TOLERANSI UNJUK PENGENALAN JARINGAN SYARAF TIRUAN PADA PENAMBAHAN DERAU DAN SUDUT PUTARAN TERHADAP POLA KARAKTER TULISAN TANGAN JENIS ANGKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "TOLERANSI UNJUK PENGENALAN JARINGAN SYARAF TIRUAN PADA PENAMBAHAN DERAU DAN SUDUT PUTARAN TERHADAP POLA KARAKTER TULISAN TANGAN JENIS ANGKA"

Transkripsi

1 Iwan Suhardi, Toleransi Jaringan Syaraf Tiruan TOLERANSI UNJUK PENGENALAN JARINGAN SYARAF TIRUAN PADA PENAMBAHAN DERAU DAN SUDUT PUTARAN TERHADAP POLA KARAKTER TULISAN TANGAN JENIS ANGKA Iwan Suhardi Jurusan Pendidikan Teknik Elektro Fakultas Teknik Universitas Negeri Makassar ABSTRAK Permasalahan yang dihadapi dalam mengenali pola tulisan tangan sangat kompleks, dikarenakan antara lain banyaknya variasi model tulisan tangan, pena untuk menulis, dan ukuran tulisan tangan. ini akan bertambah kerumitannya bila pola yang akan dikenali ditambah dengan derau dan diputar. Penelitian ini menganalisis sampai seberapa besar penambahan derau dan sudut putaran pada pola angka tulisan tangan yang masih dapat ditoleransi oleh arsitektur jaringan syaraf tiruan. Hasil penelitian menunjukkan jaringan syaraf tiruan memberikan unjuk pengenalan pola angka tulisan tangan mencapai 90%. Pada penambahan derau 10%, jaringan masih mampu memberikan unjuk pengenalan sebesar 75%. Pada penambahan sudut putaran 5 o, jaringan masih mampu memberikan unjuk pengenalan sebesar 73%. Pengaruh gabungan penambahan derau dan besarnya sudut putaran akan menurunkan unjuk pengenalan dibandingkan dengan pengaruh penambahan derau dan sudut putaran secara terpisah (sendiri-sendiri). Jaringan hanya mampu memberikan unjuk 72% pada gabungan penambahan derau 5% dan sudut putaran 5 o. Kata Kunci : Jaringan syaraf tiruan, derau, sudut putaran, pengenalan pola JARINGAN SYARAF TIRUAN Pembacaan suatu karakter dengan komputer yang dikenal sebagai Optical Character Recognition (OCR), merupakan topik yang hangat diteliti selama bertahun-tahun. Solusi untuk permasalahan ini pada umumnya didasarkan pada proses segmentasi masukan menjadi karakterkarakter. Sistem OCR telah dikomersialkan secara luas untuk pemrosesan dokumen-dokumen hasil cetakan, namun teknik-teknik untuk membaca tulisan tangan belum sukses diaplikasikan. Hal ini dikarenakan permasalahan yang dihadapi untuk pengenalan tulisan tangan sangat kompleks, seperti bervariasinya model tulisan tangan, pena untuk menulis, dan lain lain. Jaringan syaraf tiruan diilhami oleh jaringan syaraf manusia yang dapat belajar dari pengalaman, melakukan generalisasi berdasarkan contoh yang diperolehnya dan mengabstraksi karakteristik esensial dari masukan yang mengandung informasi yang mungkin kurang relevan. Jaringan ini dapat menyelesaikan persoalan kompleks yang sulit atau bahkan tidak mungkin jika diselesaikan dengan menggunakan komputasi secara konvensional. Saat ini jaringan syaraf tiruan berkembang dan telah diupayakan untuk berbagai bentuk aplikasi, salah satu aplikasinya yaitu pengenalan pola tulisan tangan. Algoritma perambatan-balik (backpropagation) telah dikembangkan untuk melatih jaringan syaraf tiruan yang sampai pada suatu tingkat tertentu dapat melakukan generalisasi. Kemampuan jaringan syaraf tiruan dalam mengabaikan derau dan distorsi melatarbelakangi penulis untuk mengadakan studi sampai sejauh mana pengaruh besarnya derau, sudut putaran serta gabungan penambahan derau dan sudut putaran masih dapat ditoleransi oleh jaringan syaraf tiruan dalam mengenal pola tulisan tangan jenis angka. Algoritma Jaringan Perambatan Balik Jaringan syaraf lapis-jamak (multilayer) sudah terbukti handal dipakai untuk aplikasi umum. Yang termasuk jaringan lapis-jamak 1

2 MEDIA ELEKTRIK, Volume 5, Nomor 1, Juni 2010 antara lain jaringan perambatan-balik (backpropagation). Metode pelatihan perambatanbalik secara sederhana adalah metode gradient descent (penurunan gradien) untuk meminimalkan total galat kuadrat keluaran. Aplikasi jaringan ini melibatkan pemetaan sekumpulan masukan terhadap sekumpulan target keluaran, sehingga termasuk kategori jaringan dengan pelatihan terbimbing. Pelatihan jaringan perambatan balik melibatkan tiga tahap yaitu umpan-maju pelatihan pola masukan, komputasi dan perambatan-balik galat, serta perubahan bobot. Setelah pelatihan, aplikasi jaringan hanya melibatkan tahap komputasi umpan-maju. Walaupun proses pelatihan jaringan berlangsung relatif lambat, namun jaringan yang telah dilatih dapat menghasilkan keluaran dengan sangat cepat. pada hubungan unit-unit dengan keluaran selalu satu. Hanya aliran informasi umpan-maju yang diperlihatkan pada gambar. Selama fase pelatihan perambatan-balik, sinyal dikirim pada arah yang berlawanan. Praproses Data Karakter Tulisan Tangan Langkah-langkah praproses pengenalan karakter melibatkan proses normalisasi ukuran karakter dan dekomposisi dengan menggunakan filter wavelet Haar. Praproses menggunakan program bantu Matlab khususnya Wavelet Toolbox. Normalisasi ukuran karakter dilakukan karena tidak samanya ukuran karakter penulis yang satu dengan lainnya. Seluruh ukuran karakter dinormalisasi menjadi ukuran 16x16 piksel. Praproses tahap kedua melibatkan 1 1 v 01 w 01 X 1 v 11 Z 1 w 11 Y 1 v 1j w 0k X i v i1 v 1j v ij Z j w i1 w 1k wjk Y k v 1p w jm v n1 v nj v ip v 0p w p1 wpk w jm w 0m X n v np Z p w pm Y m Gambar 1. Jaringan syaraf perambatan-balik dengan satu lapisan tersembunyi Jaringan syaraf lapis-jamak dengan satu lapisan tersembunyi (unit Z) diperlihatkan pada Gambar 1. Unit keluaran (unit Y) dan unit-unit tersembunyi serta bias diperlihatkan. Bias pada unit keluaran Y k dilambangkan dengan w 0k, bias pada unit tersembunyi Z j dilambangkan dengan v 0j. Istilah bias-bias ini berlaku sebagai bobot dekomposisi filter wavelet pola 16x16 piksel hasil normalisasi menggunakan filter wavelet Haar dua-dimensi. Dekomposisi level pertama menghasilkan empat subband yang masingmasing berukuran 8x8 piksel yaitu subband yang membawa informasi pola aproksimasi, subband yang membawa informasi horisontal, subband

3 Iwan Suhardi, Toleransi Jaringan Syaraf Tiruan yang membawa informasi vertikal dan subband yang membawa informasi diagonal. Pada dekomposisi berikutnya yaitu level 2 dihasilkan subband-subband dengan ukuran 4x4 piksel. Dari hasil dekomposisi, terlihat bahwa semakin tinggi level dekomposisinya akan membuat semakin kehilangan cirinya. Oleh karena itu, sebagai pola masukan jaringan neural digunakan dekomposisi level 2 yaitu subband informasi aproksimasi sehingga jumlah neuron pada lapisan masukan ada 4x4 buah. METODE Pola yang dianalisis yaitu pola karakter angka tulisan tangan, yaitu 0, 1, 2, 3, 4, 5, 6, 7, 8, dan 9. Sebagai masukan adalah vektor yang dihasilkan dari pengolahan citra asli. Citra asli dipayar, dan diproses menjadi citra biner (mempunyai nilai 0 dan 1 ). Pada masukan tersebut dicoba dikenali kelas karakter yang telah dilatih dengan menggunakan jaringan neural perambatan-balik. Langkah-langkah praproses pengenalan karakter di sini melibatkan proses normalisasi dan dekomposisi. dengan penambahan variasi derau dansudut putaran secara sendiri-sendiri dan gabungan derau dan putaran secara bersama-sama. Sebagai target pengenalan karakter-karakter tulisan tangan digunakan format kode ASCII 8 bit. Tabel 1 menyatakan kesesuaian target pengenalan jaringan dengan format kode ASCII 8 bit. HASIL DAN PEMBAHASAN Pelatihan dan Pengujian Sebelum dilakukan pelatihan dan pengujian yang sesungguhnya, jaringan diujicoba dengan 200 pola untuk pelatihan dan 100 pola untuk pengujian yang berbeda. Ujicoba jaringan syaraf tiruan mempunyai 2 tujuan. Yang pertama yaitu untuk mengetahui apakah jaringan yang dibangun dapat berfungsi dengan baik atau tidak. Tujuan yang kedua yaitu mencari parameter-parameter jaringan syaraf tiruan yang dapat menghasilkan unjuk pengenalan yang optimal antara lain fungsi aktivasi dan kemiringan, sehingga dapat mengurangi jumlah komputasi pada saat Masukan Citra Angka Tulisan Tangan Praproses data karakter Normalisasi ukuran karakter Karakter Jaringan Neural Efek Derau dan Putaran Dekomposisi dengan Wavelet Angka Keluaran Gambar 2. Diagram blok pengenalan karakter Jaringan yang dirancang adalah jaringan perambatan-balik. Arsitektur jaringan yang dibangun memiliki dua komponen, komponen pertama melibatkan neuron masukan dan keluaran dengan jumlah tetap yaitu sebanyak 4x4 neuron masukan dan 8 neuron keluaran, dan komponen yang melibatkan neuron pada lapisan tersembunyi yang jumlahnya akan dicari sampai didapatkan hasil yang optimal. Setelah jaringan syaraf tiruan mengalami proses pelatihan, selanjutnya diuji pelatihan dan pengujian jaringan yang sesungguhnya. Dari hasil uji coba ini didapatkan bahwa fungsi aktivasi sigmoid bipolar dengan derajad kemiringan 0,8 menghasilkan kemungkinan unjuk pengenalan yang terbaik. Setelah ujicoba dianggap berhasil, dilakukan pelatihan dan pengujian atas serangkaian pola dengan penambahan derau dan besarnya sudut putaran. Pada proses pelatihan melibatkan 1000 pola dan proses pengujian melibatkan 200 pola. 3

