PREDIKSI DAN LATIHAN SOAL UJIAN AKHIR NASIONAL KUMPULAN SOAL DAN PEMBAHASAN SOAL UAN

Ukuran: px
Mulai penontonan dengan halaman:

Download "PREDIKSI DAN LATIHAN SOAL UJIAN AKHIR NASIONAL KUMPULAN SOAL DAN PEMBAHASAN SOAL UAN 2004-2009"

Transkripsi

1 PREDIKSI DAN LATIHAN SOAL UJIAN AKHIR NASIONAL KUMPULAN SOAL DAN PEMBAHASAN SOAL UAN MATEMATIKA Untuk SMP / MTS Copyright soal-unas.blogspot.com Artikel ini boleh dicopy, dikutip, di cetak dalam media kertas atau yang lain, dipublikasikan kembali dalam berbagai bentuk dengan tetap mencantumkan copyright dan link yang tertera pada setiap document tanpa ada tujuan komersial. Di persembahkan oleh: Kumpulan soal Ujian Nasional, Ujian Akhir Nasional Kumpulan soal masuk perguruan tinggi, SNMPTN, SPMB, Ujian Masuk ITB, Undip, dsb update terbaru informasi seputar ujian nasional soal latihan dan prediksi berikut diambil dari berbagai sumbe soal ujian nasional mulai tahun 2004 sampai dengan 2009,lalu team kami mengerjakan pembahasanya dengan cermat dan seakurat mungkin. Silahkan konsultasikan dengan guru anda apabila menemukan jawaban atau pembahasan yang kurang tepat pada latihan soal ujian nasional berikut 1 Kumpulan Soal Ujian Nasional, Latihan Soal, Semester dan Masuk Perguruan Tinggi

2 uan 2007/ Hasil dari + A. 53 B. 57 C. 63 D. 67 uan 2008/ Hasil dari (-18+30): ( -3-1) = A. -12 B. -3 C. 3 D. 12 Uan 2005/ Dari 40 siswa di suatu kelas terdapat 22 orang menyukai basket, 9 orang menyukai basket dan volley, 7 orang tidak menyukai basket maupun volley, berapa banyak siswa yang hanya menyukai volley saja? A. 2 Orang B. 5 orang C. 11 orang D. 20 orang Uan 2006/ x = A. B. C. D. 10 Uan 2006/ Ibu membeli 4 kg gula pasir, gula itu akan dijual eceran dengan dibungkus plastic masing-masing beratnya ¼ kg, banyak kantong plastic berisi gula yang di hasilkan adalah A. 10 kantong B. 80 kantong C. 120 kantong D. 160 kantong 2 Kumpulan Soal Ujian Nasional, Latihan Soal, Semester dan Masuk Perguruan Tinggi

3 6. Diketahui : a,b dan c adalah bilangan cacah ganjil, dimana a + b + c = 51. Jika a = 3 1 c dan a + b = 24, maka b + c =... a. 36 b. 42 c. 40 d Perhatikan gambar berikut. Diberikan segi empat KLMN dan segi empat PQRS, dengan KLMN ~ PQRS. Hitunglah panjang QR dan MN a. 28 cm dan 37cm b. 9 cm dan 17 cm c. 17 cm dan 27 cm d. 14 cm dan 23 cm 10 3x x penyelesaian 8 5 a. -5 b. -2 c. 2 d. 5 adalah 9. Sebuah peluru ditembakan memenuhi persamaan fungsi h(t) = 50t 5t 2. Tinggi maksimum peluru adalah m a. 75 m b. 100 m c. 125 m d. 250 m 10. Sebuah konveksi pakaian jadi, pada bulan Maret dapat menyelesaikan 500 baju, pada bulan April 525 baju, bulan Mei 550 baju, dan seterusnya. Berapakah banyak baju yang dapat dihasilkan pada bulan Desember tahun yang sama? a. 725 m b. 750 m 3 Kumpulan Soal Ujian Nasional, Latihan Soal, Semester dan Masuk Perguruan Tinggi

4 c. 625 m d. 690 m 11. Dua buah bola dengan jari-jari bola pertama ra dan jari-jari bola kedua rb dengan rb = ra. Carilah perbandingan volume kedua bola tersebut. a b c d Salah satu persamaan garis singgung di titik (0,4) pada lingkaran x 2 +y 2 =4 adalah a. y = ± 3x 4 b. y = ± 5x 7 c. y = ± 4x 2 d. y = ± 3 x 13. Garis singgung lingkaran x 2 +y 2 =25 di titik (-3,4) menyinggung lingkaran dengan pusat (10,5) dan jari-jari r.berapakah nilai r? a. 4 b. 5 c. 6 d Pada percobaan dua buah dadu,tentukanlah peluang kejadian muncul kedua bilangan jika dijumlahkan hasilnya kurang dari 12! 26 a. 36 b. c. d Kumpulan Soal Ujian Nasional, Latihan Soal, Semester dan Masuk Perguruan Tinggi

5 15. Suatu data mempunyai rata-rata 35 dan jangkauan 7. Jika setiap nilai dalam data dikalikan p kemudian dikurangi q didapat data baru dengan rata-rata 42 dan jangkauan 9. Berapakah nilai 7 p-q? a. 5 b. 6 c. 7 d Ali dan Udin kakak beradik. Mereka bersepeda dari alun-alun ke rumahnya melewati jalan yang sama. Ali bersepeda dengan kecepatan 12 km/jam sedangkan Udin 8 km/jam. Ali tiba di rumahnya 15 menit sebelum Udin tiba. Berapa lama Ali bersepeda dari alun-alun ke rumahnya? a. 30 menit b. 60 menit c. 25 menit d. 45 menit 17. Faktorkanlah bentuk aljabar berikut 8x 2+ 2x 3.Berapakah hasilnya? a. (2x-2)(2x+4) b. (2x-1)(4x+3) c. (2x-2)(2x-4) d. (2x-2)(4x+4) 18. Jika A = {bilangan primakurang dari 5} dan B = {huruf vokal}, hitunglah banyaknya pemetaan dari A ke B? a. 20 b. 15 c. 30 d f adalah fungsi linear dengan f(0)=-5 dan f( 2)= 9. Tentukan bentuk fungsi f(x)? a. f(x) = ax+b = 5x-3 b. f(x) = ax+b = 2x-5 c. f(x) = ax+b = 4x+3 d. f(x) = ax+b = 5x Diameter alas suatu kerucut 16 cm dan panjang apotemanya 17 cm. Berapa volume kerucut? a. 12 cm b. 14 cm c. 15 cm 5 Kumpulan Soal Ujian Nasional, Latihan Soal, Semester dan Masuk Perguruan Tinggi

6 d. 17 cm 21. Dua buah tabung dengan tinggi sama mempunyai jari-jari lingkaran alas 3,5 cm dan 5 cm. Berapa perbandingan volume kedua tabung? a. 4 : 5 b. 0,55 : 3 c. 0,49 :1 d. 2 : 1 PENYELESAIAN SOAL DAN JAWABAN Jawaban matematika SMP Soal hitung bilangan bulat 1. + = + = = 57 Jawaban yang tepat adalah B 2. (-18+30): ( -3-1) = 12 : -4 = 13 Jadi jawaban yang tepat adalah B 3. Soal Himpunan Pertanyaan : berapa siswa yang menyukai volley saja? Misalkan S = seluruh siswa di kelas = 40 B = jumlah siswa yang menyukai basket = 22 B V = jumlah siswa menyukai basket dan volley = 9 Dan orang yang tidak menyukai keduanya = (B V) C = 7 Perhatikan diagram venn berikut, untuk lebih jelasnya S B v x-9 Jumlah siswa yang menyukai basket saja = 22-9 = 13 orang Maka siswa yang menyukai volley saja 40 = x Kumpulan Soal Ujian Nasional, Latihan Soal, Semester dan Masuk Perguruan Tinggi

