MK Konsep Teknologi. Optimasi 1

Ukuran: px
Mulai penontonan dengan halaman:

Download "MK Konsep Teknologi. Optimasi 1"

Transkripsi

1 Optimasi 1

2 Kegiatan / Persoalan Pengambilan Keputusan Alternatif Metoda Penyelesaian: 1. Programa Linear 2. Programa Dinamis 3. Antrian 4. Algoritma Lorong 5. Permainan Optimasi 2

3 Kerangka Optimasi dalam Pengambilan Keputusan DAYA & DANA TETAP MAKSIMASI PENERIMAAN HASIL YANG OPTIMAL Σ KEGIATAN TETAP MINIMASI DAYA & DANA Optimasi 3

4 Programa Linier Berbasiskan pengembangan model persamaan matematika Pengambilan keputusan dapat dilakukan secara kuantitatif, memudahkan untuk mengambil keputusan. Metoda Grafis Metoda Numeris Programa Dinamis Berbasiskan analisis pada keterkaitan dalam sistem kegiatan Hubungan antar kegiatan digambarkan secara sistematis Optimasi 4

5 Metoda Antrian Untuk menganalisis persoalan-persoalan antrian pada berbagai jenis kejadian Penggambaran besaran dan variable yang terlibat dalam persoalan antrian sehinggan perlakuan atau intervensi untuk memperbaiki kinerja dapat dikerjakan secara sistematis. Algoritma Lorong Strategi penempatan orang/petugas secara optimal untuk memantau atau mengawasi beberapa daerah / lokasi, dengan bantuan model matematis. Optimasi 5

6 Programa Linier / Linear Programming Prinsip Umum: Asumsi Kelinieran : Fungsi Pembatas Fungsi Tujuan Ketidaksamaan Linier Fungsi Tujuan: Minimasi Maksimasi Fungsi Pembatas > 0, atau = 0 Optimasi 6

7 Programa Linier: Metoda Numeris / Matematis Contoh 1: Pabrik baja Steel Forever" mempunyai persediaan bahan mentah besi baja untuk diproses sebanyak 18 ton. Kontrak produksi sekrup sebanyak 7,6 ton telah ditandatangani. Dalam proses produksi terjadi kehilangan bahan mentah sebesar 5%. Selain memproduksi sekrup, pabrik tersebut juga menjual besi baja sebagai bahan mentah kepada pabrik lain. Pertanyaan: Berapa banyak besi baja yang dapat dijual sebagai bahan mentah selagi kontrak masih berjalan? Optimasi 7

8 Programa Linier: Metoda Numeris / Matematis Jawab: Asumsi: Besi baja yang dapat dijual sebagai bahan mentah adalah x ton, Jumlah yang tersedia di pabrik adalah (18 - x) ton Kehilangan dalam proses produksi 5% (18 - x) 5/100 (18 x) = 7,6 ton 95/100 (18 - x) = 7,6, sehingga x = 10 Maka, besi baja yang dijual sebagai bahan mentah adalah 10 ton. Optimasi 8

9 Programa Linier: Metoda Numeris / Matematis Contoh 2: Suatu areal tanah pertanian seluas 40 ha terbagi atas lahan basah dan lahan kering. Seluruh lahan kering dan separuh lahan basah ditanami tanaman jagung. Penghasilan per-ha: Rp ,-/ ha untuk lahan kering dan Rp ,-/ ha untuk lahan basah Setelah panen, penghasilan total dari lahan kering dan basah adalah Rp ,-. Pertanyaan: Berapa luas lahan masing-masing di areal pertanian tersebut? Optimasi 9

10 Programa Linier: Metoda Numeris / Matematis Jawab: Asumsi Luas lahan kering adalah X ha dan lahan basah Y ha, sehingga: (X + Y) = 40 ha.....(1) X (Y/2) = , atau X Y = (2) Ini berarti, bahwa nilai X dan Y dapat dihitung sbb.: (1) X + Y = X Y = (2) X Y = Y = Diperoleh harga Y = 25 dan X = 15, sehingga luas lahan kering adalah 15 ha dan lahan basah 25 ha. Optimasi 10

11 Programa Linier: Metoda Grafis PADA SISTIM KOORDINAT X-Y (X & Y = VARIABEL) PERSAMAAN LINIER PEMBATAS JAWABAN YANG PALING MUNGKIN KETERBATASAN : JUMLAH VARIABEL TERBATAS Tentukan Fungsi Tujuan Gambar garis Pembatas dalam Sistem Koordinat Identifikasi Batasan dalam Ketidaksamaan Cari titik yang paling menguntungkan sesuai dengan Fungsi Tujuan. Optimasi 11

12 Programa Linier: Metoda Grafis Contoh 3: Pabrik baja yang sebelum nya disebut, memprediksi keuntungan se-besar Rp.30/buah untuk sekrup panjang dan Rp. 15/buah untuk sekrup pendek. Kapasitas penuh harian untuk keseluruhan mesin adalah sekrup panjang dan sekrup pendek. Karena adanya perbedaan cara produksi, maka setiap jam dihasilkan sekrup pendek dan sekrup pendek. Dilain pihak bahan kimia khusus untuk memproduksi sekrup panjang hanya tersedia untuk mengolah buah; dan bagian pengepakan hanya mampu mengepak buah perhari. Pertanyaan: Apabila jam kerja adalah 8 jam perhari, berapa banyak sekrup dari masingmasing ukuran yang harus di produksi agar tercapai keuntungan maksimum? Optimasi 12

13 Programa Linier: Metoda Grafis Jawab: Produksi harian adalah X sekrup panjang dan Y sekrup pendek Maksimasi (fungsi tujuan), Z = 30 X + 15 Y Pembatas (1) X < dan Y< (2) (X / 5.000) + (Y/7.500) < 8 atau (3X + 2Y < ) (3) X + Y < (4) X < (5) X >0 dan Y>0 Dengan menggambarkan persamaan linier pada bidang X-Y maka akan didapat area yang memenuhi syarat pertidaksamaan di atas. Optimasi 13

14 Programa Linier: Metoda Grafis Thousands B 40 C 30 X = X = Y = D 10 X + Y = A 0 E Thousands 3X + 2Y = Optimasi 14

15 Programa Linier: Metoda Grafis Pemeriksaan fungsi keuntungan (Z = 30X + 15Y) pada titik-titik ekstrim: A, B, C, D dan E: Titik X Y Z = 30 X + 15 Y A B C D E Jadi keuntungan maksimum diperoleh dengan memproduksi sekrup panjang dan sekrup pendek, dengan keuntungan sebesar Rp Optimasi 15

16 Programa Linier: Metoda Grafis Contoh 4: Sebuah pabrik pipa memproduksi pipa berdiameter 2 dan 4 inci. Keuntungan dari pipa 2 dan 4 inci berturut-turut adalah Rp. 3000,- dan Rp. 5000,-. Mesin yang ada dapat memproduksi pipa 72 batang pipa 2 inci atau 48 batang pipa 4 inci dalam satu hari. Namun mesin ini hanya dioperasikan untuk menghasilkan pipa 2 inci sebanyak 8 batang/jam, dan pipa 4 inci sebanyak 5 batang/jam. Pabrik pipa ini beroperasi selama 8 jam/hari. Untuk membuat pipa berdiameter 2 inci tersedia bahan tambahan khusus yang hanya cukup untuk membuat 32 batang pipa/hari. Alat transportasi yang tersedia hanya mampu membawa 60 batang pipa dari pabrik ke gudang perharinya. Pertanyaan: Berapakah banyak pipa yang harus diproduksi agar diperoleh keuntungan yang maksimal? Optimasi 16