4 MEDIA ELEKTRIK, Volume 5, Nomor 1, Juni 2010 Tabel 1. Kesesuaian target pengenalan jaringan dengan format ASCII Karakter ASCII 8 bit Target pengenalan jaringan syaraf Ket: Kesesuaian ini dapat dilihat dari kode 0 dan 1 pada kode ASCII menjadi -0.8 dan 0.8 pada target pengenalan Hasil pengujian ditunjukkan pada tabel 2. Berdasarkan tabel terlihat bahwa arsitektur jaringan yang menghasilkan unjuk pengenalan pada proses pengujian yang terbaik yaitu : , dimana dengan dipilihnya arsitektur jaringan tersebut akan menghasilkan unjuk pengenalan karakter angka sebesar 90%. Tabel 2. pelatihan dan pengujian karakter angka Arsitektur Proses Pelatihan Proses Pengujian Satu lapisan tersembunyi ,6 % 67 % ,2 % 69 % ,8 % 72 % ,8 % 68 % ,9 % 74 % ,2 % 70 % Dua lapisan tersembunyi ,5 % 82% ,6 % 82 % ,4 % 84 % ,1 % 82 % % 80 % ,6 % 82 % ,4 % 87 % ,6 % 81 % ,7 % 86 % ,3 % 81 % ,7 % 79 % ,6 % 81% ,5 % 86% ,7 % 81% ,4 % 85 % ,4 % 83 % ,5 % 83 % ,6 % 85 % ,5 % 81% ,7 % 85 % ,7 % 84 % ,2 % 82 % ,7 % 86 % ,6 % 83 % ,7 % 90 % ,3 % 84 % Ket: Tabel 2 diperoleh dengan nilai laju pelatihan = 0,001, momentum = 0,001, toleransi galatnya = 0,005, dan menggunakan fungsi aktivasi sigmoid bipolar Variasi Derau dan Sudut Putaran Beberapa variasi derau dan sudut putaran pola karakter tulisan tangan jenis angka disajikan pada Gambar 3 berikut.

5 Iwan Suhardi, Toleransi Jaringan Syaraf Tiruan 15 % 69 % 24 % 20 % 61 % 32 % 25 % 44 % 51 % 30 % 40 % 56 % 35 % 28 % 69 % Dari Tabel 3 dan Tabel 4 dapat dilihat bahwa semakin besar tingkat deraunya maka unjuk pengenalannya akan menurun. Jaringan masih dapat menghasilkan unjuk pengenalan 75% pada penambahan derau 10%. Berarti walaupun sekitar 10% nilai-nilai biner yang terkandung dalam sampel-sampel data tersebut bertukar secara random jaringan masih mempunyai unjuk pengenalan sebesar 75%. Tabel 5. Pengaruh besarnya variasi putaran terhadap unjuk pengenalan Gambar 3. Variasi putaran, derau dan gabungan variasi derau - putaran dari tulisan tangan angka 9 Untuk mengetahui pengaruh besarnya variasi sudut putaran dan derau terhadap unjuk jaringan dilakukan pada arsitektur Hasilnya disajikan sebagai berikut : Tabel 3. Pengaruh besarnya variasi derau terhadap unjuk pengenalan Besar Variasi Derau 0 % 90 % 5 % 81 % 10 % 75 % 15 % 69 % 20 % 61 % 25 % 44 % 30 % 40 % 35 % 28 % Tabel 4. Laju penurunan unjuk pengenalan terhadap penambahan variasi derau Besarnya Variasi Derau Penurunan 0 % 90 % 0 % 5 % 81 % 10 % 10 % 75 % 17 % Variasi Sudut Putaran (derajad) 0 90 % 5 73 % % % % % % % % % % % % % Tabel 6. Laju penurunan unjuk pengenalan terhadap variasi sudut putaran Variasi Sudut Putaran (derajad) Penurunan 0 90 % 0% 5 73 % 19% % 26% % 51% % 72% % 87% % 89% % 80% % 12% % 20% 5

6 MEDIA ELEKTRIK, Volume 5, Nomor 1, Juni % 46% % 66% % 86% % 90% 30 % 20 % 18 % 35 % 20 % 12 % Pengujian dengan variasi < 22 % lainnya Pengaruh besarnya derajad sudut putaran dapat dilihat pada Tabel 5 dan 6. Besar variasi sudut positif artinya sampel-sampel data diputar berlawanan dengan arah jarum jam, sedangkan besar variasi sudur negatif artinya sampel-sampel data searah jarum jam. Sama seperti dengan adanya penambahan derau, semakin besar sudut putaran yang diberikan akan membuat unjuk pengenalan yang lebih kecil. Dari tabel dapat dilihat bahwa jaringan masih dapat menunjukkan unjuk 73% pada penambahan besar putaran 5 0. Yang menarik dapat diketahui bahwa pada saat diputaran 180 0, sampel angka 0 dan 1 dikenali, sedangkan angka 6 terbaca menjadi angka 9 dan angka 9 terbaca menjadi angka 6. Pada penambahan variasi putaran yang bernilai negatif (searah dengan jarum jam) akan menghasilkan unjuk pengenalan yang lebih tinggi dibandingkan dengan variasi putaran yang bernilai positif, hal ini dikarenakan banyak sampel data yang digunakan pada penelitian ini penulisannya agak miring ke kiri, sehingga bila karakter jenis angka tersebut diputarankan searah dengan jarum jam akan menjadi data karakter angka yang tegak. Tabel 7. Pengaruh gabungan variasi derau dan putaran terhadap unjuk Variasi Derau Variasi Sudut Putaran 5 % 5 % 72 % 10 % 5 % 63 % 15 % 5 % 57 % 25 % 5 % 36 % 30 % 5 % 31 % 35 % 5 % 22 % 5 % 10 % 59 % 10 % 10 % 53 % 15 % 10 % 39 % 25 % 10 % 33 % 30 % 10 % 27 % 35 % 10 % 21 % 5 % 20 % 33 % 10 % 20 % 30% 15 % 20 % 27 % 25 % 20 % 22 % Berdasarkan Tabel 7, dapat diamati bahwa adanya gabungan penambahan derau dan putaran akan membuat unjuk pengenalan jaringan menjadi menurun. Gabungan penambahan derau dan besarnya putaran akan menurunkan unjuk pengenalan dibandingkan dengan pengaruh penambahan derau dan besarnya putaran secara terpisah (sendiri sendiri). Jaringan hanya mampu memberikan unjuk 72% pada gabungan penambahan derau 5% dan sudut putaran 5 o. SIMPULAN Berdasarkan hasil penelitian dan pembahasan, dapat ditarik kesimpulan bahwa : 1. Jaringan syaraf tiruan dengan pemakaian format ASCII 8 bit sebagai target pengenalan karakter tulisan tangan jenis angka memberikan unjuk pengenalan yang cukup baik dengan mencapai unjuk 90% 2. pola karakter angka dengan penambahan derau yang makin besar akan menurunkan unjuk pengenalan pola, karena dengan semakin besar penambahan derau akan semakin mengurangi informasi pada pola sehingga akan mengurangi unjuk pengenalannya. Jaringan masih mampu memberikan unjuk pengenalan sebesar 75% pada penambahan derau 10%. 3. pola karakter dengan penambahan sudut putaran yang makin besar akan menurunkan unjuk pengenalan pola. Jaringan masih mampu memberikan unjuk pengenalan sebesar 73% pada penambahan sudut putaran 5 o. 4. Gabungan penambahan derau dan besarnya putaran akan menurunkan unjuk pengenalan dibandingkan dengan pengaruh penambahan derau dan besarnya putaran secara terpisah (sendiri sendiri). Jaringan hanya mampu memberikan unjuk 72% pada gabungan penambahan derau 5% dan sudut putaran 5 o. DAFTAR PUSTAKA De Leone, R., Capparuccia, R., and Merelli, E., 1998, A Succsessive Overrelaxation