7 40 = 20 + x X = 20 Jadi jawaban yang benar adalah C 4. soal bilangan pecahan + x = + x ) = +4 = Jadi jawaban yang tepat B 5. berat gula pasir seluruhnya adalah = 40 kg, berat gula pasir dalam setiap kantong plastic adalah ¼ kg, maka banyak kantong plastic yang dapat dihasilkan adalah 40 kg : ¼ kg = 160 kantong Jadi jawaban yang tepat D 6. Jawaban : A a + b + c = 51 (1) a = 3 1 c...(2) a + b = 24.. (3) persamaan (1) dan (2), 1 c + b + c = c + b = 51.. (4) 3 persamaan (2) dan (3), 1 c + b = 24.. (5) 3 persamaan (4) dan (5), di samakan konstanta c dan di jumlahkan! Dari penjumlahan persamaan (4) dan (5), di dapatkan nilai b = 9 Nilai b dimasukan ke persamaan (3), a + b = 24 a + 9 = 24 a = 15 nilai a dan b dimasukan ke persamaan (1), a + b + c = c = 51 c = 27 Jadi nilai b + c = = Jawaban : C Karena KLMN ~ PQRS maka kedua bangun tersebut mempunyai hubungan sisi-sisi yang bersesuaian sebanding. KL Berarti,dengan =k, PQ dengan k faktor skala. KL Dik KL = 45 cm dan PQ = 15 cm, artinya = PQ 45cm =3, jadi faktor skala k = 3 15cm 7 Kumpulan Soal Ujian Nasional, Latihan Soal, Semester dan Masuk Perguruan Tinggi

8 QR bersesuaian dengan LM, karena dua bangunan tersebut mempunyai factor skala k = 3, maka LM LM 51cm 3 Berarti QR 17 cm QR 3 3 MN bersesuain dengan RS,karena dua bangunan tersebut mempunyai factor skala k = 3, maka LM 3, berarti MN = 3 RS = 3 x 9 cm = 27 cm RS Jadi nilai QR dan MN = 17 cm dan 27 cm 8. Jawaban : B 10 3x x (10-3x) = 8 (x+12) 50 15x = 8x x = 46 x = Jawaban : C Mencari nilai t, h(t) = 50t 5t 2, jadi h (t) = 50-10t t = 5 h(5) = 50(5) 5(5) 2 = 125 m Jadi tinggi maksimum peluru=125 m 10. Jawaban : A bulan Maret = U1 = 500 bulan April = U2 = 525 bulan Mei = U3 = 550 Banyak baju yang di hasilkan pada bulan Desember adalah: U 10 = U 1 + (10 1)b = x 25 = = 725 Jadi, banyak baju yang dihasilkan pada bulan Desember adalah 725 buah. 11. Jawaban : C 8 Kumpulan Soal Ujian Nasional, Latihan Soal, Semester dan Masuk Perguruan Tinggi

9 Jadi perbandingan volume keduanya adalah 27 : Jawaban:A Diketahui persamaan lingkaran x 2 +y 2 =4 Persamaan garis singgung pada lingkaran yang ditarik dari titik (x 1,y 1 )di luar lingkaran: Y = m(x-x 1 )+y 1 Dalam lingkaran di atas R=2 dan (x 1,y 1 ) = (0,4) maka y = mx+4 (1) Dengan m adalah gradien dari: y = mx + R m 2 1 (2) (1)=(2), maka berlaku mx +4 = mx+r m = 2 m = m = m 2 +1 m = ± 3 Jadi,persamaan garis singgungnya y= ± 3x Jawaban: D Persamaan garis singgung lingkaran x 2 +y 2 =25 pada titik (-3,4) adalah xx 1 +yy 1 =r 2-3x+4y=25 Karena diketahui pusat lingkaran (10,5) dan persamaan garis singgungnya -3x+4y=25,maka jarijari lingkaran tersebut adalah r= 3(10) 4(5) Kumpulan Soal Ujian Nasional, Latihan Soal, Semester dan Masuk Perguruan Tinggi

10 35 = 5 = 7 Jadi nilai r adalah Jawaban:C Karena dalam pelemparan menggunakan dua dadu, maka n(s)=36 Misal A adalah kejadian muncul bilangan jika dijumlahkan hasilnya 12 atau lebih.maka A=(6,6) berarti n(e) = 1 n( A) P(A) = n( S) 1 = 36 Misal B adalah kejadian muncul bilangan jika dijumlahkan hasilnya kurang dari 12,maka 1 P(B) = = 36 Jadi peluang kejadian muncul kedua bilangan yang jika dijumlahkan hasilnya kurang dari adalah Jawaban : B Diketahui bahwa 35p q = 42 7p = 9 Dari kedua persamaan ini didapatkan 5 (7p) q = 42 5(9) q = 42 q = 3 Jadi 7p - q = 9 3 = Jawaban:A Misalkan lama Ali bersepeda adalah t jam, maka lamanya Udin bersepeda adalah: 15 1 ( t+ ) jam = ( t+ ) jam Jarak yang ditempuh Ali sama dengan jarak yang ditempuh Udin. Jadi, 12(t) = 8(t ) 12 t = 8. t Kumpulan Soal Ujian Nasional, Latihan Soal, Semester dan Masuk Perguruan Tinggi

11 12 t = 8t t = 2 2 t = 4 1 = 2 Jadi lamanya Ali bersepeda adalah 17. Jawaban : B 1 jam atau 30 menit. 2 8x 2 + 2x 3 = 8 1 (8x 4) (8x + 6) = (8x 4) (8x + 6) = 4 1 (8x 4) 2 1 (8x + 6) = 4 1 4(2 1) (4x +3) = (2x 1) (4x + 3) Jadi, 8x 2 + 2x 3 = (2x 1) (4x + 3). 18. Jawaban:D A = {2, 3}, n(a) = 2 B = {a, e, i, o, u}, n(b) = 5 Banyaknya pemetaan yang mungkin dari A ke B = b a = 5 2 = 25 Jadi banyaknya pemetaan dari A ke B adalah Jawaban: B Karena f fungsi linear, maka f(x) = ax + b. Dengan demikian diperoleh f(0) = 5 f(0) = a (0) + b = b = 5 b = 5 Untuk menentukan nilai a f(-2) = -9 f(-2) = a (-2) + b = -9-2a 5 = - 9-2a = a = Kumpulan Soal Ujian Nasional, Latihan Soal, Semester dan Masuk Perguruan Tinggi

12 a = a = 2 Jadi, fungsi yang dimaksud adalah f(x) = ax + b = 2x Kumpulan Soal Ujian Nasional, Latihan Soal, Semester dan Masuk Perguruan Tinggi

13 20. Jawaban:C Diameter = 16 cm, maka r = 8 cm s = 17 cm t 2 = s 2 r 2 = t = 15 cm Jadi volume kerucut adalah 15 cm 21. Jawaban : C V1 : V2 = r : r 2 = (3,5)2 : 52 = 12,25 : 25 = (0,49 25) : (1 25) Jadi perbandingan volumenya V1 : V2 = 0,49 : 1 13 Kumpulan Soal Ujian Nasional, Latihan Soal, Semester dan Masuk Perguruan Tinggi

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian :

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian : 1. Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm C. 26 cm B. 52 cm D. 13 cm 2. Gambar disamping adalah persegi panjang. Salah satu sifat persegi panjang adalah

Lebih terperinci

4. Himpunan penyelesaian dari sistem persamaan linear x + y = 5 dan x - 2y = -4 adalah... A.{ (1, 4) }

4. Himpunan penyelesaian dari sistem persamaan linear x + y = 5 dan x - 2y = -4 adalah... A.{ (1, 4) } 1. Diketahui himpunan P = ( bilangan prima kurang dari 13 ) Banyak himpunan bagian dari P adalah... 5 25 10 32 P = {Bilangan prima kurang dari 13} = {2, 3, 5, 7, 11} n(p) = 5 2. Dari diagram Venn di bawah,

