Pengaruh Variasi Sudut Datang Pipa Pancar dan Debit Air Terhadap Unjuk Kerja Turbin Arus Lintang Tingkat ke Dua

Ukuran: px
Mulai penontonan dengan halaman:

Download "Pengaruh Variasi Sudut Datang Pipa Pancar dan Debit Air Terhadap Unjuk Kerja Turbin Arus Lintang Tingkat ke Dua"

Transkripsi

1 55 Pengaruh Variasi Sudut Datang Pipa Pancar dan Debit Air Terhadap Unjuk Kerja Turbin Arus Lintang Tingkat ke Dua Latar Belakang Domingos de Sousa Freitas Secara geografis kondisi Negara Timor Leste adalah perbukitan dan memiliki hutan dengan curah hujan yang tinggi dan kondisi topografi yang bergunung-gunung dengan aliran sungai yang berpotensi untuk dikembangkan sebagai pembangkit tenaga listrik.potensi ini sebagian besar tersebar di daerah pedesaan, sementara diperkirakan masih banyak penduduk desa yang belum menikmati energi listrik sehingga sangat tepat untuk mengembangkan pembangkit tenaga listrik. Sesuai studi kelayakan yang telah dilakukan sebelumnya oleh Asia Development Bank (ADB), Bank Asia Pembangunan sudah mengidentifikasi ada lima lokasi hydropower yang berpotensi untuk mengembangkan hydro power di Timor Leste, jika dibangun maka kapasitasnya mencapai 80 MW dan suplai energy tahunan 434 Gwh. Yang sangat layak berdasarkan dari survey ini adalah perencanaan biaya pembangkitan untuk proyek hydropower di Ira Lalaro kapasitasnya 27 MW.Hasil yang diharapkan yaitu bahwa tingginya faktor kapasitas tahunan mencapai 80%. Selain itu masih ada beberapa tempat yang memiliki potensi lain untuk pengembangan mini dan micro hydro sehingga daerah pelosok bisa terjangkau oleh listrik, EDTL (The Electrification of East Timor), Power Sector Master Plan for Timor Leste; Lokasi yang bisa dibangun hydropower sesuai penelitian tersebut antara lain; Ira Lalaro (27MW), Gari Wai sudah dibangun mensuplai energy listrik dengan kapasitas (350KW); Baucau (300KW), Gleno (30-40MW), Belulic (14MW) dan Laclo I (9-10MW), Laclo II dan III (40MW) sesuai laporan studi kelayakan yang sudah dilakukan tahun 2005 penawaran dokumen untuk ranking proyek pada pertengahan tahun 2005 (EDTL 2003). Akhir-akhir ini, Micro hydro menarik perhatian karena sumber energinya bersih, dapat diperbaharui dan pengembangan kedepan cukup baik.namun, tipe turbin harus sesuai dengan kondisi tempat dimana turbin ditempatkan dan juga perlu dikaji terhadap tipe turbin yang efektif. Disamping itu juga, biaya produksi relatif tinggi dengan struktur kompleks adalah kendala terbesar untuk mengembangkan Micro hydro. Turbin arus lintang (Cross-Flow) diadopsi karena memiliki struktur relatif sederhana (Yong-Do Choi). Telah banyak kajian sebelumnya dilakukan oleh para peneliti untuk turbin arus lintang (Cross-Flow) dengan tujuan untuk menentukan konfigurasi optimal turbin dengan metode eksperimen dan numerik. Yong-Do Choi, et el, menggunakan analisis CFD menganalisa pengaruh konfigurasi struktural turbin pada performace dan karakteristik alir internal dari model turbin arus lintang (Cross-Flow). Hasil menunjukkan bahwa bentuk nozzel, sudut runner blade dan jumlah runner blade sangat terkait dengan performace dan alir internal turbin, dimana lapisan udara dalam turbin berperan sangat penting dalam meningkatkan performace turbin. Mockmore, et el, telah menggunakan metode analisis teoritis satu dimensi dan eksperimen. Junichiro Fukutomi, ReiNakamura, kajian dalam penelitian ini adalah pengaruh sudut dan panjang inlet guide vane pada performance Turbin Cross Flow. Dengan memasang guide vane dari satu lembar dalam sisi divisi lidah dalam bagian isapan, performance Turbin Cross Flow menjadi lebih bertekanan tinggi dan efisiensi tinggi dibandingkan tanpa guide vane. Barglazan, M, penelitian yang dilakukan adalah selalu melakukan pengamatan dan modifikasi pada bagian mekanis turbin, dengan melakukan modifikasi pipa pancar. Penelitian yang lain adalah mengenai modifikasi radius sudu. Sedangkan penelitian-penelitian sebelumnya yang belum dilakukan adalah pengaruh variasi sudut datang pipa pancar yang langsung diarahkan pada tingkat kedua. Dari penjelasan diatas Penelitian yang akan penulis lakukan adalah Pengaruh variasi sudut datang pipa pancar dan debit air terhadap unjuk kerja turbin arus lintang tingkat kedua, dengan harapan mendapatkan efisiensi yang jauh lebih tinggi dibandingkan dengan turbin arus lintang yang telah dimanfaatkan saat ini.turbin ini juga akan bekerja pada putaran yang lebih stabil. Kestabilan putaran ini 380

2 dibutuhkan untuk kualitas listrik yang dihasilkan generator jauh lebih baik, Namun juga antara kecepatan dan distribusi tekanan pada keluaran aliran, diuji dengan variasi sudut nozzel, debit air, dan beban. Daya output dievaluasi dari distribusi tekanan terhitung pada runner blade untuk mengkaji efek saluran pengarah pada runner turbin. Tujuan Penelitian Adapun tujuan dari penelitian ini adalah untuk Menstabilkan Putaran Turbin dan Meningkatkan efisiensi dari Turbin Cross Flow dengan mendesain saluran pengarah Pancaran Air (Water Jet) ke sudu masuk tingkat kedua. Penelitian Terdahulu Barglazan (2005), melakukan penelitian yang dikonsentrasikan pada bagian utama turbin arus lintang, khususnya radial runner dan bentuk nosel pemancar air. Juga dikembangkan sebuah perangkat lunak untuk merancang sebuah turbin arus lintang, dimana beberapa parameter harus dimasukkan dan masih ada beberapa perhitungan yang harus dilakukan dimana hasil perhitungan tersebut harus dimasukkan dalam masukkan perangkat lunak.tujuan dari penelitian ini adalah mendapatkan turbin arus lintang yang lebih efisien, tetapi penambahan efisiensi tidak terlalu signifikan. Sylvain ANTHEAUME, et al. (2007), penelitiannya mengenai pendekatan modeling innovatif untuk mengetahui efisiensi cross flow turbin air perkebunan. Tujuan dari penelitian ini adalah agar lebih memahami dan mengembankan teknologi yang cocok untuk perkebunan dengan tenaga hydroelectric laut atau sungai guna menaikkan air ke tower menggunakan turbin air cross flow atau jenis lain untuk mengetahui jenis turbin yang lebih efisien yang bisa menaikkan air ke tower. Yong-Do CHO,I et al. (2008), melakukan penelitian tentang turbin arus lintang (cross-flow) dengan proses simulasi CFD.Tujuan dari studi ini adalah untuk mengetahui pengaruh dari konfigurasi struktur turbin terhadap unjuk kerja dan karakterisitik aliran didalam turbin sebuah model turbin arus lintang dengan memanfaatkan analisis CFD.Hasil yang didapatkan adalah bahwa bentuk nosel, sudut sudu turbin dan jumlah sudu turbin sangat berhubungan dengan unjuk kerja dan karakteristik aliran didalam turbin. H. Muhammad, et al. (2009), tentang studi eksperimental perancangan turbin air terapung tipe helical blades untuk pembangkit tenaga listrik pada aliran bebas dan bekerja pada air dengan head rendah. Perencanaan mengcakup dengan mengikutsertakan strip dari sudu turbin.effisiensi turbin yang dianalisa dengan menggunakan rumus empiris.putaran turbin dihitung dengan variasi sudut trips (45 0, 90, dan Hasil yang diperoleh sangat baik memprediksi phenomena putaran dan efisiensi kerja turbin tipe jenis silang (cross flow turbine) dengan daun rotor silang (Gorlov Helical Turbine).Selanjutnya berdasarkan hasil pengujian perubahan sudut kemiringan strip pada blade rotor memiliki pengaruh terhadap putaran dan efisiensi turbin.parameter umum yang mempengaruhi efisiensi turbin adalah; bentuk dari sudu turbin kurang bagus, seksi melintang dari turbin, dan kecepatan aliran air. C.A. Consul, et al. (2009), malakukan penelitian terhadap pengaruh kepadatan performance dari turbin cross flow. Tujuan dari penelitian adalah pengaruh kepadatan terhadap hidrodinamika yang umum terjadi pada pasang surut turbin cross flow.aliran melewati dua dan empat sudu turbin yang disimulasikan pada suatu laboratorium Angka Reynold Tinggi, 0 (10 5 ).Hasil yang diperoleh kepadatan turbin adalah dan Turbin Arus Lintang Sampai saat ini, jenis turbin air yang umum dipakai ada dari jenis yang bukan arus lintang (non-cross flow).dewasa ini perhatian dialihkan pada jenis turbin arus lintang terutama untuk proyek hidro kecil di negara yang kurang berkembang.oleh sebab itu menarik sekali potensi dari turbin arus lintang ini untuk dipelajari. Bentuk desain yang sederhana, menyebabkan mudah untuk dimengerti cara kerjanya dan mudah pula dibuat di bengkel yang sederhana. The National Rural Electric Cooperative Association melaporkan 381

3 bahwa turbin jenis arus lintang sudah dipasang di beberapa daerah pedesaan dan daerah terpencil di Pakistan, Nepal, Peru, Philipina dan Thailand Karlis AD. (2000). Persamaan Bernoulli Untuk Fluida Ideal Persamaan Bernoulli untuk fluida ideal menyatakan hukum kekekalan energi pada fluida. Dalam mendapatkan persamaan Bernoulli terdapat asumsi-asumsi yang harus diperhatikan antara lain fluida dengan aliran steady, tidak memiliki viskositas (frictionless flow), massa jenis fluida (ρ) konstan (incompressible), sehingga tidak ada kehilangan energi selama fluida mengalir. Persamaan Bernouli dapat dinyatakan sebagai berikut: konstan (Çengel 2001, 456) Jika persamaan diatas dibagi dengan percepatan gravitasi (g) maka akan didapat salah satu ruas dari persamaan Bernoulli yang mempunyai arti Head.Head adalah energi fluida tiap satuan berat fluida. Sehingga persamaan Head-nya menjadi = Total head (H) = konstan (Çengel, 2001:456) dengan : P = Tekanan statis fluida (N/m 2 ) V = Kecepatan fluida (m/s) g = Percepatan gravitasi (m/s 2 ) z = Elevasi terhadap datum yang sama(m) ρ = Massa jenis fluida (kg/m 3 ) Persamaan Kontinuitas Merupakan suatu persaman matematis mengenai jumlah netto massa fluida mengalir dalam permukaan terbatas sama dengan massa dalam permukaan itu. Volume fluida masuk adalah sama dengan volume fluida pada aliran keluar. 3. ρ.v.a = konstan (Çengel, 2001:520) = ρ 1.A 1.V 1 = ρ 2.A 2.V 2 (Çengel, 2001:524) 4. = massa alir (kg/s) ρ = massa jenis (kg/m 3 ) A = Luas penampang (m 2 ) V = Kecepatan rata-rata pada penampang (m/s) Unjuk kerja meliputi daya dan efisiensi. Rumusan dari unjuk kerja adalah : 382