7 Iwan Suhardi, Toleransi Jaringan Syaraf Tiruan Backpropagation Algorithm for Neural- Network Training, IEEE Transactions on Neural Networks, vol. 9, pp Demuth, H., Beale, M., 1998, Neural Network Toolbox, The Math Work. Inc. Fausett, L., 1994, Fundamentals of Neural Networks : Architectures, Algorithms, and Applications, Prentice Hall, New Jersey. Jain, A.K., 1995, Fundamentals of Digital Image Processing, Prentice Hall, New Delhi. Kröse, Ben, and Van der Smagt, Patrick, 1996, Introduction to Neural Networks, ed. 9, University of Amsterdam. Misiti, M., Oppenheim, G., and Poggi, J., 1996, Wavelet Toolbox, The Math Work. Inc. Rao, B. Valluru dan Rao, V. Hayagriva, 1993, C ++ Neural Networks and Fuzzy Logic, Management Information Source, Inc., New York. 7

TOLERANSI UNJUK PENGENALAN JARINGAN SYARAF TIRUAN PADA PENAMBAHAN DERAU DAN SUDUT PUTARAN TERHADAP POLA KARAKTER TULISAN TANGAN JENIS ANGKA

TOLERANSI UNJUK PENGENALAN JARINGAN SYARAF TIRUAN PADA PENAMBAHAN DERAU DAN SUDUT PUTARAN TERHADAP POLA KARAKTER TULISAN TANGAN JENIS ANGKA Iwan Suhardi, Toleransi Jaringan Syaraf Tiruan TOLERANSI UNJUK PENGENALAN JARINGAN SYARAF TIRUAN PADA PENAMBAHAN DERAU DAN SUDUT PUTARAN TERHADAP POLA KARAKTER TULISAN TANGAN JENIS ANGKA Iwan Suhardi Jurusan

Lebih terperinci

EVALUASI PENGARUH FUNGSI AKTIFASI DAN PARAMETER KEMIRINGANNYA TERHADAP UNJUKKERJA PENGENALAN JARINGAN SYARAF TIRUAN

EVALUASI PENGARUH FUNGSI AKTIFASI DAN PARAMETER KEMIRINGANNYA TERHADAP UNJUKKERJA PENGENALAN JARINGAN SYARAF TIRUAN EVALUASI PENGARUH FUNGSI AKTIFASI DAN PARAMETER KEMIRINGANNYA TERHADAP UNJUKKERJA PENGENALAN JARINGAN SYARAF TIRUAN (Studi Kasus pada Pengenalan Karakter Angka Tulisan Tangan) Iwan Suhardi Jurusan Teknik

Lebih terperinci

ANALISIS HUBUNGAN TINGKAT PENGENALAN POLA DENGAN TINGKAT VARIASI POLA : STUDI KASUS PENGENALAN POLA KARAKTER HURUF DENGAN JARINGAN SYARAF TIRUAN)

ANALISIS HUBUNGAN TINGKAT PENGENALAN POLA DENGAN TINGKAT VARIASI POLA : STUDI KASUS PENGENALAN POLA KARAKTER HURUF DENGAN JARINGAN SYARAF TIRUAN) ISSN: 1693-6930 1 ANALISIS HUBUNGAN TINGKAT PENGENALAN POLA DENGAN TINGKAT VARIASI POLA : STUDI KASUS PENGENALAN POLA KARAKTER HURUF DENGAN JARINGAN SYARAF TIRUAN) Iwan Suhardi Jurusan Teknik Elektro Fakultas

Lebih terperinci

PENGENALAN HURUF DAN ANGKA PADA CITRA BITMAP DENGAN JARINGAN SARAF TIRUAN METODE PROPAGASI BALIK

PENGENALAN HURUF DAN ANGKA PADA CITRA BITMAP DENGAN JARINGAN SARAF TIRUAN METODE PROPAGASI BALIK PENGENALAN HURUF DAN ANGKA PADA CITRA BITMAP DENGAN JARINGAN SARAF TIRUAN METODE PROPAGASI BALIK Naskah Publikasi disusun oleh Zul Chaedir 05.11.0999 Kepada SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER

Lebih terperinci

PENGENALAN KARAKTER ALFANUMERIK MENGGUNAKAN METODE BACKPROPAGARATION

PENGENALAN KARAKTER ALFANUMERIK MENGGUNAKAN METODE BACKPROPAGARATION PENGENALAN KARAKTER ALFANUMERIK MENGGUNAKAN METODE BACKPROPAGARATION Amriana 1 Program Studi D1 Teknik Informatika Jurusan Teknik Elektro Fakultas Teknik UNTAD ABSTRAK Jaringan saraf tiruan untuk aplikasi

Lebih terperinci

DETEKSI JENIS KAYU CITRA FURNITURE UKIRAN JEPARA MENGGUNAKAN JST BACKPROPAGATION

DETEKSI JENIS KAYU CITRA FURNITURE UKIRAN JEPARA MENGGUNAKAN JST BACKPROPAGATION No Makalah : 299 Konferensi Nasional Sistem Informasi 2012, STMIK - STIKOM Bali 23-25 Pebruari 2012 DETEKSI JENIS KAYU CITRA FURNITURE UKIRAN JEPARA MENGGUNAKAN JST BACKPROPAGATION Ratri Dwi Atmaja 1,

Lebih terperinci

APLIKASI JARINGAN SYARAF TIRUAN DALAM PENGHITUNGAN PERSENTASE KEBENARAN KLASIFIKASI PADA KLASIFIKASI JURUSAN SISWA DI SMA N 8 SURAKARTA

APLIKASI JARINGAN SYARAF TIRUAN DALAM PENGHITUNGAN PERSENTASE KEBENARAN KLASIFIKASI PADA KLASIFIKASI JURUSAN SISWA DI SMA N 8 SURAKARTA APLIKASI JARINGAN SYARAF TIRUAN DALAM PENGHITUNGAN PERSENTASE KEBENARAN KLASIFIKASI PADA KLASIFIKASI JURUSAN SISWA DI SMA N 8 SURAKARTA Pembimbing: Desi Fitria Utami M0103025 Drs. Y. S. Palgunadi, M. Sc

Lebih terperinci

Bulu mata. Generalisasi= Jumlah pola dikenali dengan benar x 100% Jumlah total pola

Bulu mata. Generalisasi= Jumlah pola dikenali dengan benar x 100% Jumlah total pola Generalisasi Hasil penelitian ini diukur menggunakan nilai konvergen dan generalisasi. Nilai konvergen adalah tingkat kecepatan jaringan untuk mempelajari pola input yang dinyatakan dalam satuan iterasi

Lebih terperinci

SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON

SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON Jurnal Informatika Mulawarman Vol. 7 No. 3 Edisi September 2012 105 SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON Anindita Septiarini Program Studi Ilmu Komputer FMIPA,

Lebih terperinci

DETEKSI SIDIK JARI BERBASIS ALIHRAGAM GELOMBANG-SINGKAT (wavelet) DAN JARINGAN SYARAF TIRUAN (JST) KHUSUS KOTA MATARAM DAN SEKITARNYA

DETEKSI SIDIK JARI BERBASIS ALIHRAGAM GELOMBANG-SINGKAT (wavelet) DAN JARINGAN SYARAF TIRUAN (JST) KHUSUS KOTA MATARAM DAN SEKITARNYA DETEKSI SIDIK JARI BERBASIS ALIHRAGAM GELOMBANG-SINGKAT (wavelet) DAN JARINGAN SYARAF TIRUAN (JST) KHUSUS KOTA MATARAM DAN SEKITARNYA Jurusan Teknik Elektro Fakultas Teknik Universitas Mataram Jl. Majapahit

Lebih terperinci

Neural Network (NN) Keuntungan penggunaan Neural Network : , terdapat tiga jenis neural network Proses Pembelajaran pada Neural Network

Neural Network (NN) Keuntungan penggunaan Neural Network : , terdapat tiga jenis neural network Proses Pembelajaran pada Neural Network Neural Network (NN) adalah suatu prosesor yang melakukan pendistribusian secara besar-besaran, yang memiliki kecenderungan alami untuk menyimpan suatu pengenalan yang pernah dialaminya, dengan kata lain

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.6. Jaringan Syaraf Tiruan Jaringan syaraf tiruan atau neural network merupakan suatu sistem informasi yang mempunyai cara kerja dan karakteristik menyerupai jaringan syaraf pada

Lebih terperinci

APLIKASI JARINGAN SYARAF TIRUAN UNTUK MENGENALI TULISAN TANGAN HURUF A, B, C, DAN D PADA JAWABAN SOAL PILIHAN GANDA

APLIKASI JARINGAN SYARAF TIRUAN UNTUK MENGENALI TULISAN TANGAN HURUF A, B, C, DAN D PADA JAWABAN SOAL PILIHAN GANDA APLIKASI JARINGAN SYARAF TIRUAN UNTUK MENGENALI TULISAN TANGAN HURUF A, B, C, DAN D PADA JAWABAN SOAL PILIHAN GANDA (Studi Eksplorasi Pengembangan Pengolahan Lembar Jawaban Ujian Soal Pilihan Ganda di