Lebih terperinci

3 OPERASI HITUNG BENTUK ALJABAR

3 OPERASI HITUNG BENTUK ALJABAR OPERASI HITUNG BENTUK ALJABAR Pada arena balap mobil, sebuah mobil balap mampu melaju dengan kecepatan (x + 10) km/jam selama 0,5 jam. Berapakah kecepatannya jika jarak yang ditempuh mobil tersebut 00

Lebih terperinci

PERTIDAKSAMAAN LINEAR SATU VARIABEL. Sumber: Dok. Penerbit

PERTIDAKSAMAAN LINEAR SATU VARIABEL. Sumber: Dok. Penerbit 4 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR SATU VARIABEL Sumber: Dok. Penerbit Pernahkah kalian berbelanja alat-alat tulis? Kamu berencana membeli 10 buah bolpoin, sedangkan adikmu membeli 6 buah bolpoin dengan

Lebih terperinci

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPA

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPA PEMBAHASAN UN SMA TAHUN PELAJARAN 009/00 MATEMATIKA PROGRAM STUDI IPA PEMBAHAS :. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si. 3. Marfuah, M.T. 4. Rohmitawati, S.Si. PPPPTK MATEMATIKA 00 . Perhatikan

Lebih terperinci

KUMPULAN RUMUS MATEMATIKA UNTUK SMP SESUAI DENGAN STANDAR KOMPETENSI LULUSAN UJIAN NASIONAL TAHUN PELAJARAN 2009/2010

KUMPULAN RUMUS MATEMATIKA UNTUK SMP SESUAI DENGAN STANDAR KOMPETENSI LULUSAN UJIAN NASIONAL TAHUN PELAJARAN 2009/2010 Rumus-rumus Matematika 1 Sesuai SKL UN 2010 KUMPULN RUMUS MTMTIK UNTUK SMP SSUI NGN STNR KOMPTNSI LULUSN UJIN NSIONL THUN PLJRN 2009/2010 SKL Nomor 1 : Menggunakan konsep operasi hitung dan sifat-sifat

Lebih terperinci

Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... A. 4

Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... A. 4 1. Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... A. 4 D. (8-2 ) cm B. (4 - ) cm E. (8-4 ) cm C. (4-2 ) cm Jawaban : E Diketahui segitiga sama kaki = AB = AC Misalkan : AB = AC = a

Lebih terperinci

Suku Banyak. A. Pengertian Suku Banyak B. Menentukan Nilai Suku Banyak C. Pembagian Suku Banyak D. Teorema Sisa E. Teorema Faktor

Suku Banyak. A. Pengertian Suku Banyak B. Menentukan Nilai Suku Banyak C. Pembagian Suku Banyak D. Teorema Sisa E. Teorema Faktor Bab 5 Sumber: www.in.gr Setelah mempelajari bab ini, Anda harus mampu menggunakan konsep, sifat, dan aturan fungsi komposisi dalam pemecahan masalah; menggunakan konsep, sifat, dan aturan fungsi invers

Lebih terperinci

FUNGSI DAN GRAFIKNYA KULIAH-4. Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan PERTIDAKSAMAAN

FUNGSI DAN GRAFIKNYA KULIAH-4. Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan PERTIDAKSAMAAN KULIAH-4 Modul Pembelajaran Matematika Kelas X semester 1 Modul Pembelajaran Matematika Kelas X semester 1 FUNGSI DAN GRAFIKNYA PERTIDAKSAMAAN Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan

Lebih terperinci

BERKAS SOAL TAHAP FINAL BIDANG STUDI MATEMATIKA MADRASAH IBTIDAIYAH (MI)

BERKAS SOAL TAHAP FINAL BIDANG STUDI MATEMATIKA MADRASAH IBTIDAIYAH (MI) BERKAS SOAL TAHAP FINAL BIDANG STUDI MATEMATIKA MADRASAH IBTIDAIYAH (MI) KOMPETISI SAINS MADRASAH (KSM) 2014 SELEKSI KANTOR WILAYAH KEMENTERIAN AGAMA SURABAYA, 2014 SOAL TAHAP FINAL BIDANG STUDI MATEMATIKA

Lebih terperinci

Bab 9. Peluang Diskrit

Bab 9. Peluang Diskrit Bab 9. Peluang Diskrit Topik Definisi Peluang Diskrit Sifat Peluang Diskrit Probabilitas terbatas Konsep Teori Himpunan pada Peluang Diskrit Probabilitas Kejadian Majemuk A B dan A B DuaKejadianSalingLepas

Lebih terperinci

Mahasiswa memahami konsep gerak parabola, jenis gerak parabola, emnganalisa dan membuktikan secara matematis gerak parabola

Mahasiswa memahami konsep gerak parabola, jenis gerak parabola, emnganalisa dan membuktikan secara matematis gerak parabola BAB 6. Gerak Parabola Tujuan Umum Mahasiswa memahami konsep gerak parabola, jenis gerak parabola, emnganalisa dan membuktikan secara matematis gerak parabola Tujuan Khusus Mahasiswa dapat memahami tentang

Lebih terperinci

BAB I PENDAHULUAN. hlm. 15. 1 Pantur Silaban, Kalkulus Lanjutan, (Jakarta: Erlangga, 1984), hlm. 1.

BAB I PENDAHULUAN. hlm. 15. 1 Pantur Silaban, Kalkulus Lanjutan, (Jakarta: Erlangga, 1984), hlm. 1. BAB I PENDAHULUAN A. Latar Belakang Bilangan bulat merupakan salah satu pokok bahasan di dalam pelajaran Matematika jenjang SMP/M.Ts. kelas VII. Bilangan bulat terdiri dari bilangan bulat positif, bilangan

Lebih terperinci

ALJABAR. Al-Khwarizi adalah ahli matematika dan ahlli astronomi yang termasyur yang tinggal di bagdad(irak) pada permulaan abad ke-9

ALJABAR. Al-Khwarizi adalah ahli matematika dan ahlli astronomi yang termasyur yang tinggal di bagdad(irak) pada permulaan abad ke-9 ALJABAR Al-Khwarizi adalah ahli matematika dan ahlli astronomi yang termasyur yang tinggal di bagdad(irak) pada permulaan abad ke-9 Aljabar adalah salah satu cabang penting dalam matematika. Kata aljabar

Lebih terperinci

POLINOM (SUKU BANYAK) Menggunakan aturan suku banyak dalam penyelesaian masalah.

POLINOM (SUKU BANYAK) Menggunakan aturan suku banyak dalam penyelesaian masalah. POLINOM (SUKU BANYAK) Standar Kompetensi: Menggunakan aturan suku banyak dalam penyelesaian masalah. Kompetensi Dasar: 1. Menggunakan algoritma pembagian suku banyak untuk menentukan hasil bagi dan sisa

Lebih terperinci

Kata-kata Motivasi ^^

Kata-kata Motivasi ^^ 1 Kata-kata Motivasi ^^ Barang siapa merintis jalan mencari ilmu maka Allah akan memudahkan baginya jalan ke surga. (HR. Muslim) Tak ada rahasia untuk manggapai sukses Sukses itu dapat terjadi karena persiapan,

Lebih terperinci

BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI

BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI LAMPIRAN 5 BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI Laporan 2 Pelaksanaan OSN-PERTAMINA 2012 69 Olimpiade Sains Nasional Pertamina 2012 Petunjuk : 1. Tuliskan secara lengkap Nama, Nomor

Lebih terperinci

BAB V PEMBAHASAN DAN DISKUSI HASIL PENELITIAN. Pada BAB V ini, peneliti akan membahas hasil penelitian dan diskusi hasil

BAB V PEMBAHASAN DAN DISKUSI HASIL PENELITIAN. Pada BAB V ini, peneliti akan membahas hasil penelitian dan diskusi hasil 67 BAB V PEMBAHASAN DAN DISKUSI HASIL PENELITIAN Pada BAB V ini, peneliti akan membahas hasil penelitian dan diskusi hasil penelitian. Pembahasan hasil penelitian berdasarkan deskripsi data tentang strategi

