BAB IV PERHITUNGAN STRUKTUR

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB IV PERHITUNGAN STRUKTUR"

Transkripsi

1 BAB IV PERHITUNGAN STRUKTUR Perhitungan Struktur Bab IV 4.1 TINJAUAN UMUM Analisis konstruksi gedung ini dilakukan dengan menggunakan permodelan struktur 3D dengan bantuan software SAP2000. Kolom-kolom dari struktur gedung dimodelkan sebagai elemen frame sedangkan pelat lantai, drop panel, core wall, ramp parkir dan tangga dimodelkan sebagai elemen shell. Untuk analisis terhadap beban gempa, struktur gedung dimodelkan sebagai struktur bangunan geser (shear building), dimana lantai-lantai dari bangunan dianggap sebagai diafragma kaku. Dengan model ini, massa-massa dari setiap bangunan dipusatkan pada titik berat lantai (model massa terpusat / lump mass model). Dari hasil analisis struktur, akan diperoleh besarnya reaksi perletakan untuk proses perhitungan struktur bawah (pile cap dan pondasi bore pile), selain itu dari hasil analisis struktur juga akan diperoleh besarnya tegangan dan gayagaya dalam yang terjadi pada elemen shell yang akan digunakan untuk mendesain tulangan pelat lantai, drop panel, corewall, ramp parkir dan tangga sedangkan untuk tulangan kolom didesain dengan bantuan software SAP KRITERIA DESAIN Untuk perhitungan struktur digunakan kriteria desain untuk material beton bertulang dengan parameter-parameter perencanaan sebagai berikut : 1. Massa jenis beton bertulang : 240 kg/m 3 2. Berat jenis beton bertulang : 2400 kg/m 3 3. Modulus elastisitas beton : kg/cm 2 4. Angka Poisson : 0,2 5. Koefisien ekspansi panas : 9,9 x 10-6 cm/ o c 6. Modulus geser beton : 97708,33 kg/cm 2 7. Mutu beton : K-300 (kuat tekan spesifik f c = 249 kg/cm 2 ) K-450 (kuat tekan spesifik f c = 373,5 kg/cm 2 ) 8. Mutu tulangan baja : Tulangan Ulir (Fy = 4000 kg/cm 2 ) Tulangan Polos (Fy = 2400 kg/cm 2 ) IV - 1

2 4.3 ANALISIS STRUKTUR Beban Mati (Dead Load) Berat sendiri elemen struktur terdiri dari berat sendiri elemen kolom, drop panel, pelat lantai, ramp parkir, tangga dan corewall. Berat sendiri elemen struktural tersebut akan dihitung otomatis sebagai self weight oleh software SAP2000. Selain berat sendiri elemen struktural, pada beban mati juga terdapat beban lain yang berasal dari elemen arsitektural bangunan, yaitu : 1. Beban lantai (spesi + keramik) : 50 kg/m 2 2. Beban plafond : 50 kg/m 2 3. Beban dinding setinggi (4 m) : 4 m x 250 kg/m 2 = 1000 kg/m 4. Beban dinding lantai parkir (1 m) : 1 m x 250 kg/m 2 = 250 kg/m Beban Hidup (Live Load) Beban hidup pada lantai gedung diambil sebesar 250 kg/m 2, sedangkan untuk lantai parkir dan lantai ramp parkir diambil sebesar 400 kg/m 2, sesuai dengan standar Tata Cara Perencanaan Pembebanan Untuk Rumah Dan Gedung Beban Gempa (Quake Load) Analisis struktur terhadap beban gempa mengacu pada Standar Perencanaan Ketahanan Gempa untuk Rumah dan Gedung (SNI ). Analisis struktur terhadap beban gempa pada gedung dilakukan dengan Metode Analisis Dinamik Spektrum Respon. Besarnya beban gempa nominal pada struktur bangunan dihitung dengan rumus: V W. C. I = R Dimana : V W I R C = Beban gempa = Berat bangunan = Faktor keutamaan struktur = Faktor reduksi gempa = Koefisien respon gempa. IV - 2

3 Faktor Keutamaan Struktur (I) Dari Tabel Faktor Keutamaan Bangunan (SNI , halaman 18), besarnya faktor keutamaan struktur (I) untuk gedung umum seperti untuk perkantoran dan parkir diambil sebesar Faktor Reduksi Gempa (R) Dari tabel Faktor Reduksi Gempa (SNI , halaman 23), Struktur Gedung ini termasuk dalam kategori struktur sistem ganda struktur rangka penahan momen khusus dengan dinding geser beton bertulang (tingkat daktilitas penuh) besarnya nilai faktor reduksi gempa R= 8, Penentuan Jenis Tanah Jenis tanah ditetapkan sebagai tanah keras, tanah sedang dan tanah lunak apabila untuk lapisan setebal maksimum 30 meter paling atas dipenuhi syarat-syarat yang tercantum dalam tabel 4.1. Tabel 4.1 Jenis tanah berdasarkan SNI T Kec rambat gelombang Nilai hasil Test Penetrasi Standar rata-rata Jenis tanah a geser rata-rata v s (m/det) N btanah Keras e Tanah Sedang l v s v s < 350 N N < 50 S u S u < 100 v s < 175 N < 15 S u < 50 Tanah Lunak 4. Tanah Khusus Kuat geser niralir rata-rata S u (kpa) Atau, setiap profil dengan tanah lunak yang tebal total lebih dari 3 m dengan PI > 20, wn 40% dan Su < 25 kpa Diperlukan evaluasi khusus di setiap lokasi Perhitungan Nilai hasil Test Penetrasi Standar rata-rata ( N ) : N = m i i = 1 m t i i = 1 t / N dimana: ti = tebal lapisan tanah ke-i Ni = nilai hasil Test Penetrasi Standar lapisan tanah ke-i m = jumlah lapisan tanah yang ada di atas batuan dasar i IV - 3