17 Programa Linier: Metoda Grafis Jawab: Produksi harian adalah X batang pipa 2 inci dan Y batang pipa 4 inci. Maksimasi (fungsi tujuan), Z = X Y Pembatas (1) (X/8) + (Y/5) 8 atau (5X + 8Y 320) (2) X + Y 60 (3) X 32 (4) X 0 dan Y 0 Dengan menggambarkan persamaan linier pada bidang X-Y maka akan didapat area yang memenuhi syarat pertidaksamaan di atas. Optimasi 17

18 Programa Linier: Metoda Grafis X = B C X + Y = A D 5X + 8Y = Optimasi 18

19 Programa Linier: Metoda Grafis Pemeriksaan fungsi keuntungan (Z = 3.000X Y) pada titik-titik ekstrim: A, B, C, D : Titik X Y Z = X Y A B C D Jadi keuntungan maksimum diperoleh dengan memproduksi 40 batang pipa 4 inci / hari, dengan keuntungan sebesar Rp ,-. Optimasi 19

20 Programa Dinamik Pendekatan masalah pengambilan keputusan dengan menetapkan uruturutan keputusan. Perhitungan akibat dan pengaruh secara optimal strategi yang optimal. Contoh: Pemilihan rute dengan rute terpendek: Seseorang yang akan ke kantor Pak Pos Loper Koran Pemasangan Kabel Transmisi Permasalahan produksi: Pemesanan ulang persediaan Perencanaan produksi dengan permintaan yang berfluktuasi Penjadwalan reparasi mesin Optimasi 20

21 Prinsip Optimasi Bellman Suatu kebijakan menyeluruh yang optimal harus dibentuk oleh beberapa sub-kebijakan yang optimal pula. Keputusan Mendatang Keputusan Kini dipengaruhi Keputusan Kini Keputusan Kemarin Optimasi 21

22 Programa Dinamik Contoh: Proyek penanaman kabel transmisi dari A ke B secara ekonomis. Rencana Anggaran Biaya (RAB) dalam satuan biaya/ruas dapat diperkirakan. Perhatikan gambar berikut: Prinsip untuk menentukan rute: Dari A menuju B selalu mengarah ke Utara atau ke Timur. Bekerja dengan arah kebalikan (dari B) Optimasi 22

23 Programa Dinamik Prosedur yang perlu diperhatikan: 1. Dari titik-titik K, F dan C hanya 1 route ke B (ke Timur) 2. Dari titik-titik E, J-dan P hanya 1 route ke B (ke Utara) 3. Pada titik-titik tersebut dapat dituliskan notasi Dari titik D ke B: 2 route (D-C-B atarr D-E-B). 5. Dari titik G ke B: l route (G-D-C-B, G-D-E-B & G-F-C-B) 6. Pada titik-titik D & G dapat dituliskan notasi 2 & 3 7. Dengan cara yang sama, diperoleh 3 route dari titik I 8. Dari titik H ada 6 route (3 melalui I dan 3 melalui G). 9. Pada gambar lv, terdapat notasi untuk semua titik; ada 20 route alternatif tersedia ciari A ke B, yang artinya 20 RAB harus dievaluasi dan dibandingkan. 10.Bekerja dengan arah kebalikan. Jika kabel sudah sarnpai di C, kemana arah yang dipilih? (ke Timur & RAB Rp. 10 juta) 11.Catatan: Jumlah Blok = set binary 3x3 4x4 5x5 6x6 20x20 Jumlah Rute Optimasi 23

24 Programa Dinamik Prosedur yang perlu diperhatikan (lanjutan): 10.Bekerja dengan arah kebalikan. Jika kabel sudah sarnpai di C, kemana arah yang dipilih? (ke Timur & RAB Rp. 10 juta) 11.Jika sampai di E, arahkan ke Utara & RAB Rp. 11 juta 12.Selanjutnya, jika kabel sudah sampai di D: RAB D-C-B adalah Rp. 17 juta dan RAB D-E-B adalah Rp. 18 juta. Pllih route D-C-B senilai Rp. 17 juta (lengkapi dengatr arah panah) 13.Selanjutnya langkah yang sarna diambil untuk F, G, H, I & J 14.Dan terakhir untuk K, P, L, O, M, N & A. Arah panah ke Utara ke Timur menandakan route yang dipilih. RAB Rp. 44 juta. Optimasi 24

25 Programa Dinamik Optimasi 25

26 Programa Dinamik Optimasi 26

27 Programa Dinamik Optimasi 27

28 Antrian / Queuing Antrian: adalah suatu jalur menunggu (menantikan pelayanan). Contoh antrian: Antrian take-off pesawat Antrian membayar SPP di bank Antrian di mesin ATM Antrian di gerbang tol Antrian di loket karcis bioskop Antrian di kasir Antrian check-in di bandara Antrian pasien di tempat praktek dokter Contoh lain? Optimasi 28

29 Antrian / Queuing Faktor-faktor antrian: 1. Kedatangan pelanggan acak (jumlah & waktu) 2. Pelayanan: waktu dan jumlah tempat pelayanan 3. Pelanggan: Sedang dilayani Sedang menunggu (dalam antrian) 4. Waktu pelayanan: Sama untuk tiap pelanggan Acak Persoalan antrian dapat dipecahkan bila Waktu pelayanan rata-rata lebih kecil dari waktu kedatangan ratarata. Optimasi 29

30 Antrian / Queuing Faktor Utilisasi Tempat Pelayanan: β= (waktu pelayanan rata-rata / waktu kedatangan rata-rata) Jika β < maka tenlpat pelayanan mampu melayani.pelanggan; dan β > 1 berarti antrian semakin panjang. Harga β merupakan ukuran (%) penggunaan fasilitas pelayanan, misal β = 75% berarti petugas pelayanan dan peralatannya bekerja selama 75% dari seluruh waktunya. Optimasi 30

31 Antrian / Queuing Faktor Utilisasi Tempat Pelayanan: β= (waktu pelayanan rata-rata / waktu kedatangan rata-rata) Jika β < maka tenlpat pelayanan mampu melayani.pelanggan; dan β > 1 berarti antrian semakin panjang. Harga β merupakan ukuran (%) penggunaan fasilitas pelayanan, misal β = 75% berarti petugas pelayanan dan peralatannya bekerja selama 75% dari seluruh waktunya. Optimasi 31

32 Antrian / Queuing Contoh Soal: Kedatangan pelanggan di sebuah toko yang hanya mempunyai satu kasir pembayaran adalah sebagai berikut: Optimasi 32

33 Antrian / Queuing Kedatangan pelanggan tersebut adalah acak (random). Bila setiap pelanggan memerlukan waktu 3 menit untuk dilayani, maka pola pelayanannya adalah sebagai berikut: Selama 1 jam dari jam 09:00 10:00 terjadi pengangguran selama 17 menit. Jadi sarana pelayanan hanya digunakan selama 43 menit. Sehingga, β = 43 / 60 = 72 % Optimasi 33

34 Antrian / Queuing Profil panjang antrian terhadap waktu: Panjang Antrian 0 09:01 09:05 09:09 09:13 09:17 09:21 09:25 09:29 09:33 09:37 09:41 09:45 09:49 09:53 09:57 Waktu Optimasi 34

35 Antrian / Queuing Untuk interval waktu yang panjang diperoleh: β = waktu pelayanan rata-rata / waktu antara kedatangan rata-rata = 3 / (60/15) = 75 % Meskipun sarana pelayanan dipakai 75 % dari waktunya, ternyata pada suatu periode waktu tertentu terdapat 5 pelanggan dalam antrian. Optimasi 35