Lebih terperinci

LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memperebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 2011

LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memperebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 2011 LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memerebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 0 PENYISIHAN II PERORANGAN LCCM TINGKAT SMP x. I. x x II. x x x 6 x III. x x 6

Lebih terperinci

SILABUS INDIKATOR MATERI PEMBELAJARAN KEGIATAN PEMBELAJARAN PENILAIAN KHARAKTER

SILABUS INDIKATOR MATERI PEMBELAJARAN KEGIATAN PEMBELAJARAN PENILAIAN KHARAKTER SILABUS NAMA SEKOLAH : SMK Negeri 1 Surabaya MATA PELAJARAN : MATEMATIKA (Kelompok Teknologi Informasi) KELAS / SEMESTER : X / 1 STANDAR : Memecahkan masalah berkaitan dengan konsep operasi bilangan riil

Lebih terperinci

RinGkasan MaTeri. 1 balok ubin dinyatakan dalam persen (%) = 100% 1 1 balok ubin dibagi 4 menjadi 4 ubin kecil yang senilai dengan 4

RinGkasan MaTeri. 1 balok ubin dinyatakan dalam persen (%) = 100% 1 1 balok ubin dibagi 4 menjadi 4 ubin kecil yang senilai dengan 4 RinGkasan MaTeri Persen adalah perseratus atau sebuah pecahan yang penyebutnya 00, misal Menyatakan dalam persen (%) 7 % = 7 00 balok ubin dinyatakan dalam persen (%) = 00% balok ubin dibagi 4 menjadi

Lebih terperinci

www.matematika-pas.blogspot.com E-learning matematika, GRATIS

www.matematika-pas.blogspot.com E-learning matematika, GRATIS Penyusun Editor : Indyah Sulistyawati, S.Pd. ; Wiwik Hermawati, S.Si. : Drs. Keto Susanto, M.Si. M.T. ; Istijab, S.H. M.Hum. Imam Indra Gunawan, S.Si. ). Pengertian Kaidah Pencacahan (Counting Slots) Kaidah

Lebih terperinci

Jenis Jenis--jenis jenis fungsi dan fungsi linier Hafidh Munawir

Jenis Jenis--jenis jenis fungsi dan fungsi linier Hafidh Munawir Jenis-jenis fungsi dan fungsi linier Hafidh Munawir Diskripsi Mata Kuliah Memperkenalkan unsur-unsur fungsi ialah variabel bebas dan variabel terikat, koefisien, dan konstanta, yang saling berkaitan satu

Lebih terperinci

SOAL MATEMATIKA SD. Jawaban: 39.788 + 56.895 27.798 = 96.683 27.798 = 68.885 (B)

SOAL MATEMATIKA SD. Jawaban: 39.788 + 56.895 27.798 = 96.683 27.798 = 68.885 (B) SOAL MATEMATIKA SD. Hasil 39.788 + 56.895 7.798 adalah A. 68.875 B. 68.885 C. 68.975 D. 69.885 39.788 + 56.895 7.798 = 96.683 7.798 = 68.885 (B) Pengetahuan prasyarat Aturan Internasional operasi hitung

Lebih terperinci

3. Berdasarkan gambar soal nomor 2, alas balok tersebut berbentuk bangun datar... A. Persegi B. Persegi panjang C. Belah ketupat D.

3. Berdasarkan gambar soal nomor 2, alas balok tersebut berbentuk bangun datar... A. Persegi B. Persegi panjang C. Belah ketupat D. Bangun Ruang (1)_soal Kelas 4 SD 1. Jumlah titik sudut bangun ruang kubus ada.... A. 4 B. 8 C. 12 D. 16 2. Perhatikan gambar berikut! Rusuk yang sama panjang dengan AB adalah.... A. CD B. BC C. BF D. EH

Lebih terperinci

MAT. 05. Relasi dan Fungsi

MAT. 05. Relasi dan Fungsi MAT. 05. Relasi dan Fungsi i Kode MAT. 05 Relasi dan fungsi BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN PENDIDIKAN

Lebih terperinci

SILABUS MATA PELAJARAN MATEMATIKA KELAS VII SEKOLAH MENENGAH PERTAMA/MADRASAH TSANAWIYAH KURIKULUM 2013

SILABUS MATA PELAJARAN MATEMATIKA KELAS VII SEKOLAH MENENGAH PERTAMA/MADRASAH TSANAWIYAH KURIKULUM 2013 SILABUS MATA PELAJARAN MATEMATIKA KELAS VII SEKOLAH MENENGAH PERTAMA/MADRASAH TSANAWIYAH KURIKULUM 2013 SILABUS MATA PELAJARAN MATEMATIKA SEKOLAH MENENGAH PERTAMA/ MADRASAH TSANAWIYAH KELAS VII KURIKULUM

Lebih terperinci

EDISI REVISI 2014 MATEMATIKA. SMA/MA SMK/MAK Kelas. Semester 1

EDISI REVISI 2014 MATEMATIKA. SMA/MA SMK/MAK Kelas. Semester 1 EDISI REVISI 04 MATEMATIKA SMA/MA SMK/MAK Kelas X Semester Hak Cipta 04 pada Kementerian Pendidikan dan Kebudayaan Dilindungi Undang-Undang MILIK NEGARA TIDAK DIPERDAGANGKAN Disklaimer: Buku ini merupakan

Lebih terperinci

K L P Q 1 2 10 2 2 4 13 4 3 8 18 8. Gambar 4.10 Gambar 4.11

K L P Q 1 2 10 2 2 4 13 4 3 8 18 8. Gambar 4.10 Gambar 4.11 B. Relasi Sebelum mendefinisikan produk Cartesius, terlebih dahulu Anda perlu mengenal pengertian pasangan terurut. Dalam sistem koordinat Cartesius dengan sumbu x dan sumbu y, kita mengetahui bahwa titik

Lebih terperinci

UN SMA IPA 2010 Matematika

UN SMA IPA 2010 Matematika UN SMA IPA 00 Matematika Kode Soal P0 Doc. Name: UNSMAIPA00MATP0 Doc. Version : 0-0 halaman 0. Akar-akar persamaan kuadrat x² + (a - ) x + =0 adalah α dan β. Jika a > 0 maka nilai a =. 8 x 0. Diketahui

Lebih terperinci

REGRESI LINEAR SEDERHANA

REGRESI LINEAR SEDERHANA REGRESI LINEAR SEDERHANA DAN KORELASI 1. Model Regresi Linear 2. Penaksir Kuadrat Terkecil 3. Prediksi Nilai Respons 4. Inferensi Untuk Parameter-parameter Regresi 5. Kecocokan Model Regresi 6. Korelasi

Lebih terperinci

Pengintegralan Fungsi Rasional

Pengintegralan Fungsi Rasional Pengintegralan Fungsi Rasional Ahmad Kamsyakawuni, M.Kom Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember 25 Maret 2014 Pengintegralan Fungsi Rasional 1 Pengintegralan Fungsi Rasional 2

Lebih terperinci

CONTOH SOAL MATEKBIS I

CONTOH SOAL MATEKBIS I CONTOH SOAL MATEKBIS I Materi : Deret Ukur dan Deret Hitung 1. Hitunglah S 5, S 14, J 9 dari sebuah deret hitung yang suku pertamanya 1000 dan pembeda antar sukunya : 50. Diketahui : a = 1000, b = 50 Ditanya

Lebih terperinci

4. Bentuk sederhada dari : 3 2 ... D. E. 5. Bentuk sederhana dari

4. Bentuk sederhada dari : 3 2 ... D. E. 5. Bentuk sederhana dari . Pernyataan yang senilai dengan kalimat Jika Fatah dan Ichwan datang maka semua siswa senang adalah. A. Jika Fatah dan Ichwan tidak datang maka semua siswa tidak senang B. Jika Fatah atau Ichwan tidak

Lebih terperinci

Nama Peserta : No Peserta : Asal Sekolah : Asal Daerah :