4 Tabel 4.2 Hasil Nilai hasil Test Penetrasi Standar rata-rata ( N ) Lapis Ke- t (m) N t/n 1 2,00 2,45 2 0, ,00 4,45 4 0, ,00 6,45 5 0,09 4 8,00 8, , ,00-10, , ,00-12, , ,00-14, , ,00-16, , ,00-18, , ,00-20, , ,00-22, , ,00-24, , ,00-26, , ,00-28, , ,00-30, ,015 Jumlah 30,45 0, ,45 N = = 0, ,706 Dari Tabel 4.1 Jenis-Jenis Tanah, untuk kedalaman 30,45 meter dengan Nilai hasil Test Penetrasi Standar rata-rata ( N ) = 49,706 (15 N < 50), maka tanah di bawah bangunan merupakan tanah sedang Penentuan Zona Wilayah Gempa Berdasarkan Peta Wilayah Gempa Indonesia (SNI , halaman 30), Gedung diasumsikan berlokasi di wilayah gempa 2 dari zona gempa Indonesia. Diagram Respon Spektrum Gempa Rencana untuk wilayah gempa 2, diperlihatkan pada gambar 4.1. IV - 4

5 Gambar 4.1 Spektrum Respon Gempa Wilayah 2 Tabel 4.3 Koefisien Gempa (C) untuk kondisi tanah sedang Periode Getar Koefisien Gempa T (detik) ( C ) 0,00 0,1500 0,20 0,3800 0,60 0,3800 0,70 0,3286 0,80 0,2875 0,90 0,2556 1,00 0,2300 1,25 0,1840 1,50 0,1533 1,75 0,1314 2,00 0,1150 2,25 0,1022 2,50 0,0920 2,75 0,0836 3,00 0,0767 3,25 0,0708 3,50 0,0657 3,75 0,0613 4,00 0,0575 4,25 0,0541 4,50 0,0511 Sumber : Standar Perencanaan Ketahanan Gempa untuk Rumah dan Gedung (SNI ) IV - 5

6 Penentuan Berat, Massa dan lokasi titik berat tiap Lantai Besarnya beban gempa sangat dipengaruhi oleh berat dari bangunan, oleh karena itu perlu dihitung berat dari masing-masing lantai bangunan. Berat dari setiap lantai bangunan diperhitungkan dengan meninjau beban yang bekerja di atasnya, berupa beban mati dan beban hidup. Karena kemungkinan terjadinya gempa bersamaan dengan beban hidup yang bekerja penuh pada bangunan adalah kecil, maka beban hidup yang bekerja dapat direduksi besarnya. Berdasarkan standar pembebanan yang berlaku di Indonesia, kombinasi pembebanan yang ditinjau bekerja pada lantai bangunan, yaitu 100% beban mati ditambah 30% beban hidup. Wt = 100 % DL + 30 % LL = DL + 0,3 LL Dimana : DL = Beban mati (berat sendiri) struktur pada setiap lantai gedung. LL = Beban hidup total (beban berguna) pada setiap lantai gedung. Perhitungan berat dan lokasi titik berat tiap lantai bangunan dihitung menggunakan bantuan software SAP2000. Perhitungan ini menggunakan permodelan struktur statis tertentu dengan tumpuan jepit di salah satu ujungnya, dengan beban merata dan beban dinding bekerja pada lantai bangunan seperti yang ditunjukkan pada gambar di bawah ini : Gambar 4.2 Struktur dengan tumpuan jepit disalah satu ujung Dari model struktur di atas, maka perhitungan berat bangunan dan titik berat lantai dapat dianalisis dengan bantuan software SAP2000. IV - 6

7 Langkah-langkah perhitungan berat bangunan dengan software SAP2000 adalah sebagai berikut : 1) Membuat model dan konfigurasi struktur tiap lantai bangunan dengan software SAP2000. Pemodelan perhitungan berat perlantai bangunan tersebut dibuat dengan menghilangkan kolomkolom pada bangunan, sehingga tiap lantai dapat dihitung sebagai struktur yang terpisah satu dengan yang lainnya. Salah satu ujung dari lantai tersebut diberi tumpuan jepit. 2) Mendefinisikan kasus beban dan kombinasi pembebanan yang digunakan, yaitu : Kombinasi Beban = 1 DL + 0,3 LL 3) Hasil analisis dari software SAP2000 diperoleh reaksi tumpuan berupa gaya vertikal (F3) dan momen pada arah x (M1) dan arah y (M2). Berdasarkan prinsip kesetimbangan pada konstruksi statis tertentu, yaitu ΣV = 0, maka besar gaya vertikal yang terjadi pada tumpuan jepit (F3) sama dengan berat dari lantai yang ditinjau. Gambar 4.3 Pemodelan Perhitungan Berat Lantai Pada Basement Massa tiap lantai dapat diperoleh dari berat tiap lantai dibagi dengan percepatan gravitasi (g = 9,81 m/dtk2) W M = g Dimana : M = Massa tiap lantai (Ton.s 2 /m) W = Berat lantai (Ton) g = Percepatan gravitasi (m/s 2 ) Dengan model massa terpusat untuk analisis beban gempa, massa tiap lantai dari struktur diletakkan pada joint yang merupakan titik berat masing-masing lantai sebagai Joint Masses. IV - 7

8 =ix1 y= = niwi 1 Perhitungan Struktur Bab IV Perhitungan titik berat tiap lantai dari gedung diperoleh dengan membagi momen dengan reaksi tumpuan yang terjadi dari hasil perhitungan berat lantai pada software SAP2000. Perhitungan lokasi titik berat tiap lantai tersebut mengacu pada teori statis momen berikut ini : Gambar 4.4. Lantai dengan segmen pelat yang luasannya berbeda Perhitungan titik berat lantai : dan Dimana : x = Titik berat lantai arah x (m) y = Titik berat lantai arah y (m) Wi = Berat masing-masing segmen area pelat lantai (Ton) xi = Titik berat masing-masing segmen area pelat arah x (m) yi = Titik berat masing-masing segmen area pelat arah y (m) n = Jumlah segmen area pelat IV - 8