Lebih terperinci

PEMANFAATAN NEURAL NETWORK PERCEPTRON PADA PENGENALAN POLA KARAKTER

PEMANFAATAN NEURAL NETWORK PERCEPTRON PADA PENGENALAN POLA KARAKTER PEMANFAATAN NEURAL NETWORK PERCEPTRON PADA PENGENALAN POLA KARAKTER Fakultas Teknologi Informasi Universitas Merdeka Malang Abstract: Various methods on artificial neural network has been applied to identify

Lebih terperinci

Perbaikan Metode Prakiraan Cuaca Bandara Abdulrahman Saleh dengan Algoritma Neural Network Backpropagation

Perbaikan Metode Prakiraan Cuaca Bandara Abdulrahman Saleh dengan Algoritma Neural Network Backpropagation 65 Perbaikan Metode Prakiraan Cuaca Bandara Abdulrahman Saleh dengan Algoritma Neural Network Backpropagation Risty Jayanti Yuniar, Didik Rahadi S. dan Onny Setyawati Abstrak - Kecepatan angin dan curah

Lebih terperinci

KLASIFIKASI SIDIKJARI DENGAN PEMROSESAN AWAL TRANSFORMASI WAVELET Minarni *

KLASIFIKASI SIDIKJARI DENGAN PEMROSESAN AWAL TRANSFORMASI WAVELET Minarni * KLASIFIKASI SIDIKJARI DENGAN PEMROSESAN AWAL TRANSFORMASI WAVELET Minarni * Abstrak Penelitian ini membahas sistem klasifikasi sidikjari. Citra sidikjari diproses awal dengan transformasi wavelet sehingga

Lebih terperinci

JURNAL SAINS DAN SENI POMITS Vol. 2, No.1, (2013) 1-6 1

JURNAL SAINS DAN SENI POMITS Vol. 2, No.1, (2013) 1-6 1 JURNAL SAINS DAN SENI POMITS Vol. 2, No.1, (2013) 1-6 1 Pengenalan Tulisan Tangan Huruf Latin Bersambung Secara Real Time Menggunakan Algoritma Learning Vector Quantization Ulir Rohwana dan M Isa Irawan

Lebih terperinci

JURNAL TEKNOLOGI INFORMASI & PENDIDIKAN ISSN : VOL. 1 NO. 1 MARET 2010

JURNAL TEKNOLOGI INFORMASI & PENDIDIKAN ISSN : VOL. 1 NO. 1 MARET 2010 IDENTIFIKASI SIDIKJARI DENGAN EKSTRAKSI CIRI BERBASIS TRANSFORMASI WAVELET HAAR Minarni 1 ABSTRACT This research investigated a possible fingerprint identification system. The fingerprint images were preprocessed

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dielaskan mengenai teori-teori yang berhubungan dengan penelitian ini, sehingga dapat diadikan sebagai landasan berpikir dan akan mempermudah dalam hal pembahasan

Lebih terperinci

PENGENALAN PLAT NOMOR KENDARAAN DALAM SEBUAH CITRA MENGUNAKAN JARINGAN SARAF TIRUAN ABSTRAK

PENGENALAN PLAT NOMOR KENDARAAN DALAM SEBUAH CITRA MENGUNAKAN JARINGAN SARAF TIRUAN ABSTRAK PENGENALAN PLAT NOMOR KENDARAAN DALAM SEBUAH CITRA MENGUNAKAN JARINGAN SARAF TIRUAN Decy Nataliana [1], Sabat Anwari [2], Arief Hermawan [3] Jurusan Teknik Elektro Fakultas Teknologi Industri Institut

Lebih terperinci

PERAMALAN HARGA SAHAM PERUSAHAAN MENGGUNAKAN ARTIFICIAL NEURAL NETWORK DAN AKAIKE INFORMATION CRITERION

PERAMALAN HARGA SAHAM PERUSAHAAN MENGGUNAKAN ARTIFICIAL NEURAL NETWORK DAN AKAIKE INFORMATION CRITERION Seminar Nasional Aplikasi Teknologi Informasi 20 (SNATI 20) ISSN: 19-5022 Yogyakarta, 16 Juni 20 PERAMALAN HARGA SAHAM PERUSAHAAN MENGGUNAKAN ARTIFICIAL NEURAL NETWORK DAN AKAIKE INFORMATION CRITERION

Lebih terperinci

PERANCANGAN ALGORITMA KRIPTOGRAFI KUNCI SIMETRI DENGAN MENGGUNAKAN JARINGAN SARAF TIRUAN

PERANCANGAN ALGORITMA KRIPTOGRAFI KUNCI SIMETRI DENGAN MENGGUNAKAN JARINGAN SARAF TIRUAN PERANCANGAN ALGORITMA KRIPTOGRAFI KUNCI SIMETRI DENGAN MENGGUNAKAN JARINGAN SARAF TIRUAN Ibrahim Arief NIM : 13503038 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 10, Bandung

Lebih terperinci

BAB II DASAR TEORI Jaringan Syaraf Tiruan. Universitas Sumatera Utara

BAB II DASAR TEORI Jaringan Syaraf Tiruan. Universitas Sumatera Utara BAB II DASAR TEORI Landasan teori adalah teori-teori yang relevan dan dapat digunakan untuk menjelaskan variabel-variabel penelitian. Landasan teori ini juga berfungsi sebagai dasar untuk memberi jawaban

Lebih terperinci

BAB 2 LANDASAN TEORI. Pengenalan suara (voice recognition) dibagi menjadi dua jenis, yaitu

BAB 2 LANDASAN TEORI. Pengenalan suara (voice recognition) dibagi menjadi dua jenis, yaitu BAB 2 LANDASAN TEORI 2.1 Pengenalan Suara. Pengenalan suara (voice recognition) dibagi menjadi dua jenis, yaitu speech recognition dan speaker recognition. Speech recognition adalah proses yang dilakukan

Lebih terperinci

KLASIFIKASI POLA MENGGUNAKAN JARINGAN PROBABILISTIK

KLASIFIKASI POLA MENGGUNAKAN JARINGAN PROBABILISTIK KLASIFIKASI POLA MENGGUNAKAN JARINGAN PROBABILISTIK Sri Kusumadewi Teknik Informatika Universitas Islam Indonesia Jl. Kaliurang Km 4,5 Yogyakarta cicie@fti.uii.ac.id ABSTRACT More application often used

Lebih terperinci

BAB II. Penelitian dengan jaringan syaraf tiruan propagasi balik. dalam bidang kesehatan sebelumnya pernah dilakukan oleh

BAB II. Penelitian dengan jaringan syaraf tiruan propagasi balik. dalam bidang kesehatan sebelumnya pernah dilakukan oleh BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1. Tinjauan Pustaka Penelitian dengan jaringan syaraf tiruan propagasi balik dalam bidang kesehatan sebelumnya pernah dilakukan oleh Sudharmadi Bayu Jati Wibowo

Lebih terperinci

BAB III METODE PENELITIAN. menjawab segala permasalahan yang ada dalam penelitian ini.

BAB III METODE PENELITIAN. menjawab segala permasalahan yang ada dalam penelitian ini. BAB III METODE PENELITIAN Pada bab ini akan dijelaskan bahan yang digunakan dalam membantu menyelesaikan permasalahan, dan juga langkah-langkah yang dilakukan dalam menjawab segala permasalahan yang ada

Lebih terperinci

PENGGUNAAN MATLAB DALAM PENYELESAIAN SISTEM PERSAMAAN LINEAR MENGGUNAKAN JARINGAN HOPFIELD LINEAR ABSTRAK

PENGGUNAAN MATLAB DALAM PENYELESAIAN SISTEM PERSAMAAN LINEAR MENGGUNAKAN JARINGAN HOPFIELD LINEAR ABSTRAK PENGGUNAAN MATLAB DALAM PENYELESAIAN SISTEM PERSAMAAN LINEAR MENGGUNAKAN JARINGAN HOPFIELD LINEAR Rosihan Ari Yuana Program Studi Pendidikan Matematika Universitas Sebelas Maret ABSTRAK Aplikasi jaringan

Lebih terperinci

METODOLOGI PENELITIAN

METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN A. Kerangka Pemikiran Perusahaan dalam era globalisasi pada saat ini, banyak tumbuh dan berkembang, baik dalam bidang perdagangan, jasa maupun industri manufaktur. Perusahaan

Lebih terperinci

NEURAL NETWORK BAB II

NEURAL NETWORK BAB II BAB II II. Teori Dasar II.1 Konsep Jaringan Saraf Tiruan (Artificial Neural Network) Secara biologis jaringan saraf terdiri dari neuron-neuron yang saling berhubungan. Neuron merupakan unit struktural

Lebih terperinci

PELATIHAN FEED FORWARD NEURAL NETWORK MENGGUNAKAN ALGORITMA GENETIKA DENGAN METODE SELEKSI TURNAMEN UNTUK DATA TIME SERIES

PELATIHAN FEED FORWARD NEURAL NETWORK MENGGUNAKAN ALGORITMA GENETIKA DENGAN METODE SELEKSI TURNAMEN UNTUK DATA TIME SERIES JURNAL GAUSSIAN, Volume 1, Nomor 1, Tahun 2012, Halaman 65-72 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PELATIHAN FEED FORWARD NEURAL NETWORK MENGGUNAKAN ALGORITMA GENETIKA DENGAN METODE