4 Brake Horse Power (BHP) = , ( ) dengan : n = Kecepatan putar turbin (rpm) T = Torsi (Nm) Water Horse Power (WHP) =, 32 = , ( ) dengan : V = Volume (m 3 ) t = Waktu (s) ρ = Massa jenis air (kg/m 3 ) g = Percepatan gravitasi (m/s 2 ) Q = Debit air (m 3 /s) H = Head drop turbin (m) Effisiensi η=.100% Metode Penelitian Penelitian ini menggunakan metode penelitian eksperimental (true experimental research). Dalam hal ini perangkat penelitian dibuat dalam skala laboratorium. Adapun literatur buku dan jurnal ilmiah yang relevan dengan masalah yang diteliti diperlukan sebagai bahan pendukung. Variabel Penelitian Variabel yang digunakan dalam penelitian ini ada tiga macam yaitu: Variabel bebas (independent variable) Variabel bebas adalah variabel yang bebas ditentukan nilainya oleh peneliti sebelum melakukan penelitian. Dalam penelitian ini variabel bebas yang digunakan adalah: Debit Air Dengan variasi debit air sebesar : 2 liter/s, 3 liter/s, 3.5 liter/s, dan 4 liter/s Variabel terikat (dependent variable) Variabel terikat adalah variabel hasil yang besarnya tidak dapat ditentukan oleh peneliti, nilai dari variabel ini tergantung pada nilai dari variabel bebasnya. Variabel terikat yang diamati dalam penelitian ini adalah: Efisiensi Variabel terkontrol Variabel terkontrol adalah variabel yang ditentukan oleh peneliti, dan nilainya dikondisikan konstan. Variabel yang dikontrol dalam penelitian ini adalah: 383

5 Variasi sudut pipa pancar; 30, 45, 60 o, dan 70 o Peralatan penelitian Peralatan yang digunakan pada penelitian ini adalah : 1. Runner Turbin Arus Lintang Runner meliputi 3 bagian utama, yaitu poros turbin, cakram turbin diameter luar 20 cm, diameter dalam 11cm, dengan bahan plat baja setebal 4mm, dan sudu yang berjumlah 20 buah, panjang sudu 2 cm, tebal sudu 2 mm, dengan bahan plat baja dipasang sekeliling cakram. Sedangkan plat penutup sudu terbuat dari akrilik yang transparan, setebal 3mm. Gambar 1 Runner Turbin Arus Lintang 2. Nosel/Pipa Pancar Gambar 2 Pipa Pancar dan pancaran air Nosel yang dipakai mempunyai ukuran penampang 2 x 2cm 2, terbuat dari akrilik setebal 1 mm. 384

6 3. Rumah turbin, rumah turbin dibutuhkan untuk melindungi pancaran air yang dihasilkan saat terjadinya putaran runner. Gambar 3 Rumah Turbin Gambar 4 Instalasi Penelitian Gambar 5 Sudut Pipa Pancar

7 Hasil dan Pembahasan Hasil pengolahan data pada pengujian pengaruh variasi sudut datang pipa dan debit air pada unjuk kerja turbin arus lintang tingkat kedua ini dapat diperlihatkan dalam bentuk grafik hubungan antara variasi sudut datang pipa pancar dan debit air dengan efisiensi dari turbin arus lintang pada tingkat kedua. Tabel 1 Variasi debit air Gambar 5.1 Pengaruh variasi debit air terhadap efisiensi dari unjuk kerja turbin arus lintang dengan tiap-tiap variasi sudut datang pipa pancar pada turbin arus lintang tingkat kedua 386

8 Gambar 5.1 yang diperlihatkan tersebut diatas adalah grafik pengaruh variasi debit air terhadap efisiensi dari unjuk kerja turbin arus lintang dengan tiap-tiap variasi sudut datang pipa pancar pada turbin arus lintang tingkat kedua, dari grafik diatas dapat dilihat bahwa dengan membuat pipa pancar diarahkan ke tingkat kedua akan mempengaruhi pola aliran di dalam runner karena jet keluaran yang langsung diarahkan ke tingkat kedua, sehingga torsi yang diberikan pada tingkat kedua akan meningkat sehingga efisiensinya lebih besar. Disini, pengujian yang dilakukan dengan variasi sudut datang pipa pancar dan debit air.pengujian yang dilakukan ada 4 perbedaan bukaan katup 25%, 50% 75% dan 100% dan tentunya setiap pembukaan katup dari minimum hingga bukaan katup maksimum ada terjadi perbedaan laju aliran dan debit air yang dihasilkan. Dari masing-masing bukaan katup dari minimum dapat menghasilkan debit air yang terkecil dan bukaan katup maksimum pada beban 1 efisiensi turbin terjadi Peningkatan. Peningkatan efisiensi juga sebanding dengan kenaikan variasi debit air. Pada debit air yang bervariasi bukaan katup minimum hingga maksimum. Pada bukaan katup maksimum terdapat kecenderungan peningkatan efisiensi pada tiap-tiap pengujian.ini disebabkan karena pada variasi sudut pipa pancar menyebabkan perubahan arah jet keluaran tingkat kedua yang bervariasi pula. Akibatnya momentum akan bertambah, dan torsi yang diberikan pada tingkat kedua ini juga akan meningkat, sehingga terjadi peningkatan pada daya turbin, semakin besar debit air yang diberikan akan meningkatan putaran turbin, maka akan semakin tinggi pula pembebanan yang harus diberikan, sehingga efisiensinya akan meningkat. Dari grafik 5.1 terlihat bahwa dari variasi sudut air masuk sudu sebesar 30 pada bukaan katup maksimum efisiensinya meningkat dibandingkan dengan sudut air masuk sudu lebih besar atau lebih kecil dari Hal ini disebabkan energi kecepatan air masuk sudu runner lebih banyak termanfaatkan karena air menumbuk tepat bagian depan sudu akibatnya torsi yang diberikan pada tingkat kedua ini juga akan meningkat sehingga efisiensi juga akan meningkat. Oleh sebab itu dengan membuat pipa pancar yang diarahkan ketingkat kedua akan menghasilkan torsi yang lebih stabil dan efisiensi turbin arus lintang (Cross Flow Banki) meningkat, kestabilan putaran ini dibutuhkan untuk kualitas listrik yang dihasilkan generator jauh lebih baik. 387

9 Pengaruh variasi debit air terhadap unjuk kerja turbin arus lintang tingkat kedua pada beban 2 dapat dijelaskan dengan melalui gambar grafik berikut ini. Gambar 5.2 Pengaruh variasi debit air terhadap efisiensi dari unjuk kerja turbin arus lintang dengan tiap-tiap variasi sudut datang pipa pancar pada turbin arus lintang tingkat kedua Gambar 5.2 yang diperlihatkan tersebut diatas adalah grafik pengaruh variasi debit air terhadap efisiensi dari unjuk kerja turbin arus lintang dengan tiap-tiap variasi sudut datang pipa pancar pada turbin arus lintang tingkat kedua, dari grafik diatas dapat dilihat bahwa dengan membuat pipa pancar diarahkan ke tingkat kedua akan mempengaruhi pola aliran di dalam runner karena jet keluaran yang langsung diarahkan ke tingkat kedua, sehingga torsi yang diberikan pada tingkat kedua akan meningkat sehingga efisiensinya lebih besar. Disini, pengujian yang dilakukan dengan variasi sudut datang pipa pancar dan debit air.pengujian yang dilakukan ada 4 perbedaan bukaan katup 25%, 50% 75% dan 100% dan tentunya setiap pembukaan katup dari minimum hingga bukaan katup maksimum ada terjadi perbedaan laju aliran dan debit air yang dihasilkan. Dari masing-masing bukaan katup dari minimum dapat menghasilkan debit air yang terkecil dan pada bukaan katup maksimum pada beban 2 efisiensi turbin terjadi Peningkatan. Peningkatan efisiensi juga sebanding dengan kenaikan variasi debit air. Pada debit air yang bervariasi bukaan katup minimum hingga maksumum. Pada bukaan katup maksimum terdapat kecenderungan peningkatan efisiensi pada tiap-tiap pengujian.ini disebabkan karena pada variasi sudut pipa pancar menyebabkan perubahan arah jet keluaran tingkat kedua yang bervariasi pula. Akibatnya momentum akan bertambah, dan torsi yang diberikan pada tingkat kedua ini juga akan meningkat, sehingga terjadi peningkatan pada daya turbin, semakin besar debit air yang diberikan akan meningkatan putaran turbin, maka akan semakin tinggi pula pembebanan yang harus diberikan, sehingga efisiensinya akan meningkat. Dari grafik 5.2 terlihat bahwa dari variasi sudut air masuk sudu sebesar 30 pada bukaan katup maksimum efisiensinya meningkat dibandingkan dengan sudut air masuk sudu lebih besar atau lebih kecil dari Hal ini disebabkan energi kecepatan air masuk sudu runner lebih banyak termanfaatkan dan terarah karena air menumbuk tepat bagian depan sudu akibatnya torsi yang diberikan pada tingkat kedua ini juga akan 388

10 meningkat sehingga efisiensi juga akan meningkat. Oleh sebab itu dengan membuat pipa pancar yang diarahkan ketingkat kedua akan menghasilkan torsi yang lebih stabil dan efisiensi turbin arus lintang (Cross Flow Banki) meningkat, kestabilan putaran ini dibutuhkan untuk kualitas listrik yang dihasilkan generator jauh lebih baik. Pengaruh variasi debit air terhadap unjuk kerja turbin arus lintang tingkat kedua pada beban 3 dapat dijelaskan dengan melalui gambar grafik berikut ini. Gambar 5.3 Pengaruh variasi debit air terhadap efisiensi dari unjuk kerja turbin arus lintang dengan tiap-tiap variasi sudut datang pipa pancar pada turbin arus lintang tingkat kedua Gambar 5.3 yang diperlihatkan tersebut diatas adalah grafik pengaruh variasi debit air terhadap efisiensi dari unjuk kerja turbin arus lintang dengan tiap-tiap variasi sudut datang pipa pancar pada turbin arus lintang tingkat kedua, dari grafik diatas dapat dilihat bahwa dengan membuat pipa pancar diarahkan ke tingkat kedua akan mempengaruhi pola aliran di dalam runner karena jet keluaran yang langsung diarahkan ke tingkat kedua, sehingga torsi yang diberikan pada tingkat kedua akan meningkat sehingga efisiensinya lebih besar. Disini, pengujian yang dilakukan dengan variasi sudut datang pipa pancar dan debit air.pengujian yang dilakukan ada 4 perbedaan bukaan katup 25%, 50% 75% dan 100% dan tentunya setiap pembukaan katup dari minimum hingga bukaan katup maksimum ada terjadi perbedaan laju aliran dan debit air yang dihasilkan. Dari masing-masing bukaan katup dari minimum dapat menghasilkan debit air yang terkecil dan pada bukaan katup maksimum pada beban 3 efisiensi turbin terjadi Peningkatan. Peningkatan efisiensi juga sebanding dengan kenaikan variasi debit air. Pada debit air yang bervariasi bukaan katup minimum hingga maksimum. Pada bukaan katup maksimum terdapat kecenderungan peningkatan efisiensi pada tiap-tiap pengujian.ini disebabkan karena pada variasi sudut pipa pancar menyebabkan perubahan arah jet keluaran tingkat kedua yang bervariasi pula. Akibatnya momentum akan bertambah, dan torsi yang diberikan pada tingkat kedua ini juga akan meningkat, sehingga terjadi peningkatan pada daya turbin, semakin besar debit air yang diberikan akan meningkatan putaran turbin, maka akan semakin tinggi pula pembebanan yang harus diberikan, sehingga efisiensinya akan meningkat. 389