9 Suatu lantai dengan luas segmen area pelat lantai yang berbeda-beda dan titik acuan sebagai tumpuan jepit pada salah satu ujungnya (sebelah kiri bawah). Masing masing area pelat mempunyai dimensi yang berbeda, sehingga mempunyai berat (W) yang berbeda pula. Berat area pelat adalah W1, W2, W3, s/d Wi Area pelat tersebut mempunyai titik berat x1,y1; x2,y2; x3,y3; s/d xi,yi. Untuk mencari titik berat lantai dihitung dengan cara membagi penjumlahan hasil kali masing-masing berat area pelat dan titik berat area pelat dengan penjumlahan semua berat area pelat. Dari hasil analisis software SAP2000 diperoleh reaksi vertikal (F3), momen arah x (M1) dan momen arah y (M2). Reaksi vertikal yang terjadi pada tumpuan jepit (F3) sama dengan berat dari lantai yang ditinjau, sedangkan momen arah x (M1) dan momen arah y (M2) merupakan momen hasil dari perkalian berat elemen lantai dengan titik berat masing-masing elemen lantai. Dari contoh kasus di atas dapat diketahui bahwa untuk menghitung titik berat dari lantai menggunakan hasil progam SAP 2000 adalah sebagai berikut : M1 x = dan F3 M2 y = F3 Contoh perhitungan titik berat pada lantai gedung dari hasil output software SAP2000 adalah sebagai berikut : Momen arah x (M1) = ton.m Momen arah y (M2) = ton.m Reaksi vertikal (F3) = 2653 ton. M x = = = 25 m F M y = = = 16 m F IV - 9

10 Tabel 4.4 Berat lantai dan lokasi titik berat lantai gedung Lantai Basement-2 s/d Lantai 3 Berat Massa Mx My x y (Ton) (Ton.s 2 /m) (Ton-m) (Ton-m) (m) (m) Lantai 3 s/d Lantai Lantai 8 s/d Lantai Lantai 21 s/d Lantai Analisis Spectrum Respon dan Pembatasan Waktu Getar Berdasarkan SNI Gempa 2002, struktur bangunan gedung beraturan harus memenuhi beberapa persyaratan, tinggi struktur gedung diukur dari taraf penjepitan lateral tidak lebih dari 10 tingkat atau 40 m. Sedangkan gedung ini memiliki tinggi struktur gedung 106 m diukur dari taraf penjepitan lateral. Oleh karena itu, bangunan ini tidak memenuhi syarat struktur bangunan gedung beraturan dan beban gempa yang bekerja pada struktur dihitung dengan metode analisis dinamis ragam spektrum respon dengan bantuan software SAP2000. Kombinasi pembebanan yang ditinjau di dalam analisis : Kombinasi 1 = 1,2 D + 1,6 L Kombinasi 2 = 1,2 D + 1,0 L + 1,0 (I/R) Ex + 0,3 (I/R) Ey = 1,2 D + 1,0 L + 0,118 Ex + 0,035 Ey Kombinasi 3 = 1,2 D + 1,0 L + 0,3 (I/R) Ex + 1,0 (I/R) Ey = 1,2 D + 1,0 L + 0,035 Ex + 0,118 Ey Model massa terpusat Struktur bangunan gedung dimodelkan sebagai struktur dengan massa-massa terpusat pada bidang lantainya (lump-mass model). Dengan menggunakan model ini, massa dari suatu lantai bangunan dipusatkan pada titik berat lantainya. Untuk membuat model massa IV - 10

11 terpusat (lump mass model) dari struktur, maka joint-joint yang terdapat pada satu lantai harus dikekang (constraint). Hal ini dimaksudkan agar joint-joint ini dapat berdeformasi secara bersama-sama, jika pada lantai yang bersangkutan mendapat pengaruh gempa. Besarnya massa terpusat di tiap lantai dapat dilihat pada tabel 4.4 dimana Massa lantai diinput sebagai Joint Masses pada software SAP2000. Analisis Modal Analisis modal digunakan untuk mengetahui perilaku dinamis suatu struktur bangunan sekaligus periode getar alami. Parameter yang mempengaruhi analisa modal adalah massa bangunan dan kekakuan lateral bangunan. Analisa modal digunakan sebagai dasar pengerjaan analisis ragam spektrum respon dalam perhitungan beban gempa. Dalam perhitungan struktur gedung ini analisis modal dilakukan dengan analisis eigen-vector. Dalam analisis modal ini, waktu getar yang akan ditinjau adalah 24 ragam getar (mode shape) pada struktur gedung. Efektifitas penentuan jumlah ragam getar yang akan ditinjau pada struktur gedung dapat dilihat dari hasil analisis pada software SAP2000. Jumlah ragam getar yang akan kita tinjau dapat dianggap cukup efektif jika persentase beban dinamik yang bekerja sudah lebih dari 90% pada Modal Load Participation Ratios. Hasil analisis Modal Load Participation Ratios sebagai berikut : M O D A L L O A D P A R T I C I P A T I O N R A T I O S CASE: MODAL LOAD, ACC, OR LINK/DEF STATIC DYNAMIC EFFECTIVE (TYPE) (NAME) (PERCENT) (PERCENT) PERIOD ACC UX ACC UY ACC UZ ACC RX ACC RY ACC RZ (*) NOTE: DYNAMIC LOAD PARTICIPATION RATIO EXCLUDES LOAD APPLIED TO NON-MASS DEGREES OF FREEDOM IV - 11