36 Antrian / Queuing Panjang antrian rata-rata (PA): PA = (17x0 + 19x1 + 5x2 + 5x3 + 4x4 + 5x10) / 60 = 110 / 60 = 1,83 Optimasi 36

37 Antrian / Queuing Rumus antrian pada interval waktu panjang: Untuk waktu pelayanan tetap: Untuk waktu pelayanan acak: β PA = 1 1 β β PA = 1 β β 2 Untuk contoh soal pada slide sebelumnya: 0,75 PA = 1 0,75 = 1, ,75 2 Optimasi 37

38 Antrian / Queuing MEMPELAJARI ANTRIAN harus dilakukan berulang-ulang sehingga mendekati keadaan yang sebenarnya SECARA EKONOMIS antrian dikaitkan dengan prediksi keuntungan / kerugian Optimasi 38

39 Algoritma Lorong PRINSIP: MENDAPATKAN JUMLAH ORANG YANG OPTIMAL PADA SUATU TEMPAT YANG DAPAT MEMANTAU DAERAH-DAERAH YANG TELAH DITENTUKAN. Misalnya : jumlah polisi yang diperlukan untuk memantau jalan atau daerah tertentu. Optimasi 39

40 Algoritma Lorong Jumlah polisi yang diperlukan untuk memantau jalan atau daerah tertentu. a b a, b dan c : pos polisi Lorong ab dan bc = 1 arah Lorong ac atau ca = 2 arah c tanda (+) berarti (atau) Optimasi 40

41 Algoritma Lorong (a+c)(a+b) =a 2 +ab+ca+cb, berarti: a 2 ab ca cb = pos a awasi a dari (a+c) dan awasi b dari (a+b) = pos a awasi a dari (a+c) dan pos b awasi b dari (a+b) = pos c awasi a dari (a+c) dan pos a awasi b dari (a+b) = pos c awasi a dari (a+c) dan pos b awasi b dari (a+b) Atau (a+c) (a+b) berarti semua cara untuk mengawasi a dan b. Sehingga untuk mengawasi a, b, dan c: (a+c).(a+b).(a+b+c) Yang akan memunculkan a 3, yang artinya seorang pengawas di a dapat mengawasi a, b dan c. Optimasi 41

42 Permainan / Game PRINSIP : SUATU KEADAAN DlMANA TERDAPAT 2 (DUA) PIHAK YANG BERKOMPETISI ATAU BERSAING. MASlNG-MASING AKAN MENENTUKAN STRATEGI UNTUK SALING MENGALAHKAN (BERSEPAKAT DALAM ATURAN MAIN). Ada prinsip zero-sum yaitu akan selalu ada pihak yang menang dan yang kalah, seperti lazimnya pertandingan olah raga. CONTOH : Permainan 27 anak korek api pemain dengan jumlah terakhir genap berarti menang! Optimasi 42

43 Permainan / Game Algoritma : Sederetan atau seiumlah langkah yang dapat diambil untuk memecahkan semua masalah dari jenis tertentu. Algoritma untuk contoh permainan korek api pada slide sebelumnya: Pemain A ambil 2 dan selanjutnya bila B mempunyai jumlah genap, sisa dibagi 6 dan ambil lebih kecil satu dari sisa pembagian tersebut; namun bila B mempunyai jumlah ganjil, ambil lebih besar satu dari sisa pembagian, kecuali jika sisa 4 maka ambil semua. Optimasi 43

MK Konsep Teknologi PENGAMBILAN KEPUTUSAN

MK Konsep Teknologi PENGAMBILAN KEPUTUSAN PENGAMBILAN PENGAMBILAN Pengantar Dua kegiatan umum manusia: Pengambilan keputusan (decision making) dan Pelaksanaan keputusan (action plan) Tujuan Instruksional Khusus 1. Mampu menunjukkan faktor, kondisi,

Lebih terperinci

11/1/2016 Azwar Anas, M. Kom - STIE-GK Muara Bulian 1 TEORI ANTRIAN

11/1/2016 Azwar Anas, M. Kom - STIE-GK Muara Bulian 1 TEORI ANTRIAN 11/1/2016 Azwar Anas, M. Kom - STIE-GK Muara Bulian 1 TEORI ANTRIAN 11/1/2016 Azwar Anas, M. Kom - STIE-GK Muara Bulian 2 Pendahuluan Perhatikan beberapa situasi berikut ini: Kendaraan berhenti berderet-deret

Lebih terperinci

PROGRAMA DINAMIS. Dalam Kehidupan nyata sering dijumpai masalah pengambilan keputusan yang meliputi

PROGRAMA DINAMIS. Dalam Kehidupan nyata sering dijumpai masalah pengambilan keputusan yang meliputi PROGRAMA DINAMIS Pendahuluan Dalam Kehidupan nyata sering dijumpai masalah pengambilan keputusan yang meliputi beberapa periode waktu. Program Dinamis adalah teknik untuk pengambilan keputusan yang digunakan

Lebih terperinci

BAB. Teori Antrian PENDAHULUAN PENDAHULUAN

BAB. Teori Antrian PENDAHULUAN PENDAHULUAN PENDAHULUAN BAB 10 Teori Antrian PENDAHULUAN ntrian yang panjang sering kali kita lihat di bank saat nasabah mengantri di teller untuk melakukan transaksi, airport saat para calon penumpang melakukan checkin,

Lebih terperinci

BAB IV PROGRAMA LINIER : METODE GRAFIK

BAB IV PROGRAMA LINIER : METODE GRAFIK BAB IV PROGRAMA LINIER : METODE GRAFIK Pada dasarnya, metode-metode yang dikembangkan untuk memecahkan model programa linier ditujukan untuk mencari solusi dari beberapa alternatif solusi yang dibentuk

Lebih terperinci

Antrian Orang (antri mengambil uang di atm, antri beli karcis, dll.) Barang (dokumen lamaran kerja, mobil yang akan dicuci, dll) Lamanya waktu

Antrian Orang (antri mengambil uang di atm, antri beli karcis, dll.) Barang (dokumen lamaran kerja, mobil yang akan dicuci, dll) Lamanya waktu TEORI ANTRIAN Antrian Orang (antri mengambil uang di atm, antri beli karcis, dll.) Barang (dokumen lamaran kerja, mobil yang akan dicuci, dll) Lamanya waktu menunggu tergantung kecepatan pelayanan Teori

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Program Linier Para ahli mendefinisikan program linier sebagai sebuah teknik analisa yang digunakan untuk memecahkan segala persoalan atau masalah-masalah keputusan yang ada

Lebih terperinci

BAB VI PERENCANAAN PENGEMBANGAN SDA

BAB VI PERENCANAAN PENGEMBANGAN SDA BAB VI PERENCANAAN PENGEMBANGAN SDA Sub Kompetensi Pengenalan dan pemahaman tahapan perencanaan sumberdaya air terkait dalam perencanaan dalam teknik sipil. Sub Pokok Bahasan: Pendahuluan Konsep Pengelolaan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Menunggu dalam suatu antrian adalah hal yang paling sering terjadi dalam kehidupan sehari-hari. Siapa pun yang pergi berbelanja atau ke bioskop telah mengalami

Lebih terperinci

BAB 2 PROGRAM LINEAR

BAB 2 PROGRAM LINEAR BAB 2 PROGRAM LINEAR 2.1. Pengertian Program Linear Pemrograman Linier disingkat PL merupakan metode matematik dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan seperti memaksimumkan

