MK Konsep Teknologi. Optimasi 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "MK Konsep Teknologi. Optimasi 1"

Transkripsi

1 Optimasi 1

2 Kegiatan / Persoalan Pengambilan Keputusan Alternatif Metoda Penyelesaian: 1. Programa Linear 2. Programa Dinamis 3. Antrian 4. Algoritma Lorong 5. Permainan Optimasi 2

3 Kerangka Optimasi dalam Pengambilan Keputusan DAYA & DANA TETAP MAKSIMASI PENERIMAAN HASIL YANG OPTIMAL Σ KEGIATAN TETAP MINIMASI DAYA & DANA Optimasi 3

4 Programa Linier Berbasiskan pengembangan model persamaan matematika Pengambilan keputusan dapat dilakukan secara kuantitatif, memudahkan untuk mengambil keputusan. Metoda Grafis Metoda Numeris Programa Dinamis Berbasiskan analisis pada keterkaitan dalam sistem kegiatan Hubungan antar kegiatan digambarkan secara sistematis Optimasi 4

5 Metoda Antrian Untuk menganalisis persoalan-persoalan antrian pada berbagai jenis kejadian Penggambaran besaran dan variable yang terlibat dalam persoalan antrian sehinggan perlakuan atau intervensi untuk memperbaiki kinerja dapat dikerjakan secara sistematis. Algoritma Lorong Strategi penempatan orang/petugas secara optimal untuk memantau atau mengawasi beberapa daerah / lokasi, dengan bantuan model matematis. Optimasi 5

6 Programa Linier / Linear Programming Prinsip Umum: Asumsi Kelinieran : Fungsi Pembatas Fungsi Tujuan Ketidaksamaan Linier Fungsi Tujuan: Minimasi Maksimasi Fungsi Pembatas > 0, atau = 0 Optimasi 6

7 Programa Linier: Metoda Numeris / Matematis Contoh 1: Pabrik baja Steel Forever" mempunyai persediaan bahan mentah besi baja untuk diproses sebanyak 18 ton. Kontrak produksi sekrup sebanyak 7,6 ton telah ditandatangani. Dalam proses produksi terjadi kehilangan bahan mentah sebesar 5%. Selain memproduksi sekrup, pabrik tersebut juga menjual besi baja sebagai bahan mentah kepada pabrik lain. Pertanyaan: Berapa banyak besi baja yang dapat dijual sebagai bahan mentah selagi kontrak masih berjalan? Optimasi 7

8 Programa Linier: Metoda Numeris / Matematis Jawab: Asumsi: Besi baja yang dapat dijual sebagai bahan mentah adalah x ton, Jumlah yang tersedia di pabrik adalah (18 - x) ton Kehilangan dalam proses produksi 5% (18 - x) 5/100 (18 x) = 7,6 ton 95/100 (18 - x) = 7,6, sehingga x = 10 Maka, besi baja yang dijual sebagai bahan mentah adalah 10 ton. Optimasi 8

9 Programa Linier: Metoda Numeris / Matematis Contoh 2: Suatu areal tanah pertanian seluas 40 ha terbagi atas lahan basah dan lahan kering. Seluruh lahan kering dan separuh lahan basah ditanami tanaman jagung. Penghasilan per-ha: Rp ,-/ ha untuk lahan kering dan Rp ,-/ ha untuk lahan basah Setelah panen, penghasilan total dari lahan kering dan basah adalah Rp ,-. Pertanyaan: Berapa luas lahan masing-masing di areal pertanian tersebut? Optimasi 9

10 Programa Linier: Metoda Numeris / Matematis Jawab: Asumsi Luas lahan kering adalah X ha dan lahan basah Y ha, sehingga: (X + Y) = 40 ha.....(1) X (Y/2) = , atau X Y = (2) Ini berarti, bahwa nilai X dan Y dapat dihitung sbb.: (1) X + Y = X Y = (2) X Y = Y = Diperoleh harga Y = 25 dan X = 15, sehingga luas lahan kering adalah 15 ha dan lahan basah 25 ha. Optimasi 10

11 Programa Linier: Metoda Grafis PADA SISTIM KOORDINAT X-Y (X & Y = VARIABEL) PERSAMAAN LINIER PEMBATAS JAWABAN YANG PALING MUNGKIN KETERBATASAN : JUMLAH VARIABEL TERBATAS Tentukan Fungsi Tujuan Gambar garis Pembatas dalam Sistem Koordinat Identifikasi Batasan dalam Ketidaksamaan Cari titik yang paling menguntungkan sesuai dengan Fungsi Tujuan. Optimasi 11

12 Programa Linier: Metoda Grafis Contoh 3: Pabrik baja yang sebelum nya disebut, memprediksi keuntungan se-besar Rp.30/buah untuk sekrup panjang dan Rp. 15/buah untuk sekrup pendek. Kapasitas penuh harian untuk keseluruhan mesin adalah sekrup panjang dan sekrup pendek. Karena adanya perbedaan cara produksi, maka setiap jam dihasilkan sekrup pendek dan sekrup pendek. Dilain pihak bahan kimia khusus untuk memproduksi sekrup panjang hanya tersedia untuk mengolah buah; dan bagian pengepakan hanya mampu mengepak buah perhari. Pertanyaan: Apabila jam kerja adalah 8 jam perhari, berapa banyak sekrup dari masingmasing ukuran yang harus di produksi agar tercapai keuntungan maksimum? Optimasi 12

13 Programa Linier: Metoda Grafis Jawab: Produksi harian adalah X sekrup panjang dan Y sekrup pendek Maksimasi (fungsi tujuan), Z = 30 X + 15 Y Pembatas (1) X < dan Y< (2) (X / 5.000) + (Y/7.500) < 8 atau (3X + 2Y < ) (3) X + Y < (4) X < (5) X >0 dan Y>0 Dengan menggambarkan persamaan linier pada bidang X-Y maka akan didapat area yang memenuhi syarat pertidaksamaan di atas. Optimasi 13

14 Programa Linier: Metoda Grafis Thousands B 40 C 30 X = X = Y = D 10 X + Y = A 0 E Thousands 3X + 2Y = Optimasi 14

15 Programa Linier: Metoda Grafis Pemeriksaan fungsi keuntungan (Z = 30X + 15Y) pada titik-titik ekstrim: A, B, C, D dan E: Titik X Y Z = 30 X + 15 Y A B C D E Jadi keuntungan maksimum diperoleh dengan memproduksi sekrup panjang dan sekrup pendek, dengan keuntungan sebesar Rp Optimasi 15

16 Programa Linier: Metoda Grafis Contoh 4: Sebuah pabrik pipa memproduksi pipa berdiameter 2 dan 4 inci. Keuntungan dari pipa 2 dan 4 inci berturut-turut adalah Rp. 3000,- dan Rp. 5000,-. Mesin yang ada dapat memproduksi pipa 72 batang pipa 2 inci atau 48 batang pipa 4 inci dalam satu hari. Namun mesin ini hanya dioperasikan untuk menghasilkan pipa 2 inci sebanyak 8 batang/jam, dan pipa 4 inci sebanyak 5 batang/jam. Pabrik pipa ini beroperasi selama 8 jam/hari. Untuk membuat pipa berdiameter 2 inci tersedia bahan tambahan khusus yang hanya cukup untuk membuat 32 batang pipa/hari. Alat transportasi yang tersedia hanya mampu membawa 60 batang pipa dari pabrik ke gudang perharinya. Pertanyaan: Berapakah banyak pipa yang harus diproduksi agar diperoleh keuntungan yang maksimal? Optimasi 16