12 Untuk mendefinisikan waktu getar dilakukan perhitungan dalam modal analysis case. Dari hasil analisis dengan software SAP2000 dapat diketahui bahwa waktu getar terbesar pada struktur gedung adalah 4,04 detik. Hasil analisis perhitungan periode getar struktur dapat dilihat berikut ini. E I G E N M O D A L A N A L Y S I S 10:33:19 CASE: MODAL USING STIFFNESS AT ZERO (UNSTRESSED) INITIAL CONDITIONS NUMBER OF STIFFNESS DEGREES OF FREEDOM = NUMBER OF MASS DEGREES OF FREEDOM = 9400 MAXIMUM NUMBER OF EIGEN MODES SOUGHT = 32 MINIMUM NUMBER OF EIGEN MODES SOUGHT = 1 NUMBER OF RESIDUAL-MASS MODES SOUGHT = 0 NUMBER OF SUBSPACE VECTORS USED = 24 RELATIVE CONVERGENCE TOLERANCE = 1.00E-09 FREQUENCY SHIFT (CENTER) (CYC/TIME) = FREQUENCY CUTOFF (RADIUS) (CYC/TIME) = -INFINITY- ALLOW AUTOMATIC FREQUENCY SHIFTING = NO Found mode 1 of 32: EV= E+00, f= , T= Found mode 2 of 32: EV= E+00, f= , T= Found mode 3 of 32: EV= E+01, f= , T= Found mode 4 of 32: EV= E+01, f= , T= Found mode 5 of 32: EV= E+01, f= , T= Found mode 6 of 32: EV= E+01, f= , T= Found mode 7 of 32: EV= E+02, f= , T= Found mode 8 of 32: EV= E+02, f= , T= Found mode 9 of 32: EV= E+02, f= , T= Found mode 10 of 32: EV= E+02, f= , T= Found mode 11 of 32: EV= E+02, f= , T= Found mode 12 of 32: EV= E+02, f= , T= Found mode 13 of 32: EV= E+02, f= , T= Found mode 14 of 32: EV= E+02, f= , T= Found mode 15 of 32: EV= E+02, f= , T= Found mode 16 of 32: EV= E+02, f= , T= Found mode 17 of 32: EV= E+02, f= , T= Found mode 18 of 32: EV= E+02, f= , T= Found mode 19 of 32: EV= E+02, f= , T= Found mode 20 of 32: EV= E+02, f= , T= Found mode 21 of 32: EV= E+02, f= , T= Found mode 22 of 32: EV= E+02, f= , T= Found mode 23 of 32: EV= E+02, f= , T= Found mode 24 of 32: EV= E+02, f= , T= Found mode 25 of 32: EV= E+02, f= , T= Found mode 26 of 32: EV= E+03, f= , T= Found mode 27 of 32: EV= E+03, f= , T= Found mode 28 of 32: EV= E+03, f= , T= Found mode 29 of 32: EV= E+03, f= , T= Found mode 30 of 32: EV= E+03, f= , T= Found mode 31 of 32: EV= E+03, f= , T= Found mode 32 of 32: EV= E+03, f= , T= NUMBER OF EIGEN MODES FOUND = 32 NUMBER OF ITERATIONS PERFORMED = 39 NUMBER OF STIFFNESS SHIFTS = 0 IV - 12

13 Pembatasan waktu getar fundamental struktur Untuk mencegah penggunaan struktur yang terlalu fleksibel, nilai waktu getar struktur fundamental harus dibatasi. Dalam SNI diberikan batasan sebagai beikut : T < ξ n Dimana : T = Waktu getar stuktur fundamental (detik) n = Jumlah tingkat gedung ξ = koefisien pembatas yang ditetapkan berdasarkan tabel 4.5 Tabel 4.5 Koefisien Pembatas Waktu Getar Struktur Wilayah Gempa Koefisien pembatas (ξ) 1 0,20 2 0,19 3 0,18 4 0,17 5 0,16 6 0,15 Sumber : Standar Perencanaan Ketahanan Gempa untuk Rumah dan Gedung (SNI ) Pembatas waktu getar pada gedung : T < ξ n = T < 0,19 x 24 T < 4,56 detik T maksimal yang terjadi = 4,04 detik < 4,56 detik (aman) ` IV - 13

14 Gambar 4.5. Bentuk Deformasi Struktur akibat ragam getar pertama (Periode Getar 1 = 4,04 detik) 4.4 PERHITUNGAN STRUKTUR BAWAH Struktur bawah / pondasi suatu bangunan harus diperhitungkan terhadap gaya aksial, geser, dan momen lentur. Pada struktur bawah gedung ini direncanakan menggunakan pondasi bore pile dan pile cap Perhitungan Pondasi Bore Pile Dasar Analisa Perhitungan Direncanakan pondasi yang akan digunakan adalah pondasi bore pile dengan perimbangan sebagai berikut: a. Kemudahan dalam pelaksanaan. b. Mempunyai angka efisiensi yang lebih besar dalam waktu pelaksanaan dibandingkan dengan pondasi tiang pancang. c. Tingkat kebisingan yang minim. d. Kemampuan yang baik dalam menahan beban struktur. e. Tidak mempengaruhi pondasi gedung di sekitar lokasi. Rencana Dimensi Tiang Tiang pondasi bored pile direncanakan dengan dimensi sebagai berikut: Pondasi dengan diameter 100 cm. IV - 14

15 Diameter (D) = 1,0 m Luas penampang (A) = 0,785 m 2 Keliling (U) = 3,142 m Kondisi Tanah Dasar Berdasarkan data tanah, didapatkan data tanah pada kedalaman 30 m. N SPT = 59 Perhitungan Daya Dukung Tiang Tunggal Daya Dukung Tiang Berdasarkan N-SPT ( q P = d A) + ( U Σli SF fi ) W Bp Dimana : q d = Daya dukung tanah (Ton/m 2 ) A = Luas penampang bore pile (m 2 ) U = Keliling bore pile (m) SF = Safety Factor (2,5 ~ 3) W Bp = Berat Bore Pile (Ton) Nilai q d untuk pondasi tiang yang dicor di tempat diambil berdasarkan tabel dibawah ini : Tabel 4.6 Nilai q d untuk pondasi tiang yang dicor di tempat. Jenis Tanah Nilai SPT Q d (t/m 2 ) Lapisan Kerikil N > > N > > N > Lapisan berpasir N > Lapisan lempung keras 3 q u Tanah pada kedalaman 30 m adalah pasir berkerikil hitam dengan kondisi sangat padat (N > 50) maka q d = 750 Ton/m 2. Untuk intensitas gaya geser dinding tiang (f i ) pada tiang yang dicor di tempat adalah N/2, tetapi tidak boleh lebih besar dari 12. IV - 15