11 Dari grafik 5.3 terlihat bahwa dari variasi sudut air masuk sudut sebesar 30 pada bukaan katup maksimum efisiensinya meningkat dibandingkan dengan sudut air masuk sudu lebih besar atau lebih kecil dari 300. Hal ini disebabkan energi kecepatan air masuk sudu runner lebih banyak termanfaatkan karena air menumbuk tepat bagian depan sudut akibatnya torsi yang diberikan pada tingkat kedua ini juga akan meningkat sehingga efisiensi juga akan meningkat. Oleh sebab itu dengan membuat pipa pancar yang diarahkan ketingkat kedua akan menghasilkan torsi yang lebih stabil dan efisiensi turbin arus lintang (Cross Flow Banki) meningkat, kestabilan putaran ini dibutuhkan untuk kualitas listrik yang dihasilkan generator jauh lebih baik. Pengaruh variasi debit air terhadap unjuk kerja turbin arus lintang tingkat kedua pada beban 4 dapat dijelaskan dengan melalui gambar grafik berikut ini. Gambar 5.4 Pengaruh variasi debit air terhadap efisiensi dari unjuk kerja turbin arus lintang dengan tiap-tiap variasi sudut datang pipa pancar pada turbin arus lintang tingkat kedua Gambar 5.4 yang diperlihatkan tersebut diatas adalah grafik pengaruh variasi debit air terhadap efisiensi dari unjuk kerja turbin arus lintang dengan tiap-tiap variasi sudut datang pipa pancar pada turbin arus lintang tingkat kedua, dari grafik diatas dapat dilihat bahwa dengan membuat pipa pancar diarahkan ke tingkat kedua akan mempengaruhi pola aliran di dalam runner karena jet keluaran yang langsung diarahkan ke tingkat kedua, sehingga torsi yang diberikan pada tingkat kedua akan meningkat sehingga efisiensinya lebih besar. Disini, pengujian yang dilakukan dengan variasi sudut datang pipa pancar dan debit air.pengujian yang dilakukan ada 4 perbedaan bukaan katup 25%, 50% 75% dan 100% dan tentunya setiap pembukaan katup dari minimum hingga bukaan katup maksimum ada terjadi perbedaan laju aliran dan debit air yang dihasilkan. Dari masing-masing bukaan katup dari minimum dapat menghasilkan debit air yang terkecil dan pada bukaan katup maksimum pada beban 4 efisiensi turbin terjadi Peningkatan. Peningkatan efisiensi juga sebanding dengan kenaikan variasi debit air. Pada debit air yang bervariasi bukaan katup minimum hingga maksimum. Pada bukaan katup maksimum terdapat kecenderungan 390

12 peningkatan efisiensi pada tiap-tiap pengujian.ini disebabkan karena pada variasi sudut pipa pancar menyebabkan perubahan arah jet keluaran tingkat kedua yang bervariasi pula. Akibatnya momentum akan bertambah, dan torsi yang diberikan pada tingkat kedua ini juga akan meningkat, sehingga terjadi peningkatan pada daya turbin, semakin besar debit air yang diberikan akan meningkatan putaran turbin, maka akan semakin tinggi pula pembebanan yang harus diberikan, sehingga efisiensinya akan meningkat. Dari grafik 5.4 terlihat bahwa dari variasi sudut air masuk sudu sebesar 30 menghasilkan efisiensi tertinggi jika dibandingkan dengan sudut air masuk sudu lebih besar atau lebih kecil dari 300. Hal ini disebabkan energi kecepatan air masuk sudu runner lebih banyak termanfaatkan karena air menumbuk tepat bagian depan sudu akibatnya torsi yang diberikan pada tingkat kedua ini juga akan meningkat sehingga efisiensi juga akan meningkat. Oleh sebab itu dengan membuat pipa pancar yang diarahkan ketingkat kedua akan menghasilkan torsi yang lebih stabil dan efisiensi turbin arus lintang (Cross Flow Banki) meningkat, kestabilan putaran ini dibutuhkan untuk kualitas listrik yang dihasilkan generator jauh lebih baik. Pengaruh variasi sudut datang pipa pancar terhadap unjuk kerja turbin arus lintang tingkat kedua pada beban 1 dapat dijelaskan dengan melalui gambar grafik berikut ini. Gambar 5.5 Pengaruh variasi debit air terhadap efisiensi dari unjuk kerja turbin arus lintang dengan tiap-tiap variasi sudut datang pipa pancar pada turbin arus lintang tingkat kedua. Dari Gambar 5.5 dapat dilihat bahwa dengan adanya supply air yang dipompakan melewati pipa pancar mengakibatkan adanya pancaran air yang mengenai sudu turbin akan timbuk gaya dorong atau tumbukan. Pancaran air ini akan menumbuk dan mendorong turbin sehingga turbin tersebut berputar. Arah dari pancaran air tersebut akan belok, dengan demikian terjadi perubahan besaran air yang bergerak. Pancaran air yang mengenai sudu turbin itu menggerakkan roda turbin cross flow dengan kecepatan u. Sehingga pada sudut nosel yang sama dan pada bukaan katup yang bervariasi terdapat kecenderungan peningkatan efisiensi pada tiap-tiap pengujian dengan variasi sudut pipa pancar, juga terjadi peningkatan putaran dan debit air Q (liter/s) tetapi mengakibatkan tekanan (Bar) menurun hal ini disebabkan karena pada variasi sudut pipa pancar menyebabkan perubahan arah keluar tingkat pertama (dapat dijelaskan dengan segitiga 391

13 kecepatan), karena gaya yang bekerja pada fluida kerja sehingga menyebabkan terjadinya perubahan kecepatan dan momentum akan bertambah, dan torsi yang diberikan pada tingkat kedua ini juga akan meningkat, sehingga meningkatkan daya pada turbin, semakin besar debit air yang diberikan pada putaran yang bervariasi, maka akan semakin tinggi pula torsi yang harus diberikan, sehingga efisiensinya akan meningkat. Dari grafik 5.5 terlihat bahwa dari variasi sudut air masuk sudu sebesar 30 menghasilkan efisiensi tertinggi jika dibandingkan dengan sudut air masuk sudu lebih besar atau lebih kecil dari 30 0.Hal ini disebabkan energi kecepatan air masuk sudu runner lebih banyak termanfaatkan.namun disini ada terjadi suatu perubahan pada sudut nosel 45 0 pada beban F1 (N) putaran turbin dan debit air menurun dan efisiensinya juga menurun tetapi penurunannya efisiensinya tidak signikan. Pada sudut nosel 60 0, dan 70 0 memiliki efisiensi yang paling kecil jika dibandingkan dengan variasi sudut yang lain. Hal ini disebabkan karena pada sudut air masuk sebesar 60 dan 70 0 debit air (liter/s) menurun sehingga torsi yang dihasilkan kecil, karena aliran air masuk mengenai sudu bukan menambah torsi tetapi justru membebani, karena jet air justru menumbuk bagian belakang sudu.inilah yang diduga menjadi salah satu penyebab ketidak stabilan putaran turbin. Pengaruh variasi sudut datang pipa pancar terhadap unjuk kerja turbin arus lintang tingkat kedua pada beban 2 dapat dijelaskan dengan melalui gambar grafik berikut ini. Gambar 5.6 Pengaruh variasi debit air terhadap efisiensi dari unjuk kerja turbin arus lintang dengan tiap-tiap variasi sudut datang pipa pancar pada turbin arus lintang tingkat kedua Dari Gambar 5.6 dapat dilihat bahwa pada sudut nosel yang sama dan pada bukaan katup yang bervariasi terdapat kecenderungan peningkatan efisiensi pada tiap-tiap pengujian dengan variasi sudut pipa pancar, juga terjadi peningkatan putaran dan debit air Q (liter/s) tetapi mengakibatkan tekanan (Bar) menurun hal ini disebabkan karena pada variasi sudut pipa pancar menyebabkan perubahan arah keluar tingkat pertama 392

14 (dapat dijelaskan dengan segitiga kecepatan), karena gaya yang bekerja pada fluida kerja sehingga menyebabkan terjadinya perubahan kecepatan dan momentum akan bertambah, dan torsi yang diberikan pada tingkat kedua ini juga akan meningkat, sehingga meningkatkan daya pada turbin, semakin besar debit air yang diberikan pada putaran yang bervariasi, maka akan semakin tinggi pula torsi yang harus diberikan, sehingga efisiensinya akan meningkat. Dari grafik 5.6 terlihat bahwa dari variasi sudut air masuk sudu sebesar 30 menghasilkan efisiensi tertinggi jika dibandingkan dengan sudut air masuk sudu lebih besar atau lebih kecil dari 30 0.Hal ini disebabkan energi kecepatan air masuk sudu runner lebih banyak termanfaatkan.namun disini ada terjadi suatu perubahan pada sudut nosel 45 0 pada beban F2 (N) putaran turbin dan debit air menurun dan efisiensinya juga menurun tetapi penurunannya efisiensinya tidak signikan. Pada sudut nosel 60 0, dan 70 0 memiliki efisiensi yang paling kecil jika dibandingkan dengan variasi sudut yang lain. Hal ini disebabkan karena pada sudut air masuk sebesar 60 dan 70 0 debit air (liter/s) menurun sehingga torsi yang dihasilkan kecil, karena aliran air masuk mengenai sudu bukan menambah torsi tetapi justru membebani, karena jet air justru menumbuk bagian belakang sudu.inilah yang diduga menjadi salah satu penyebab ketidak stabilan putaran turbin. Gambar 5.7 Pengaruh variasi debit air terhadap efisiensi dari unjuk kerja turbin arus lintang dengan tiap-tiap variasi sudut datang pipa pancar pada turbin arus lintang tingkat kedua Gambar 5.8 Pengaruh variasi debit air terhadap efisiensi dari unjuk kerja turbin arus lintang dengan tiap-tiap variasi sudut datang pipa pancar pada turbin arus lintang tingkat kedua 393

15 Dari Gambar 5.7 dan 5.8 dapat dilihat bahwa dari tiap-tiap variasi sudut air masuk sudu dapat dilihat bahwa dengan adanya supply air yang dipompakan melewati pipa pancar mengakibatkan adanya pancaran air yang mengenai sudu turbin akan timbul gaya dorong/tumbukan. Pancaran air ini akan menumbuk dan mendorong turbin sehingga turbin tersebut berputar. Arah dari pancaran air tersebut akan belok, dengan demikian terjadi perubahan besaran air yang bergerak. Pancaran air yang mengenai sudu turbin itu menggerakkan roda turbin cross flow dengan kecepatan u. Sehingga pada sudut nosel yang sama dan pada bukaan katup yang bervariasi terdapat kecenderungan peningkatan efisiensi pada tiap-tiap pengujian dengan variasi sudut pipa pancar, juga terjadi peningkatan putaran dan debit air Q (liter/s) tetapi mengakibatkan tekanan (Bar) menurun hal ini disebabkan karena pada variasi sudut pipa pancar menyebabkan perubahan arah keluar tingkat pertama (dapat dijelaskan dengan segitiga kecepatan), karena gaya yang bekerja pada fluida kerja sehingga menyebabkan terjadinya perubahan kecepatan dan momentum akan bertambah, dan torsi yang diberikan pada tingkat kedua ini juga akan meningkat, sehingga meningkatkan daya pada turbin, semakin besar debit air yang diberikan pada putaran yang bervariasi, maka akan semakin tinggi pula torsi yang harus diberikan, sehingga efisiensinya akan meningkat. Dari grafik 5.7 dan 5.8 terlihat bahwa dari variasi sudut air masuk sudu sebesar 30 menghasilkan efisiensi tertinggi jika dibandingkan dengan sudut air masuk sudu lebih besar atau lebih kecil dari 30 0.Hal ini disebabkan energi kecepatan air masuk sudu runner lebih banyak termanfaatkan.namun disini ada terjadi suatu perubahan pada sudut nosel 45 0 pada beban F1 (N) putaran turbin dan debit air menurun dan efisiensinya juga menurun tetapi penurunannya efisiensinya tidak signikan. Pada sudut nosel 60 0, dan 70 0 memiliki efisiensi yang paling kecil jika dibandingkan dengan variasi sudut yang lain. Hal ini disebabkan karena pada sudut air masuk sebesar 60 dan 70 0 debit air (liter/s) menurun sehingga torsi yang dihasilkan kecil, karena aliran air masuk mengenai sudu bukan menambah torsi tetapi justru membebani, karena jet air justru menumbuk bagian belakang sudu.inilah yang diduga menjadi salah satu penyebab ketidak stabilan putaran turbin. 394