Lebih terperinci

PREDIKSI CURAH HUJAN DI KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK

PREDIKSI CURAH HUJAN DI KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK PREDIKSI CURAH HUJAN DI KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK Yudhi Andrian 1, Erlinda Ningsih 2 1 Dosen Teknik Informatika, STMIK Potensi Utama 2 Mahasiswa Sistem Informasi, STMIK

Lebih terperinci

PENGENALAN POLA GARIS DASAR KALIMAT PADA TULISAN TANGAN UNTUK MENGETAHUI KARAKTER SESEORANG DENGAN MENGGUNAKAN ALGORITMA RESILIENT BACKPROPAGATION

PENGENALAN POLA GARIS DASAR KALIMAT PADA TULISAN TANGAN UNTUK MENGETAHUI KARAKTER SESEORANG DENGAN MENGGUNAKAN ALGORITMA RESILIENT BACKPROPAGATION PENGENALAN POLA GARIS DASAR KALIMAT PADA TULISAN TANGAN UNTUK MENGETAHUI KARAKTER SESEORANG DENGAN MENGGUNAKAN ALGORITMA RESILIENT BACKPROPAGATION ABSTRAK Juventus Suharta (0722026) Jurusan Teknik Elektro

Lebih terperinci

SISTEM PENGENALAN BARCODE MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION

SISTEM PENGENALAN BARCODE MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION SISTEM PENGENALAN BARCODE MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION Barcode Rcognition System Using Backpropagation Neural Networks M. Kayadoe, Francis Yuni Rumlawang, Yopi Andry Lesnussa * Jurusan

Lebih terperinci

ALGORITMA BACK PROPAGATION NEURAL NETWORK UNTUK PENGENALAN POLA KARAKTER HURUF JAWA

ALGORITMA BACK PROPAGATION NEURAL NETWORK UNTUK PENGENALAN POLA KARAKTER HURUF JAWA Nazla Nurmila, Aris Sugiharto, Eko Adi Sarwoko ALGORITMA BACK PROPAGATION NEURAL NETWORK UNTUK PENGENALAN POLA KARAKTER HURUF JAWA Nazla Nurmila, Aris Sugiharto, dan Eko Adi Sarwoko Prodi Ilmu Komputer

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Barcode Salah satu obyek pengenalan pola yang bisa dipelajari dan akhirnya dapat dikenali yaitu PIN barcode. PIN barcode yang merupakan kode batang yang berfungsi sebagai personal

Lebih terperinci

ANALISIS PENAMBAHAN MOMENTUM PADA PROSES PREDIKSI CURAH HUJAN KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK

ANALISIS PENAMBAHAN MOMENTUM PADA PROSES PREDIKSI CURAH HUJAN KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK Seminar Nasional Informatika 0 ANALISIS PENAMBAHAN MOMENTUM PADA PROSES PREDIKSI CURAH HUJAN KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK Yudhi Andrian, Purwa Hasan Putra Dosen Teknik Informatika,

Lebih terperinci

PERANGKAT LUNAK PENGKONVERSI TEKS TULISAN TANGAN MENJADI TEKS DIGITAL

PERANGKAT LUNAK PENGKONVERSI TEKS TULISAN TANGAN MENJADI TEKS DIGITAL PERANGKAT LUNAK PENGKONVERSI TEKS TULISAN TANGAN MENJADI TEKS DIGITAL Oleh : ACHMAD FAUZI ARIEF 1203 109 007 Dosen Pembimbing : Drs. Nurul Hidayat, M.Kom JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

T 11 Aplikasi Model Backpropagation Neural Network Untuk Perkiraan Produksi Tebu Pada PT. Perkebunan Nusantara IX

T 11 Aplikasi Model Backpropagation Neural Network Untuk Perkiraan Produksi Tebu Pada PT. Perkebunan Nusantara IX T 11 Aplikasi Model Backpropagation Neural Network Untuk Perkiraan Produksi Tebu Pada PT. Perkebunan Nusantara IX Oleh: Intan Widya Kusuma Program Studi Matematika, FMIPA Universitas Negeri yogyakarta

Lebih terperinci

PENERAPAN JARINGAN PERAMBATAN-BALIK UNTUK PENGENALAN KODE POS TULISAN TANGAN

PENERAPAN JARINGAN PERAMBATAN-BALIK UNTUK PENGENALAN KODE POS TULISAN TANGAN PENERAPAN JARINGAN PERAMBATAN-BALIK UNTUK PENGENALAN KODE POS TULISAN TANGAN Tesis untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S-2 Program Studi Teknik Elektro Jurusan Ilmu-ilmu Teknik

Lebih terperinci

ANALISIS ALGORITMA INISIALISASI NGUYEN-WIDROW PADA PROSES PREDIKSI CURAH HUJAN KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK

ANALISIS ALGORITMA INISIALISASI NGUYEN-WIDROW PADA PROSES PREDIKSI CURAH HUJAN KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK ANALISIS ALGORITMA INISIALISASI NGUYEN-WIDROW PADA PROSES PREDIKSI CURAH HUJAN KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK Yudhi Andrian 1, M. Rhifky Wayahdi 2 1 Dosen Teknik Informatika,

Lebih terperinci

Penerapan Jaringan Saraf Tiruan Metode Backpropagation Menggunakan VB 6

Penerapan Jaringan Saraf Tiruan Metode Backpropagation Menggunakan VB 6 Penerapan Jaringan Saraf Tiruan Metode Backpropagation Menggunakan VB 6 Sari Indah Anatta Setiawan SofTech, Tangerang, Indonesia cu.softech@gmail.com Diterima 30 November 2011 Disetujui 14 Desember 2011

Lebih terperinci

Jaringan Syaraf Tiruan Bidirectional Associative Memory (BAM) Sebagai Identifikasi Pola Sidik jari Manusia

Jaringan Syaraf Tiruan Bidirectional Associative Memory (BAM) Sebagai Identifikasi Pola Sidik jari Manusia Jurnal Informatika Mulawarman Vol 4 No. 1 Feb 2009 21 Jaringan Syaraf Tiruan Bidirectional Associative Memory (BAM) Sebagai Identifikasi Pola Sidik jari Manusia ZAINAL ARIFIN Program Studi Ilmu Komputer,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Jaringan Syaraf Biologi Jaringan Syaraf Tiruan merupakan suatu representasi buatan dari otak manusia yang dibuat agar dapat mensimulasikan apa yang dipejalari melalui proses pembelajaran

Lebih terperinci

KLASIFIKASI CITRA BERDASARKAN TEKSTUR MENGGUNAKAN JARINGAN SARAF TIRUAN PERAMBATAN BALIK

KLASIFIKASI CITRA BERDASARKAN TEKSTUR MENGGUNAKAN JARINGAN SARAF TIRUAN PERAMBATAN BALIK MAKALAH SEMINAR TUGAS AKHIR KLASIFIKASI CITRA BERDASARKAN TEKSTUR MENGGUNAKAN JARINGAN SARAF TIRUAN PERAMBATAN BALIK Panji Novia Pahludi*, Achmad Hidayatno**, R. Rizal Isnanto** Abstrak Selain ukuran,

Lebih terperinci

PENGENALAN VOKAL BAHASA INDONESIA DENGAN JARINGAN SYARAF TIRUAN MELALUI TRANSFORMASI WAVELET DISKRET

PENGENALAN VOKAL BAHASA INDONESIA DENGAN JARINGAN SYARAF TIRUAN MELALUI TRANSFORMASI WAVELET DISKRET PENGENALAN VOKAL BAHASA INDONESIA DENGAN JARINGAN SYARAF TIRUAN MELALUI TRANSFORMASI WAVELET DISKRET Ignatius Leo May Jurusan Teknik Elektro Undip Jl. Prof. Sudharto, Tembalang Semarang Sumardi Jurusan

Lebih terperinci

MILIK UKDW. Bab 1 PENDAHULUAN. 1.1 Latar Belakang

MILIK UKDW. Bab 1 PENDAHULUAN. 1.1 Latar Belakang Bab 1 PENDAHULUAN 1.1 Latar Belakang Beberapa tahun belakangan ini, jaringan syaraf tiruan telah berkembang dengan pesat. Berbagai aplikasi telah memanfaatkan jaringan syaraf tiruan dalam penerapannya,

Lebih terperinci

PENGENALAN POLA GARIS DASAR KALIMAT PADA TULISAN TANGAN UNTUK MENGETAHUI KARAKTER SESEORANG DENGAN MENGGUNAKAN ALGORITMA PROBABILISTIC NEURAL NETWORK

PENGENALAN POLA GARIS DASAR KALIMAT PADA TULISAN TANGAN UNTUK MENGETAHUI KARAKTER SESEORANG DENGAN MENGGUNAKAN ALGORITMA PROBABILISTIC NEURAL NETWORK PENGENALAN POLA GARIS DASAR KALIMAT PADA TULISAN TANGAN UNTUK MENGETAHUI KARAKTER SESEORANG DENGAN MENGGUNAKAN ALGORITMA PROBABILISTIC NEURAL NETWORK ABSTRAK Dwi Putra Alexander (0722067) Jurusan Teknik