16 Tabel 4.7. Perhitungan Σl i f i Kedalaman Tebal lapisan Jenis Tanah N f i (t/m 2 ) l if i (t/m) 0,0-8,0 8 Lempung kelanauan berpasir 4,7 2,35 18,8 8,0 11,0 3 Pasir kelanauan ,0 14,0 3 Cadas muda ,0 16,5 3,5 Pasir halus 34, ,5 20,0 3,5 Cadas muda ,0 23,5 3,5 Batu lempung 60, ,5 25,0 1,5 Pasir halus ,0 27,0 2 Cadas kepasiran ,0 30,0 3 Batu lempung kepasiran 64, Jumlah 294,8 Pondasi dengan diameter 1 m. (qd A) + (U Σlifi ) P = 25 π 2,5 2 ( 0, d L) (750 0,785) + (3, ,8) P = π 2,5 P = 590,297 Ton ( 0, ) Jumlah bore pile di tiap-tiap kolom dihitung dengan membagi reaksi tumpuan vertikal pada masing-masing kolom dengan daya dukung 1 bore pile. Untuk kemudahan dalam pelaksanaan dan perhitungan, jumlah bore pile di tiap kolom diambil menjadi 2, 4, 6 dan 8 buah bore pile. Sedangkan untuk jumlah bore pile dibawah ruang core wall dihitung dengan menjumlah semua reaksi vertikal pada tumpuan core wall dan membaginya dengan daya dukung 1 buah bore pile. Jumlah bore pile dapat dilihat pada tabel 4.8 berikut ini : IV - 16

17 Tabel 4.8. Jumlah Bore Pile Titik Reaksi Vertikal Jumlah Bore Pile Tumpuan (Ton) Perlu Terpasang IV - 17

18 Permodelan Struktur Bored pile Perhitungan bore pile dibuat dengan bantuan software SAP2000, dimensi yang diinput sesuai dengan rencana dimensi bore pile yaitu diameter 100 cm dan panjang 20 m. Beban yang dimasukkan pada permodelan bore pile adalah nilai reaksi terbesar dari permodelan struktur pile cap. Sedangkan untuk tumpuan digunakan model tumpuan spring untuk memodelkan tumpuan bore pile pada tanah. k sv merupakan modulus of subgrade tanah, didapat dari data tanah sebesar 117,50 kg/cm 3. Angka ini dikalikan dengan luas penampang / luas keliling bore pile lalu diinput sebagai kekakuan tumpuan pegas (spring stiffness). Perhitungan Efisiensi Bore Pile Pile Cap 1 θ ( n 1) m + ( m 1) n Eff = 1 90 ( m n) 26,57 (1 1)2 + (2 1)1 Eff = 1 90 (2 1) Eff = 85,24 % Pile Cap 2 Eff Eff θ ( n 1) m + ( m 1) n = 1 90 ( m n) = 1 26,57 (2 90 1)2 + (2 1)2 (2 2) Eff = 70,48 % Pile Cap 3 Eff Eff θ ( n 1) m + ( m 1) n = 1 90 ( m n) 26,57 (3 1)2 + (2 1)3 = 1 90 (3 2) Eff = 65,56 % IV - 18

19 Pile Cap 4 Eff Eff θ ( n 1) m + ( m 1) n = 1 90 ( m n) 26,57 (3 1)3 + (3 1)3 = 1 90 (3 3) Eff = 60,64 % Pile Cap 5 Eff Eff θ ( n 1) m + ( m 1) n = 1 90 ( m n) 18,43 = 1 90 (4 1)5 + (5 1)4 (4 5) Eff = 68,26 % Perhitungan Pile Cap Pile cap berfungsi untuk menyalurkan beban dari kolom-kolom pada struktur atas ke pondasi bore pile. Reaksi tumpuan dari permodelan struktur gedung utama digunakan sebagai beban dalam perhitungan pile cap, sedangkan output reaksi perletakan nya digunakan untuk mendesain tulangan bore pile. Rencana Tebal dan Dimensi Pile Cap Agar tidak terjadi penurunan yang berbeda-beda pada pondasi bore pile, digunakan pile cap. Pile cap direncanakan untuk menyalurkan gaya aksial dari kolom kepada bored pile. Ada lima tipe pile cap yang digunakan pada struktur gedung ini. Tabel 4.9. Tipe dan dimensi Pile Cap Tipe Jumlah Tebal Lebar Panjang Luas Pile Cap Tiang (m) (m) (m) (m 2 ) Pile Cap Pile Cap Pile Cap Pile Cap Pile Cap IV - 19

20 Permodelan Struktur Pile cap Pondasi pile cap dimodelkan sebagai berikut : Gambar 4.6. Permodelan Pile Cap 1 (2 Bore Pile) Gambar 4.7. Permodelan Pile Cap 2 (4 Bore Pile) IV - 20

21 Gambar 4.8. Permodelan Pile Cap 3 (6 Bore Pile) Gambar 4.9. Permodelan Pile Cap 4 (8 Bore Pile) Gambar Permodelan Pile Cap 4 (20 Bore Pile) IV - 21

22 Perhitungan luas tulangan pile cap yang dibutuhkan menggunakan bantuan software SAP2000. Pile cap dimodelkan sebagai balok dengan tebal 2 m, dan lebar 1 m yang menggunakan tumpuan jepit di salah satu ujungnya. Lalu, momen dari hasil analisis ditempatkan di ujung yang lain sebagai beban terpusat, untuk menciptakan momen sebesar yang terjadi pada pile cap. Dari pemodelan struktur seperti itu, dapat diperoleh luas tulangan yang dibutuhkan pada pile cap. Input beban pada perhitungan Pile Cap Gaya yang diinput untuk perhitungan tulangan pile cap yaitu : Tabel Input beban untuk perhitugan tulangan Pile Cap 1, 2, 3, 4 Tipe F1 F2 F3 M1 M2 M3 Pile Cap (Ton) (Ton) (Ton) (Ton.m) (Ton.m) (Ton.m) Pile Cap Pile Cap Pile Cap Pile Cap Sedangkan untuk perhitungan pile cap 5 beban yang diinput adalah reaksi tumpuan dari model corewall besarnya beban adalah sebagai berikut : Tabel Input beban untuk perhitugan tulangan Pile Cap 5 Titik F1 F2 F3 M1 M2 M3 (No. Joint) (Ton) (Ton) (Ton) (Ton.m) (Ton.m) (Ton.m) IV - 22