Nama Peserta : No Peserta : Asal Sekolah : Asal Daerah : 1. Terdapat sebuah fungsi H yang memetakan dari himpunan bilangan asli ke bilangan asli lainnya dengan ketentuan sebagai berikut. Misalkan akan dicari nilai fungsi H jika x=38. 38 terdiri dari 3 puluhan

Lebih terperinci

UNIT PENDEKATAN PEMECAHAN MASALAH MATEMATIKA. Nyimas Aisyah. Pendahuluan

UNIT PENDEKATAN PEMECAHAN MASALAH MATEMATIKA. Nyimas Aisyah. Pendahuluan UNIT 5 PENDEKATAN PEMECAHAN MASALAH MATEMATIKA Nyimas Aisyah Pendahuluan P embelajaran matematika di Sekolah Dasar sebagai bagian dari sistem pendidikan nasional, menurut kurikulum 2006, bertujuan antara

Lebih terperinci

BAB 3 PENYELESAIAN PERSAMAAN NON LINIER

BAB 3 PENYELESAIAN PERSAMAAN NON LINIER BAB 3 PENYELESAIAN PERSAMAAN NON LINIER 3.. Permasalahan Persamaan Non Linier Penyelesaian persamaan non linier adalah penentuan akar-akar persamaan non linier.dimana akar sebuah persamaan f(x =0 adalah

Lebih terperinci

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN 2008 MATEMATIKA NON-TEKNOLOGI SESI 1 (PILIHAN GANDA DAN ISIAN SINGKAT) WAKTU : 120 MENIT

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN 2008 MATEMATIKA NON-TEKNOLOGI SESI 1 (PILIHAN GANDA DAN ISIAN SINGKAT) WAKTU : 120 MENIT OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN 2008 MATEMATIKA NON-TEKNOLOGI SESI (PILIHAN GANDA DAN ISIAN SINGKAT) WAKTU : 20 MENIT I. Soal Pilihan Ganda, ada 0 soal dalam test ini. Petunjuk

Lebih terperinci

Daftar Isi Kata Sambutan... iii Panduan Membaca Buku Ini... iv Kata Pengantar... vi Semester 1 Bab 1 Bilangan Bulat... 1 A. Operasi Hitung Campuran dan Sifat-Sifat Operasi Hitung pada Bilangan Bulat...

Lebih terperinci

BAB VI. PENGGUNAAN INTEGRAL. Departemen Teknik Kimia Universitas Indonesia

BAB VI. PENGGUNAAN INTEGRAL. Departemen Teknik Kimia Universitas Indonesia BAB VI. PENGGUNAAN INTEGRAL Departemen Teknik Kimia Universitas Indonesia BAB VI. PENGGUNAAN INTEGRAL Luas Daerah di Bidang Volume Benda Pejal di Ruang: Metode Cincin Metode Cakram Metode Kulit Tabung

Lebih terperinci

MENENTUKAN BESARAN PADA GERAK LURUS DAN PENERAPANNYA

MENENTUKAN BESARAN PADA GERAK LURUS DAN PENERAPANNYA MENENTUKAN BESARAN PADA GERAK LURUS DAN PENERAPANNYA Identitas Mata Pelajaran Sekolah : SMP N 8 Padang Kelas : VIII Semester : 1 Pelajaran / Materi : IPA / Gerak Lurus Alokasi Waktu : 2 x 40 menit KELOMPOK

Lebih terperinci

SOAL UJIAN NASIONAL. PROGRAM STUDI IPA ( kode P 45 ) TAHUN PELAJARAN 2008/2009

SOAL UJIAN NASIONAL. PROGRAM STUDI IPA ( kode P 45 ) TAHUN PELAJARAN 2008/2009 SOAL UJIAN NASIONAL PROGRAM STUDI IPA ( kode P 4 ) TAHUN PELAJARAN 8/9. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh

Lebih terperinci

PENYUSUNAN LEMBAR KEGIATAN SISWA (LKS) SEBAGAI BAHAN AJAR

PENYUSUNAN LEMBAR KEGIATAN SISWA (LKS) SEBAGAI BAHAN AJAR ARTIKEL PENYUSUNAN LEMBAR KEGIATAN SISWA (LKS) SEBAGAI BAHAN AJAR Oleh Dra. Theresia Widyantini, M.Si PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN (PPPPTK) MATEMATIKA 2013 1 Abstrak

Lebih terperinci

SOAL BANGUN RUANG. a. 1000 dm 3 b. 600 dm 3 c. 400 dm 3 d. 100 dm 3 e. 10 dm 3

SOAL BANGUN RUANG. a. 1000 dm 3 b. 600 dm 3 c. 400 dm 3 d. 100 dm 3 e. 10 dm 3 SOAL BANGUN RUANG Soal Pilihan Ganda 1. Diketahui kubus dengan panjang diagonal sisi 5 2 meter, luas permukaan kubus tersebut adalah a. 5 m 2 b. 25 m 2 c. 100 m 2 d. 150 m 2 e. 250 m 2 2. Dikeatui bak

Lebih terperinci

Fungsi, Persamaaan, Pertidaksamaan

Fungsi, Persamaaan, Pertidaksamaan Fungsi, Persamaaan, Pertidaksamaan Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 9 Agustus 004 di PPPG Matematika Oleh: Drs. Markaban, M.Si. Widyaiswara PPPG

Lebih terperinci

PELABELAN TOTAL TITIK AJAIB PADA COMPLETE GRAPH

PELABELAN TOTAL TITIK AJAIB PADA COMPLETE GRAPH PELABELAN TOTAL TITIK AJAIB PADA COMPLETE GRAPH SKRIPSI Oleh : Novi Irawati J2A 005 038 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS DIPONEGORO

Lebih terperinci

PENGUKURAN, LUAS DAN VOLUME

PENGUKURAN, LUAS DAN VOLUME PENGUKURAN, LUAS DAN VOLUME Pengukuran merupakan kegiatan membandingkan suatu besaran yang diukur dengan alat ukur yang digunakan sebagai satuan. Sesuatu yang dapat diukur dan dapat dinyatakan dengan angka

Lebih terperinci

SILABUS MATA PELAJARAN MATEMATIKA KELAS VIII SEKOLAH MENENGAH PERTAMA/MADRASAH TSANAWIYAH KURIKULUM 2013

SILABUS MATA PELAJARAN MATEMATIKA KELAS VIII SEKOLAH MENENGAH PERTAMA/MADRASAH TSANAWIYAH KURIKULUM 2013 SILABUS MATA PELAJARAN MATEMATIKA KELAS VIII SEKOLAH MENENGAH PERTAMA/MADRASAH TSANAWIYAH KURIKULUM 2013 SILABUS MATA PELAJARAN MATEMATIKA SEKOLAH MENENGAH PERTAMA/ MADRASAH TSANAWIYAH KELAS VII KURIKULUM

Lebih terperinci

Kompetensi Siswa Hakikat Fisika

Kompetensi Siswa Hakikat Fisika MENGUKUR Kompetensi Siswa 1. Menghayati dan mengamalkan ajaran agama yang dianutnya 2. Mengembangkan perilaku (jujur, disiplin, tanggung jawab, peduli, santun, ramah lingkungan, gotong royong, kerjasama,

Lebih terperinci

TKS-4101: Fisika. KULIAH 3: Gerakan dua dan tiga dimensi J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA

TKS-4101: Fisika. KULIAH 3: Gerakan dua dan tiga dimensi J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA TKS-4101: Fisika KULIAH 3: Gerakan dua dan tiga dimensi Dosen: Tim Dosen Fisika Jurusan Teknik Sipil FT-UB 1 Gerak 2 dimensi lintasan berada dalam

Lebih terperinci

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f. Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan

Lebih terperinci

CONTOH MODEL PEMBELAJARAN MATEMATIKA DI SEKOLAH DASAR

CONTOH MODEL PEMBELAJARAN MATEMATIKA DI SEKOLAH DASAR CONTOH MODEL PEMBELAJARAN MATEMATIKA DI SEKOLAH DASAR Disampaikan pada Diklat Instruktur/Pengembang Matematika SD Jenjang Lanjut Tanggal 6 s.d. 9 Agustus 200 di PPPG Matematika Oleh: Dra. Sukayati, M.