17 Programa Linier: Metoda Grafis Jawab: Produksi harian adalah X batang pipa 2 inci dan Y batang pipa 4 inci. Maksimasi (fungsi tujuan), Z = X Y Pembatas (1) (X/8) + (Y/5) 8 atau (5X + 8Y 320) (2) X + Y 60 (3) X 32 (4) X 0 dan Y 0 Dengan menggambarkan persamaan linier pada bidang X-Y maka akan didapat area yang memenuhi syarat pertidaksamaan di atas. Optimasi 17

18 Programa Linier: Metoda Grafis X = B C X + Y = A D 5X + 8Y = Optimasi 18

19 Programa Linier: Metoda Grafis Pemeriksaan fungsi keuntungan (Z = 3.000X Y) pada titik-titik ekstrim: A, B, C, D : Titik X Y Z = X Y A B C D Jadi keuntungan maksimum diperoleh dengan memproduksi 40 batang pipa 4 inci / hari, dengan keuntungan sebesar Rp ,-. Optimasi 19

20 Programa Dinamik Pendekatan masalah pengambilan keputusan dengan menetapkan uruturutan keputusan. Perhitungan akibat dan pengaruh secara optimal strategi yang optimal. Contoh: Pemilihan rute dengan rute terpendek: Seseorang yang akan ke kantor Pak Pos Loper Koran Pemasangan Kabel Transmisi Permasalahan produksi: Pemesanan ulang persediaan Perencanaan produksi dengan permintaan yang berfluktuasi Penjadwalan reparasi mesin Optimasi 20

21 Prinsip Optimasi Bellman Suatu kebijakan menyeluruh yang optimal harus dibentuk oleh beberapa sub-kebijakan yang optimal pula. Keputusan Mendatang Keputusan Kini dipengaruhi Keputusan Kini Keputusan Kemarin Optimasi 21

22 Programa Dinamik Contoh: Proyek penanaman kabel transmisi dari A ke B secara ekonomis. Rencana Anggaran Biaya (RAB) dalam satuan biaya/ruas dapat diperkirakan. Perhatikan gambar berikut: Prinsip untuk menentukan rute: Dari A menuju B selalu mengarah ke Utara atau ke Timur. Bekerja dengan arah kebalikan (dari B) Optimasi 22

23 Programa Dinamik Prosedur yang perlu diperhatikan: 1. Dari titik-titik K, F dan C hanya 1 route ke B (ke Timur) 2. Dari titik-titik E, J-dan P hanya 1 route ke B (ke Utara) 3. Pada titik-titik tersebut dapat dituliskan notasi Dari titik D ke B: 2 route (D-C-B atarr D-E-B). 5. Dari titik G ke B: l route (G-D-C-B, G-D-E-B & G-F-C-B) 6. Pada titik-titik D & G dapat dituliskan notasi 2 & 3 7. Dengan cara yang sama, diperoleh 3 route dari titik I 8. Dari titik H ada 6 route (3 melalui I dan 3 melalui G). 9. Pada gambar lv, terdapat notasi untuk semua titik; ada 20 route alternatif tersedia ciari A ke B, yang artinya 20 RAB harus dievaluasi dan dibandingkan. 10.Bekerja dengan arah kebalikan. Jika kabel sudah sarnpai di C, kemana arah yang dipilih? (ke Timur & RAB Rp. 10 juta) 11.Catatan: Jumlah Blok = set binary 3x3 4x4 5x5 6x6 20x20 Jumlah Rute Optimasi 23

24 Programa Dinamik Prosedur yang perlu diperhatikan (lanjutan): 10.Bekerja dengan arah kebalikan. Jika kabel sudah sarnpai di C, kemana arah yang dipilih? (ke Timur & RAB Rp. 10 juta) 11.Jika sampai di E, arahkan ke Utara & RAB Rp. 11 juta 12.Selanjutnya, jika kabel sudah sampai di D: RAB D-C-B adalah Rp. 17 juta dan RAB D-E-B adalah Rp. 18 juta. Pllih route D-C-B senilai Rp. 17 juta (lengkapi dengatr arah panah) 13.Selanjutnya langkah yang sarna diambil untuk F, G, H, I & J 14.Dan terakhir untuk K, P, L, O, M, N & A. Arah panah ke Utara ke Timur menandakan route yang dipilih. RAB Rp. 44 juta. Optimasi 24

25 Programa Dinamik Optimasi 25

26 Programa Dinamik Optimasi 26

27 Programa Dinamik Optimasi 27

28 Antrian / Queuing Antrian: adalah suatu jalur menunggu (menantikan pelayanan). Contoh antrian: Antrian take-off pesawat Antrian membayar SPP di bank Antrian di mesin ATM Antrian di gerbang tol Antrian di loket karcis bioskop Antrian di kasir Antrian check-in di bandara Antrian pasien di tempat praktek dokter Contoh lain? Optimasi 28

29 Antrian / Queuing Faktor-faktor antrian: 1. Kedatangan pelanggan acak (jumlah & waktu) 2. Pelayanan: waktu dan jumlah tempat pelayanan 3. Pelanggan: Sedang dilayani Sedang menunggu (dalam antrian) 4. Waktu pelayanan: Sama untuk tiap pelanggan Acak Persoalan antrian dapat dipecahkan bila Waktu pelayanan rata-rata lebih kecil dari waktu kedatangan ratarata. Optimasi 29

30 Antrian / Queuing Faktor Utilisasi Tempat Pelayanan: β= (waktu pelayanan rata-rata / waktu kedatangan rata-rata) Jika β < maka tenlpat pelayanan mampu melayani.pelanggan; dan β > 1 berarti antrian semakin panjang. Harga β merupakan ukuran (%) penggunaan fasilitas pelayanan, misal β = 75% berarti petugas pelayanan dan peralatannya bekerja selama 75% dari seluruh waktunya. Optimasi 30

31 Antrian / Queuing Faktor Utilisasi Tempat Pelayanan: β= (waktu pelayanan rata-rata / waktu kedatangan rata-rata) Jika β < maka tenlpat pelayanan mampu melayani.pelanggan; dan β > 1 berarti antrian semakin panjang. Harga β merupakan ukuran (%) penggunaan fasilitas pelayanan, misal β = 75% berarti petugas pelayanan dan peralatannya bekerja selama 75% dari seluruh waktunya. Optimasi 31

32 Antrian / Queuing Contoh Soal: Kedatangan pelanggan di sebuah toko yang hanya mempunyai satu kasir pembayaran adalah sebagai berikut: Optimasi 32

33 Antrian / Queuing Kedatangan pelanggan tersebut adalah acak (random). Bila setiap pelanggan memerlukan waktu 3 menit untuk dilayani, maka pola pelayanannya adalah sebagai berikut: Selama 1 jam dari jam 09:00 10:00 terjadi pengangguran selama 17 menit. Jadi sarana pelayanan hanya digunakan selama 43 menit. Sehingga, β = 43 / 60 = 72 % Optimasi 33

34 Antrian / Queuing Profil panjang antrian terhadap waktu: Panjang Antrian 0 09:01 09:05 09:09 09:13 09:17 09:21 09:25 09:29 09:33 09:37 09:41 09:45 09:49 09:53 09:57 Waktu Optimasi 34