23 Perhitungan Tulangan Pile Cap Dari hasil analisis diperoleh besarnya momen pada masing-masing pile cap sebagai berikut : Tabel Momen yang terjadi pada Pile Cap Tipe M11 Maks M11 Min M22 Maks M22 Min Pile Cap (Ton.m/m) (Ton.m/m) (Ton.m/m) (Ton.m/m) Pile Cap Pile Cap Pile Cap Pile Cap Pile Cap Gambar Momen arah 1-1 dan 2-2 pada Pile Cap 1 (2 Bore Pile) Gambar Momen arah 1-1 dan 2-2 pada Pile Cap 2 (4 Bore Pile) IV - 23

24 Gambar Momen arah 1-1 dan 2-2 pada Pile Cap 3 (6 Bore Pile) Gambar Momen arah 1-1 dan 2-2 pada Pile Cap 4 (8 Bore Pile) Gambar Momen arah 1-1 dan 2-2 pada Pile Cap 5 (20 Bore Pile) Luas tulangan pile cap yang dibutuhkan dan tulangan yang terpasang adalah sebagai berikut : Tabel Luas Tulangan yang dibutuhkan pada Pile Cap Tipe M11 Bawah M11 Atas M22 Bawah M22 Atas Pile Cap (mm 2 ) (mm 2 ) (mm 2 ) (mm 2 ) Pile Cap , , Pile Cap Pile Cap Pile Cap Pile Cap IV - 24

25 Tabel Tulangan yang dipasang pada Pile Cap Tipe M11 Bawah M11 Atas M22 Bawah M22 Atas Pile Cap (mm 2 ) (mm 2 ) (mm 2 ) (mm 2 ) Pile Cap 1 3D D D D Pile Cap 2 3D D D D Pile Cap 3 3D D D D Pile Cap 4 3D D D D Pile Cap 5 3D D D D Perhitungan Tulangan Bore Pile Dari hasil analisis dan desain diperoleh besarnya luas tulangan bore pile yang dibutuhkan sebagai berikut : Luas Tulangan Longitudinal = 7854 mm 2 Diameter Tul. Longitudinal = D22 ( As = 380,13 mm 2 ) Jumlah Tul. Longitudinal = 7854 mm 2 /380,13 mm 2 = 20,66 22 Tulangan Longitudinal yang dipasang 22D22 (As = 8362,92 mm 2 ) Luas Tulangan Geser = 0 mm 2 /mm Diameter Tul. Geser = Ø10 ( A = 78,5 mm 2 ) Tul. Geser Dipasang = Ø Tul. spiral praktis (As = 314 mm 2 ) Gambar Penulangan Bore Pile adalah sebagai berikut : Gambar Penulangan Bore Pile (d = 1 m, L = 20 m) 4.4 PERHITUNGAN PELAT LANTAI Pelat lantai dihitung menggunakan bantuan software SAP2000. Hasil dari analisis merupakan momen yang terjadi pada pelat lantai dan digunakan untuk menghitung penulangan pelat lantai. IV - 25

26 4.5.1 Penentuan Tebal Pelat Lantai Berdasarkan buku Tata Cara Perhitungan Struktur Beton untuk Gedung (SNI pasal 16.5(3)), ketebalan pelat yang digunakan dalam sistem struktur flat plate biasanya memiliki ketebalan mm. Jadi, untuk ketebalan pelat lantai pada gedung ini diambil sebesar t = 250 mm Pembebanan pada pelat lantai Beban yang bekerja pada pelat lantai berupa beban mati dan beban hidup. Menurut Tata Cara Perencanaan Pembebanan Untuk Rumah Dan Gedung (SNI ), beban mati direncanakan sebesar 100 kg/m 2 dan beban hidup sebesar 250 kg/m 2 (untuk lantai perkantoran) dan 400 kg/m 2 (untuk lantai parkir). Kombinasi pembebanan yang dipakai adalah 120% beban mati ditambah 160% beban hidup. Wt = 1.2 DL LL Dimana : DL = Beban mati (berat sendiri) struktur. LL = Beban hidup total (beban berguna) Karakteristik Material Beton Struktur pelat lantai direncanakan dengan menggunakan material beton bertulang dengan mutu beton f c = 25 MPa (K-300) dan mutu tulangan ulir Fy = 400 MPa Analisis dan Desain Penulangan Pelat Lantai Dari hasil analisis diperoleh besarnya gaya-gaya dalam dan deformasi struktur sebagai berikut : Momen arah 1-1 maksimum = 5824,45 kg.m/m Momen arah 1-1 minimum = -7764,72 kg.m/m Momen arah 2-2 maksimum = 5740,20 kg.m/m Momen arah 2-2 minimum = -5099,40 kg.m/m Deformasi vertikal pada pelat Lendutan akibat beban mati = 2,1 mm Lendutan akibat beban hidup = 0,7 mm Lendutan Total = 2,8 mm L Syarat lendutan yang terjadi = δ = = = 27,78 mm (Aman) IV - 26

PERENCANAAN STRUKTUR GEDUNG BETON BERTULANG SISTEM RANGKA PEMIKUL MOMEN KHUSUS (SRPMK) DAN SISTEM RANGKA PEMIKUL MOMEN MENENGAH (SRPMM)