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Satuan Pendidikan Mata Pelajaran Kelas/Semester Alokasi waktu : SMA Negeri 1 Sukasada : Matematika : X/1 (Ganjil) : 2 x 4 menit (1 pertemuan) I. Standar Kompetensi

Lebih terperinci

Teori dan Operasi Pada Himpunan

Teori dan Operasi Pada Himpunan Teori dan Operasi Pada Himpunan Oleh: Suprih Widodo Pendahuluan Pada dasarnya setiap hari manusia berhubungan dengan himpunan, klasifikasi himpunan dalam hidup manusia sangat beragam dan banyak sekali,

Lebih terperinci

a. Ruang Sampel dan Titik Sampel Dalam himpunan ruang sampel disebut Semesta S = 1, 2, 3, 4,5, 6

a. Ruang Sampel dan Titik Sampel Dalam himpunan ruang sampel disebut Semesta S = 1, 2, 3, 4,5, 6 1. Kejadian a. Ruang Sampel dan Titik Sampel Ruang Sampel adalah himpunan dari semua hasil yang mungkin dari suatu kegiatan Contoh : Kegiatan melempar sebuah dadu hasil atau angka yang mungkin muncul adalah

Lebih terperinci

FUNGSI. 1. Definisi Fungsi 2. Jenis-jenis Fungsi 3. Pembatasan dan Perluasan Fungsi 4. Operasi yang Merupakan Fungsi. Cece Kustiawan, FPMIPA, UPI

FUNGSI. 1. Definisi Fungsi 2. Jenis-jenis Fungsi 3. Pembatasan dan Perluasan Fungsi 4. Operasi yang Merupakan Fungsi. Cece Kustiawan, FPMIPA, UPI FUNGSI 1. Definisi Fungsi 2. Jenis-jenis Fungsi 3. Pembatasan dan Perluasan Fungsi 4. Operasi yang Merupakan Fungsi Definisi Fungsi Suatu fungsi f atau pemetaan f dari himpunan A ke himpunan B adalah suatu

Lebih terperinci

Ruang Hasil Kali Dalam

Ruang Hasil Kali Dalam Ruang Hasil Kali Dalam Hasil Kali Dalam dan Norm Wono Setya Budhi KKAG FMIPA ITB v 0.1 Maret 2015 Wono Setya Budhi (KKAG FMIPA ITB) Ruang Hasil Kali Dalam v 0.1 Maret 2015 1 / 12 Pada bab ini kita akan

Lebih terperinci

Sumber: Art & Gallery

Sumber: Art & Gallery Sumber: Art & Gallery Standar Kmpetensi 0. Menentukan kedudukan, jarak, dan besar sudut yang melibatkan titik, garis, dan bidang dalam ruang dimensi dua Kmpetensi Dasar 0. Mengidentifikasi sudut 0. Menentukan

Lebih terperinci

Buku Pendalaman Konsep. Trigonometri. Tingkat SMA Doddy Feryanto

Buku Pendalaman Konsep. Trigonometri. Tingkat SMA Doddy Feryanto Buku Pendalaman Konsep Trigonometri Tingkat SMA Doddy Feryanto Kata Pengantar Trigonometri merupakan salah satu jenis fungsi yang sangat banyak berguna di berbagai bidang. Di bidang matematika sendiri,

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN 65 Lampiran 1 RENCANA PELAKSANAAN PEMBELAJARAN Satuan Pembelajaran : SMP Mata Pelajaran : Matematika Kelas/ Semester : VII/ I Pokok Bahasan : Aritmatika Sosial Alokasi Waktu : 2 x 40 menit Standar Kompetensi:

Lebih terperinci

PEMBELAJARAN OPERASI HITUNG PERKALIAN DAN PEMBAGIAN PECAHAN DI SD

PEMBELAJARAN OPERASI HITUNG PERKALIAN DAN PEMBAGIAN PECAHAN DI SD PEMBELAJARAN OPERASI HITUNG PERKALIAN DAN PEMBAGIAN PECAHAN DI SD Penulis: Sukayati Marfuah Penilai: Muh Darwis Supriyono Editor: Ratna Herawati Lay out: Ashari Sutrisno Departemen Pendidikan Nasional

Lebih terperinci

BAB V HUKUM NEWTON TENTANG GERAK

BAB V HUKUM NEWTON TENTANG GERAK BAB V HUKUM NEWTON TENTANG GERAK Ilmuwan yang sangat berjasa dalam mempelajari hubungan antara gaya dan gerak adalah Isaac Newton, seorang ilmuwan Inggris. Newton mengemukakan tiga buah hukumnya yang dikenal

Lebih terperinci

1. Setelah mempelajari dan memahami isi buku ini, siswa diharapkan mampu untuk menggunakan

1. Setelah mempelajari dan memahami isi buku ini, siswa diharapkan mampu untuk menggunakan ARITMATIKA SOSIAL TUJUAN PEMBELAJARAN: 1. Setelah mempelajari dan memahami isi buku ini, siswa diharapkan mampu untuk menggunakan perhitungan harga pembelian, harga penjualan, untung, rugi, persentase

Lebih terperinci

KETERAMPILAN PROSES DALAM IPA

KETERAMPILAN PROSES DALAM IPA SUPLEMEN UNIT 1 KETERAMPILAN PROSES DALAM IPA Mintohari Suryanti Wahono Widodo PENDAHULUAN Dalam modul Pembelajaran IPA Unit 1, Anda telah mempelajari hakikat IPA dan pembelajarannya. Hakikat IPA terdiri

Lebih terperinci

PEMBELAJARAN BANGUN RUANG (1)

PEMBELAJARAN BANGUN RUANG (1) H. SufyaniPrabawant, M. Ed. Bahan Belajar Mandiri 5 PEMBELAJARAN BANGUN RUANG (1) Pendahuluan Bahan belajar mandiri ini menyajikan pembelajaran bangun-bangun ruang dan dibagi menjadi dua kegiatan belajar.

Lebih terperinci

STRUKTUR ALJABAR 1. Winita Sulandari FMIPA UNS

STRUKTUR ALJABAR 1. Winita Sulandari FMIPA UNS STRUKTUR ALJABAR 1 Winita Sulandari FMIPA UNS Pengantar Struktur Aljabar Sistem Matematika terdiri dari Satu atau beberapa himpunan Satu atau beberapa operasi yg bekerja pada himpunan di atas Operasi-operasi

Lebih terperinci

3 Antiphon dan Eudoxus Turun Tangan 13

3 Antiphon dan Eudoxus Turun Tangan 13 3 Antiphon dan Eudoxus Turun Tangan Antiphon dan Eudoxus memang tidak setenar Pythagoras. Bahkan nama mereka mungkin tidak pernah disebut-sebut di buku pelajaran matematika sekolah. Padahal, Antiphon (425

Lebih terperinci

Pendahuluan. Angka penting dan Pengolahan data

Pendahuluan. Angka penting dan Pengolahan data Angka penting dan Pengolahan data Pendahuluan Pengamatan merupakan hal yang penting dan biasa dilakukan dalam proses pembelajaran. Seperti ilmu pengetahuan lain, fisika berdasar pada pengamatan eksperimen

Lebih terperinci

Perbandingan dan Aritmatika Sosial

Perbandingan dan Aritmatika Sosial Buku Kerja Siswa Perbandingan dan Aritmatika Sosial Tingkat SD/SMP Doddy Feryanto Agustinus Gunung Hedi Harsono DAFTAR ISI Kata Pengantar Ucapan Terima Kasih Daftar Isi i ii iii Perbandingan 1 Apa itu

Lebih terperinci

BAB III. Universitas Sumatera Utara MULAI PENGISIAN MINYAK PELUMAS PENGUJIAN SELESAI STUDI LITERATUR MINYAK PELUMAS SAEE 20 / 0 SAE 15W/40 TIDAK