Lebih terperinci

Mohammad Akram Ardi 1, Angga Rusdinar 2, Nur Andini 3

Mohammad Akram Ardi 1, Angga Rusdinar 2, Nur Andini 3 DETEKSI PERUBAHAN GARIS PANTAI MENGGUNAKAN METODE WAVELET NEURAL NETWORK BACKPROPAGATION DETECTION OF SHORELINE CHANGE USING WAVELET NEURAL NETWORK BACKPROPAGATION METHOD Mohammad Akram Ardi 1, Angga Rusdinar

Lebih terperinci

PENERAPAN JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI TINGKAT PENGANGGURAN DI SUMATERA BARAT

PENERAPAN JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI TINGKAT PENGANGGURAN DI SUMATERA BARAT PENERAPAN JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI TINGKAT PENGANGGURAN DI SUMATERA BARAT Havid Syafwan Program Studi Manajemen Informatika, Amik Royal, Kisaran E-mail: havid_syafwan@yahoo.com ABSTRAK:

Lebih terperinci

PERANCANGAN ALGORITMA BELAJAR JARINGAN SYARAF TIRUAN MENGGUNAKAN PARTICLE SWARM OPTIMIZATION (PSO)

PERANCANGAN ALGORITMA BELAJAR JARINGAN SYARAF TIRUAN MENGGUNAKAN PARTICLE SWARM OPTIMIZATION (PSO) Jurnal POROS TEKNIK, Volume 5, No. 1, Juni 2013 : 18-23 PERANCANGAN ALGORITMA BELAJAR JARINGAN SYARAF TIRUAN MENGGUNAKAN PARTICLE SWARM OPTIMIZATION (PSO) Nurmahaludin (1) (1) Staf Pengajar Jurusan Teknik

Lebih terperinci

Hardisk 80 GB Perangkat lunak Window XP Profesional MATLAB 7.0.1

Hardisk 80 GB Perangkat lunak Window XP Profesional MATLAB 7.0.1 Hardisk 8 GB Perangkat lunak Window XP Profesional MATLAB 7..1 HASIL DAN PEMBAHASAN Percobaan yang dilakukan pada penelitian ini terdiri atas dua macam, yaitu citra yang akan mengalami proses pengenalan

Lebih terperinci

BAB IV JARINGAN SYARAF TIRUAN (ARTIFICIAL NEURAL NETWORK)

BAB IV JARINGAN SYARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) BAB IV JARINGAN SYARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) Kompetensi : 1. Mahasiswa memahami konsep Jaringan Syaraf Tiruan Sub Kompetensi : 1. Dapat mengetahui sejarah JST 2. Dapat mengetahui macam-macam

Lebih terperinci

Pengembangan Aplikasi Pengenalan Karaketer Alfanumerik Dengan Menggunakan Algoritma Neural Network Three-Layer Backpropagation

Pengembangan Aplikasi Pengenalan Karaketer Alfanumerik Dengan Menggunakan Algoritma Neural Network Three-Layer Backpropagation Pengembangan Aplikasi Pengenalan Karaketer Alfanumerik Dengan Menggunakan Algoritma Neural Network Three-Layer Backpropagation Andi Wahju Rahardjo Emanuel, Arie Hartono Jurusan S1 Teknik Informatika Fakultas

Lebih terperinci

DIAGNOSA GANGGUAN SALURAN PERNAFASAN MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION

DIAGNOSA GANGGUAN SALURAN PERNAFASAN MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION DIAGNOSA GANGGUAN SALURAN PERNAFASAN MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION Bambang Yuwono 1), Heru Cahya Rustamaji 2), Usamah Dani 3) 1,2,3) Jurusan Teknik Informatika UPN "Veteran" Yogyakarta

Lebih terperinci

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) IMPLEMENTASI JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK MENGENALI MOTIF BATIK

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) IMPLEMENTASI JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK MENGENALI MOTIF BATIK IMPLEMENTASI JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK MENGENALI MOTIF BATIK Fany Hermawan Teknik Informatika Universitas Komputer Indonesia Jl. Dipatiukur 112-114 Bandung E-mail : evan.hawan@gmail.com

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 7 BAB 2 TINJAUAN PUSTAKA 21 Anatomi Ayam Pengetahuan tentang anatomi ayam sangat diperlukan dan penting dalam pencegahan dan penanganan penyakit Hal ini karena pengetahuan tersebut dipakai sebagai dasar

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 JARINGAN SARAF SECARA BIOLOGIS Jaringan saraf adalah salah satu representasi buatan dari otak manusia yang selalu mencoba untuk mensimulasikan proses pembelajaran pada otak

Lebih terperinci

PENGENALAN TEKS CETAK PADA CITRA TEKS BINER

PENGENALAN TEKS CETAK PADA CITRA TEKS BINER PENGENALAN TEKS CETAK PADA CITRA TEKS BINER Iwan Donal Paska Manurung Achmad Hidayatno Budi Setiyono Abstrak : Salah satu topik khusus pengolahan citra digital dibidang analisa citra adalah pengenalan

Lebih terperinci

Ekstraksi Ciri Batang untuk Pengenalan Nomer Rekening Tulisan Tangan dengan Jaringan Syaraf Tiruan Perambatan Balik

Ekstraksi Ciri Batang untuk Pengenalan Nomer Rekening Tulisan Tangan dengan Jaringan Syaraf Tiruan Perambatan Balik Ekstraksi Ciri Batang untuk Pengenalan Nomer Rekening Tulisan Tangan dengan Jaringan Syaraf Tiruan Perambatan Balik Bar Features Extraction for Handwritten Account Number Recognition with Backpropagation

Lebih terperinci

PENGENALAN SUARA MANUSIA DENGAN MENGGUNAKAN JARINGAN SARAF TIRUAN MODEL PROPAGASI BALIK

PENGENALAN SUARA MANUSIA DENGAN MENGGUNAKAN JARINGAN SARAF TIRUAN MODEL PROPAGASI BALIK ABSTRAK PENGENALAN SUARA MANUSIA DENGAN MENGGUNAKAN Dosen Jurusan Teknik Elektronika Fakultas Teknik Universitas Negeri Makassar Pada penelitian ini dibuat sebuah sistem pengenalan suara manusia dengan

Lebih terperinci

IDENTIFIKASI SPEKTRUM FREKUENSI ISYARAT ELEKTROKARDIOGRAF MENGGUNAKAN JARINGAN SYARAF TIRUAN KOMPETISI PENUH

IDENTIFIKASI SPEKTRUM FREKUENSI ISYARAT ELEKTROKARDIOGRAF MENGGUNAKAN JARINGAN SYARAF TIRUAN KOMPETISI PENUH IDENTIFIKASI SPEKTRUM FREKUENSI ISYARAT ELEKTROKARDIOGRAF MENGGUNAKAN JARINGAN SYARAF TIRUAN KOMPETISI PENUH NAZRUL EFFENDY, ST., MT Staf Pengajar Jurusan Teknik Fisika, Fakultas Teknik Universitas Gadjah

Lebih terperinci

PREDIKSI PENDAPATAN ASLI DAERAH KALIMANTAN BARAT MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION

PREDIKSI PENDAPATAN ASLI DAERAH KALIMANTAN BARAT MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION PREDIKSI PENDAPATAN ASLI DAERAH KALIMANTAN BARAT MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION Dwi Marisa Midyanti Sistem Komputer Universitas Tanjungpura Pontianak Jl Prof.Dr.Hadari Nawawi, Pontianak

Lebih terperinci

Pengenalan Pola Huruf Arab Tulis Tangan Menggunakan Jaringan Saraf Tiruan dengan Metode Perambatan Balik

Pengenalan Pola Huruf Arab Tulis Tangan Menggunakan Jaringan Saraf Tiruan dengan Metode Perambatan Balik Pengenalan Pola Huruf Arab Tulis Tangan Menggunakan Jaringan Saraf Tiruan dengan Metode Perambatan Balik Teguh Prakoso 1, Achmad Hidayatno 2, R.Rizal Isnanto 2 Jurusan Teknik Elektro, Fakultas Teknik Universitas

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini akan membahas landasan teori-teori yang bersifat ilmiah untuk mendukung penulisan skripsi ini. Teknik-teknik yang dibahas mengenai pengenalan pola, prapengolahan citra,

Lebih terperinci

PENGENALAN POLA TANDA TANGAN MENGGUNAKAN METODE MOMEN INVARIAN DAN RADIAL BASIS FUNCTION (RBF)

PENGENALAN POLA TANDA TANGAN MENGGUNAKAN METODE MOMEN INVARIAN DAN RADIAL BASIS FUNCTION (RBF) PENGENALAN POLA TANDA TANGAN MENGGUNAKAN METODE MOMEN INVARIAN DAN RADIAL BASIS FUNCTION (RBF) AINUN JARIAH 1209201721 DOSEN PEMBIMBING 1. Prof. Dr. Mohammad Isa Irawan, M.T 2. Dr Imam Mukhlas, S.Si, M.T