PERENCANAAN STRUKTUR GEDUNG BETON BERTULANG SISTEM RANGKA PEMIKUL MOMEN KHUSUS (SRPMK) DAN SISTEM RANGKA PEMIKUL MOMEN MENENGAH (SRPMM) PERENCANAAN STRUKTUR GEDUNG BETON BERTULANG SISTEM RANGKA PEMIKUL MOMEN KHUSUS (SRPMK) DAN SISTEM RANGKA PEMIKUL MOMEN MENENGAH (SRPMM) TUGAS AKHIR Diajukan untuk melengkapi tugas tugas dan memenuhi syarat

Lebih terperinci

Desain Struktur Beton Bertulang Tahan Gempa

Desain Struktur Beton Bertulang Tahan Gempa Mata Kuliah : Struktur Beton Lanjutan Kode : TSP 407 SKS : 3 SKS Desain Struktur Beton Bertulang Tahan Gempa Pertemuan - 11 TIU : Mahasiswa dapat mendesain berbagai elemen struktur beton bertulang TIK

Lebih terperinci

KONSEP DAN METODE PERENCANAAN

KONSEP DAN METODE PERENCANAAN 24 2 KONSEP DAN METODE PERENCANAAN A. Perkembangan Metode Perencanaan Beton Bertulang Beberapa kajian awal yang dilakukan pada perilaku elemen struktur beton bertulang telah mengacu pada teori kekuatan

Lebih terperinci

PERANCANGAN STRUKTUR ATAS APARTEMEN KALIBATA RESIDENCE TOWER D JAKARTA. Laporan Tugas Akhir. Atma Jaya Yogyakarta. Oleh :

PERANCANGAN STRUKTUR ATAS APARTEMEN KALIBATA RESIDENCE TOWER D JAKARTA. Laporan Tugas Akhir. Atma Jaya Yogyakarta. Oleh : PERANCANGAN STRUKTUR ATAS APARTEMEN KALIBATA RESIDENCE TOWER D JAKARTA Laporan Tugas Akhir sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh : ERWIN OLIVER

Lebih terperinci

PENGARUH PENGGUNAAN RANGKA BAJA SEBAGAI PENGGANTI SHEAR WALL EXSISTINGPADA CORE BUMIMINANG PLAZA HOTEL PADANG SUMATERA BARAT SKRIPSI

PENGARUH PENGGUNAAN RANGKA BAJA SEBAGAI PENGGANTI SHEAR WALL EXSISTINGPADA CORE BUMIMINANG PLAZA HOTEL PADANG SUMATERA BARAT SKRIPSI PENGARUH PENGGUNAAN RANGKA BAJA SEBAGAI PENGGANTI SHEAR WALL EXSISTINGPADA CORE BUMIMINANG PLAZA HOTEL PADANG SUMATERA BARAT SKRIPSI Diajukan Sebagai Salah Satu Syarat Untuk Menyelesaikan Program Strata-1

Lebih terperinci

Laporan Tugas Akhir (KL-40Z0) Desain Dermaga General Cargo dan Trestle Tipe Deck On Pile di Pulau Kalukalukuang Provinsi Sulawesi Selatan

Laporan Tugas Akhir (KL-40Z0) Desain Dermaga General Cargo dan Trestle Tipe Deck On Pile di Pulau Kalukalukuang Provinsi Sulawesi Selatan Bab 7 DAYA DUKUNG TANAH Laporan Tugas Akhir (KL-40Z0) Desain Dermaga General Cargo dan Trestle Tipe Deck On ile di ulau Kalukalukuang rovinsi Sulawesi Selatan 7.1 Daya Dukung Tanah 7.1.1 Dasar Teori erhitungan

Lebih terperinci

DAFTAR ISI DAFTAR ISI

DAFTAR ISI DAFTAR ISI DAFTAR ISI BAB I PENDAHULUAN 1.1. Latar belakang... I-1 1.2. Permasalahan... I-2 1.3. Maksud dan tujuan... I-2 1.4. Lokasi studi... I-2 1.5. Sistematika penulisan... I-4 BAB II DASAR TEORI 2.1. Tinjauan

Lebih terperinci

Semarang, Februari 2007 Penulis

Semarang, Februari 2007 Penulis KATA PENGANTAR Pertama-tama kami panjatkan puji dan syukur kehadirat Allah SWT, karena dengan rahmat dan karunia-nya, kami telah dapat menyelesaikan Laporan Tugas Akhir yang berjudul Analisa Keretakan

Lebih terperinci

PENGARUH DAN FUNGSI BATANG NOL TERHADAP DEFLEKSI TITIK BUHUL STRUKTUR RANGKA Iwan-Indra Gunawan PENDAHULUAN

PENGARUH DAN FUNGSI BATANG NOL TERHADAP DEFLEKSI TITIK BUHUL STRUKTUR RANGKA Iwan-Indra Gunawan PENDAHULUAN PENGARUH DAN FUNGSI BATANG NOL TERHADAP DEFLEKSI TITIK BUHUL STRUKTUR RANGKA Iwan-Indra Gunawan INTISARI Konstruksi rangka batang adalah konstruksi yang hanya menerima gaya tekan dan gaya tarik. Bentuk

Lebih terperinci

ANALISA PENGARUH PRATEGANG PADA KONSTRUKSI PELAT LANTAI DITINJAU DARI ASPEK DAYA LAYAN DAN PERILAKU DINAMIK SKRIPSI

ANALISA PENGARUH PRATEGANG PADA KONSTRUKSI PELAT LANTAI DITINJAU DARI ASPEK DAYA LAYAN DAN PERILAKU DINAMIK SKRIPSI ANALISA PENGARUH PRATEGANG PADA KONSTRUKSI PELAT LANTAI DITINJAU DARI ASPEK DAYA LAYAN DAN PERILAKU DINAMIK SKRIPSI Oleh LUNGGUK PARLUHUTAN 1000860394 BINUS UNIVERSITY JAKARTA 2010 ANALISA PENGARUH PRATEGANG

Lebih terperinci

Langkah-langkah pengerjaan analisis dengan menggunakan software etabs: 1. Membuka program dengan mengklik icon atau diambil dari start program