35 Antrian / Queuing Untuk interval waktu yang panjang diperoleh: β = waktu pelayanan rata-rata / waktu antara kedatangan rata-rata = 3 / (60/15) = 75 % Meskipun sarana pelayanan dipakai 75 % dari waktunya, ternyata pada suatu periode waktu tertentu terdapat 5 pelanggan dalam antrian. Optimasi 35

36 Antrian / Queuing Panjang antrian rata-rata (PA): PA = (17x0 + 19x1 + 5x2 + 5x3 + 4x4 + 5x10) / 60 = 110 / 60 = 1,83 Optimasi 36

37 Antrian / Queuing Rumus antrian pada interval waktu panjang: Untuk waktu pelayanan tetap: Untuk waktu pelayanan acak: β PA = 1 1 β β PA = 1 β β 2 Untuk contoh soal pada slide sebelumnya: 0,75 PA = 1 0,75 = 1, ,75 2 Optimasi 37

38 Antrian / Queuing MEMPELAJARI ANTRIAN harus dilakukan berulang-ulang sehingga mendekati keadaan yang sebenarnya SECARA EKONOMIS antrian dikaitkan dengan prediksi keuntungan / kerugian Optimasi 38

39 Algoritma Lorong PRINSIP: MENDAPATKAN JUMLAH ORANG YANG OPTIMAL PADA SUATU TEMPAT YANG DAPAT MEMANTAU DAERAH-DAERAH YANG TELAH DITENTUKAN. Misalnya : jumlah polisi yang diperlukan untuk memantau jalan atau daerah tertentu. Optimasi 39

40 Algoritma Lorong Jumlah polisi yang diperlukan untuk memantau jalan atau daerah tertentu. a b a, b dan c : pos polisi Lorong ab dan bc = 1 arah Lorong ac atau ca = 2 arah c tanda (+) berarti (atau) Optimasi 40

41 Algoritma Lorong (a+c)(a+b) =a 2 +ab+ca+cb, berarti: a 2 ab ca cb = pos a awasi a dari (a+c) dan awasi b dari (a+b) = pos a awasi a dari (a+c) dan pos b awasi b dari (a+b) = pos c awasi a dari (a+c) dan pos a awasi b dari (a+b) = pos c awasi a dari (a+c) dan pos b awasi b dari (a+b) Atau (a+c) (a+b) berarti semua cara untuk mengawasi a dan b. Sehingga untuk mengawasi a, b, dan c: (a+c).(a+b).(a+b+c) Yang akan memunculkan a 3, yang artinya seorang pengawas di a dapat mengawasi a, b dan c. Optimasi 41

42 Permainan / Game PRINSIP : SUATU KEADAAN DlMANA TERDAPAT 2 (DUA) PIHAK YANG BERKOMPETISI ATAU BERSAING. MASlNG-MASING AKAN MENENTUKAN STRATEGI UNTUK SALING MENGALAHKAN (BERSEPAKAT DALAM ATURAN MAIN). Ada prinsip zero-sum yaitu akan selalu ada pihak yang menang dan yang kalah, seperti lazimnya pertandingan olah raga. CONTOH : Permainan 27 anak korek api pemain dengan jumlah terakhir genap berarti menang! Optimasi 42

43 Permainan / Game Algoritma : Sederetan atau seiumlah langkah yang dapat diambil untuk memecahkan semua masalah dari jenis tertentu. Algoritma untuk contoh permainan korek api pada slide sebelumnya: Pemain A ambil 2 dan selanjutnya bila B mempunyai jumlah genap, sisa dibagi 6 dan ambil lebih kecil satu dari sisa pembagian tersebut; namun bila B mempunyai jumlah ganjil, ambil lebih besar satu dari sisa pembagian, kecuali jika sisa 4 maka ambil semua. Optimasi 43

PERSOALAN PROGRAMA LINEAR

PERSOALAN PROGRAMA LINEAR PERSOALAN PROGRAMA LINEAR Pendahuluan Sebuah perusahaan es krim mengeluarkan 2 macam hasil produksinya, yaitu Rasa Vanili dan Rasa Coklat. Kapasitas Pabrik adalah 1000 potong per hari. Bagian pemasaran

Lebih terperinci

Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia

Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia 1 1. Linier Programming adalah suatu cara untuk menyelesaikan persoalan pengalokasian sumbersumberdaya yang

Lebih terperinci

Pengantar Riset Operasi. Riset Operasi Minggu 1 (pertemuan 1) ARDANESWARI D.P.C., STP, MP

Pengantar Riset Operasi. Riset Operasi Minggu 1 (pertemuan 1) ARDANESWARI D.P.C., STP, MP Pengantar Riset Operasi Riset Operasi Minggu 1 (pertemuan 1) ARDANESWARI D.P.C., STP, MP 1 Kontrak Perkuliahan Keterlambatan 15 menit Mengoperasikan HP dan sejenisnya : di luar kelas Mengerjakan laporan/tugas

Lebih terperinci

MK Konsep Teknologi PENGAMBILAN KEPUTUSAN

MK Konsep Teknologi PENGAMBILAN KEPUTUSAN PENGAMBILAN PENGAMBILAN Pengantar Dua kegiatan umum manusia: Pengambilan keputusan (decision making) dan Pelaksanaan keputusan (action plan) Tujuan Instruksional Khusus 1. Mampu menunjukkan faktor, kondisi,

Lebih terperinci

Sufa atin Program Studi Teknik Informatika Universitas Komputer Indonesia

Sufa atin Program Studi Teknik Informatika Universitas Komputer Indonesia Sufa atin Program Studi Teknik Informatika Universitas Komputer Indonesia 1 1. Membahas teknik-teknik riset operasi yang digunakan sebagai dasar pengambilan keputusan 2. Konsep dasar ilmu matematika (himpunan,

Lebih terperinci

BAB. Teori Antrian PENDAHULUAN PENDAHULUAN

BAB. Teori Antrian PENDAHULUAN PENDAHULUAN PENDAHULUAN BAB 10 Teori Antrian PENDAHULUAN ntrian yang panjang sering kali kita lihat di bank saat nasabah mengantri di teller untuk melakukan transaksi, airport saat para calon penumpang melakukan checkin,

Lebih terperinci

BAB 2. PROGRAM LINEAR

BAB 2. PROGRAM LINEAR BAB 2. PROGRAM LINEAR 2.1. Pengertian Program Linear Pemrograman Linier disingkat PL merupakan metode matematik dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan seperti memaksimumkan

Lebih terperinci

Antrian Orang (antri mengambil uang di atm, antri beli karcis, dll.) Barang (dokumen lamaran kerja, mobil yang akan dicuci, dll) Lamanya waktu

Antrian Orang (antri mengambil uang di atm, antri beli karcis, dll.) Barang (dokumen lamaran kerja, mobil yang akan dicuci, dll) Lamanya waktu TEORI ANTRIAN Antrian Orang (antri mengambil uang di atm, antri beli karcis, dll.) Barang (dokumen lamaran kerja, mobil yang akan dicuci, dll) Lamanya waktu menunggu tergantung kecepatan pelayanan Teori