16 Kesimpulan Dari penelitian pengaruh variasi sudut datang pipa pancar dan debit air terhadap unjuk kerja turbin arus lintang tingkat kedua, dapat disimpulkan bahwa besar sudut pipa pancar mempengaruhi unjuk kerja (Torsi, Daya dan Efisiensi) turbin arus lintang: Saran 1. Pancaran air yang keluar dari pipa pancar menumbuk dan mendorong turbin sehingga turbin berputar 2. Torsi yang diberikan pada tingkat kedua meningkat dan efisiensi juga meningkat dan peningkatan efisiensi juga sebanding dengan kenaikan variasi debit air. 3. Semakin besar debit air yang diberikan akan meningkatkan putaran turbin dan semakin tinggi pula pembebanan yang harus diberikan sehingga mempengaruhi efisiensinya juga meningkat, pada variasi sudut air masuk sudu sebesar 30 Derajat beban 4 (N) dan debit air 0,228(ltr/s) menghasilkan efisiensi tertinggi dari turbin arus lintang pada tingkat kedua 4. Pada sudut nosel 45 0, 60 0, dan 70 0 memiliki efisiensi yang paling kecil jika dibandingkan dengan variasi sudut yang lain. Hal ini disebabkan karena debit air (liter/s) menurun sehingga torsi yang dihasilkan kecil, karena aliran air masuk mengenai sudu bukan menambah torsi tetapi justru membebani, karena jet air justru menumbuk bagian belakang sudu.inilah yang diduga menjadi salah satu penyebab ketidak stabilan putaran turbin. Dari hasil penelitian ini dapat dilanjutkan pengujian dengan berbagai variasi yang lain serta terdapat saransaran yang harus diperhatikan yaitu : 1. Dapat dilanjutkan penelitian mengenai pengaruh variasi sudut pipa pancar pada unjuk kerja turbin arus lintang dengan penambahan axial deflector. 2. Dapat dilanjutkan penelitian mengenai pengaruh variasi sudut pipa pancar pada unjuk kerja turbin arus lintang dengan menggunakan dua buah pipa pancar. Ucapan Terima Kasih Ucapan terima kasih penulis haturkan kepada Universitas Brawijaya Malang khususnya kepada Bapak Prof. Dr. Ir. Rudy Soenoko, M.Eng.Sc. Bapak Dr. Eng. Yudy Surya Irawan, ST., M.Eng., Bapak Ir. Jusuf Haurissa, ST., Atas segala dukungan dan motivasi kepada penulis sehingga penelitian ini bisa terlaksana dengan baik dan sukses. Daftar pustaka Muhammad, A. 2009, Studi Eksperimental Perancangan Turbin Air Terapung Tipe Helical Blades, Jurnal Penelitian Enjiniring, 12(2): Arismunandar 2004, Penggerak Mula Turbin; Edisi Ketiga Cetakan Kesatu Bandung Penerbit, ITB, Bandung. Barglazan, M. 2005, About Design Optimization of Cross-Flow Hydraulic Turbines, The Politechnica University of Timisoara, New York. Çengel, Yunus A. and Turner, Robert H. 2001, Fundamentals of Thermal-Fluid Sciences, Mcgraw-Hill Companies Inc, New York. Central Intelligence Agency 2010, The World Fact book-country Report for Timor Leste, https://www.cia.gov/library/publications/the-world-factbook/geos/tt.html, viewed 1 May Haimerl, L.A. 1960, The Cross Flow Turbine, Lal Jagdish, Jerman Barat. Inversin, A.R. 1986, Microhydro Power Source Book, NRECA International Foundation, Washington DC. EDTL (The Electrification of East Timor) 2003, Power Sector Master Plan for Timor Leste, EDTL, Dili 395

UNJUK KERJA TURBIN ARUS LINTANG BERLORONG PENGARAH DENGAN VARIASI SUDUT PIPA PANCAR

UNJUK KERJA TURBIN ARUS LINTANG BERLORONG PENGARAH DENGAN VARIASI SUDUT PIPA PANCAR UNJUK KERJA TURBIN ARUS LINTANG BERLORONG PENGARAH DENGAN VARIASI SUDUT PIPA PANCAR Putu Hadi Setyarini 1, Djoko Sutikno 1, Firdaus Nur Dwi Fahmi 2 1 Jurusan Teknik Mesin Fakultas Teknik Universitas Brawijaya

Lebih terperinci

ANALISIS DAYA DAN EFISIENSI TURBIN AIR KINETIS AKIBAT PERUBAHAN PUTARAN RUNNER

ANALISIS DAYA DAN EFISIENSI TURBIN AIR KINETIS AKIBAT PERUBAHAN PUTARAN RUNNER ANALISIS DAYA DAN EFISIENSI TURBIN AIR KINETIS AKIBAT PERUBAHAN PUTARAN RUNNER Arief Muliawan 1, Ahmad Yani 2 1) Teknik Elektro, Sekolah Tinggi Teknologi Bontang Jalan Ir. H. Juanda No. 73 RT.36 Bontang

Lebih terperinci

Pengaruh Variasi Ketinggian Aliran Sungai Terhadap Kinerja Turbin Kinetik Bersudu Mangkok Dengan Sudut Input 10 o

Pengaruh Variasi Ketinggian Aliran Sungai Terhadap Kinerja Turbin Kinetik Bersudu Mangkok Dengan Sudut Input 10 o Pengaruh Variasi Ketinggian Aliran Sungai Terhadap Kinerja Turbin Kinetik Bersudu Mangkok Dengan Sudut Input 10 o Asroful Anam Jurusan Teknik Mesin S-1 FTI ITN Malang, Jl. Raya Karanglo KM 02 Malang E-mail:

Lebih terperinci

BAB I PENGUJIAN TURBIN AIR FRANCIS

BAB I PENGUJIAN TURBIN AIR FRANCIS BAB I PENGUJIAN TURBIN AIR FRANCIS 1.1 Pendahuluan 1.1.1 Tinjauan Umum Praktikan sangat membantu dalam mendapatkan gambaran yang nyata tentang alat/mesin yang telah dipelajari di bangku kuliah. Dengan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1.1 Turbin Air Turbin air adalah turbin dengan media kerja air. Secara umum, turbin adalah alat mekanik yang terdiri dari poros dan sudu-sudu. Sudu tetap atau stationary blade, tidak

Lebih terperinci

PENGARUH JUMLAH SUDU RODA JALAN TERHADAP EFISIENSI TURBIN ALIRAN SILANG (CROSS FLOW)

PENGARUH JUMLAH SUDU RODA JALAN TERHADAP EFISIENSI TURBIN ALIRAN SILANG (CROSS FLOW) PENGARUH JUMLAH SUDU RODA JALAN TERHADAP EFISIENSI TURBIN ALIRAN SILANG (CROSS FLOW) Agus Sugiri Jurusan Teknik Mesin Fakultas Teknik Universitas Lampung, Bandar Lampung Email : agussugiri@yahoo.co.id

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro

BAB II TINJAUAN PUSTAKA. 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro BAB II TINJAUAN PUSTAKA 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro Pembangunan sebuah PLTMH harus memenuhi beberapa kriteria seperti, kapasitas air yang cukup baik dan tempat yang memadai untuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian dasar tentang turbin air Turbin berfungsi mengubah energi potensial fluida menjadi energi mekanik yang kemudian diubah lagi menjadi energi listrik pada generator.

Lebih terperinci

PEMODELAN TURBIN CROSS-FLOW UNTUK DIAPLIKASIKAN PADA SUMBER AIR DENGAN TINGGI JATUH DAN DEBIT KECIL

PEMODELAN TURBIN CROSS-FLOW UNTUK DIAPLIKASIKAN PADA SUMBER AIR DENGAN TINGGI JATUH DAN DEBIT KECIL PEMODELAN TURBIN CROSS-FLOW UNTUK DIAPLIKASIKAN PADA SUMBER AIR DENGAN TINGGI JATUH DAN DEBIT KECIL Oleh: Mokhamad Tirono ABSTRAK : Telah dilakukan suatu upaya memodifikasi dan rekayasa turbin jenis cross-flow

Lebih terperinci

Pengaruh Sudut Pengarah Aliran dan Jumlah Sudu Radius Berengsel Luar Roda Tunggal terhadap Kinerja Turbin Kinetik

Pengaruh Sudut Pengarah Aliran dan Jumlah Sudu Radius Berengsel Luar Roda Tunggal terhadap Kinerja Turbin Kinetik Pengaruh Sudut Pengarah Aliran dan Jumlah Sudu Radius Berengsel Luar Roda Tunggal terhadap Kinerja Turbin Kinetik Adrian Maidangkay, Rudy Soenoko, Slamet Wahyudi Jurusan Teknik Mesin Fakultas Teknik Universitas

Lebih terperinci

Rancang Bangun Model Turbin Crossflow sebagai Penggerak Mula Generator Listrik Memanfaatkan Potensi Pikohidro

Rancang Bangun Model Turbin Crossflow sebagai Penggerak Mula Generator Listrik Memanfaatkan Potensi Pikohidro Rancang Bangun Model Turbin Crossflow sebagai Penggerak Mula Generator Listrik Memanfaatkan Potensi Pikohidro Ilyas Rochani, Sahid, Jurusan Teknik Mesin Politeknik Negeri Semarang Jl. Prof. Sudarto, SH

Lebih terperinci

HYDRO POWER PLANT. Prepared by: anonymous

HYDRO POWER PLANT. Prepared by: anonymous HYDRO POWER PLANT Prepared by: anonymous PRINSIP DASAR Cara kerja pembangkit listrik tenaga air adalah dengan mengambil air dalam jumlah debit tertentu dari sumber air (sungai, danau, atau waduk) melalui

Lebih terperinci

ANALISA PENGARUH SUDUT KELUAR SUDU TERHADAP PUTARAN TURBIN PELTON ABSTRAK

ANALISA PENGARUH SUDUT KELUAR SUDU TERHADAP PUTARAN TURBIN PELTON ABSTRAK ANALISA PENGARUH SUDUT KELUAR SUDU TERHADAP PUTARAN TURBIN PELTON Ali Thobari, Mustaqim, Hadi Wibowo Faculty of Engineering, Universitas Pancasakti Tegal Jl. Halmahera KM. 1 Kota Tegal 52122 Telp./Fax.