Lebih terperinci

Unnes Journal of Mathematics

Unnes Journal of Mathematics UJM 3 (1) (2014) Unnes Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm ANALISIS PROSES ANTRIAN MULTIPLE CHANNEL SINGLE PHASE DI LOKET ADMINISTRASI DAN RAWAT JALAN RSUP Dr. KARIADI SEMARANG

Lebih terperinci

Bab 1 Pendahuluan 1.1. Latar Belakang Masalah

Bab 1 Pendahuluan 1.1. Latar Belakang Masalah Bab 1 Pendahuluan 1.1. Latar Belakang Masalah Pada Umumnya semua perusahaan khususnya perusahaan yang bergerak dalam bidang manufactur (proses) tidak terlepas dari masalah perencanaan produksi. Dimana

Lebih terperinci

Dosen Pembina: HP :

Dosen Pembina: HP : SELAMAT MENEMPUH MATAKULIAH Dosen Pembina: Sujito, S.Kom., M.Pd. HP : 081 233 255 16 E-mail : sujito@pradnya-paramita.ac.id ojitstimata@gmail.com KONTRAK BELAJAR (NORMA AKADEMIK) 1. Kegiatan pembelajaran

Lebih terperinci

BAB II TINJAUAN PUSTAKA. operasi yang mampu menyelesaikan masalah optimasi sejak diperkenalkan di

BAB II TINJAUAN PUSTAKA. operasi yang mampu menyelesaikan masalah optimasi sejak diperkenalkan di BAB II TINJAUAN PUSTAKA 2.1 Pemrograman Linier (Linear Programming) Pemrograman linier (linear programming) merupakan salah satu teknik riset operasi yang mampu menyelesaikan masalah optimasi sejak diperkenalkan

Lebih terperinci

18/09/2013. Ekonomi Teknik / Sigit Prabawa / 1. Ekonomi Teknik / Sigit Prabawa / 2

18/09/2013. Ekonomi Teknik / Sigit Prabawa / 1. Ekonomi Teknik / Sigit Prabawa / 2 PENERAPAN PROGRAM LINIER dalam OPTIMASI PRODUKSI Ekonomi Teknik / Sigit Prabawa / 1 MASALAH yg banyak dihadapi oleh INDUSTRI adalah BAGAIMANA MENGGUNAKAN atau MENENTUKAN ALOKASI PENGGUNAAN SUMBER DAYAYG

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2004 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2005

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2004 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2005 SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 200 Bidang Matematika Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini diuraikan teori-teori yang digunakan untuk membahas permasalahan yang ada. Teori-teori yang digunakan adalah Riset Operasi, Konsep Dasar Perencanaan Kapasitas, dan Pemrograman

Lebih terperinci

DESKRIPSI MATA KULIAH

DESKRIPSI MATA KULIAH DESKRIPSI MATA KULIAH Nama Mata Kuliah Kode Mata Kuliah Kredit : Riset Operasional : IF35315 : 3 SKS (3X45 menit) Deskripsi : Merupakan mata kuliah yang membahas tentang teknik- teknik riset operasi, khususnya

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bagian ini diberikan beberapa konsep dasar yang menjadi landasan berpikir dalam penelitian ini, seperti pengertian persediaan, metode program linier. 2.1. Persediaan 2.1.1. Pengertian

Lebih terperinci

Kumpulan Soal Matematika VII ( BSE Dewi Nurhariyani)

Kumpulan Soal Matematika VII ( BSE Dewi Nurhariyani) Bilangan Bulat 1. Suhu sebongkah es mula-mula 5 o C. Dua jam kemudian suhunya turun 7 o C. Suhu es itu sekarang a. 12 o C c. 2 o C b. 2 o C d. 12 o C 2. Jika x lebih besar dari 1 dan kurang dari 4 maka

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Teori Antrian 2.1.1 Definisi Antrian Antrian adalah suatu garis tunggu dari nasabah yang memerlukan layanan dari satu atau lebih pelayanan. Kejadian garis tunggu timbul disebabkan

Lebih terperinci

PROGRAM LINIER. Sumber: Art & Gallery

PROGRAM LINIER. Sumber: Art & Gallery 4 PROGRAM LINIER Sumber: Art & Gallery 114 Matematika X SMK Kelompok: Penjualan dan Akuntansi Standar kompetensi program linier terdiri atas empat kompetensi dasar. Dalam penyajian pada buku ini setiap

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 49-58, April 2003, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 49-58, April 2003, ISSN : JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 49-58, April 2003, ISSN : 1410-8518 APLIKASI MATEMATIKA DALAM PERENCANAAN DAN PENGENDALIAN DI BIDANG INDUSTRI 1 Kartono Jurusan Matematika FMIPA UNDIP Semarang.

Lebih terperinci

BANK SOAL UN SMK KELOMPOK TEKNOLOGI Jika maka adalah... A. B. C. D. E.

BANK SOAL UN SMK KELOMPOK TEKNOLOGI Jika maka adalah... A. B. C. D. E. 1 1. Jika maka 2. Jika maka 3. Jika maka 4. Bentuk sederhana dari 5. Bentuk sederhana dari 6. Bentuk sederhana dari 2 7. Bentuk sederhana dari 8. Bentuk sederhana dari ( ) ( ) ( ) ( ) 9. Bentuk sederhana

Lebih terperinci

MODEL DAN PERANAN RO DALAM PENGAMBILAN KEPUTUSAN

MODEL DAN PERANAN RO DALAM PENGAMBILAN KEPUTUSAN MODEL DAN PERANAN RO DALAM PENGAMBILAN KEPUTUSAN Pertemuan I Ayundyah Kesumawati, M.Si PROGRAM STUDI STATISTIKA UNIVERSITAS ISLAM INDONESIA 2015 Pendahuluan Sejak revolusi industri (1750-1850), dunia usaha

Lebih terperinci

Teori Antrian. Aminudin, Prinsip-prinsip Riset Operasi

Teori Antrian. Aminudin, Prinsip-prinsip Riset Operasi Teori Antrian Aminudin, Prinsip-prinsip Riset Operasi Contoh Kendaraan berhenti berderet-deret menunggu di traffic light. Pesawat menunggu lepas landas di bandara. Surat antri untuk diketik oleh sekretaris.

Lebih terperinci

Operations Management

Operations Management Operations Management TEKNIK RISET OPERASI William J. Stevenson 8 th edition CONTOH ANTRIAN Pelanggan menunggu pelayanan di kasir Mahasiswa menunggu konsultasi dengan pembimbing Mahasiswa menunggu registrasi

Lebih terperinci

Pemodelan dan Linier Programming (LP)

Pemodelan dan Linier Programming (LP) Pemodelan dan Linier Programming (LP) Entin Martiana, S.Kom, M.Kom Pemodelan dalam mss Model statistik (analisis regresi) digunakan untuk mencari relasi diantara variabel. Model ini merupakan preprogram

Lebih terperinci

KARAKTERISTIK SISTEM ANTRIAN

KARAKTERISTIK SISTEM ANTRIAN KARAKTERISTIK SISTEM ANTRIAN Terdapat tiga komponen dalam sebuah sistem antrian : 1. Kedatangan. Kedatangan memiliki karakteristik seperti ukuran populasi, perilaku dan sebuah distribusi statistik 2. Disiplin