Lebih terperinci

11/1/2016 Azwar Anas, M. Kom - STIE-GK Muara Bulian 1 TEORI ANTRIAN

11/1/2016 Azwar Anas, M. Kom - STIE-GK Muara Bulian 1 TEORI ANTRIAN 11/1/2016 Azwar Anas, M. Kom - STIE-GK Muara Bulian 1 TEORI ANTRIAN 11/1/2016 Azwar Anas, M. Kom - STIE-GK Muara Bulian 2 Pendahuluan Perhatikan beberapa situasi berikut ini: Kendaraan berhenti berderet-deret

Lebih terperinci

PROGRAMA DINAMIS. Dalam Kehidupan nyata sering dijumpai masalah pengambilan keputusan yang meliputi

PROGRAMA DINAMIS. Dalam Kehidupan nyata sering dijumpai masalah pengambilan keputusan yang meliputi PROGRAMA DINAMIS Pendahuluan Dalam Kehidupan nyata sering dijumpai masalah pengambilan keputusan yang meliputi beberapa periode waktu. Program Dinamis adalah teknik untuk pengambilan keputusan yang digunakan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Teori Antrian 2.1.1. Sejarah Teori Antrian. Teori antrian adalah teori yang menyangkut studi matematis dari antrian atau baris-baris penungguan. Teori antrian berkenaan dengan

Lebih terperinci

PROGRAM LINEAR MULTI-OBJECTIVE DENGAN FIXED-WEIGHT METHOD

PROGRAM LINEAR MULTI-OBJECTIVE DENGAN FIXED-WEIGHT METHOD PROGRAM LINEAR MULTI-OBJECTIVE DENGAN FIXED-WEIGHT METHOD 1 Fhani Mulyani Zenis, 2 M. Yusuf Fajar, Drs.,M.Si., 3 Dr.Yani Ramdani, Dra.,M.Pd. 1 Jurusan Matematika, Universitas Islam Bandung, Jl. Tamansari

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Penelitian. Perekonomian Indonesia menghadapi perdagangan bebas dituntut untuk lebih giat dan

BAB I PENDAHULUAN. 1.1 Latar Belakang Penelitian. Perekonomian Indonesia menghadapi perdagangan bebas dituntut untuk lebih giat dan BAB I PENDAHULUAN 1.1 Latar Belakang Penelitian Perekonomian Indonesia menghadapi perdagangan bebas dituntut untuk lebih giat dan berusaha semaksimal mungkin dalam melaksanakan program-program pembangunan.

Lebih terperinci

BAB IV PROGRAMA LINIER : METODE GRAFIK

BAB IV PROGRAMA LINIER : METODE GRAFIK BAB IV PROGRAMA LINIER : METODE GRAFIK Pada dasarnya, metode-metode yang dikembangkan untuk memecahkan model programa linier ditujukan untuk mencari solusi dari beberapa alternatif solusi yang dibentuk

Lebih terperinci

Metodologi Penelitian

Metodologi Penelitian Metodologi Penelitian Modul ke: PEMROGRAMAN LINIER Fakultas Program Pasca Sarjana Hamzah Hilal Program Studi Magister Teknik Elektro 13.1 UMUM Banyak keputusan manajemen dan atau riset operasi berkaitan

Lebih terperinci

Dynamic Programming. Pemrograman Dinamis

Dynamic Programming. Pemrograman Dinamis Pemrograman Dinamis Pemrograman dinamis merupakan suatu teknik analisa kuantitatif untuk membuat tahapan keputusan yang saling berhubungan. Teknik ini menghasilkan prosedur yang sistematis untuk mencari

Lebih terperinci

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara BAB 2 LANDASAN TEORI 2.1. Metode Pengambilan Sampling 2.1.1. Populasi Populasi adalah kelompok elemen yang lengkap, yang biasanya berupa orang, objek, transaksi, atau kejadian dimana kita tertarik untuk

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Program Dinamik

BAB 2 LANDASAN TEORI. 2.1 Program Dinamik 5 BAB 2 LANDASAN TEORI 2.1 Program Dinamik Pemrograman dinamik adalah suatu teknik matematis yang biasanya digunakan untuk membuat suatu keputusan dari serangkaian keputusan yang saling berkaitan. Pemrograman

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Antrian Teori antrian pertama kali disusun oleh Agner Krarup Erlang yang hidup pada periode 1878-1929. Dia merupakan seorang insinyur Demark yang bekerja di industri telepon.

Lebih terperinci

PENGENALAN WINQSB I KOMANG SUGIARTHA

PENGENALAN WINQSB I KOMANG SUGIARTHA PENGENALAN WINQSB I KOMANG SUGIARTHA PENGENALAN WINQSB Software QSB (Quantity System for business) atau umumnya juga dikenal dengan nama WINQSB (QSB yang berjalan pada sistem operasi Windows) merupakan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Tinjauan Pustaka 2.1.1 Pengertian, Struktur, Kelebihan dan Kekurangan, serta Potensi Dynamic Programming Dynamic Programming adalah suatu teknik kuantitatif yang digunakan untuk

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Program Linear Program Linear adalah suatu cara yang digunakan untuk menyelesaikan masalah optimasi suatu model linear dengan berbagai kendala yang dihadapinya. Masalah program

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Antrian Teori antrian adalah teori yang menyangkut studi sistematis dari antrian atau baris-baris penungguan. Formasi baris-baris penungguan ini tentu saja merupakan suatu

Lebih terperinci

BAB VI PERENCANAAN PENGEMBANGAN SDA

BAB VI PERENCANAAN PENGEMBANGAN SDA BAB VI PERENCANAAN PENGEMBANGAN SDA Sub Kompetensi Pengenalan dan pemahaman tahapan perencanaan sumberdaya air terkait dalam perencanaan dalam teknik sipil. Sub Pokok Bahasan: Pendahuluan Konsep Pengelolaan

Lebih terperinci

BAB 2 PROGRAM LINEAR

BAB 2 PROGRAM LINEAR BAB 2 PROGRAM LINEAR 2.1. Pengertian Program Linear Pemrograman Linier disingkat PL merupakan metode matematik dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan seperti memaksimumkan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Menunggu dalam suatu antrian adalah hal yang paling sering terjadi dalam kehidupan sehari-hari. Siapa pun yang pergi berbelanja atau ke bioskop telah mengalami

Lebih terperinci

Mata Kuliah Pemodelan & Simulasi

Mata Kuliah Pemodelan & Simulasi MODEL ANTRIAN Mata Kuliah Pemodelan & Simulasi Pertemuan Ke- 11 Riani L. JurusanTeknik Informatika Universitas Komputer Indonesia 1 Pendahuluan Teori antrian merupakan teori yang menyangkut studi matematis

Lebih terperinci

Pengambilan Keputusan dalam keadaan ada kepastian. IRA PRASETYANINGRUM, S.Si,M.T

Pengambilan Keputusan dalam keadaan ada kepastian. IRA PRASETYANINGRUM, S.Si,M.T Pengambilan Keputusan dalam keadaan ada kepastian IRA PRASETYANINGRUM, S.Si,M.T Model Pengambilan Keputusan dikaitkan Informasi yang dimiliki : Ada 3 (tiga) Model Pengambilan keputusan. 1. Model Pengambilan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Program Linier Para ahli mendefinisikan program linier sebagai sebuah teknik analisa yang digunakan untuk memecahkan segala persoalan atau masalah-masalah keputusan yang ada