Lebih terperinci

Jurnal Rekayasa Mesin Vol.4, No.3 Tahun 2013: ISSN X. Pengaruh Variasi Sudut Input Sudu Mangkok Terhadap Kinerja Turbin Kinetik

Jurnal Rekayasa Mesin Vol.4, No.3 Tahun 2013: ISSN X. Pengaruh Variasi Sudut Input Sudu Mangkok Terhadap Kinerja Turbin Kinetik Jurnal Rekayasa Mesin Vol., No.3 Tahun 213: 199-23 ISSN 2-6X Pengaruh Variasi Sudut Input Sudu Mangkok Terhadap Kinerja Turbin Kinetik Asroful Anam, Rudy Soenoko, Denny Widhiyanuriyawan Jurusan Teknik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Teori Pompa Sentrifugal 2.1.1. Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan

Lebih terperinci

PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN DAYA TURBIN AIR

PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN DAYA TURBIN AIR TURBO Vol. 6 No. 1. 2017 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN

Lebih terperinci

Studi Eksprimental Perancangan Turbin Air Terapung Tipe Helical Blades

Studi Eksprimental Perancangan Turbin Air Terapung Tipe Helical Blades Studi Eksprimental Perancangan Turbin Air Terapung Tipe Helical Blades Andi Haris Muhammad, Abdul Latief Had, Wayan Terti Prog. Studi Teknik Sistem Perkapalan Jurusan Perkapalan Fakultas Teknik Universitas

Lebih terperinci

UNJUK KERJA TURBIN AIR TIPE CROSS FLOW DENGAN VARIASI DEBIT AIR DAN SUDUT SERANG NOSEL

UNJUK KERJA TURBIN AIR TIPE CROSS FLOW DENGAN VARIASI DEBIT AIR DAN SUDUT SERANG NOSEL UNJUK KERJA TURBIN AIR TIPE CROSS FLOW DENGAN VARIASI DEBIT AIR DAN SUDUT SERANG NOSEL Yudi Setiawan, Irfan Wahyudi, Erwin Nandes Jurusan Teknik Mesin, Universitas Bangka Belitung Jl.Merdeka no. 04 Pangkalpinang

Lebih terperinci

Rancang Bangun Prototipe Portable Mikro Hydro Menggunakan Turbin Tipe Cross Flow

Rancang Bangun Prototipe Portable Mikro Hydro Menggunakan Turbin Tipe Cross Flow Rancang Bangun Prototipe Portable Mikro Hydro Menggunakan Turbin Tipe Cross Flow Roy Hadiyanto*, Fauzi Bakri Jurusan Fisika, Fakultas MIPA Universitas Negeri Jakarta Jl. Pemuda No.10, Rawamangun, Jakarta

Lebih terperinci

II. TINJAUAN PUSTAKA. Pemanfaatan tenaga air untuk berbagai kebutuhan daya (energi ) telah dikenal

II. TINJAUAN PUSTAKA. Pemanfaatan tenaga air untuk berbagai kebutuhan daya (energi ) telah dikenal II. TINJAUAN PUSTAKA A. Pengertian Mikrohidro Pemanfaatan tenaga air untuk berbagai kebutuhan daya (energi ) telah dikenal sejak lama, mulai dengan teknologi sederhana seperti kincir air ( water wheel),

Lebih terperinci

PENGARUH PERUBAHAN BEBAN TERHADAP KINERJA TURBIN CROSSFLOW

PENGARUH PERUBAHAN BEBAN TERHADAP KINERJA TURBIN CROSSFLOW Jurnal Mekanikal, Vol. 4 No. 2: Juli 2013: 416 421 ISSN 2086-3403 PENGARUH PERUBAHAN BEBAN TERHADAP KINERJA TURBIN CROSSFLOW Rustan Hatib*, Andi Ade Larasakti** *Dosen jurusan Teknik mesin Universitas

Lebih terperinci

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Ray Posdam J Sihombing 1, Syahril Gultom 2 1,2 Departemen

Lebih terperinci

SESSION 8 HYDRO POWER PLANT. 1. Potensi PLTA 2. Jenis PLTA 3. Prinsip Kerja 4. Komponen PLTA 5. Perencanaan PLTA

SESSION 8 HYDRO POWER PLANT. 1. Potensi PLTA 2. Jenis PLTA 3. Prinsip Kerja 4. Komponen PLTA 5. Perencanaan PLTA SESSION 8 HYDRO POWER PLANT 1. Potensi PLTA 2. Jenis PLTA 3. Prinsip Kerja 4. Komponen PLTA 5. Perencanaan PLTA 6. Kelebihan dan Kekurangan PLTA 1. POTENSI PLTA Teoritis Jumlah potensi tenaga air di permukaan

Lebih terperinci

DAFTAR ISI DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR SIMBOL... A. Latar Belakang B. Tujuan dan Manfaat C. Batasan Masalah...

DAFTAR ISI DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR SIMBOL... A. Latar Belakang B. Tujuan dan Manfaat C. Batasan Masalah... i DAFTAR ISI Halaman DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR SIMBOL... i iv v viii I. PENDAHULUAN A. Latar Belakang... 1 B. Tujuan dan Manfaat... 2 C. Batasan Masalah... 2 D. Sistematika

Lebih terperinci

Panduan Praktikum Mesin-Mesin Fluida 2012

Panduan Praktikum Mesin-Mesin Fluida 2012 PERCOBAAN TURBIN PELTON A. TUJUAN PERCOBAAN Tujuan dari pelaksanaan percobaan ini adalah untuk mempelajari prinsip kerja dan karakteristik performance turbin air (pelton). Karakteristik performance turbin

Lebih terperinci

PERANCANGAN TURBIN UAP PENGGERAK GENERATOR LISTRIK DENGAN DAYA 80 MW PADA INSTALASI PEMBANGKIT LISTRIK TENAGA GAS UAP

PERANCANGAN TURBIN UAP PENGGERAK GENERATOR LISTRIK DENGAN DAYA 80 MW PADA INSTALASI PEMBANGKIT LISTRIK TENAGA GAS UAP PERANCANGAN TURBIN UAP PENGGERAK GENERATOR LISTRIK DENGAN DAYA 80 MW PADA INSTALASI PEMBANGKIT LISTRIK TENAGA GAS UAP SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik

Lebih terperinci

BAB II 2 LANDASAN TEORI. 2.1 Turbin Air

BAB II 2 LANDASAN TEORI. 2.1 Turbin Air BAB II 2 LANDASAN TEORI 2.1 Turbin Air Turbin air atau pada mulanya kincir air adalah suatu alat yang sudah sejak lama digunakan untuk keperluan industri. Pada mulanya yang dipertimbangkan adalah ukuran

Lebih terperinci

Jurusan Fisika, Fakultas MIPA Universitas Negeri Jakarta Jl. Pemuda No.10, Rawamangun, Jakarta Timur *

Jurusan Fisika, Fakultas MIPA Universitas Negeri Jakarta Jl. Pemuda No.10, Rawamangun, Jakarta Timur * Pengujian Prototipe Model Turbin Air Sederhana Dalam Proses Charging 4 Buah Baterai 1.2 Volt Yang Disusun Seri Pada Sistem Pembangkit Listrik Alternatif Tenaga Air Fitrianto Nugroho *, Iwan Sugihartono,

Lebih terperinci

BAB II DASAR TEORI. E p = Energi potensial (joule) m =Massa benda (kg) g = Percepatan gravitasi (m/s 2 ) h = Ketinggian benda (m)

BAB II DASAR TEORI. E p = Energi potensial (joule) m =Massa benda (kg) g = Percepatan gravitasi (m/s 2 ) h = Ketinggian benda (m) BAB II DASAR TEORI 2.1 Sumber Energi 2.1.1 Energi Potensial Energi potensial adalah energi yang dimiliki suatu benda akibat pengaruh tempat atau kedudukan dari benda tersebut Rumus yang dipakai dalam energi

Lebih terperinci

I. PENDAHULUAN Saat ini Negara berkembang di dunia, khususnya Indonesia telah membuat turbin air jenis mini dan mikro hydro yang merupakan salah satu

I. PENDAHULUAN Saat ini Negara berkembang di dunia, khususnya Indonesia telah membuat turbin air jenis mini dan mikro hydro yang merupakan salah satu DISTRIBUSI TEKANAN FLUIDA PADA NOZEL TURBIN PELTON BERSKALA MIKRO DENGAN MENGGUNAKAN PERANGKAT LUNAK SOLIDWORKS Dr. Rr. Sri Poernomo Sari ST., MT. *), Muharom Firmanzah **) *) Dosen Teknik Mesin Universitas

Lebih terperinci

PERENCANAAN TURBIN CROSS FLOW SUDU BAMBU SEBAGAI PEMBANGKIT LISTRIK TENAGA PICO HIDRO KAPASITAS 200 WATT

PERENCANAAN TURBIN CROSS FLOW SUDU BAMBU SEBAGAI PEMBANGKIT LISTRIK TENAGA PICO HIDRO KAPASITAS 200 WATT PERENCANAAN TURBIN CROSS FLOW SUDU BAMBU SEBAGAI PEMBANGKIT LISTRIK TENAGA PICO HIDRO KAPASITAS 200 WATT ABSTRAK Efrita Arfa Zuliari [1] dan Ali Khomsah [2] Jurusan Teknik Elektro, [1] Jurusan Teknik Mesin,

Lebih terperinci

PERANCANGAN DAN PENGUJIAN TURBIN KAPLAN PADA KETINGGIAN (H) 4 M SUDUT SUDU PENGARAH 30 DENGAN VARIABEL PERUBAHAN DEBIT (Q) DAN SUDUT SUDU JALAN

PERANCANGAN DAN PENGUJIAN TURBIN KAPLAN PADA KETINGGIAN (H) 4 M SUDUT SUDU PENGARAH 30 DENGAN VARIABEL PERUBAHAN DEBIT (Q) DAN SUDUT SUDU JALAN PERANCANGAN DAN PENGUJIAN TURBIN KAPLAN PADA KETINGGIAN (H) 4 M SUDUT SUDU PENGARAH 30 DENGAN VARIABEL PERUBAHAN DEBIT (Q) DAN SUDUT SUDU JALAN NASKAH PUBLIKASI Disusun oleh : ANDI SUSANTO NIM : D200 080

Lebih terperinci

PENGARUH VARIASI BENTUK SUDU TERHADAP KINERJA TURBIN AIR KINETIK (Sebagai Alternatif Pembangkit Listrik Daerah Pedesaan)

PENGARUH VARIASI BENTUK SUDU TERHADAP KINERJA TURBIN AIR KINETIK (Sebagai Alternatif Pembangkit Listrik Daerah Pedesaan) TURBO Vol. 5 No. 1. 2016 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo PENGARUH VARIASI BENTUK SUDU TERHADAP KINERJA TURBIN

Lebih terperinci

Pembuatan dan Pengujian Pembangkit Listrik Tenaga Mikrohidro Turbin Banki Daya 200 Watt

Pembuatan dan Pengujian Pembangkit Listrik Tenaga Mikrohidro Turbin Banki Daya 200 Watt Jurnal Mekanikal, Vol. 3 No. : Januari 0: 45-53 ISSN 086-3403 Pembuatan dan Pengujian Pembangkit Listrik Tenaga Mikrohidro Turbin Banki Daya 00 Watt Andi Ade Larasakti, Syukri Himran dan A. Syamsul Arifin

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Tinjauan Pustaka (Chen, J., et al., 2013) meneliti tentang Vertical Axis Water Turbine (VAWT) yang diaplikasikan untuk menggerakkan Power Generation untuk aliran air dalam