Lebih terperinci

ANALISIS PRODUKTIVITAS PEGAWAI MENGGUNAKAN JARINGAN SARAF TIRUAN PROPAGASI BALIK

ANALISIS PRODUKTIVITAS PEGAWAI MENGGUNAKAN JARINGAN SARAF TIRUAN PROPAGASI BALIK Jurnal Computech & Bisnis, Vol. 6, No. 2, Desember 2012, 69-74 ISSN 2442-4943 ANALISIS PRODUKTIVITAS PEGAWAI MENGGUNAKAN JARINGAN SARAF TIRUAN PROPAGASI BALIK Riffa Haviani Laluma STMIKMardira Indonesia,

Lebih terperinci

ANALISIS JARINGAN SARAF TIRUAN BACKPROPAGATION TERHADAP PERAMALAN NILAI TUKAR MATA UANG RUPIAH DAN DOLAR

ANALISIS JARINGAN SARAF TIRUAN BACKPROPAGATION TERHADAP PERAMALAN NILAI TUKAR MATA UANG RUPIAH DAN DOLAR Jurnal Barekeng Vol. 8 No. Hal. 7 3 (04) ANALISIS JARINGAN SARAF TIRUAN BACKPROPAGATION TERHADAP PERAMALAN NILAI TUKAR MATA UANG RUPIAH DAN DOLAR Analysis of Backpropagation Artificial Neural Network to

Lebih terperinci

Pengenalan Citra Sidik Jari Berbasis Transformasi Wavelet dan Jaringan Syaraf Tiruan

Pengenalan Citra Sidik Jari Berbasis Transformasi Wavelet dan Jaringan Syaraf Tiruan Pengenalan Citra Sidik Jari Berbasis Transformasi Wavelet dan Jaringan Syaraf Tiruan I Gede Pasek Suta Wijaya, Bulkis Kanata Fakultas Teknik, Jurusan Teknik Elektro, Universitas Mataram E-Mail : gdepasek@yahoo.com

Lebih terperinci

STUDI ANALISA PELATIHAN JARINGAN SYARAF TIRUAN DENGAN DAN TANPA ALGORITMA GENETIKA

STUDI ANALISA PELATIHAN JARINGAN SYARAF TIRUAN DENGAN DAN TANPA ALGORITMA GENETIKA STUDI ANALISA PELATIHAN JARINGAN SYARAF TIRUAN DENGAN DAN TANPA ALGORITMA GENETIKA (Agustinus N., et al. STUDI ANALISA PELATIHAN JARINGAN SYARAF TIRUAN DENGAN DAN TANPA ALGORITMA GENETIKA Agustinus Noertjahyana

Lebih terperinci

yang standar. Tugas akhir ini lebih berorientasi pada pengenalan fiturnya, sehingga pembahasan lebih ditekankan pada ekstraksi fitur bentuk geometri.

yang standar. Tugas akhir ini lebih berorientasi pada pengenalan fiturnya, sehingga pembahasan lebih ditekankan pada ekstraksi fitur bentuk geometri. 1 PENGENALAN KARAKTER TEKS MENGGUNAKAN METODE NEURAL NETWORK BACKPROPAGATION Titis Hayuning Widya Pramesti, email: titishayuning@gmail.com Jurusan Teknik Elektro, Fakultas Teknik Universitas Brawijaya

Lebih terperinci

PENGENALAN HURUF TULISAN TANGAN BERBASIS CIRI SKELETON DAN STATISTIK MENGGUNAKAN JARINGAN SARAF TIRUAN. Disusun oleh : Mario Herryn Tambunan ( )

PENGENALAN HURUF TULISAN TANGAN BERBASIS CIRI SKELETON DAN STATISTIK MENGGUNAKAN JARINGAN SARAF TIRUAN. Disusun oleh : Mario Herryn Tambunan ( ) PENGENALAN HURUF TULISAN TANGAN BERBASIS CIRI SKELETON DAN STATISTIK MENGGUNAKAN JARINGAN SARAF TIRUAN Disusun oleh : Mario Herryn Tambunan (1022056) Jurusan Teknik Elektro, Fakultas Teknik, Universitas

Lebih terperinci

Architecture Net, Simple Neural Net

Architecture Net, Simple Neural Net Architecture Net, Simple Neural Net 1 Materi 1. Model Neuron JST 2. Arsitektur JST 3. Jenis Arsitektur JST 4. MsCulloh Pitts 5. Jaringan Hebb 2 Model Neuron JST X1 W1 z n wi xi; i1 y H ( z) Y1 X2 Y2 W2

Lebih terperinci

PENGENALAN CITRA OBJEK SEDERHANA DENGAN JARINGAN SARAF TIRUAN METODE PERCEPTRON

PENGENALAN CITRA OBJEK SEDERHANA DENGAN JARINGAN SARAF TIRUAN METODE PERCEPTRON PENGENALAN CITRA OBJEK SEDERHANA DENGAN JARINGAN SARAF TIRUAN METODE PERCEPTRON Ardi Pujiyanta Program Studi Teknik Informatika, Fakultas Teknik Industri Universitas Ahmad Dahlan Yogyakarta ABSTRAK Konsep

Lebih terperinci

Prediksi Pergerakan Harga Harian Nilai Tukar Rupiah (IDR) Terhadap Dollar Amerika (USD) Menggunakan Metode Jaringan Saraf Tiruan Backpropagation

Prediksi Pergerakan Harga Harian Nilai Tukar Rupiah (IDR) Terhadap Dollar Amerika (USD) Menggunakan Metode Jaringan Saraf Tiruan Backpropagation 1 Prediksi Pergerakan Harga Harian Nilai Tukar Rupiah (IDR) Terhadap Dollar Amerika (USD) Menggunakan Metode Jaringan Saraf Tiruan Backpropagation Reza Subintara Teknik Informatika, Ilmu Komputer, Universitas

Lebih terperinci

IMPLEMENTASI JARINGAN SYARAF TIRUAN PERAMBATAN BALIK UNTUK MEMPREDIKSI HARGA LOGAM MULIA EMAS MENGGUNAKAN ALGORITMA LEVENBERG MARQUARDT

IMPLEMENTASI JARINGAN SYARAF TIRUAN PERAMBATAN BALIK UNTUK MEMPREDIKSI HARGA LOGAM MULIA EMAS MENGGUNAKAN ALGORITMA LEVENBERG MARQUARDT IMPLEMENTASI JARINGAN SYARAF TIRUAN PERAMBATAN BALIK UNTUK MEMPREDIKSI HARGA LOGAM MULIA EMAS MENGGUNAKAN ALGORITMA LEVENBERG MARQUARDT Reza Najib Hidayat 1, R. Rizal Isnanto 2, Oky Dwi Nurhayati 2 Abstract

Lebih terperinci

BAB VIIB BACKPROPAGATION dan CONTOH

BAB VIIB BACKPROPAGATION dan CONTOH BAB VIIB BACKPROPAGATION dan CONTOH 7B. Standar Backpropagation (BP) Backpropagation (BP) merupakan JST multi-layer. Penemuannya mengatasi kelemahan JST dengan layer tunggal yang mengakibatkan perkembangan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini akan diuraikan materi yang mendukung dalam pembahasan evaluasi implementasi sistem informasi akademik berdasarkan pengembangan model fit HOT menggunakan regresi linier

Lebih terperinci

JURNAL SAINS DAN SENI ITS Vol. 4, No.2, (2015) ( X Print) A-31

JURNAL SAINS DAN SENI ITS Vol. 4, No.2, (2015) ( X Print) A-31 JURNAL SAINS DAN SENI ITS Vol 4, No2, (2015) 2337-3520 (2301-928X Print) A-31 Perbandingan Performansi Metode Peramalan Fuzzy Time Series yang Dimodifikasi dan Jaringan Syaraf Tiruan Backpropagation (Studi

Lebih terperinci

PENGENALAN CITRA WAJAH DENGAN MENGGUNAKAN TRANSFORMASI WAVELET DISKRIT DAN JARINGAN SARAF TIRUAN BACK-PROPAGATION

PENGENALAN CITRA WAJAH DENGAN MENGGUNAKAN TRANSFORMASI WAVELET DISKRIT DAN JARINGAN SARAF TIRUAN BACK-PROPAGATION PENGENALAN CITRA WAJAH DENGAN MENGGUNAKAN TRANSFORMASI WAVELET DISKRIT DAN JARINGAN SARAF TIRUAN BACK-PROPAGATION Suhendry Effendy Jurusan Teknik Informatika, Fakultas Ilmu Komputer, Bina Nusantara University

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN 1.1 Latar belakang Hujan merupakan salah satu unsur iklim yang berpengaruh pada suatu daerah aliran sungai (DAS). Pengaruh langsung yang dapat diketahui yaitu potensi sumber daya air. Besar

Lebih terperinci

BAB I PENDAHULUAN. tangan dijadikan alat untuk menganalisis kepribadian pemiliknya. Sebuah

BAB I PENDAHULUAN. tangan dijadikan alat untuk menganalisis kepribadian pemiliknya. Sebuah BAB I PENDAHULUAN 1.1 Latar Belakang Tulisan tangan merupakan salah satu hal unik yang dapat dihasilkan oleh manusia selain tanda tangan. Seperti halnya tanda tangan, tulisan tangan juga dapat digunakan