Lebih terperinci

Unnes Journal of Mathematics

Unnes Journal of Mathematics UJM 3 (1) (2014) Unnes Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm ANALISIS PROSES ANTRIAN MULTIPLE CHANNEL SINGLE PHASE DI LOKET ADMINISTRASI DAN RAWAT JALAN RSUP Dr. KARIADI SEMARANG

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Program Linier Program linier adalah suatu cara untuk menyelesaikan persoalan pengalokasian sumber-sumber yang terbatas di antara beberapa aktivitas yang bersaing, dengan cara

Lebih terperinci

BAB III. Langkah Pemecahan Masalah. Yang dimaksud dengan optimasi adalah suatu proses untuk mencapai hasil

BAB III. Langkah Pemecahan Masalah. Yang dimaksud dengan optimasi adalah suatu proses untuk mencapai hasil BAB III Langkah Pemecahan Masalah 3.1 Penetapan Kriteria Optimasi Yang dimaksud dengan optimasi adalah suatu proses untuk mencapai hasil yang ideal atau optimal (nilai efektif yang dapat dicapai). Optimasi

Lebih terperinci

TEORI ANTRIAN PERTEMUAN #10 TKT TAUFIQUR RACHMAN PENGANTAR TEKNIK INDUSTRI

TEORI ANTRIAN PERTEMUAN #10 TKT TAUFIQUR RACHMAN PENGANTAR TEKNIK INDUSTRI TEORI ANTRIAN PERTEMUAN #10 TKT101 PENGANTAR TEKNIK INDUSTRI 6623 TAUFIQUR RACHMAN PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNIK UNIVERSITAS ESA UNGGUL KEMAMPUAN AKHIR YANG DIHARAPKAN Mampu membandingkan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Salah satu kejadian dalam kehidupan sehari-hari yang sering terjadi adalah menunggu dalam sebuah pelayanan. Fenomena menunggu tersebut sering disebut antrian.

Lebih terperinci

UJIAN AKHIR SEMESTER GENAP 2014/2015 Mata Kuliah : Metode Kuantitatif dalam Bisnis

UJIAN AKHIR SEMESTER GENAP 2014/2015 Mata Kuliah : Metode Kuantitatif dalam Bisnis UJIAN AKHIR SEMESTER GENAP 2014/2015 Mata Kuliah : Metode Kuantitatif dalam Bisnis Soal 1 Solusi Grafis Linear Programming (20 poin) PT Tambi memiliki 20 hektar tanah perkebunan di lereng gunung Sindoro

Lebih terperinci

DIKTAT MATEMATIKA II

DIKTAT MATEMATIKA II DIKTAT MATEMATIKA II (METODE SIMPLEK) Drs. A. NABABAN PURNAWAN, M.T JURUSAN PENDIDIKAN TEKNIK MESIN FAKULTAS PENDIDIKAN TEKNOLOGI DAN KEJURUAN UNIVERSITAS PENDIDIKAN INDONESIA 2004 METODE SIMPLEKS Metode

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Teori Antrian 2.1.1 Definisi Antrian Antrian adalah suatu garis tunggu dari nasabah yang memerlukan layanan dari satu atau lebih pelayanan. Kejadian garis tunggu timbul disebabkan

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2004 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2005

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2004 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2005 SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 200 Bidang Matematika Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH

Lebih terperinci

Operations Management

Operations Management Operations Management OPERATIONS RESEARCH William J. Stevenson 8 th edition Pendahuluan Analisis antrian pertama kali diperkenalkan oleh A.K Erlang (1913) yang mempelajari fluktuasi permintaan fasilitas

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Program Linier Program linier merupakan suatu model matematika untuk mendapatkan alternatif penggunaan terbaik atas sumber-sumber yang tersedia. Kata linier digunakan untuk menunjukkan

Lebih terperinci

Kumpulan Soal Matematika VII ( BSE Dewi Nurhariyani)

Kumpulan Soal Matematika VII ( BSE Dewi Nurhariyani) Bilangan Bulat 1. Suhu sebongkah es mula-mula 5 o C. Dua jam kemudian suhunya turun 7 o C. Suhu es itu sekarang a. 12 o C c. 2 o C b. 2 o C d. 12 o C 2. Jika x lebih besar dari 1 dan kurang dari 4 maka

Lebih terperinci

DESKRIPSI MATA KULIAH

DESKRIPSI MATA KULIAH DESKRIPSI MATA KULIAH Nama Mata Kuliah Kode Mata Kuliah Kredit : Riset Operasional : IF35315 : 3 SKS (3X45 menit) Deskripsi : Merupakan mata kuliah yang membahas tentang teknik- teknik riset operasi, khususnya

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini diuraikan teori-teori yang digunakan untuk membahas permasalahan yang ada. Teori-teori yang digunakan adalah Riset Operasi, Konsep Dasar Perencanaan Kapasitas, dan Pemrograman

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 14 BAB 2 LANDASAN TEORI 2.1. Pendahuluan Antrian adalah kejadian yang sering dijumpai dalam kehidupan seharihari. Menunggu di depan loket untuk mendapatakan tiket kereta api, menunggu pengisian bahan bakar,

Lebih terperinci

PROGRAM LINIER. Sumber: Art & Gallery

PROGRAM LINIER. Sumber: Art & Gallery 4 PROGRAM LINIER Sumber: Art & Gallery 114 Matematika X SMK Kelompok: Penjualan dan Akuntansi Standar kompetensi program linier terdiri atas empat kompetensi dasar. Dalam penyajian pada buku ini setiap

Lebih terperinci

RESENSI OPERATIONS RESEARCH STRATEGI EFISIENSI BERMULA DARI PERANG

RESENSI OPERATIONS RESEARCH STRATEGI EFISIENSI BERMULA DARI PERANG VOLUME 3 No. 2, 22 Juni 2014 Halaman 81-166 RESENSI OPERATIONS RESEARCH STRATEGI EFISIENSI BERMULA DARI PERANG Nur Aini Masruroh Jurusan Teknik Mesin dan Industri Judul : Introduction to Operations Research

Lebih terperinci

METODE GEOMETRIS (METODE GRAFIS)

METODE GEOMETRIS (METODE GRAFIS) METODE GEOMETRIS (METODE GRAFIS) Riani Lubis Jurusan Teknik Informatika Universitas Komputer Indonesia 1 Pendahuluan Digunakan bila persoalan programa linier, hanya mempunyai 2 buah variabel keputusan

Lebih terperinci

BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA

BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA Masalah 1.1 Sekelompok tani transmigran mendapatkan 10 hektar tanah yang dapat ditanami padi, jagung, dan palawija lain. Karena keterbatasan sumber daya petani

Lebih terperinci

Masalah dan Jaringan sebagai Model Pemecahan

Masalah dan Jaringan sebagai Model Pemecahan Modul 1 Masalah dan Jaringan sebagai Model Pemecahan Dr. Djati Kerami S PENDAHULUAN uatu jaringan sebagai model penyajian maupun pemecahan masalah sudah sejak lama digunakan. Di dalam analisis jaringan,

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 9 BAB 1 PENDAHULUAN 1.1 Latar Belakang Travelling Salesman Problem (TSP) merupakan salah satu permasalahan yang penting dalam dunia matematika dan informatika. TSP dapat diilustrasikan sebagai perjalanan

Lebih terperinci

Soal Linear Programming. By: Rita Wiryasaputra, ST., M. Cs.