Lebih terperinci

Jurnal e-dinamis, Volume 3, No.3 Desember 2012 ISSN

Jurnal e-dinamis, Volume 3, No.3 Desember 2012 ISSN SIMULASI NUMERIK ALIRAN FLUIDA DI DALAM RUMAH POMPA SENTRIFUGAL YANG DIOPERASIKAN SEBAGAI TURBIN PADA PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO (PLTMH)MENGGUNAKAN CFD DENGAN HEAD (H) 9,29 M DAN 5,18 M RIDHO

Lebih terperinci

PEMBUATAN TURBIN MIKROHIDRO TIPE CROSS-FLOW SEBAGAI PEMBANGKIT LISTRIK DI DESA BUMI NABUNG TIMUR

PEMBUATAN TURBIN MIKROHIDRO TIPE CROSS-FLOW SEBAGAI PEMBANGKIT LISTRIK DI DESA BUMI NABUNG TIMUR PEMBUATAN TURBIN MIKROHIDRO TIPE CROSS-FLOW SEBAGAI PEMBANGKIT LISTRIK DI DESA BUMI NABUNG TIMUR Mafrudin 1), Dwi Irawan 2). 1, 2) Jurusan Teknik Mesin Universitas Muhammadiyah Metro Jl. Ki Hajar Dewantara

Lebih terperinci

KAJI EKSPERIMENTAL KINERJA TURBIN ZANETTE BERBASIS SUDU EKOR IKAN TUNA

KAJI EKSPERIMENTAL KINERJA TURBIN ZANETTE BERBASIS SUDU EKOR IKAN TUNA EKSERGI Jurnal Teknik Energi Vol 1 No. 2 Mei 214; 39-43 KAJI EKSPERIMENTAL KINERJA TURBIN ZANETTE BERBASIS SUDU EKOR IKAN TUNA Lanang K 1), Fariha Z 1), Febrian Indra P 1), Imam Agus Y 1), Syaiful Amiien

Lebih terperinci

ANALISIS UNJUK KERJA TURBIN AIR KAPASITAS 81,1 MW UNIT 1 PADA BEBAN NORMAL DAN BEBAN PUNCAK DI PT INDONESIA ASAHAN ALUMINIUM POWER PLANT

ANALISIS UNJUK KERJA TURBIN AIR KAPASITAS 81,1 MW UNIT 1 PADA BEBAN NORMAL DAN BEBAN PUNCAK DI PT INDONESIA ASAHAN ALUMINIUM POWER PLANT ANALISIS UNJUK KERJA TURBIN AIR KAPASITAS 81,1 MW UNIT 1 PADA BEBAN NORMAL DAN BEBAN PUNCAK DI PT INDONESIA ASAHAN ALUMINIUM POWER PLANT LAPORAN TUGAS AKHIR Diajukan untuk Memenuhi Sebagian Persyaratan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Tenaga air merupakan sumber daya energi yang penting setelah tenaga uap atau panas. Hampir 30% dari seluruh kebutuhan tenaga di dunia dipenuhi oleh pusat pusat listrik tenaga air.

Lebih terperinci

DAFTAR ISI HALAMAN JUDUL... SAMPUL DALAM... HALAMAN PENGESAHAN... HALAMAN PERNYATAAN... INTISARI... ABSTRACT... KATA PENGANTAR... DAFTAR ISI...

DAFTAR ISI HALAMAN JUDUL... SAMPUL DALAM... HALAMAN PENGESAHAN... HALAMAN PERNYATAAN... INTISARI... ABSTRACT... KATA PENGANTAR... DAFTAR ISI... DAFTAR ISI HALAMAN JUDUL... i SAMPUL DALAM... ii HALAMAN PENGESAHAN... iii HALAMAN PERNYATAAN... iv INTISARI... iv ABSTRACT... v KATA PENGANTAR... vii DAFTAR ISI... ix DAFTAR GAMBAR... xv DAFTAR TABEL...

Lebih terperinci

Analisa Aliran Fluida Pada Turbin Udara Untuk Pneumatic Wave Energy Converter (WEC) Menggunakan Computational Fluid Dynamic (CFD)

Analisa Aliran Fluida Pada Turbin Udara Untuk Pneumatic Wave Energy Converter (WEC) Menggunakan Computational Fluid Dynamic (CFD) LOGO Analisa Aliran Fluida Pada Turbin Udara Untuk Pneumatic Wave Energy Converter (WEC) Menggunakan Computational Fluid Dynamic (CFD) Dosen Pembimbing : 1. Beni Cahyono, ST, MT. 2. Sutopo Purwono F. ST,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Fluida Fluida diartikan sebagai suatu zat yang dapat mengalir. Istilah fluida mencakup zat cair dan gas karena zat cair seperti air atau zat gas seperti udara dapat mengalir.

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1. Hasil Analisa. Dari hasil pengambilan data performasi turbin air dari modifikasi blower angin sentrifugal yang dilakukan di Belik (pemandian sumber air) yang beralamat

Lebih terperinci

BAB IV DESAIN STRUKTUR MEKANIKAL ELEKTRIKAL PLTMH JORONG AIA ANGEK

BAB IV DESAIN STRUKTUR MEKANIKAL ELEKTRIKAL PLTMH JORONG AIA ANGEK BAB IV DESAIN STRUKTUR MEKANIKAL ELEKTRIKAL PLTMH JORONG AIA ANGEK Perangkat elektro mekanik merupakan salah satu komponen utama yang diperlukan oleh suatu PLTMH untuk menghasilkan energi listrik Proses

Lebih terperinci

OPTIMASI DAYA TURBIN ANGIN SAVONIUS DENGAN VARIASI CELAH DAN PERUBAHAN JUMLAH SUDU

OPTIMASI DAYA TURBIN ANGIN SAVONIUS DENGAN VARIASI CELAH DAN PERUBAHAN JUMLAH SUDU Optimasi Daya Turbin Angin Savonius dengan Variasi Celah (Farid) OPTIMASI DAYA TURBIN ANGIN SAVONIUS DENGAN VARIASI CELAH DAN PERUBAHAN JUMLAH SUDU Ahmad Farid Prodi. Teknik Mesin, Universitas Pancasakti

Lebih terperinci

Studi Eksperimental tentang Karakteristik Turbin Angin Sumbu Vertikal Jenis Darrieus-Savonius

Studi Eksperimental tentang Karakteristik Turbin Angin Sumbu Vertikal Jenis Darrieus-Savonius Studi Eksperimental tentang Karakteristik Turbin Angin Sumbu Vertikal Jenis Darrieus-Savonius Bambang Arip Dwiyantoro*, Vivien Suphandani dan Rahman Jurusan Teknik Mesin, Fakultas Teknologi Industri, Institut

Lebih terperinci

Tekanan Dan Kecepatan Uap Pada Turbin Reaksi Perbandingan Antara Turbin Impuls Dan Turbin Reaksi

Tekanan Dan Kecepatan Uap Pada Turbin Reaksi Perbandingan Antara Turbin Impuls Dan Turbin Reaksi Turbin Uap 71 1. Rumah turbin (Casing). Merupakan rumah logam kedap udara, dimana uap dari ketel, dibawah tekanan dan temperatur tertentu, didistribusikan disekeliling sudu tetap (mekanisme pengarah) di

Lebih terperinci

II. TINJAUAN PUSTAKA. Kebutuhan listrik menjadi masalah yang tidak ada habisnya. Listrik menjadi

II. TINJAUAN PUSTAKA. Kebutuhan listrik menjadi masalah yang tidak ada habisnya. Listrik menjadi II. TINJAUAN PUSTAKA.1. Potensi Pemanfaatan Mikrohidro Kebutuhan listrik menjadi masalah yang tidak ada habisnya. Listrik menjadi kebutuhan yang mendasar saat ini, namun penyebarannya tidak merata terutama

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 TURBIN AIR Turbin air termasuk dalam kelompok mesin-mesin fluida yaitu, mesin-mesin yang berfungsi untuk merubah energi fluida (energi potensial dan energi kinetis air) menjadi

Lebih terperinci

STUDI PENGARUH JUMLAH SUDU TERHADAP UNJUK KERJA SAVONIUS WATER TURBINE PADA ALIRAN AIR DALAM PIPA ABSTRACT

STUDI PENGARUH JUMLAH SUDU TERHADAP UNJUK KERJA SAVONIUS WATER TURBINE PADA ALIRAN AIR DALAM PIPA ABSTRACT STUDI PENGARUH JUMLAH SUDU TERHADAP UNJUK KERJA SAVONIUS WATER TURBINE PADA ALIRAN AIR DALAM PIPA Imron Hamzah 1, Syamsul Hadib 1, D. Danardono Dwi Prija Tjahjanac 1 1 Jurusan Teknik Mesin Universitas

Lebih terperinci

Analisis Desain Turbin Air Tipe Aliran Silang (Crossflow) dan Aplikasinya di Desa Were I Kabupaten Ngada-NTT

Analisis Desain Turbin Air Tipe Aliran Silang (Crossflow) dan Aplikasinya di Desa Were I Kabupaten Ngada-NTT LJTMU: Vol., No. 1, April 15, (1-8) ISSN Print : 56- ISSN Online : 7-555 http://ejournal-fst-unc.com/index.php/ljtmu Analisis Desain Turbin Air Tipe Aliran Silang (Crossflow) dan Aplikasinya di Desa Were

Lebih terperinci

PENGARUH BUKAAN GUIDE VANE TERHADAP KINERJA TURBIN PIKOHIDRO TIPE CROSS-FLOW

PENGARUH BUKAAN GUIDE VANE TERHADAP KINERJA TURBIN PIKOHIDRO TIPE CROSS-FLOW TURBO Vol. 6 No. 1. 2017 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo PENGARUH BUKAAN GUIDE VANE TERHADAP KINERJA TURBIN

Lebih terperinci

II. TINJAUAN PUSTAKA. A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH)

II. TINJAUAN PUSTAKA. A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) 6 II. TINJAUAN PUSTAKA A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Pembangkit Listrik Tenaga Mikrohidro (PLTMH), adalah suatu pembangkit listrik skala kecil yang menggunakan tenaga air

Lebih terperinci

Jurnal FEMA, Volume 2, Nomor 2, April 2014

Jurnal FEMA, Volume 2, Nomor 2, April 2014 KAJIAN EKSPERIMENTAL PENGARUH BENTUK SUDU TERHADAP UNJUK KERJA TURBIN HELIK UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO (PLTMH) Andareas Wijaya Sitepu 1) Jorfri B. Sinaga ) dan Agus Sugiri ) 1)

Lebih terperinci

Turbin Parson adalah jenis turbin reaksi yang paling sederhana dan banyak digunakan. Turbin mempunyai komponen-komponen utama sebagai berikut:

Turbin Parson adalah jenis turbin reaksi yang paling sederhana dan banyak digunakan. Turbin mempunyai komponen-komponen utama sebagai berikut: B. TURBIN REAKSI Pada turbin reaksi, uap masuk ke roda dengan tekanan tertentu dan mengalir pada sudu. Uap ketika meluncur, memutar sudu dan membuatnya bergerak. Kenyataannya, runner turbin berotasi karena

Lebih terperinci

ANALISIS TEKANAN POMPA TERHADAP DEBIT AIR Siswadi 5

ANALISIS TEKANAN POMPA TERHADAP DEBIT AIR Siswadi 5 ANALISIS TEKANAN POMPA TERHADAP DEBIT AIR Siswadi 5 Abstrak: Dengan ketersediannya ilmu mekanika fluida maka spesifikasi teknis yang berkaitan dengan aplikasi tekanan pompa terhadap debit air sangat langka,

Lebih terperinci

Studi Simulasi dan Eksperimental Pengaruh Pemasangan Plat Bersudut Pada Punggung Sudu Terhadap Unjuk Kerja Kincir Angin Savonius

Studi Simulasi dan Eksperimental Pengaruh Pemasangan Plat Bersudut Pada Punggung Sudu Terhadap Unjuk Kerja Kincir Angin Savonius Studi Simulasi dan Eksperimental Pengaruh Pemasangan Plat Bersudut Pada Punggung Sudu Terhadap Unjuk Kerja Kincir Angin Savonius Rudi Hariyanto 1,*, Sudjito Soeparman 2, Denny W 2., Mega Nur S 2 1 Jurusan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.. Dasar Teori Pompa Sentrifugal... Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan gaya sentrifugal.