Lebih terperinci

PENGENALAN TULISAN TANGAN AKSARA BATAK TOBA MENGGUNAKAN JARINGAN SARAF TIRUAN BERBASIS MULTILAYER PERCEPTRON

PENGENALAN TULISAN TANGAN AKSARA BATAK TOBA MENGGUNAKAN JARINGAN SARAF TIRUAN BERBASIS MULTILAYER PERCEPTRON PENGENALAN TULISAN TANGAN AKSARA BATAK TOBA MENGGUNAKAN JARINGAN SARAF TIRUAN BERBASIS MULTILAYER PERCEPTRON Disusun oleh : Nama : J. Rio Sihombing NRP : 0322129 Jurusan Teknik Elektro, Fakultas Teknik,

Lebih terperinci

Operasi Bertetangga (1)

Operasi Bertetangga (1) Operasi Bertetangga () Kartika Firdausy - UAD kartika@ee.uad.ac.id blog.uad.ac.id/kartikaf Setelah mempelajari materi ini, mahasiswa diharapkan mampu: menjelaskan alasan diperlukannya operasi bertetangga

Lebih terperinci

Aplikasi Jaringan Saraf Tiruan Sebagai Penterjemah Karakter Braille Ke Bentuk Abjad

Aplikasi Jaringan Saraf Tiruan Sebagai Penterjemah Karakter Braille Ke Bentuk Abjad The 13 th Industrial Electronics Seminar 2011 (IES 2011) Electronic Engineering Polytechnic Institute of Surabaya (EEPIS), Indonesia, October 26, 2011 Aplikasi Jaringan Saraf Tiruan Sebagai Penterjemah

Lebih terperinci

Kata kunci : Slant correction, jaringan saraf tiruan, multilayer perceptron, backpropagation.

Kata kunci : Slant correction, jaringan saraf tiruan, multilayer perceptron, backpropagation. SLANT CORRECTION MENGGUNAKAN JARINGAN SARAF TIRUAN BERBASIS MULTILAYER PERCEPTRON Disusun oleh : Nama : George L. Immanuel NRP : 0922080 Jurusan Teknik Elektro, Fakultas Teknik, Universitas Kristen Maranatha

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 19 BAB III METODOLOGI PENELITIAN 3.1. Kerangka Pemikiran Kerangka pemikiran untuk penelitian ini seperti pada Gambar 9. Penelitian dibagi dalam empat tahapan yaitu persiapan penelitian, proses pengolahan

Lebih terperinci

APLIKASI JARINGAN SYARAF TIRUAN PADA PENGENALAN POLA TULISAN DENGAN METODE BACKPROPAGATION

APLIKASI JARINGAN SYARAF TIRUAN PADA PENGENALAN POLA TULISAN DENGAN METODE BACKPROPAGATION APLIKASI JARINGAN SYARAF TIRUAN PADA PENGENALAN POLA TULISAN DENGAN METODE BACKPROPAGATION Alvama Pattiserlihun, Andreas Setiawan, Suryasatriya Trihandaru Program Studi Fisika, Fakultas Sains dan Matematika,

Lebih terperinci

Prediksi Jumlah Penjualan Air Mineral Pada Perusahaan XYZ Dengan Jaringan Saraf Tiruan

Prediksi Jumlah Penjualan Air Mineral Pada Perusahaan XYZ Dengan Jaringan Saraf Tiruan Prediksi Jumlah Penjualan Air Mineral Pada Perusahaan XYZ Dengan Jaringan Saraf Tiruan Kusuma Dewangga, S.Kom. Jurusan Ilmu Komputer Universitas Gadjah Mada Jl. Bulaksumur, Yogyakarta kusumadewangga@gmail.com

Lebih terperinci

BAB I PENDAHULUAN. satu bagian sistem biometrika adalah face recognition (pengenalan wajah). Sistem

BAB I PENDAHULUAN. satu bagian sistem biometrika adalah face recognition (pengenalan wajah). Sistem 1 BAB I PENDAHULUAN 1.1. Latar Belakang Sistem biometrika merupakan teknologi pengenalan diri dengan menggunakan bagian tubuh atau perilaku manusia yang memiliki keunikan. Salah satu bagian sistem biometrika

Lebih terperinci

HUBUNGAN JUMLAH INPUT LAYER DAN OUTPUT LAYER NEURAL NETWORK TERHADAP TINGKAT AKURASI SISTEM HANDWRITING RECOGNITION DENGAN METODE BACKPROPAGATION

HUBUNGAN JUMLAH INPUT LAYER DAN OUTPUT LAYER NEURAL NETWORK TERHADAP TINGKAT AKURASI SISTEM HANDWRITING RECOGNITION DENGAN METODE BACKPROPAGATION HUBUNGAN JUMLAH INPUT LAYER DAN OUTPUT LAYER NEURAL NETWORK TERHADAP TINGKAT AKURASI SISTEM HANDWRITING RECOGNITION DENGAN METODE BACKPROPAGATION Harjono, Didik Warasto Politeknik Pratama Mulia Surakarta

Lebih terperinci

PENGARUH PENYEKALAAN PADA EKSTRAKSI CIRI PENGABURAN DAN PERATAAN BLOK YANG MENGGUNAKAN TAPIS GAUSSIAN 2D

PENGARUH PENYEKALAAN PADA EKSTRAKSI CIRI PENGABURAN DAN PERATAAN BLOK YANG MENGGUNAKAN TAPIS GAUSSIAN 2D PENGARUH PENYEKALAAN PADA EKSTRAKSI CIRI PENGABURAN DAN PERATAAN BLOK YANG MENGGUNAKAN TAPIS GAUSSIAN 2D Linggo Sumarno Program Studi Teknik Elektro, Universitas Sanata Dharma Kampus III, Paingan, Maguwoharjo,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Dalam bab ini dibahas teori yang digunakan sebagai landasan pengerjaan pengenalan kata berdasarkan tulisan tangan huruf Korea (hangūl) menggunakan jaringan saraf tiruan propagasi balik.

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Perangkat keras komputer berkembang dengan pesat setiap tahunnya selalu sudah ditemukan teknologi yang lebih baru. Meskipun demikian masih banyak hal yang belum dapat

Lebih terperinci

Jaringan Neuro-Fuzi Berbasis Algoritma Genetik Dinamis Multiresolusi untuk Pemodelan Sistem Chaotic Diskrit Henon

Jaringan Neuro-Fuzi Berbasis Algoritma Genetik Dinamis Multiresolusi untuk Pemodelan Sistem Chaotic Diskrit Henon Jaringan Neuro-Fuzi Berbasis Algoritma Genetik Dinamis Multiresolusi untuk Pemodelan Sistem Chaotic Diskrit Henon Oyas Wahyunggoro 1, Gunawan Ariyanto 2 1 Jurusan Teknik Elektro, Fakultas Teknik, Universitas

Lebih terperinci

BAB 3 PERANCANGAN DAN PEMBUATAN SISTEM

BAB 3 PERANCANGAN DAN PEMBUATAN SISTEM BAB 3 PERANCANGAN DAN PEMBUATAN SISTEM Dalam bab ini akan dibahas mengenai perancangan dan pembuatan sistem aplikasi yang digunakan sebagai user interface untuk menangkap citra ikan, mengolahnya dan menampilkan

Lebih terperinci

SATIN Sains dan Teknologi Informasi

SATIN Sains dan Teknologi Informasi SATIN - Sains dan Teknologi Informasi, Vol. 2, No., Juni 206 SATIN Sains dan Teknologi Informasi journal homepage : http://jurnal.stmik-amik-riau.ac.id Penerapan Jaringan Syaraf Tiruan Untuk Estimasi Needs

Lebih terperinci

SEGMENTASI HURUF TULISAN TANGAN BERSAMBUNG DENGAN VALIDASI JARINGAN SYARAF TIRUAN. Evelyn Evangelista ( )

SEGMENTASI HURUF TULISAN TANGAN BERSAMBUNG DENGAN VALIDASI JARINGAN SYARAF TIRUAN. Evelyn Evangelista ( ) SEGMENTASI HURUF TULISAN TANGAN BERSAMBUNG DENGAN VALIDASI JARINGAN SYARAF TIRUAN Evelyn Evangelista (1022004) Jurusan Teknik Elektro, Fakultas Teknik, Universitas Kristen Maranatha, Jl. Prof. Drg. Suria

Lebih terperinci

ANALISIS DAN PERANCANGAN JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION PADA APLIKASI PENGENALAN TANDA TANGAN

ANALISIS DAN PERANCANGAN JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION PADA APLIKASI PENGENALAN TANDA TANGAN Analisis dan Perancangan Tanda Tangan Wilis K, Fani W, Heru Cahya R ANALISIS DAN PERANCANGAN JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION PADA APLIKASI PENGENALAN TANDA TANGAN Wilis Kaswidjanti,

Lebih terperinci

IMPLEMENTASI JARINGAN SYARAF TIRUAN METODE BACKPROPAGATION UNTUK MEMPREDIKSI HARGA SAHAM

IMPLEMENTASI JARINGAN SYARAF TIRUAN METODE BACKPROPAGATION UNTUK MEMPREDIKSI HARGA SAHAM IMPLEMENTASI JARINGAN SYARAF TIRUAN METODE BACKPROPAGATION UNTUK MEMPREDIKSI HARGA SAHAM Ayu Trimulya 1, Syaifurrahman 2, Fatma Agus Setyaningsih 3 1,3 Jurusan Sistem Komputer, Fakultas MIPA Universitas

Lebih terperinci