Soal Linear Programming. By: Rita Wiryasaputra, ST., M. Cs. Soal Linear Programming By: Rita Wiryasaputra, ST., M. Cs. Soal 1 Sebuah perusahaan mebel akan membuat meja dan kursi. Setiap meja membutuhkan 5 m 2 kayu jati dan 2 m 2 kayu pinus, serta membutuhkan waktu

Lebih terperinci

Teori Antrian. Aminudin, Prinsip-prinsip Riset Operasi

Teori Antrian. Aminudin, Prinsip-prinsip Riset Operasi Teori Antrian Aminudin, Prinsip-prinsip Riset Operasi Contoh Kendaraan berhenti berderet-deret menunggu di traffic light. Pesawat menunggu lepas landas di bandara. Surat antri untuk diketik oleh sekretaris.

Lebih terperinci

Siswa dapat menggambar grafik himpunan penyelesaikan sistim pertidaksamaan linier dengan 2 varabel

Siswa dapat menggambar grafik himpunan penyelesaikan sistim pertidaksamaan linier dengan 2 varabel RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah :... Mata Pelajaran : Matematika Kelas/Semester : XI/3 Pertemuan ke : 1,2, dan 3 Alokasi Waktu : 6 x 45 menit Standar Kompetensi : Menyelesaikan program

Lebih terperinci

TEORI ANTRIAN. Riset Operasional 2, Anisah SE., MM 1

TEORI ANTRIAN. Riset Operasional 2, Anisah SE., MM 1 TEORI ANTRIAN Riset Operasional 2, Anisah SE., MM 1 Riset Operasional Riset operasional merupakan cabang interdisiplin dari matematika terapan dan sains formal yang menggunakan model-model seperti model

Lebih terperinci

Operations Management

Operations Management Operations Management TEKNIK RISET OPERASI William J. Stevenson 8 th edition CONTOH ANTRIAN Pelanggan menunggu pelayanan di kasir Mahasiswa menunggu konsultasi dengan pembimbing Mahasiswa menunggu registrasi

Lebih terperinci

Model Antrian 02/28/2014. Ratih Wulandari, ST.,MT 1. Menunggu dalam suatu antrian adalah hal yang paling sering terjadi dalam kehidupan sehari-hari

Model Antrian 02/28/2014. Ratih Wulandari, ST.,MT 1. Menunggu dalam suatu antrian adalah hal yang paling sering terjadi dalam kehidupan sehari-hari Model Antrian M E T O D E S T O K A S T I K Menunggu dalam suatu antrian adalah hal yang paling sering terjadi dalam kehidupan sehari-hari Siapaun yang pergi berbelanja atau ke bioskop telah mengalami

Lebih terperinci

Teknik Riset Operasional Semester Genap Tahun Akademik 2015/2016 Teknik Informatiaka UIGM

Teknik Riset Operasional Semester Genap Tahun Akademik 2015/2016 Teknik Informatiaka UIGM Teknik Riset Operasional Semester Genap Tahun Akademik 2015/2016 Teknik Informatiaka UIGM Dosen: Didin Astriani Prassetyowati, M.Stat Silabus MATAKULIAH TI214 TEKNIK RISET OPERASI (2 SKS) TUJUAN Agar mahasiswa

Lebih terperinci

Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia

Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Metode simpleks merupakan sebuah prosedur matematis berulang untuk menemukan penyelesaian optimal soal programa

Lebih terperinci

KARAKTERISTIK SISTEM ANTRIAN

KARAKTERISTIK SISTEM ANTRIAN KARAKTERISTIK SISTEM ANTRIAN Terdapat tiga komponen dalam sebuah sistem antrian : 1. Kedatangan. Kedatangan memiliki karakteristik seperti ukuran populasi, perilaku dan sebuah distribusi statistik 2. Disiplin

Lebih terperinci

Program Linear. Bab I

Program Linear. Bab I Program Linear 1 Bab I Program Linear Sumber: Ensiklopedia Pelajar, 1999 Motivasi Setiap pedagang, pengusaha, atau orang yang berkecimpung di bidang usaha pasti menginginkan keuntungan sebanyak-banyaknya

Lebih terperinci

MAKALAH REKAYASA TRAFIK TEORI ANTRI

MAKALAH REKAYASA TRAFIK TEORI ANTRI MAKALAH REKAYASA TRAFIK TEORI ANTRI Oleh TT 2D Bibba Nur Aristya 1231130009 Dewi Sekar Putih 1231130042 Dinari Gustiana Cita D. 1231130006 D3 TEKNIK TELEKOMUNIKASI POLITEKNIK NEGERI MALANG 2014 KATA PENGANTAR

Lebih terperinci

PERENCANAAN TATA LETAK GUDANG PENYIMPANAN PRODUK PT PIPA BAJA DENGAN METODE DEDICATED STORAGE

PERENCANAAN TATA LETAK GUDANG PENYIMPANAN PRODUK PT PIPA BAJA DENGAN METODE DEDICATED STORAGE PERENCANAAN TATA LETAK GUDANG PENYIMPANAN PRODUK PT PIPA BAJA DENGAN METODE DEDICATED STORAGE Yhongki Feryndra Nugraha 1) dan Moses Laksono Singgih 2) 1) Program Magister Manajemen Teknologi, Institut

Lebih terperinci

Ardaneswari D.P.C., STP, MP.

Ardaneswari D.P.C., STP, MP. Ardaneswari D.P.C., STP, MP. Materi Bahasan Pengantar pemrograman linier Pemecahan pemrograman linier dengan metode grafis PENGANTAR Pemrograman (programming) secara umum berkaitan dengan penggunaan atau

Lebih terperinci

SIMULASI PROGRAM ANTRIAN BANK

SIMULASI PROGRAM ANTRIAN BANK TEKNIK SIMULASI SIMULASI PROGRAM ANTRIAN BANK Nama : Heni Indrawati NPM : 10 411 130 Kelas : C Jurusan : Teknik Informatika S 1 FAKULTAS ILMU KOMPUTER DAN MANAJEMEN UNIVERSITAS SAINS DAN TEKNOLOGI JAYAPURA

Lebih terperinci

BAB I PENDAHULUAN. Antrian adalah suatu bentuk barisan yang dilakukan oleh orang-orang pada

BAB I PENDAHULUAN. Antrian adalah suatu bentuk barisan yang dilakukan oleh orang-orang pada 1 BAB I PENDAHULUAN 1.1 Latar Belakang Antrian adalah suatu bentuk barisan yang dilakukan oleh orang-orang pada suatu waktu tertentu untuk melakukan suatu kegiata. Antrian merupakan salah satu pengalaman

Lebih terperinci

Bab 2 LANDASAN TEORI

Bab 2 LANDASAN TEORI Bab 2 LANDASAN TEORI 2.1 Linear Programming Linear Programming (LP) merupakan metode yang digunakan untuk mencapai hasil terbaik (optimal) seperti keuntungan maksimum atau biaya minimum dalam model matematika

Lebih terperinci

Dosen Pembina: HP :

Dosen Pembina: HP : SELAMAT MENEMPUH MATAKULIAH Dosen Pembina: Sujito, S.Kom., M.Pd. HP : 081 233 255 16 E-mail : sujito@pradnya-paramita.ac.id ojitstimata@gmail.com KONTRAK BELAJAR (NORMA AKADEMIK) 1. Kegiatan pembelajaran