Lebih terperinci

MODEL ARUS JARINGAN. Pertemuan 9

MODEL ARUS JARINGAN. Pertemuan 9 MODEL ARUS JARINGAN Pertemuan 9 Pengertian Jaringan Jaringan adalah suatu susunan garis edar (path) yang terhubung pada berbagai titik, dimana satu atau beberapa barang bergerak dari satu titik ke titik

Lebih terperinci

PENERAPAN PROGRAM LINIER DALAM OPTIMASI BIAYA PAKAN IKAN DENGAN METODE SIMPLEKS (STUDI KASUS PT. INDOJAYA AGRINUSA MEDAN)

PENERAPAN PROGRAM LINIER DALAM OPTIMASI BIAYA PAKAN IKAN DENGAN METODE SIMPLEKS (STUDI KASUS PT. INDOJAYA AGRINUSA MEDAN) PENERAPAN PROGRAM LINIER DALAM OPTIMASI BIAYA PAKAN IKAN DENGAN METODE SIMPLEKS (STUDI KASUS PT. INDOJAYA AGRINUSA MEDAN) Beby Sundary (1011297) Mahasiswa Program Studi Teknik Informatika STMIK Budi Darma

Lebih terperinci

MEMBUAT PERSAMAAN DARI PERSOALAN. Oleh : Zuriman Anthony, ST., MT

MEMBUAT PERSAMAAN DARI PERSOALAN. Oleh : Zuriman Anthony, ST., MT SISTEM OPTIMASI MEMBUAT PERSAMAAN DARI PERSOALAN Oleh : Zuriman Anthony, ST., MT CONTOH-CONTOH PERSOALAN Contoh 3.1 Pemilik perusahaan mempunyai dua macam bahan mentah, Katakan bahan mentah I (misalnya

Lebih terperinci

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode / Nama Mata Kuliah : E124303 / Optimisasi Revisi 4 Satuan Kredit Semester : 3 SKS Tgl revisi : 16 Juli 2015 Jml Jam kuliah dalam seminggu : 3

Lebih terperinci

BAB III GAME THEORY. Dalam kehidupan sehari-hari sering dijumpai kegiatan-kegiatan yang

BAB III GAME THEORY. Dalam kehidupan sehari-hari sering dijumpai kegiatan-kegiatan yang 7 BAB III GAME THEORY 3. Pengantar Game Theory Dalam kehidupan sehari-hari sering dijumpai kegiatan-kegiatan yang bersifat kompetitif yang diwarnai persaingan atau konflik. Persaingan atau konflik ini

Lebih terperinci

Dosen Pengampu : Dwi Sulistyaningsih

Dosen Pengampu : Dwi Sulistyaningsih Dosen Pengampu : Dwi Sulistyaningsih Secara Umum : Pendahuluan Program linier merupakan salah satu teknik penyelesaian riset operasi dalam hal ini adalah khusus menyelesaikan masalah-masalah optimasi (memaksimalkan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2. Program linier (Linier Programming) Pemrograman linier merupakan metode matematik dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan seperti memaksimumkan

Lebih terperinci

BAB I PENDAHULUAN. Arti riset operasi (operations research) telah banyak didefinisikan oleh beberapa ahli.

BAB I PENDAHULUAN. Arti riset operasi (operations research) telah banyak didefinisikan oleh beberapa ahli. BAB I PENDAHULUAN 1.1 Pendahuluan Riset Operasi Sejak revolusi industri, dunia usaha mengalami perubahan dalam hal ukuran (besarnya) dan kompleksitas organisasi-organisasi perusahaan. Bagian yang mengalami

Lebih terperinci

A. PENGERTIAN PROGRAM LINEAR

A. PENGERTIAN PROGRAM LINEAR Pertemuan 1 Standar Kompetensi : Menyelesaikan masalah program linier Kompetensi dasar : Membuat grafik himpunan penyelesaian sistem pertidaksamaan linier Indikator : Pertidaksamaan linier ditentukan daerah

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Teori antrian pertama kali dikemukakan oleh A.K.Erlang, yang menggambarkan model antrian untuk menentukan jumlah optimal dari fasilitas telepon switching yang digunakan untuk melayani

Lebih terperinci

RELASI. Cece Kustiawan, FPMIPA, UPI

RELASI. Cece Kustiawan, FPMIPA, UPI RELASI 1. Pasangan Berurutan 2. Fungsi Proposisi dan Kalimat Terbuka 3. Himpunan Jawaban dan Grafik Relasi 4. Jenis-jenis Relasi 5. Domain dan Range suatu Relasi Pasangan Berurutan (cartesian Product)

Lebih terperinci

APLIKASI PROGRAM LINEAR DALAM MASALAH ALOKASI DENGAN MENGGUNAKAN PROGRAM DINAMIK. Erlia Sri Wijayanti ABSTRAK

APLIKASI PROGRAM LINEAR DALAM MASALAH ALOKASI DENGAN MENGGUNAKAN PROGRAM DINAMIK. Erlia Sri Wijayanti ABSTRAK APLIKASI PROGRAM LINEAR DALAM MASALAH ALOKASI DENGAN MENGGUNAKAN PROGRAM DINAMIK Erlia Sri Wijayanti ABSTRAK Dalam permasalahan sehari-hari, kita sering menggunakan salah satu cabang ilmu dalam matematika

Lebih terperinci

Ujian Nasional Tahun 2003 Matematika

Ujian Nasional Tahun 2003 Matematika Ujian Nasional Tahun 00 Matematika MK-TEK-0-0 Skala suatu peta : 00.000. Jika jarak kota A dan kota B pada peta,5 cm, maka jarak kota A dan kota B sebenarnya 0,5 km,5 km,5 km 5 km.50 km MK-TEK-0-0 Pada

Lebih terperinci

Prediksi 2 UN SMA IPS Matematika Kode Soal: 302

Prediksi 2 UN SMA IPS Matematika Kode Soal: 302 Prediksi UN SMA IPS Matematika Kode Soal: Doc. Version : -6 halaman. Negasi dari pernyataan Jika saya belajar dengan zenius maka saya lulus UN Jika saya lulus UN maka saya belajar dengan zenius Saya tidak

Lebih terperinci

BAB I PENDAHULUAN. bergerak. Beberapa keputusan bersifat strategis, bilamana keputusan tersebut

BAB I PENDAHULUAN. bergerak. Beberapa keputusan bersifat strategis, bilamana keputusan tersebut BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dari waktu ke waktu, manajemen senantiasa dihadapkan pada kondisi dimana keputusan harus dibuat untuk memastikan aktivitas perusahaan terus bergerak. Beberapa

Lebih terperinci

OLIMPIADE SAINS NASIONAL VIII

OLIMPIADE SAINS NASIONAL VIII SOAL SESI 1 OLIMPIADE SAINS NASIONAL VIII BIDANG INFORMATIKA 5 AGUSTUS 2009 DKI JAKARTA Selamat Bekerja, Berkompetisi, Jadilah Yang Terbaik! 1. Ada 27 buah bola tenis. 1 di antaranya lebih berat dibanding

Lebih terperinci

ANALISIS BIAYA STRUKTUR BAJA YANG DIFABRIKASI DI PABRIK DAN DI LAPANGAN

ANALISIS BIAYA STRUKTUR BAJA YANG DIFABRIKASI DI PABRIK DAN DI LAPANGAN ANALISIS BIAYA STRUKTUR BAJA YANG DIFABRIKASI DI PABRIK DAN DI LAPANGAN Dina Oktorina NRP : 0321084 Pembimbing : Yohanes L. D. Adianto, Ir., MT FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS KRISTEN

Lebih terperinci

Model Program Linear dan Daerah Penyelesaian Masalah

Model Program Linear dan Daerah Penyelesaian Masalah MATA4230/MODUL 1 1.1 Modul 1 Model Program Linear dan Daerah Penyelesaian Masalah D PENDAHULUAN Prof. Dr. Djati Kerami i dalam modul pertama ini Anda akan mempelajari penurunan model program linear dari

Lebih terperinci

Antiremed Kelas 10 Matematika

Antiremed Kelas 10 Matematika Antiremed Kelas 10 Matematika pertidaksamaan-linear-dua-variabel-soal Doc. Name: K13AR10MATWJB0401 Version : 2015-04 halaman 1 01. Daerah yang diarsir pada gambar di bawah ini memenuhi sistem pertidaksamaan...