BAB III. Universitas Sumatera Utara MULAI PENGISIAN MINYAK PELUMAS PENGUJIAN SELESAI STUDI LITERATUR MINYAK PELUMAS SAEE 20 / 0 SAE 15W/40 TIDAK BAB III METODE PENGUJIAN 3.1. Diagram Alir Penelitian MULAI STUDI LITERATUR PERSIAPAN BAHAN PENGUJIAN MINYAK PELUMAS SAE 15W/40 MINYAK PELUMAS SAEE 20 / 0 TIDAK PENGUJIAN KEKENTALAN MINYAK PELUMAS PENGISIAN

Lebih terperinci

BAB I PENDAHULUAN. dan meningkatnya kemampuan manusia, situasi dan kondisi lingkungan yang

BAB I PENDAHULUAN. dan meningkatnya kemampuan manusia, situasi dan kondisi lingkungan yang BAB I PENDAHULUAN A. Latar Belakang Masalah Permasalahan pendidikan selalu muncul bersama dengan berkembang dan meningkatnya kemampuan manusia, situasi dan kondisi lingkungan yang ada, pengaruh informasi

Lebih terperinci

PEMBELAJARAN PENJUMLAHAN DAN PENGURANGAN BILANGAN BULAT DI SD

PEMBELAJARAN PENJUMLAHAN DAN PENGURANGAN BILANGAN BULAT DI SD i Modul Matematika SD Program BERMUTU PEMBELAJARAN PENJUMLAHAN DAN PENGURANGAN BILANGAN BULAT DI SD Penulis: Marsudi Rahardjo Sumardi Penilai: Cholis Sa diyah Moch. Ichsan Editor: Cholis Sa diyah Layouter:

Lebih terperinci

Nokia Bicycle Charger Kit. Edisi 2.1

Nokia Bicycle Charger Kit. Edisi 2.1 Nokia Bicycle Charger Kit 2 3 6 1 4 5 8 7 9 10 11 Edisi 2.1 12 13 15 14 16 17 18 20 19 21 22 INDONESIA 2010 Nokia. Semua hak dilindungi undang-undang. Pendahuluan Dengan Nokia Bicycle Charger Kit,

Lebih terperinci

17. SOAL-SOAL PROGRAM LINEAR

17. SOAL-SOAL PROGRAM LINEAR 17. SOAL-SOAL PROGRAM LINEAR EBTANAS2000 1. Himpunan penelesaian sistem pertidaksamaan 5x + 10 2x + 8 2 x = 2 titik (2,0 titk potong dengan sumbu jika x = 0 = 10 titik (0,10 daerah 5x + 10 berada pada

Lebih terperinci

MAT. 06. Geometri Dimensi Tiga

MAT. 06. Geometri Dimensi Tiga MAT. 06. Geometri Dimensi Tiga i Kode MAT. 06 Geometri Dimensi Tiga BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN

Lebih terperinci

1. Nilai Tempat Bilangan 10.000 s.d. 100.000 Lambang bilangan Hindu-Arab yang setiap kali kita gunakan menggunakan sistem desimal dengan nilai

1. Nilai Tempat Bilangan 10.000 s.d. 100.000 Lambang bilangan Hindu-Arab yang setiap kali kita gunakan menggunakan sistem desimal dengan nilai 1. Nilai Tempat Bilangan 10.000 s.d. 100.000 Lambang bilangan Hindu-Arab yang setiap kali kita gunakan menggunakan sistem desimal dengan nilai tempat. Menggunakan sistem desimal (dari kata decem, bahasa

Lebih terperinci

Pengenalan Bangun Datar dan Sifat-sifatnya di SD

Pengenalan Bangun Datar dan Sifat-sifatnya di SD gus Suharjana SD PKET FSILITSI PEMERDYN KKG/MGMP MTEMTIK Pengenalan angun Datar dan Sifat-sifatnya di SD Penulis: Drs. gus Suharjana, M.Pd. Penilai: Dra. Pujiati, M.Ed. Editor: Sri Purnama Surya, S.Pd.,

Lebih terperinci

Problem A. Raja yang Bijak

Problem A. Raja yang Bijak Problem A Raja yang Bijak Wacat adalah seorang pangeran yang baru saja diangkat menjadi raja menggantikan ayahnya, Hubu, seorang raja yang terkenal bijaksana. Hubu mampu mengambil segala keputusan yang

Lebih terperinci

PEMBELAJARAN FAKTOR PERSEKUTUAN TERBESAR DAN KELIPATAN PERSEKUTUAN TERKECIL DI SD

PEMBELAJARAN FAKTOR PERSEKUTUAN TERBESAR DAN KELIPATAN PERSEKUTUAN TERKECIL DI SD PROGRAM BERMUTU Better Education through Reformed Management and Universal Teacher Upgrading TW URI HANDAY AN I TU PEMBELAJARAN FAKTOR PERSEKUTUAN TERBESAR DAN KELIPATAN PERSEKUTUAN TERKECIL DI SD KEMENTERIAN

Lebih terperinci

CONTOH SILABUS BERDIVERSIFIKASI DAN PENILAIAN BERBASIS KELAS

CONTOH SILABUS BERDIVERSIFIKASI DAN PENILAIAN BERBASIS KELAS CONTOH SILABUS BERDIVERSIFIKASI DAN BERBASIS KELAS Mata Pelajaran MATEMATIKA LAYANAN KHUSUS SEKOLAH dan MADRASAH IBTIDAIYAH DEPARTEMEN PENDIDIKAN NASIONAL Jakarta, 2003 Katalog dalam Terbitan Indonesia.

Lebih terperinci

BAB I PENGANTAR MATEMATIKA EKONOMI

BAB I PENGANTAR MATEMATIKA EKONOMI BAB I PENGANTAR MATEMATIKA EKONOMI 1.1 Matematika Ekonomi Aktivitas ekonomi merupakan bagian dari kehidupan manusia ribuan tahun yang lalu. Kata economics berasal dari kata Yunani klasik yang artinya household

Lebih terperinci

PEMBELAJARAN BANGUN-BANGUN DATAR (1)

PEMBELAJARAN BANGUN-BANGUN DATAR (1) H. Sufyani Prabawanto, M. Ed. Bahan Belajar Mandiri 3 PEMBELAJARAN BANGUN-BANGUN DATAR (1) Pendahuluan Bahan belajar mandiri ini menyajikan pembelajaran bangun-bangun datar yang dibagi menjadi dua kegiatan

Lebih terperinci

Nama Penulis pungkyrahmatika@gmail.com http:/statistikapendidikan.com. Abstrak/Ringkasan. Pendahuluan. Lisensi Dokumen:

Nama Penulis pungkyrahmatika@gmail.com http:/statistikapendidikan.com. Abstrak/Ringkasan. Pendahuluan. Lisensi Dokumen: UKURAN NILAI PUSAT DAN UKURAN DISPERSI Nama Penulis pungkyrahmatika@gmail.com http:/statistikapendidikan.com Lisensi Dokumen: Seluruh dokumen di StatistikaPendidikan.Com dapat digunakan, dimodifikasi dan

Lebih terperinci

PROFIL GERAK PELURU DENGAN SPIN DAN HAMBATAN LINIER SKRIPSI. Oleh : A. RIDO NIM 051810101112

PROFIL GERAK PELURU DENGAN SPIN DAN HAMBATAN LINIER SKRIPSI. Oleh : A. RIDO NIM 051810101112 i PROFIL GERAK PELURU DENGAN SPIN DAN HAMBATAN LINIER SKRIPSI Oleh : A. RIDO NIM 051810101112 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS JEMBER 2013 i ii PROFIL GERAK

Lebih terperinci

Catatan Kuliah KALKULUS II BAB V. INTEGRAL

Catatan Kuliah KALKULUS II BAB V. INTEGRAL BAB V. INTEGRAL Anti-turunan dan Integral TakTentu Persamaan Diferensial Sederhana Notasi Sigma dan Luas Daerah di Bawah Kurva Integral Tentu Teorema Dasar Kalkulus Sifat-sifat Integral Tentu Lebih Lanjut

Lebih terperinci

Ayo Amati. Amati gambar ini. Kegiatan mana yang menggunakan kaki? Beri tanda pada kegiatan yang menggunakan kaki. Subtema 2: Tubuhku

Ayo Amati. Amati gambar ini. Kegiatan mana yang menggunakan kaki? Beri tanda pada kegiatan yang menggunakan kaki. Subtema 2: Tubuhku Ayo Amati Amati gambar ini. Kegiatan mana yang menggunakan kaki? Beri tanda pada kegiatan yang menggunakan kaki. Subtema 2: Tubuhku 55 Beri tanda pada kotak. 1. Menyebutkan nama-nama anggota tubuh. 2.