Lebih terperinci

Model Antrian Pengangkutan Slag dengan Pendekatan Matematis: Studi Kasus pada PT. Inco Sorowako

Model Antrian Pengangkutan Slag dengan Pendekatan Matematis: Studi Kasus pada PT. Inco Sorowako Vol. 5 No. 99-07 Januari 009 Model Antrian Pengangkutan Slag dengan Pendekatan Matematis: Studi Kasus pada PT. Inco Sorowako Muhammad Rusman Abstrak Pengangkutan slag merupakan bagian penting dari sistem

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN KERANGKA PEMIKIRAN. Herjanto (2008:2) mengemukakan bahwa manajemen operasi merupakan

BAB II TINJAUAN PUSTAKA DAN KERANGKA PEMIKIRAN. Herjanto (2008:2) mengemukakan bahwa manajemen operasi merupakan BAB II TINJAUAN PUSTAKA DAN KERANGKA PEMIKIRAN 2.1 Tinjauan Pustaka 2.1.1 Manajemen Operasi 2.1.1.1 Pengertian Manajemen Operasi Herjanto (2008:2) mengemukakan bahwa manajemen operasi merupakan kegiatan

Lebih terperinci

B. Fungsi Sasaran dan Kendala dalam Program Linier

B. Fungsi Sasaran dan Kendala dalam Program Linier Peta Konsep Jurnal PetaKonsep Daftar Hadir MateriB SoalLatihan2 Materi Umum PROGRAM LINIER Kelas XI, Semester 3 B. Fungsi Sasaran dan Kendala dalam Program Linier Sistem Pertidaksamaan Linier Fungsi Sasaran

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Riset Operasi Masalah Riset Operasi (Operation Research) pertama kali muncul di Inggris selama Perang Dunia II. Inggris mula-mula tertarik menggunakan metode kuantitatif dalam

Lebih terperinci

Prediksi 2 UN SMA IPS Matematika Kode Soal: 302

Prediksi 2 UN SMA IPS Matematika Kode Soal: 302 Prediksi UN SMA IPS Matematika Kode Soal: Doc. Version : -6 halaman. Negasi dari pernyataan Jika saya belajar dengan zenius maka saya lulus UN Jika saya lulus UN maka saya belajar dengan zenius Saya tidak

Lebih terperinci

BANK SOAL UN SMK KELOMPOK TEKNOLOGI Jika maka adalah... A. B. C. D. E.

BANK SOAL UN SMK KELOMPOK TEKNOLOGI Jika maka adalah... A. B. C. D. E. 1 1. Jika maka 2. Jika maka 3. Jika maka 4. Bentuk sederhana dari 5. Bentuk sederhana dari 6. Bentuk sederhana dari 2 7. Bentuk sederhana dari 8. Bentuk sederhana dari ( ) ( ) ( ) ( ) 9. Bentuk sederhana

Lebih terperinci

BAB II TINJAUAN PUSTAKA. operasi yang mampu menyelesaikan masalah optimasi sejak diperkenalkan di

BAB II TINJAUAN PUSTAKA. operasi yang mampu menyelesaikan masalah optimasi sejak diperkenalkan di BAB II TINJAUAN PUSTAKA 2.1 Pemrograman Linier (Linear Programming) Pemrograman linier (linear programming) merupakan salah satu teknik riset operasi yang mampu menyelesaikan masalah optimasi sejak diperkenalkan

Lebih terperinci

Bab 1 Pendahuluan 1.1. Latar Belakang Masalah

Bab 1 Pendahuluan 1.1. Latar Belakang Masalah Bab 1 Pendahuluan 1.1. Latar Belakang Masalah Pada Umumnya semua perusahaan khususnya perusahaan yang bergerak dalam bidang manufactur (proses) tidak terlepas dari masalah perencanaan produksi. Dimana

Lebih terperinci

PROGRAMA DINAMIS 10/31/2012 1

PROGRAMA DINAMIS 10/31/2012 1 PROGRAMA DINAMIS 10/31/2012 1 Programa Dinamis berbeda dengan programa linier yang sudah kita kenal. Persoalan bersifat dinamis apabila diarahkan kepada pemecahan secara bertahap yang masingmasingnya merupakan

Lebih terperinci

18/09/2013. Ekonomi Teknik / Sigit Prabawa / 1. Ekonomi Teknik / Sigit Prabawa / 2

18/09/2013. Ekonomi Teknik / Sigit Prabawa / 1. Ekonomi Teknik / Sigit Prabawa / 2 PENERAPAN PROGRAM LINIER dalam OPTIMASI PRODUKSI Ekonomi Teknik / Sigit Prabawa / 1 MASALAH yg banyak dihadapi oleh INDUSTRI adalah BAGAIMANA MENGGUNAKAN atau MENENTUKAN ALOKASI PENGGUNAAN SUMBER DAYAYG

Lebih terperinci

4.WW TINGKAT PROVINSI TAHUN 2014 NASKAH SOAL OLIMPIADE SAINS NASIONAL GURU BIDANG MATEMATIKA SMP KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN WAKTU 150 MENIT

4.WW TINGKAT PROVINSI TAHUN 2014 NASKAH SOAL OLIMPIADE SAINS NASIONAL GURU BIDANG MATEMATIKA SMP KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN WAKTU 150 MENIT NASKAH SOAL OLIMPIADE SAINS NASIONAL GURU TINGKAT PROVINSI TAHUN 2014 BIDANG MATEMATIKA SMP SERI A WAKTU 150 MENIT PUSAT PENGEMBANGAN PROFESI PENDIDIK BADAN PENGEMBANGAN SUMBER DAYA MANUSIA PENDIDIKAN

Lebih terperinci

Pengantar Teknik Industri TIN 4103

Pengantar Teknik Industri TIN 4103 Pengantar Teknik Industri TIN 4103 Lecture 10 Outline: Penelitian Operasional References: Frederick Hillier and Gerald J. Lieberman. Introduction to Operations Research. 7th ed. The McGraw-Hill Companies,

Lebih terperinci

7/28/2005 created by Hotniar Siringoringo 1

7/28/2005 created by Hotniar Siringoringo 1 Tujuan analisis output adalah menjawab pertanyaan yang diajukan di awal pembentukan model dengan benar. Bentuk pertanyaan mengindikasikan pengujian hipotesis, selang kepercayaan atau pendugaan parameter.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Sistem Distribusi Distribusi merupakan proses pemindahan barang-barang dari tempat produksi ke berbagai tempat atau daerah yang membutuhkan. Kotler (2005) mendefinisikan bahwa

Lebih terperinci

BAB V KESIMPULAN DAN SARAN. sebelumnya, penulis dapat mengambil kesimpulan sebagai berikut:

BAB V KESIMPULAN DAN SARAN. sebelumnya, penulis dapat mengambil kesimpulan sebagai berikut: BAB V KESIMPULAN DAN SARAN 5.1 Kesimpulan Berdasarkan pengolahan data dan pembahasan yang telah dikemukakan sebelumnya, penulis dapat mengambil kesimpulan sebagai berikut: 1. Berdasarkan analisis kinerja

Lebih terperinci

MEMBUAT PERSAMAAN DARI PERSOALAN. Oleh : Zuriman Anthony, ST., MT

MEMBUAT PERSAMAAN DARI PERSOALAN. Oleh : Zuriman Anthony, ST., MT SISTEM OPTIMASI MEMBUAT PERSAMAAN DARI PERSOALAN Oleh : Zuriman Anthony, ST., MT CONTOH-CONTOH PERSOALAN Contoh 3.1 Pemilik perusahaan mempunyai dua macam bahan mentah, Katakan bahan mentah I (misalnya