Lebih terperinci

BAB II LANDASAN TEORI. Ada tiga komponen dalam sistim antrian yaitu : 1. Kedatangan, populasi yang akan dilayani (calling population)

BAB II LANDASAN TEORI. Ada tiga komponen dalam sistim antrian yaitu : 1. Kedatangan, populasi yang akan dilayani (calling population) BAB II LANDASAN TEORI 2.1 Karakteristik Sistem Antrian Ada tiga komponen dalam sistim antrian yaitu : 1. Kedatangan, populasi yang akan dilayani (calling population) 2. Antrian 3. pelayanan Masing-masing

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Pelayanan Yang dimaksud pelayanan pada area anti karat adalah banyaknya output pallet yang dapat dihasilkan per hari pada area tersebut. Peningkatan pelayanan dapat dilihat dari

Lebih terperinci

Bagian 1 Sistem Bilangan

Bagian 1 Sistem Bilangan Bagian 1 Sistem Bilangan Dalam bagian 1 Sistem Bilangan kita akan mempelajari berbagai jenis bilangan, pemakaian tanda persamaan dan pertidaksamaan, menggambarkan himpunan penyelesaian pada selang bilangan,

Lebih terperinci

Pengubahan Model Ketidaksamaan Persamaan

Pengubahan Model Ketidaksamaan Persamaan METODA SIMPLEKS Metoda Simpleks Suatu metoda yang menggunakan prosedur aljabar untuk menyelesaikan programa linier. Proses penyelesaiannya dengan melakukan iterasi dari fungsi pembatasnya untuk mencapai

Lebih terperinci

BAB II KOMPUTER DAN APLIKASINYA

BAB II KOMPUTER DAN APLIKASINYA BAB II KOMPUTER DAN APLIKASINYA A. REVOLUSI INDUSTRI Perkembangan komputer tidak lepas pengaruhnya dari Revolusi Industri pada tahun 1760 di Inggris. Dengan adanya Revolusi Industri kehidupan perindustrian

Lebih terperinci

Cetakan I, Agustus 2014 Diterbitkan oleh: Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Pattimura

Cetakan I, Agustus 2014 Diterbitkan oleh: Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Pattimura Hak cipta dilindungi Undang-Undang Cetakan I, Agustus 2014 Diterbitkan oleh: Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Pattimura ISBN: 978-602-97552-1-2 Deskripsi halaman sampul : Gambar

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP) DAN SATUAN ACARA PERKULIAHAN (SAP)

GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP) DAN SATUAN ACARA PERKULIAHAN (SAP) GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP) DAN MATA KULIAH : PENELITIAN OPERSIONAL BISNIS KODE MATA KULIAH : ANI / 3 (-) Disusun Oleh: Peer Group Keuangan JURUSAN ILMU ADMINISTRASI BISNIS FAKULTAS ILMU

Lebih terperinci

Model Arus Jaringan. Rudi Susanto

Model Arus Jaringan. Rudi Susanto Model Arus Jaringan Rudi Susanto Pengertian Jaringan Jaringan adalah suatu susunan garis edar (path) yang terhubung pada berbagai titik, dimana satu atau beberapa barang bergerak dari satu titik ke titik

Lebih terperinci

Pengambilan Keputusan Manajerial

Pengambilan Keputusan Manajerial MODUL PERKULIAHAN Pengambilan Keputusan Manajerial Modul Final Semester Fakultas Ekonomi dan Bisnis Program Studi Manajemen Tatap Muka 11 Kode MK Disusun Oleh -, ST, MBA Abstract Kompetensi Mampu mengidentifikasi

Lebih terperinci

Sesi IX : RISET OPERASI. Perkembangan Riset Operasi

Sesi IX : RISET OPERASI. Perkembangan Riset Operasi Mata Kuliah :: Riset Operasi Kode MK : TKS 4019 Pengampu : Achfas Zacoeb Sesi IX : RISET OPERASI e-mail : zacoeb@ub.ac.id www.zacoeb.lecture.ub.ac.id Hp. 081233978339 Perkembangan Riset Operasi Dimulai

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014

SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014 SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014 Waktu : 210 Menit KEMENTERIAN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

7/28/2005 created by Hotniar Siringoringo 1

7/28/2005 created by Hotniar Siringoringo 1 Tujuan analisis output adalah menjawab pertanyaan yang diajukan di awal pembentukan model dengan benar. Bentuk pertanyaan mengindikasikan pengujian hipotesis, selang kepercayaan atau pendugaan parameter.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Umum Proyek konstruksi merupakan kegiatan yang berlangsung dalam jangka waktu yang terbatas, dengan sumber daya tertentu dan dimaksudkan untuk melaksanakan tugas yang sasaran

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Matriks 2.1.1 Pengertian Matriks Matriks adalah susunan segi empat siku-siku dari bilangan bilangan. Bilanganbilangan dalam susunan tersebut dinamakan entri dalam matriks (Anton,

Lebih terperinci

Jurnal Sipil Statik Vol.1 No.6, Mei 2013 ( ) ISSN:

Jurnal Sipil Statik Vol.1 No.6, Mei 2013 ( ) ISSN: MANAJEMEN PENGADAAN MATERIAL BANGUNAN DENGAN MENGGUNAKAN METODE MRP (MATERIAL REQUIREMENT PLANNING) STUDI KASUS: REVITALISASI GEDUNG KANTOR BPS PROPINSI SULAWESI UTARA Inggried Limbong H. Tarore, J. Tjakra,

Lebih terperinci

TRY OUT UJIAN NASIONAL

TRY OUT UJIAN NASIONAL PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN MUSYAWARAH KERJA KEPALA SEKOLAH SMA Sekretariat : SMA Negeri 70 Jakarta Jalan Bulungan No. C, Jakarta Selatan Telepon (0) 7667, Fax (0)

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

PEMROGRAMAN LINIER: FORMULASI DAN PEMECAHAN GRAFIS

PEMROGRAMAN LINIER: FORMULASI DAN PEMECAHAN GRAFIS RISET OPERASIONAL Riset operasi adalah metode yang digunakan untuk memformulasikan dan merumuskan permasalahan sehari hari ke dalam pemodelan matematis untuk memperoleh solusi yang optimal. Bagian terpenting

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008

SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008 Dapatkan soal-soal lainnya di http://forum.pelatihan-osn.com SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008 Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Pengertian Program Linier (Linear Programming)

BAB 2 LANDASAN TEORI. 2.1 Pengertian Program Linier (Linear Programming) BAB 2 LANDASAN TEORI 2.1 Pengertian Program Linier (Linear Programming) Menurut Sri Mulyono (1999), Program Linier (LP) merupakan metode matematik dalam mengalokasikan sumber daya yang langka untuk mencapai

Lebih terperinci

Contoh Kasus Program Linier K A S U S M A K S I M A S I D A N K A S U S M I N I M A S I

Contoh Kasus Program Linier K A S U S M A K S I M A S I D A N K A S U S M I N I M A S I Contoh Kasus Program Linier K A S U S M A K S I M A S I D A N K A S U S M I N I M A S I Kasus maksimasi Seorang pengrajin menghasilkan satu tipe meja dan satu tipe kursi. Proses yang dikerjakan hanya merakit

Lebih terperinci

SISTEM TRANSPORTASI BUS KAMPUS UNAND

SISTEM TRANSPORTASI BUS KAMPUS UNAND SISTEM TRANSPORTASI BUS KAMPUS UNAND Aro Manis, Siti Tri Susiati Hutami Jurusan Teknik Industri, Fakultas Teknik, Universitas Andalas Abstrak Pada umumnya, bus kampus beroperasi untuk mengantarkan mahasiswa

Lebih terperinci

LINEAR PROGRAMMING. Pembentukan model bukanlah suatu ilmu pengetahuan tetapi lebih bersifat seni dan akan menjadi dimengerti terutama karena praktek.

