Artificial Neural Network

Abstract. Keywords: Artificial Neural Network Abstract Artificial Neural Network is one of the technologies which have developed because of Information Technology development itself. Nowadays, more and more large companies are implementing Artificial

Lebih terperinci

BAB I PENDAHULUAN. mengenai deteksi wajah dengan Differential Evolution Based Neural Network

BAB I PENDAHULUAN. mengenai deteksi wajah dengan Differential Evolution Based Neural Network BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Berdasarkan penelitian yang telah dilakukan oleh Yudistira Dewanata mengenai deteksi wajah dengan Differential Evolution Based Neural Network mendapatkan total

Lebih terperinci

PENGENALAN SIDIK JARI MENGGUNAKAN JARINGAN SYARAF TIRUAN BERBASIS SCALED CONJUGATE GRADIENT

PENGENALAN SIDIK JARI MENGGUNAKAN JARINGAN SYARAF TIRUAN BERBASIS SCALED CONJUGATE GRADIENT Mikrotiga, Vol, No. Mei 0 ISSN : 0 PENGENALAN SIDIK JARI MENGGUNAKAN JARINGAN SYARAF TIRUAN BERBASIS SCALED CONJUGATE GRADIENT Suci Dwijayanti *, Puspa Kurniasari Jurusan Teknik Elektro Universitas Sriwijaya,

Lebih terperinci

Sebelumnya... Pembelajaran Mesin/Machine Learning Pembelajaran dengan Decision Tree (ID3) Teori Bayes dalam Pembelajaran

Sebelumnya... Pembelajaran Mesin/Machine Learning Pembelajaran dengan Decision Tree (ID3) Teori Bayes dalam Pembelajaran Sebelumnya... Pembelajaran Mesin/Machine Learning Pembelajaran dengan Decision Tree (ID3) Teori Bayes dalam Pembelajaran Kecerdasan Buatan Pertemuan 11 Jaringan Syaraf Tiruan (Artificial Neural Network)

Lebih terperinci