Lebih terperinci

Optimasi Jaringan. Masalah Optimasi Jaringan Model Optimasi Jaringan Penyelesaian Optimasi Jaringan dengan Simpleks

Optimasi Jaringan. Masalah Optimasi Jaringan Model Optimasi Jaringan Penyelesaian Optimasi Jaringan dengan Simpleks Optimasi Jaringan Masalah Optimasi Jaringan Model Optimasi Jaringan Penyelesaian Optimasi Jaringan dengan Simpleks Pendahuluan Sebuah model jaringan terdiri dari dua buah element utama, yaitu: Arc, marupakan

Lebih terperinci

JASA 2 [BAB V MENGELOLA ANTRIAN DAN RESERVASI] (BAGIAN I)

JASA 2 [BAB V MENGELOLA ANTRIAN DAN RESERVASI] (BAGIAN I) Apakah yang dimaksud dengan antrian? Antrian adalah barisan orang, kendaraan, objek fisik lainnya, atau hal-hal yang tidak berwujud lainnya yang menunggu giliran untuk dilayani atau untuk bergerak kedepan.

Lebih terperinci

BAB I. PENDAHULUAN A. Latar Belakang

BAB I. PENDAHULUAN A. Latar Belakang BAB I. PENDAHULUAN A. Latar Belakang Sumatera Barat memiliki potensi cukup besar di bidang perkebunan, karena didukung oleh lahan yang cukup luas dan iklim yang sesuai untuk komoditi perkebunan. Beberapa

Lebih terperinci

Metoda Analisa Antrian Loket Parkir Mercu Buana

Metoda Analisa Antrian Loket Parkir Mercu Buana Metoda Analisa Antrian Loket Parkir Mercu Buana Muhamar kadaffi Jurusan Teknik Elektro,Universitas Mercu Buana JL. Raya Meruya Selatan, Kembangan, Jakarta, 11650 E-mail : muhamar10@yahoo.com Abstrak --

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN 3.1. Penetapan Kriteria Optimasi Kriteria optimasi yang digunakan dalam menganalisis perencanaan agregat yang tepat pada PT. LG Electronics adalah sebagai berikut : 1. Peramalan

Lebih terperinci

BAB I PENDAHULUAN. Menuju Swasembada Gula Nasional Tahun 2014, PTPN II Persero PG Kwala. Madu yang turut sebagai Badan Usaha Milik Negara (BUMN) yang

BAB I PENDAHULUAN. Menuju Swasembada Gula Nasional Tahun 2014, PTPN II Persero PG Kwala. Madu yang turut sebagai Badan Usaha Milik Negara (BUMN) yang BAB I PENDAHULUAN 1.1 Latar Belakang Permasalahan Demi memenuhi Hasil Evaluasi Program Peningkatan Produktivitas Gula Menuju Swasembada Gula Nasional Tahun 2014, PTPN II Persero PG Kwala Madu yang turut

Lebih terperinci

BAB I PENDAHULUAN. hingga ke luar pulau Jawa. Outlet-outlet inilah yang menjadi channel distribusi

BAB I PENDAHULUAN. hingga ke luar pulau Jawa. Outlet-outlet inilah yang menjadi channel distribusi BAB I PENDAHULUAN 1.1 Latar Belakang Masalah PT. Indoberka Investama merupakan perusahaan nasional yang bergerak di bidang kontruksi, pabrikasi, dan distributor rangka atap. Bentuk badan usaha dari PT

Lebih terperinci

Keadaan atau kejadian-kejadian pada masa yang akan datang tidaklah akan selalu sesuai dengan yang diharapkan, oleh karena itu perlu dilakukan suatu

Keadaan atau kejadian-kejadian pada masa yang akan datang tidaklah akan selalu sesuai dengan yang diharapkan, oleh karena itu perlu dilakukan suatu BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan Kata peramalan pada dasarnya adalah suatu perkiraan tentang suatu kejadian atau keadaan dimasa yang akan datang. Jadi jelaslah bahwa peramalan itu bukan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka 2.1.1 Manajemen Operasi Menurut Heinzer dan Render (2011;4), manajemen operasi adalah serangkaian aktivitas yang menghasilkan nilai dalam bentuk barang dan

Lebih terperinci

Model Arus Jaringan. Rudi Susanto

Model Arus Jaringan. Rudi Susanto Model Arus Jaringan Rudi Susanto Pengertian Jaringan Jaringan adalah suatu susunan garis edar (path) yang terhubung pada berbagai titik, dimana satu atau beberapa barang bergerak dari satu titik ke titik

Lebih terperinci

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2016 TINGKAT PROVINSI

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2016 TINGKAT PROVINSI HAK CIPTA DILINDUNGI UNDANG-UNDANG SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2016 TINGKAT PROVINSI BIDANG MATEMATIKA Waktu : 210 menit KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL

Lebih terperinci

BAB I PENDAHULUAN. Antrian dalam kehidupan sehari-hari sering ditemui, misalnya antrian di

BAB I PENDAHULUAN. Antrian dalam kehidupan sehari-hari sering ditemui, misalnya antrian di BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Antrian dalam kehidupan sehari-hari sering ditemui, misalnya antrian di kasir supermarket, antrian di pom bensin, antrian saat bayar parkir, antrian pasien

Lebih terperinci

METODE SIMPLEKS DALAM PROGRAM LINIER

METODE SIMPLEKS DALAM PROGRAM LINIER METODE SIMPLEKS DALAM PROGRAM LINIER Dian Wirdasari Abstrak Metode simpleks merupakan salah satu teknik penyelesaian dalam program linier yang digunakan sebagai teknik pengambilan keputusan dalam permasalahan

Lebih terperinci

MODEL ARUS JARINGAN. Pertemuan 9

MODEL ARUS JARINGAN. Pertemuan 9 MODEL ARUS JARINGAN Pertemuan 9 Pengertian Jaringan Jaringan adalah suatu susunan garis edar (path) yang terhubung pada berbagai titik, dimana satu atau beberapa barang bergerak dari satu titik ke titik

Lebih terperinci

BAB VIII PEMROGRAMAN DINAMIS

BAB VIII PEMROGRAMAN DINAMIS BAB VIII PEMROGRAMAN DINAMIS Pemprograman dinamis merupakan prosedur matematis yang dirancang untuk memperbaiki efisiensi perhitungan masalah pemprograman matematis tertentu dengan menguraikannya menjadi

Lebih terperinci

qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq

qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq Software Application II (Before Final Test) wertyuiopasdfghjklzxcvbnmqwertyui

Lebih terperinci

Modul 13. PENELITIAN OPERASIONAL TEORI ANTRIAN. Oleh : Eliyani PROGRAM KELAS KARYAWAN PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI

Modul 13. PENELITIAN OPERASIONAL TEORI ANTRIAN. Oleh : Eliyani PROGRAM KELAS KARYAWAN PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI Modul 13. Oleh : Eliyani PROGRAM KELAS KARYAWAN PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS MERCU BUANA JAKARTA 2007 1. PENGANTAR Antri adalah kejadian yang biasa dalam kehidupan

Lebih terperinci