LINEAR PROGRAMMING. Pembentukan model bukanlah suatu ilmu pengetahuan tetapi lebih bersifat seni dan akan menjadi dimengerti terutama karena praktek. LINEAR PROGRAMMING Formulasi Model LP Masalah keputusan yang biasa dihadapi para analis adalah alokasi optimum sumber daya yang langka. Sumber daya dapat berupa modal, tenaga kerja, bahan mentah, kapasitas

Lebih terperinci

ANTRIAN. pelayanan. Gambar 1 : sebuah sistem antrian

ANTRIAN. pelayanan. Gambar 1 : sebuah sistem antrian ANTRIAN Jika permintaan terhadap suatu jasa melebihi suplai, akan mengakibatkan terjadi antrian. Masalah tersebut dapat terjadi pada berbagai keadaan. Sebagai contoh Kendaraan menunggu lampu lalu lintas,

Lebih terperinci

PROGRAMA INTEGER. Model Programa Linier : Maks. z = c 1 x 1 + c 2 x c n x n

PROGRAMA INTEGER. Model Programa Linier : Maks. z = c 1 x 1 + c 2 x c n x n PROGRAMA INTEGER Model Programa Linier : Maks. z = c 1 x 1 + c 2 x 2 +. + c n x n d. k. a 11 x 1 + a 12 x 2 +.a 1n x n < b 1.. a m1 x 1 + a m2 x 2 +.a mn x n < b m x 1 ; x 2 ;.x n > 0 Semua variabel keputusan

Lebih terperinci

TUGAS PENDAHULUAN PRAKTIKUM KOMPUTER INDUSTRI 1 MODUL TRANSPORTASI TIPE SOAL D

TUGAS PENDAHULUAN PRAKTIKUM KOMPUTER INDUSTRI 1 MODUL TRANSPORTASI TIPE SOAL D TUGAS PENDAHULUAN PRAKTIKUM KOMPUTER INDUSTRI 1 MODUL TRANSPORTASI TIPE SOAL D Pabrik Sukajaya memiliki 3 buah gudang yang terletak di tiga tempat berlainan. Pabrik ini ingin melakukan pendistribusian

Lebih terperinci

BAB II KAJIAN TEORI. Berikut ini merupakan pembahasan kajian-kajian tersebut.

BAB II KAJIAN TEORI. Berikut ini merupakan pembahasan kajian-kajian tersebut. BAB II KAJIAN TEORI Pada bab ini akan dibahas mengenai kajian teori yang digunakan sebagai dasar penulisan tugas akhir ini berdasarkan literatur yang relevan. Berikut ini merupakan pembahasan kajian-kajian

Lebih terperinci

MATEMATIKA EBTANAS TAHUN 1992

MATEMATIKA EBTANAS TAHUN 1992 MATEMATIKA EBTANAS TAHUN 99 EBT-SMP-9-0 Diketahui: A = {m, a, d, i, u, n} dan B = {m, a, n, a, d, o} Diagram Venn dari kedua himpunan di atas A. m a d o a m o i e e I d u a a u n e m i d o m i d a u n

Lebih terperinci

Model Matematika. Persamaan atau pertidaksamaan Matematika Tujuan

Model Matematika. Persamaan atau pertidaksamaan Matematika Tujuan Kehidupan Nyata Bisa Disajikan Bahasa Matematika Diperlukan Alat Bantu Model Matematika Menggunakan Persamaan atau pertidaksamaan Matematika Tujuan Penyelesaian masalah Kemampuan yang akan dibahas Menentukan

Lebih terperinci

1.1 Latar Belakang Masalah

1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Pengambilan atau pembuatan keputusan berarti memilih satu di antara banyak alternatif. Dalam hal pengambilan keputusan minimal terdapat dua alternatif di mana

Lebih terperinci

BAB XVII. PROGRAM LINEAR

BAB XVII. PROGRAM LINEAR BAB XVII. PROGRAM LINEAR Bukti : + a + b a.b b a Pengertian Program Linear : Program Linear adalah bagian ilmu matematika terapan ang digunakan untuk memecahkan masalah optimasi (pemaksimalan atau peminimalan

Lebih terperinci

II. SISTEM INFORMASI MANAJEMEN

II. SISTEM INFORMASI MANAJEMEN II. SISTEM INFORMASI MANAJEMEN Konsep Sistem Informasi : 1. Konsep Sistem a. Konsep Dasar Sistem b. Klasifikasi Sistem 2. Konsep Informasi a. Konsep Dasar Informasi b. Siklus Informasi c. Kualitas Informasi

Lebih terperinci

PROGRAM LINEAR DENGAN METODE SIMPLEX

PROGRAM LINEAR DENGAN METODE SIMPLEX PROGRAM LINEAR DENGAN METODE SIMPLEX PENDAHULUAN Metode simpleks ini adalah suatu prosedur aljabar yang bukan secara grafik untuk mencari nilai optimal dari fungsi tujuan dalam masalah-masalah optimisasi

Lebih terperinci

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPS

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPS PEMBAHASAN UN SMA TAHUN PELAJARAN 009/010 MATEMATIKA PROGRAM STUDI IPS PEMBAHAS : 1. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si. 3. Marfuah, M.T. 4. Rohmitawati, S.Si. EDITOR : Dra. Puji Iryanti, M.Sc.

Lebih terperinci

BAB VI KEMAJUAN PEKERJAAN DAN PENGENDALIAN PROYEK. tahapan tahapan tertentu dalam pengerjaannya. Berlangsungnya kemajuan

BAB VI KEMAJUAN PEKERJAAN DAN PENGENDALIAN PROYEK. tahapan tahapan tertentu dalam pengerjaannya. Berlangsungnya kemajuan BAB VI KEMAJUAN PEKERJAAN DAN PENGENDALIAN PROYEK 6.1 Kemajuan Proyek Kemajuan proyek merupakan progress pekerjaan dari pekerjaan awal proyek sampai akhir pekerjaan proyek. Disetiap progress pekerjaan

Lebih terperinci

Gugus dan Kombinatorika

Gugus dan Kombinatorika Bab 1 Gugus dan Kombinatorika 1.1 Gugus Gugus, atau juga disebut himpunan adalah kumpulan objek. Objek dalam sebuah himpunan disebut anggota atau unsur. Penulisan himpunan dapat dilakukan dengan dua cara,

Lebih terperinci

Modul 10 Garis Kontur

Modul 10 Garis Kontur MODUL KULIAH Modul 10-1 Modul 10 Garis Kontur 10.1 Kontur Salah satu unsur yang penting pada suatu peta topografi adalah informasi tentang tinggi suatu tempat terhadap rujukan tertentu. Untuk menyajikan