Lebih terperinci

v adalah kecepatan bola A: v = ωr. Dengan menggunakan I = 2 5 mr2, dan menyelesaikan persamaanpersamaan di atas, kita akan peroleh: ω =

v adalah kecepatan bola A: v = ωr. Dengan menggunakan I = 2 5 mr2, dan menyelesaikan persamaanpersamaan di atas, kita akan peroleh: ω = v adalah kecepatan bola A: v = ωr. ω adalah kecepatan sudut bola A terhadap sumbunya (sebenarnya v dapat juga ditulis sebagai v = d θ dt ( + r), tetapi hubungan ini tidak akan kita gunakan). Hukum kekekalan

Lebih terperinci

Definisi 1.1: Jika S dan A adalah himpunan semua kejadian tertentu yang memenuhi, maka

Definisi 1.1: Jika S dan A adalah himpunan semua kejadian tertentu yang memenuhi, maka Pertemuan 1: Kompetensi Dasar: Menggunakan konsep probabilitas sehingga dapat melakukan Tujuan: pendekatan perhitungan probabilitas. 1. Mahasiswa diharapkan mampu menentukan nilai probabilitas dengan pendekatan

Lebih terperinci

Bab. Kesebangunan dan Kekongruenan Bangun Datar. A. Kesebangunan Bangun Datar B. Kekongruenan Bangun Datar

Bab. Kesebangunan dan Kekongruenan Bangun Datar. A. Kesebangunan Bangun Datar B. Kekongruenan Bangun Datar ab 1 umber: Image Kesebangunan dan Kekongruenan angun atar i Kelas VII, kamu telah mempelajari bangun datar segitiga dan segiempat, seperti persegipanjang, persegi, jajargenjang, belah ketupat, layang-layang,

Lebih terperinci

Pertemuan ke 11. Segiempat Segiempat adalah bidang datar yang dibatasi oleh empat potong garis yang saling bertemu dan menutup D C

Pertemuan ke 11. Segiempat Segiempat adalah bidang datar yang dibatasi oleh empat potong garis yang saling bertemu dan menutup D C Pertemuan ke Segiempat Segiempat adalah bidang datar yang dibatasi oleh empat potong garis yang saling bertemu dan menutup D C B Empat persegi panjang d D E a c C B b B = CD dan B // CD D = BC dan D //

Lebih terperinci

BLANGKO NILAIMENEMBAK SENAPAN

BLANGKO NILAIMENEMBAK SENAPAN TENTARA NASIONAL INDONESIA ANGKATAN DARAT KODIKLAT Lampiran 6 (Tabel Penilaian Bakpan) pada Juknis Lomba Peleton TangkasTNI AD TA 05 BLANGKO NILAIMENEMBAK SENAPAN Nama Kotama : Peleton : NO NAMA PKT/NRP

Lebih terperinci

MENENTUKAN KELIPATAN PERSEKUTUAN TERKECIL (KPK) DAN FAKTOR PERSEKUTUAN TERBESAR (FPB) DENGAN METODE EBIK

MENENTUKAN KELIPATAN PERSEKUTUAN TERKECIL (KPK) DAN FAKTOR PERSEKUTUAN TERBESAR (FPB) DENGAN METODE EBIK MENENTUKAN KELIPATAN PERSEKUTUAN TERKECIL (KPK) DAN FAKTOR PERSEKUTUAN TERBESAR (FPB) DENGAN METODE EBIK Nuryadi, S.Pd, M.Pd. 1 A. PENDAHULUAN Pendidikan hendaknya mampu membentuk cara berpikir dan berprilaku

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN SEKOLAH : MA Hasyim Asy ari MATA PELAJARAN : Matematika KELAS / SEMESTER : XI / 1 PERTEMUAN KE : 1,2 ALOKASI WAKTU : 4 X 45 STANDAR KOMPETENSI : Menggunakan aturan statistika,

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Untuk SMA/MA Kelas X Mata Pelajaran : Matematika (Wajib) Penerbit dan Percetakan Jl. Tengah No. 37, Bumi Asri Mekarrahayu Bandung-40218 Telp. (022) 5403533 e-mail:srikandiempat@yahoo.co.id

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. Diskripsi Data Kemampuan Awal 1. Data Kemampuan Awal Prestasi Belajar Matematika Data yang digunakan kemampuan awal adalah nilai UAN keltika masuk MTs mata pelajaran

Lebih terperinci

PENGANTAR ANALISIS FUNGSIONAL

PENGANTAR ANALISIS FUNGSIONAL PENGANTAR ANALISIS FUNGSIONAL SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat

Lebih terperinci

EKSPERIMENTASI PEMBELAJARAN KOOPERATIF TIPE JIGSAW II PADA POKOK BAHASAN SEGIEMPAT DITINJAU DARI POLA BELAJAR SISWA KELAS VII SEMESTER 2

EKSPERIMENTASI PEMBELAJARAN KOOPERATIF TIPE JIGSAW II PADA POKOK BAHASAN SEGIEMPAT DITINJAU DARI POLA BELAJAR SISWA KELAS VII SEMESTER 2 EKSPERIMENTASI PEMBELAJARAN KOOPERATIF TIPE JIGSAW II PADA POKOK BAHASAN SEGIEMPAT DITINJAU DARI POLA BELAJAR SISWA KELAS VII SEMESTER 2 ( MTs Negeri Bekonang Tahun Ajaran 2008/2009 ) SKRIPSI Untuk Memenuhi

Lebih terperinci

BAB II VEKTOR DAN GERAK DALAM RUANG

BAB II VEKTOR DAN GERAK DALAM RUANG BAB II VEKTOR DAN GERAK DALAM RUANG 1. KOORDINAT CARTESIUS DALAM RUANG DIMENSI TIGA SISTEM TANGAN KANAN SISTEM TANGAN KIRI RUMUS JARAK,,,, 16 Contoh : Carilah jarak antara titik,, dan,,. Solusi :, Persamaan

Lebih terperinci

DIMENSI TIGA. 5. Tabung. Luas = 2 r ( r + t ) Vol = r 2 t. 6. Kerucut. Luas = r (r+s) ( s = pjg sisi miring ) Vol = 1/3. luas alas. tinggi. 7.

DIMENSI TIGA. 5. Tabung. Luas = 2 r ( r + t ) Vol = r 2 t. 6. Kerucut. Luas = r (r+s) ( s = pjg sisi miring ) Vol = 1/3. luas alas. tinggi. 7. INI IG endahuluan: ab imensi iga ini merupakan kelanjutan dari materi pelajaran bangun ruang sewaktu di dulu. aat di, hal yang dibahas adalah luas permukaan dan volume bangun ruang, sedangkan di ditambahkan

Lebih terperinci

BAB I VEKTOR DALAM BIDANG

BAB I VEKTOR DALAM BIDANG BAB I VEKTOR DALAM BIDANG I. KURVA BIDANG : Penyajian secara parameter Suatu kurva bidang ditentukan oleh sepasang persamaan parameter. ; dalam I dan kontinue pada selang I, yang pada umumnya sebuah selang

Lebih terperinci