Lebih terperinci

PROTOTYPE TURBIN PELTON SEBAGAI ENERGI ALTERNATIF MIKROHIDRO DI LAMPUNG

PROTOTYPE TURBIN PELTON SEBAGAI ENERGI ALTERNATIF MIKROHIDRO DI LAMPUNG PROTOTYPE TURBIN PELTON SEBAGAI ENERGI ALTERNATIF MIKROHIDRO DI LAMPUNG Dwi Irawan Jurusan Teknik Mesin Universitas Muhammadiyah Metro Jl. Ki Hajar Dewantara No. 116 Kota Metro (0725) 42445-42454 Email

Lebih terperinci

STUDI EKSPERIMENTAL EFEK JUMLAH SUDU PADA TURBIN AIR BERSUMBU HORISONTAL TIPE DRAG TERHADAP PEMBANGKITAN TENAGA PADA ALIRAN AIR DALAM PIPA

STUDI EKSPERIMENTAL EFEK JUMLAH SUDU PADA TURBIN AIR BERSUMBU HORISONTAL TIPE DRAG TERHADAP PEMBANGKITAN TENAGA PADA ALIRAN AIR DALAM PIPA STUDI EKSPERIMENTAL EFEK JUMLAH SUDU PADA TURBIN AIR BERSUMBU HORISONTAL TIPE DRAG TERHADAP PEMBANGKITAN TENAGA PADA ALIRAN AIR DALAM PIPA HALAMAN JUDUL SKRIPSI Diajukan sebagai salah satu syarat untuk

Lebih terperinci

BUKU PETUNJUK PRAKTIKUM MESIN-MESIN FLUIDA

BUKU PETUNJUK PRAKTIKUM MESIN-MESIN FLUIDA BUKU PETUNJUK PRAKTIKUM MESIN-MESIN FLUIDA TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA JL. MT Haryono 167 Malang website: fluidlaboratory.ub.ac.id 201/2016 PETUNJUK PENGUJIAN TURBIN AIR FRANCIS

Lebih terperinci

KAJI EKSPERIMEN TURBIN ANGIN POROS HORIZONTAL TIPE KERUCUT TERPANCUNG DENGAN VARIASI SUDUT SUDU UNTUK PEMBANGKIT LISTRIK TENAGA ANGIN

KAJI EKSPERIMEN TURBIN ANGIN POROS HORIZONTAL TIPE KERUCUT TERPANCUNG DENGAN VARIASI SUDUT SUDU UNTUK PEMBANGKIT LISTRIK TENAGA ANGIN KAJI EKSPERIMEN TURBIN ANGIN POROS HORIZONTAL TIPE KERUCUT TERPANCUNG DENGAN VARIASI SUDUT SUDU UNTUK PEMBANGKIT LISTRIK TENAGA ANGIN Bono Jurusan Teknik Mesin Politeknik Negeri Semarang Jl. Prof. H. Sudarto,

Lebih terperinci

PENGARUH PROFIL SUDU TERHADAP KOEFISIEN DAYA TURBIN GORLOV

PENGARUH PROFIL SUDU TERHADAP KOEFISIEN DAYA TURBIN GORLOV KURVATEK Vol.1. No. 2, November 2016, pp.7-11 ISSN: 2477-7870 7 PENGARUH PROFIL SUDU TERHADAP KOEFISIEN DAYA TURBIN GORLOV Eka Yawara 1,a, Y. Agus Jayatun 1, Daru Sugati 1 Jurusan Teknik Mesin, Sekolah

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Meningkatnya konsumsi bahan bakar khususnya bahan bakar fosil sangat mempengaruhi peningkatan harga jual bahan bakar tersebut. Sehingga pemerintah berupaya mencari

Lebih terperinci

Deni Rafli 1, Mulfi Hazwi 2. Universitas Sumatera Utara (USU) Jl. Almamater, Kampus USU Medan INDONESIA

Deni Rafli 1, Mulfi Hazwi 2. Universitas Sumatera Utara (USU) Jl. Almamater, Kampus USU Medan INDONESIA SIMULASI NUMERIK PENGGUNAAN POMPA SEBAGAI TURBIN PADA PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO (PLTMH) DENGAN HEAD 9,29 M DAN 5,18 M MENGGUNAKAN PERANGKAT LUNAK CFD PADA PIPA BERDIAMETER 10,16 CM Deni Rafli

Lebih terperinci

KARAKTERISASI DAYA TURBIN PELTON MIKRO DENGAN VARIASI BENTUK SUDU

KARAKTERISASI DAYA TURBIN PELTON MIKRO DENGAN VARIASI BENTUK SUDU KARAKTERISASI DAYA TURBIN PELTON MIKRO DENGAN VARIASI BENTUK SUDU Bono 1) dan Indarto ) 1) Mahsiswa Program Pascasarjana Teknik Mesin dan Industri, Fakultas Teknik Universitas Gadjah Mada, Jalan Grafika

Lebih terperinci

Makalah Pembangkit listrik tenaga air

Makalah Pembangkit listrik tenaga air Makalah Pembangkit listrik tenaga air Di susun oleh : Muhamad Halfiz (2011110031) Robi Wijaya (2012110003) Alhadi (2012110093) Rari Ranjes Noviko (2013110004) Sulis Tiono (2013110008) Jurusan Teknik Mesin

Lebih terperinci

ANALISA PERANCANGAN TURBIN VORTEX DENGAN CASING BERPENAMPANG SPIRAL DAN LINGKARAN DENGAN 3 VARIASI DIMENSI SUDU

ANALISA PERANCANGAN TURBIN VORTEX DENGAN CASING BERPENAMPANG SPIRAL DAN LINGKARAN DENGAN 3 VARIASI DIMENSI SUDU ANALISA PERANCANGAN TURBIN VORTEX DENGAN CASING BERPENAMPANG SPIRAL DAN LINGKARAN DENGAN 3 VARIASI DIMENSI SUDU SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik INDRA

Lebih terperinci

PENGUJIAN UNJUK KERJA TURBIN CROSSFLOW SKALA LABORATORIUM DENGAN JUMLAH SUDU 20

PENGUJIAN UNJUK KERJA TURBIN CROSSFLOW SKALA LABORATORIUM DENGAN JUMLAH SUDU 20 PENGUJIAN UNJUK KERJA TURBIN CROSSFLOW SKALA LABORATORIUM DENGAN JUMLAH SUDU 20 Muhammad tohari *), Ir. Husin Ibrahim Lubis, MT Jurusan Teknik Mesin Sekolah Tinggi Teknik Harapan 2015 *) E-mail :hari_boy03@yahoo.co.id

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 TURBIN AIR Turbin air termasuk dalam kelompok mesin-mesin fluida yaitu, mesin-mesin yang berfungsi untuk merubah energi fluida (energi potensial dan energi kinetis air) menjadi

Lebih terperinci

KINERJA YANG DIHASILKAN OLEH KINCIR AIR ARUS BAWAH DENGAN SUDU BERBENTUK MANGKOK. *Luther Sule

KINERJA YANG DIHASILKAN OLEH KINCIR AIR ARUS BAWAH DENGAN SUDU BERBENTUK MANGKOK. *Luther Sule KINERJA YANG DIHASILKAN OLEH KINCIR AIR ARUS BAWAH DENGAN SUDU BERBENTUK MANGKOK *Luther Sule *Kompleks Perumahan Dosen Unhas EB.17 Tamalanrea, Jurusan Mesin Fakultas Teknik Universitas Hasanuddin, Jl.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pembangkit Listrik Tenaga Air Pembangkit Listrik Tenaga Air (PLTA) adalah pembangkit yang mengandalkan energi potensial dan kinetik dari air untuk menghasilkan energi listrik.

Lebih terperinci

Potensi Tenaga Air di Indonesia Selama ini telah beberapa kali dilakukan studi potensi tenaga air di negara kita. Pada tahun 1968 Lembaga Masalah Ketenagaan- PLN (LMK) mencatat potensi tenaga air sebesar

Lebih terperinci

PENGUJIAN PROTOTIPE TURBIN HEAD SANGAT RENDAH PADA SUATU SALURAN ALIRAN AIR

PENGUJIAN PROTOTIPE TURBIN HEAD SANGAT RENDAH PADA SUATU SALURAN ALIRAN AIR PENGUJIAN PROTOTIPE TURBIN HEAD SANGAT RENDAH PADA SUATU SALURAN ALIRAN AIR Ridwan Arief Subekti 1, Anjar Susatyo 2 1 Pusat Penelitian Tenaga Listrik dan Mekatronik, LIPI, Bandung ridw001@lipi.go.id 2

Lebih terperinci

FLUID MACHINES LABORATORY MECHANICAL ENGINEERING BRAWIJAYA UNIVERSITY JL. MAYJEN HARYONO 167 MALANG TELP/FAX :

FLUID MACHINES LABORATORY MECHANICAL ENGINEERING BRAWIJAYA UNIVERSITY JL. MAYJEN HARYONO 167 MALANG TELP/FAX : FLUID MACHINES LABORATORY MECHANICAL ENGINEERING BRAWIJAYA UNIVERSITY JL. MAYJEN HARYONO 167 MALANG TELP/FAX : 0341-554291 PETUNJUK PENGUJIAN POMPA SENTRIFUGAL PENGUJIAN POMPA SENTRIFUGAL TUNGGAL, SERI,

Lebih terperinci

RANCANG BANGUN TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO DENGAN VARIASI BENTUK SUDU

RANCANG BANGUN TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO DENGAN VARIASI BENTUK SUDU PKMT-2-16-1 RANCANG BANGUN TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO DENGAN VARIASI BENTUK SUDU Pamungkas Irwan N, Franciscus Asisi Injil P, Karwanto, Samodra Wasesa Jurusan Teknik

Lebih terperinci

PENGUJIAN UNJUK KERJA TURBIN CROSSFLOW SKALA LABORATORIUM DENGAN JUMLAH SUDU 24

PENGUJIAN UNJUK KERJA TURBIN CROSSFLOW SKALA LABORATORIUM DENGAN JUMLAH SUDU 24 PENGUJIAN UNJUK KERJA TURBIN CROSSFLOW SKALA LABORATORIUM DENGAN JUMLAH SUDU 24 Armansyah Munthe *), Rahmawaty, ST, MT Jurusan Teknik Mesin Sekolah Tinggi Teknik Harapan 2015 *) E-mail : arman.munthe@yahoo.com

Lebih terperinci

PRINSIP KERJA TENAGA ANGIN TURBIN SAVOUNIUS DI DEKAT PANTAI KOTA TEGAL

PRINSIP KERJA TENAGA ANGIN TURBIN SAVOUNIUS DI DEKAT PANTAI KOTA TEGAL PRINSIP KERJA TENAGA ANGIN TURBIN SAVOUNIUS DI DEKAT PANTAI KOTA TEGAL Soebyakto Dosen Fakultas Teknik Universitas Pancasakti Tegal E-mail : soebyakto@gmail.com ABSTRAK Tenaga angin sering disebut sebagai