Lebih terperinci

Pertemuan ke - 4 SUMBERDAYA MANUSIA

Pertemuan ke - 4 SUMBERDAYA MANUSIA Pertemuan ke - 4 SUMBERDAYA MANUSIA Halaman 1 dari Pertemuan keempat Untuk menyelenggarakan proyek, salah satu sumber daya yang menjadi faktor penentu keberhasilannya adalah tenaga kerja. Jenis dan intensitas

Lebih terperinci

Riset Operasional 1. Dr. Ahmad Sabri. Universitas Gunadarma

Riset Operasional 1. Dr. Ahmad Sabri. Universitas Gunadarma Dr. Ahmad Sabri Universitas Gunadarma Definisi Riset operasional (RO) adalah sebuah disiplin ilmu tentang penerapan metode analitik yang bertujuan untuk memillih keputusan/solusi yang terbaik di antara

Lebih terperinci

ANALISIS ANTRIAN PEMBAYARAN PADA TOKO OBAT KHARISMA, JAKARTA TIMUR

ANALISIS ANTRIAN PEMBAYARAN PADA TOKO OBAT KHARISMA, JAKARTA TIMUR ANALISIS ANTRIAN PEMBAYARAN PADA TOKO OBAT KHARISMA, JAKARTA TIMUR Nama : Syaiful Bahar NPM : 16211978 Jurusan : Manajemen Pembimbing : Dr. Ir. Riskayanto, MM PENDAHULUAN Latar Belakang : Kota-kota besar

Lebih terperinci

PEMROGRAMAN KOMPUTER KODE MODUL: TIN 202 MODUL III LINEAR PROGRAMMING DAN VISUALISASI

PEMROGRAMAN KOMPUTER KODE MODUL: TIN 202 MODUL III LINEAR PROGRAMMING DAN VISUALISASI PEMROGRAMAN KOMPUTER KODE MODUL: TIN 202 MODUL III LINEAR PROGRAMMING DAN VISUALISASI LABORATORIUM TEKNIK INDUSTRI FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SURAKARTA 2013 MODUL II LINEAR PROGRAMMING DAN

Lebih terperinci

PENALARAN MATEMATIKA

PENALARAN MATEMATIKA PENALARAN MATEMATIKA Oleh: Kusnandi A. Pengantar Untuk dapat meningkatkan kemampuan berpikir matematika siswa perlu mengetahui tingkatan kemampuan berpikir matematika. Shefer dan Foster (997) mengajukan

Lebih terperinci

OPTIMASI BIAYA DAN DURASI PROYEK MENGGUNAKAN PROGRAM LINDO (STUDI KASUS: PEMBANGUNAN DERMAGA PENYEBERANGAN SALAKAN TAHAP II)

OPTIMASI BIAYA DAN DURASI PROYEK MENGGUNAKAN PROGRAM LINDO (STUDI KASUS: PEMBANGUNAN DERMAGA PENYEBERANGAN SALAKAN TAHAP II) OPTIMASI BIAYA DAN DURASI PROYEK MENGGUNAKAN PROGRAM LINDO (STUDI KASUS: PEMBANGUNAN DERMAGA PENYEBERANGAN SALAKAN TAHAP II) Kristi Elsina Leatemia R. J. M. Mandagi, H. Tarore, G. Y. Malingkas Fakultas

Lebih terperinci

PROGRAM LINEAR. Bukti : ax + by = a.b. Pengertian Program Linear : Gunakan persamaan 2 di atas :

PROGRAM LINEAR. Bukti : ax + by = a.b. Pengertian Program Linear : Gunakan persamaan 2 di atas : PROGRAM LINEAR Bukti : + = a + b = a.b b a Pengertian Program Linear : Program Linear adalah bagian ilmu matematika terapan ang digunakan untuk memecahkan masalah optimasi (pemaksimalan atau peminimalan

Lebih terperinci

Penggunaan Dynamic Programming pada Persoalan Penjadwalan Kedatangan Pesawat Terbang

Penggunaan Dynamic Programming pada Persoalan Penjadwalan Kedatangan Pesawat Terbang Penggunaan Dynamic Programming pada Persoalan Penjadwalan Kedatangan Pesawat Terbang Sidik Soleman, 13508101 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Permainan Teori permainan ( games theory) merupakan salah satu solusi dalam merumuskan keadaan persaingan antara berbagai pihak dan berbagai kepentingan. Pendekatan dalam

Lebih terperinci

KELAS XII. IPA SEMESTER I

KELAS XII. IPA SEMESTER I MODUL MATEMATIKA PROGRAM LINEAR y 12.1-2 800 500 400 500 2x + y = 800 KELAS XII. IPA SEMESTER I Oleh : Drs. Pundjul Prijono ( http://vidyagata.wordpres.com ) 1 M o d u l P r o g r a m L i n e a r Standar

Lebih terperinci

BAB I INDUKSI MATEMATIKA

BAB I INDUKSI MATEMATIKA BAB I INDUKSI MATEMATIKA 1.1 Induksi Matematika Induksi matematika adalah suatu metode yang digunakan untuk memeriksa validasi suatu pernyataan yang diberikan dalam suku-suku bilangan asli. Dalam pembahasan

Lebih terperinci

MODEL SIMULASI KINERJA PRODUKSI TEH UNTUK MINIMISASI WORK-IN-PROCESS

MODEL SIMULASI KINERJA PRODUKSI TEH UNTUK MINIMISASI WORK-IN-PROCESS MODEL SIMULASI KINERJA PRODUKSI TEH UNTUK MINIMISASI WORK-IN-PROCESS Agus Wibowo, Demi Ramadian Laboratorium Perancangan dan Optimasi Sistem Industri Jurusan Teknik Industri Fakultas Teknik Universitas

Lebih terperinci

BAB II LANDASAN TEORI. Pemrograman linear (PL) ialah salah satu teknik dari riset operasi untuk

BAB II LANDASAN TEORI. Pemrograman linear (PL) ialah salah satu teknik dari riset operasi untuk BAB II LANDASAN TEORI A. Pemrograman Linear Pemrograman linear (PL) ialah salah satu teknik dari riset operasi untuk memecahkan persoalan optimasi (maksimum atau minimum) dengan menggunakan persamaan dan

Lebih terperinci

SOLUSI SOAL OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT PROPINSI TAHUN 2015 BIDANG MATEMATIKA

SOLUSI SOAL OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT PROPINSI TAHUN 2015 BIDANG MATEMATIKA SOLUSI SOAL OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT PROPINSI TAHUN 015 BIDANG MATEMATIKA BAGIAN A: SOAL ISIAN SINGKAT 1. Banyak faktor persekutuan dari 1515 dan 530 yang merupakan bilangan genap positip

Lebih terperinci

x X dapat dipetakan ke setiap y Y. hanya jika (jikka) satu x X dapat dipetakan ke satu y Y. RELASI : F: X Y menghasilkan himpunan pasangan berurut:

x X dapat dipetakan ke setiap y Y. hanya jika (jikka) satu x X dapat dipetakan ke satu y Y. RELASI : F: X Y menghasilkan himpunan pasangan berurut: RELASI DAN FUNGSI Dalam matematika modern, Relasi dan Fungsi digunakan untuk menunjukkan hubungan setiap elemen Domain dengan setiap elemenrange ang membentuk pasangan bilangan berurut. Hubungan himpunan

Lebih terperinci