Lebih terperinci

PERANCANGAN MODEL AIR ALIRAN SILANG (CROSS FLOW TURBINE) DENGAN HEAD 2 m DAN DEBIT 0,03 m 3 /s

PERANCANGAN MODEL AIR ALIRAN SILANG (CROSS FLOW TURBINE) DENGAN HEAD 2 m DAN DEBIT 0,03 m 3 /s JTM Vol. 03, No. 3, Oktober 2014 7 PERANCANGAN MODEL AIR ALIRAN SILANG (CROSS FLOW TURBINE) DENGAN HEAD 2 m DAN DEBIT 0,03 m 3 /s Ridwan Program Studi Teknik Mesin, Fakultas Teknik, Universitas Mercu Buana,

Lebih terperinci

TUGAS SKRIPSI SISTEM PEMBANGKIT TENAGA

TUGAS SKRIPSI SISTEM PEMBANGKIT TENAGA TUGAS SKRIPSI SISTEM PEMBANGKIT TENAGA ANALISIS VARIASI SUDUT SUDU-SUDU TURBIN IMPULS TERHADAP DAYA MEKANIS TURBIN SEBAGAI PEMBANGKIT TENAGA UAP PADA PKS KAPASITAS 30 TON TBS/JAM OLEH ISKANDAR PERANGIN

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010 RANCANGAN NOSEL DENGAN KATUP PENGATURAN DEBIT AIR PENGGERAK TURBIN OSSBEGER DAYA TURBIN = 2,6 KW HEAD = 12 METER SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana H E R D Y

Lebih terperinci

Prosiding Seminar Nasional Sains dan Teknologi ke-2 Tahun 2011 Fakultas Teknik Universitas Wahid Hasyim Semarang A.13

Prosiding Seminar Nasional Sains dan Teknologi ke-2 Tahun 2011 Fakultas Teknik Universitas Wahid Hasyim Semarang A.13 KARAKTERISASI DAYA TURBIN PELTON SUDU SETENGAH SILINDER DENGAN VARIASI PERBANDINGAN LEBAR SUDU DENGAN DIAMETER NOSEL PADA HARGA PERBANDINGAN JET SEBESAR 18 Bono dan Gatot Suwoto Jurusan Teknik Mesin Politeknik

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA 5 BAB II KAJIAN PUSTAKA 2.1 Tinjauan Mutakhir Penelitian ini di peruntukan untuk tugas akhir dengan judul Studi Analisis Pengaruh Sudu Turbin Pada Pembangkit Listrik Tenaga Mikro Hidro.Penelitian ini mengacu

Lebih terperinci

PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P

PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P ANGGAPAN YANG DIGUNAKAN ZAT CAIR ADALAH IDEAL ZAT CAIR ADALAH HOMOGEN DAN TIDAK TERMAMPATKAN ALIRAN KONTINYU DAN SEPANJANG GARIS ARUS GAYA YANG BEKERJA HANYA

Lebih terperinci

BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER

BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER 4.1 Perhitungan Blower Untuk mengetahui jenis blower yang digunakan dapat dihitung pada penjelasan dibawah ini : Parameter yang diketahui : Q = Kapasitas

Lebih terperinci

BAB III METODE PERANCANGAN PEMBANGKIT LISTRIK TENAGA ANGIN. yang penulis rancang ditunjukkan pada gambar 3.1. Gambar 3.

BAB III METODE PERANCANGAN PEMBANGKIT LISTRIK TENAGA ANGIN. yang penulis rancang ditunjukkan pada gambar 3.1. Gambar 3. 29 BAB III METODE PERANCANGAN PEMBANGKIT LISTRIK TENAGA ANGIN 3.1 Konsep Perancangan Sistem Adapun blok diagram secara keseluruhan dari sistem keseluruhan yang penulis rancang ditunjukkan pada gambar 3.1.

Lebih terperinci

ABSTRAK. Kata kunci : PLTMH, Prosedur Praktikum, Sudu Turbin, Efisiensi.

ABSTRAK. Kata kunci : PLTMH, Prosedur Praktikum, Sudu Turbin, Efisiensi. ABSTRAK Penelitian ini bertujuan untuk merancang suatu modul praktikum PLTMH kemudian mengimplementasikan modul tersebut dengan menyusun suatu petunjuk-petunjuk praktikum serta melakukan pengukuran pada

Lebih terperinci

BAB I PENDAHULUAN. manusia dapat menikmati listrik. Akibat sulitnya lokasi yang tidak dapat

BAB I PENDAHULUAN. manusia dapat menikmati listrik. Akibat sulitnya lokasi yang tidak dapat BAB I PENDAHULUAN 1.1 LATAR BELAKANG Indonesia adalah negara kepulauan dengan jumlah pulau yang mencapai ribuan. Dari sekian banyak pulau tersebut belum semua pulau yang dihuni manusia dapat menikmati

Lebih terperinci

SKRIPSI. Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik. Oleh : DANANG KURNIAWAN NIM. I

SKRIPSI. Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik. Oleh : DANANG KURNIAWAN NIM. I UJI EKSPERIMENTAL PENGARUH POSISI DAN SUDUT SUDU PENGARAH ALIRAN (GUIDE VANE) TERHADAP PERFORMA TURBIN ANGIN CROSS FLOW YANG TERINTEGRASI DENGAN MENARA PENDINGIN SKRIPSI Diajukan sebagai salah satu syarat

Lebih terperinci

Studi Eksperimen Pengaruh Sudut Plat Pengganggu Di Depan Returning Blade Turbin Angin Tipe Savonius Terhadap Performa Turbin

Studi Eksperimen Pengaruh Sudut Plat Pengganggu Di Depan Returning Blade Turbin Angin Tipe Savonius Terhadap Performa Turbin JURNAL TEKNIK ITS Vol. 5 No. 2 (2016) ISSN: 2337-3539 (2301-9271 Print) B-635 Studi Eksperimen Pengaruh Sudut Plat Pengganggu Di Depan turning Blade Turbin Angin Tipe Savonius Terhadap Performa Turbin

Lebih terperinci

MESIN FLUIDA ANALISA PERFORMANCE POMPA SENTRIFUGAL TERHADAP KAPASITAS ALIRAN

MESIN FLUIDA ANALISA PERFORMANCE POMPA SENTRIFUGAL TERHADAP KAPASITAS ALIRAN TUGAS SARJANA MESIN FLUIDA ANALISA PERFORMANCE POMPA SENTRIFUGAL TERHADAP KAPASITAS ALIRAN OLEH : DIAN PRANATA BANGUN NIM : 040421011 FAKULTAS TEKNIK DEPARTEMEN TEKNIK MESIN PROGRAM PENDIDIKAN SARJANA

Lebih terperinci

Bab IV Analisis dan Pengujian

Bab IV Analisis dan Pengujian Bab IV Analisis dan Pengujian 4.1 Analisis Simulasi Aliran pada Profil Airfoil Simulasi aliran pada profil airfoil dimaskudkan untuk mencari nilai rasio lift/drag terhadap sudut pitch. Simulasi ini tidak

Lebih terperinci

STUDI EKSPERIMENTAL SUDUT NOSEL DAN SUDUT SUDU TERHADAP KINERJA TURBIN CROSS-FLOW SEBAGAI PLTMH DI DESA BUMI NABUNG TIMUR. Tesis.

STUDI EKSPERIMENTAL SUDUT NOSEL DAN SUDUT SUDU TERHADAP KINERJA TURBIN CROSS-FLOW SEBAGAI PLTMH DI DESA BUMI NABUNG TIMUR. Tesis. STUDI EKSPERIMENTAL SUDUT NOSEL DAN SUDUT SUDU TERHADAP KINERJA TURBIN CROSS-FLOW SEBAGAI PLTMH DI DESA BUMI NABUNG TIMUR Tesis Oleh MAFRUDDIN PROGRAM PASCASARJANA MAGISTER TEKNIK MESIN FAKULTAS TEKNIK

Lebih terperinci

RANCANG BANGUN TURBIN ANGIN VERTIKAL JENIS SAVONIUS DENGAN VARIASI PROFIL KURVA BLADE UNTUK MEMPEROLEH DAYA MAKSIMUM

RANCANG BANGUN TURBIN ANGIN VERTIKAL JENIS SAVONIUS DENGAN VARIASI PROFIL KURVA BLADE UNTUK MEMPEROLEH DAYA MAKSIMUM RANCANG BANGUN TURBIN ANGIN VERTIKAL JENIS SAVONIUS DENGAN VARIASI PROFIL KURVA BLADE UNTUK MEMPEROLEH DAYA MAKSIMUM Oleh : Achmada Jaya Pradana NRP 2411105026 Dosen Pembimbing : Dr. Gunawan Nugroho ST.

Lebih terperinci

ANALISA KETINGGIHAN DAN DEBIT AIR PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO PADA DAERAH TERPENCIL

ANALISA KETINGGIHAN DAN DEBIT AIR PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO PADA DAERAH TERPENCIL ANALISA KETINGGIHAN DAN DEBIT AIR PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO PADA DAERAH TERPENCIL Purnomo 1 Efrita Arfah Z 2 Edi Suryanto 3 Jurusan Teknik Mesin Institut Teknologi Adhi Tama Surabaya Jl.

Lebih terperinci

TUGAS AKHIR BIDANG KONVERSI ENERGI PERANCANGAN, PEMBUATAN DAN PENGUJIAN POMPA DENGAN PEMASANGAN TUNGGAL, SERI DAN PARALEL

TUGAS AKHIR BIDANG KONVERSI ENERGI PERANCANGAN, PEMBUATAN DAN PENGUJIAN POMPA DENGAN PEMASANGAN TUNGGAL, SERI DAN PARALEL TUGAS AKHIR BIDANG KONVERSI ENERGI PERANCANGAN, PEMBUATAN DAN PENGUJIAN POMPA DENGAN PEMASANGAN TUNGGAL, SERI DAN PARALEL Oleh: ANGGIA PRATAMA FADLY 07 171 051 JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

Pengaruh Jumlah Sudu Terhadap Optimalisasi Kinerja Turbin Kinetik Roda Tunggal

Pengaruh Jumlah Sudu Terhadap Optimalisasi Kinerja Turbin Kinetik Roda Tunggal Pengaruh Jumlah Sudu Terhadap Optimalisasi Kinerja Turbin Kinetik Roda Tunggal Richard Pietersz, Rudy Soenoko, Slamet Wahyudi Jurusan Teknik Mesin Fakultas Teknik Universitas Brawijaya Jalan. Mayjend Haryono

Lebih terperinci

PERENCANAAN PEMBANGUNAN SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO (PLTMH) DI KINALI PASAMAN BARAT

PERENCANAAN PEMBANGUNAN SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO (PLTMH) DI KINALI PASAMAN BARAT PERENCANAAN PEMBANGUNAN SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO (PLTMH) DI KINALI PASAMAN BARAT Oleh : Sulaeman 1 dan Ramu Adi Jaya Dosen Teknik Mesin 1 Mahasiswa Teknik Mesin Jurusan Teknik Mesin

Lebih terperinci

UJI EKSPERIMENTAL PENGARUH SUDU PENGARAH ALIRAN (GUIDE VANE) TERHADAP DAYA PADA TURBIN SAVONIUS SKRIPSI

UJI EKSPERIMENTAL PENGARUH SUDU PENGARAH ALIRAN (GUIDE VANE) TERHADAP DAYA PADA TURBIN SAVONIUS SKRIPSI UJI EKSPERIMENTAL PENGARUH SUDU PENGARAH ALIRAN (GUIDE VANE) TERHADAP DAYA PADA TURBIN SAVONIUS SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik Oleh : YASIR DENHAS NIM.

Lebih terperinci