Langkah-langkah pengerjaan analisis dengan menggunakan software etabs: 1. Membuka program dengan mengklik icon atau diambil dari start program Langkah-langkah pengerjaan analisis dengan menggunakan software etabs: 1. Membuka program dengan mengklik icon atau diambil dari start program Gambar Tampilan awal program 2. Kemudian membuat grid dan

Lebih terperinci

Jenis Jenis Beban. Bahan Ajar Mekanika Bahan Mulyati, MT

Jenis Jenis Beban. Bahan Ajar Mekanika Bahan Mulyati, MT Jenis Jenis Beban Apabila suatu beban bekerja pada area yang sangat kecil, maka beban tersebut dapat diidealisasikan sebagai beban terpusat, yang merupakan gaya tunggal. Beban ini dinyatakan dengan intensitasnya

Lebih terperinci

SNI 03-1726 - 2003 SNI STANDAR NASIONAL INDONESIA. Tata Cara Perencanaan Ketahanaan Gempa untuk Bangunan Gedung

SNI 03-1726 - 2003 SNI STANDAR NASIONAL INDONESIA. Tata Cara Perencanaan Ketahanaan Gempa untuk Bangunan Gedung SNI 03-1726 - 2003 SNI STANDAR NASIONAL INDONESIA Tata Cara Perencanaan Ketahanaan Gempa untuk Bangunan Gedung Bandung, Juli 2003 1 Ruang lingkup 1.1 Standar ini dimaksudkan sebagai pengganti Standar Nasional

Lebih terperinci

ANALISIS DAN DESAIN STRUKTUR BANGUNAN TAHAN GEMPA BETON BERTULANG DAN BETON PRATEGANG

ANALISIS DAN DESAIN STRUKTUR BANGUNAN TAHAN GEMPA BETON BERTULANG DAN BETON PRATEGANG ANALISIS DAN DESAIN STRUKTUR BANGUNAN TAHAN GEMPA BETON BERTULANG DAN BETON PRATEGANG Vinsensia Vitanto NRP : 0521002 Pembimbing : Winarni Hadipratomo, Ir. FAKULTAS TEKNIK JURUSAN SIPIL UNIVERSITAS KRISTEN

Lebih terperinci

Derajat Strata 1 pada Jurusan Teknik Sipil Fakultas Teknik. Disusun Oleh : Neva Anggraini

Derajat Strata 1 pada Jurusan Teknik Sipil Fakultas Teknik. Disusun Oleh : Neva Anggraini TUGAS AKHIR PERANCANGAN ULANG STRUKTUR PORTAL GEDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA Diajukan Guna Memenuhi Sebagian Persyaratan untuk Memperoleh Derajat Strata

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA 2.1 Daya Dukung Pondasi Tiang Pondasi tiang adalah pondasi yang mampu menahan gaya orthogonal ke sumbu tiang dengan jalan menyerap lenturan. Pondasi tiang dibuat menjadi satu

Lebih terperinci

HALAMAN PENGESAHAN PERENCANAAN JEMBATAN GANTUNG TUGU SOEHARTO KELURAHAN SUKOREJO KECAMATAN GUNUNGPATI SEMARANG

HALAMAN PENGESAHAN PERENCANAAN JEMBATAN GANTUNG TUGU SOEHARTO KELURAHAN SUKOREJO KECAMATAN GUNUNGPATI SEMARANG HALAMAN PENGESAHAN TUGAS AKHIR PERENCANAAN JEMBATAN GANTUNG TUGU SOEHARTO KELURAHAN SUKOREJO KECAMATAN GUNUNGPATI SEMARANG Disusun Oleh: ADITYO BUDI UTOMO TOSAN KUNTO SURYOAJI L2A004005 L2A004124 Semarang,

Lebih terperinci

Analisis Struktur Statis Tak Tentu dengan Force Method

Analisis Struktur Statis Tak Tentu dengan Force Method Mata Kuliah : Analisis Struktur Kode : TSP 202 SKS : 3 SKS Analisis Struktur Statis Tak Tentu dengan Force Method Pertemuan - 7 TIU : Mahasiswa dapat menghitung reaksi perletakan pada struktur statis tak

Lebih terperinci

DAYA DUKUNG TIANG TERHADAP BEBAN LATERAL DENGAN MENGGUNAKAN MODEL UJI PADA TANAH PASIR

DAYA DUKUNG TIANG TERHADAP BEBAN LATERAL DENGAN MENGGUNAKAN MODEL UJI PADA TANAH PASIR DAYA DUKUNG TIANG TERHADAP BEBAN LATERAL DENGAN MENGGUNAKAN MODEL UJI PADA TANAH PASIR Laporan Tugas Akhir sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta

Lebih terperinci

Tata cara perencanaan dan pelaksanaan bangunan gedung menggunakan panel jaring kawat baja tiga dimensi (PJKB-3D) las pabrikan

Tata cara perencanaan dan pelaksanaan bangunan gedung menggunakan panel jaring kawat baja tiga dimensi (PJKB-3D) las pabrikan SNI 7392:2008 Standar Nasional Indonesia Tata cara perencanaan dan pelaksanaan bangunan gedung menggunakan panel jaring kawat baja tiga dimensi (PJKB-3D) las pabrikan ICS 91.080.10 Badan Standardisasi

Lebih terperinci

PENGARUH KEDALAMAN GEOTEKSTIL TERHADAP KAPASITAS DUKUNG MODEL PONDASI TELAPAK BUJURSANGKAR DI ATAS TANAH PASIR DENGAN KEPADATAN RELATIF (Dr) = ± 23%

PENGARUH KEDALAMAN GEOTEKSTIL TERHADAP KAPASITAS DUKUNG MODEL PONDASI TELAPAK BUJURSANGKAR DI ATAS TANAH PASIR DENGAN KEPADATAN RELATIF (Dr) = ± 23% PENGARUH KEDALAMAN GEOTEKSTIL TERHADAP KAPASITAS DUKUNG MODEL PONDASI TELAPAK BUJURSANGKAR DI ATAS TANAH PASIR DENGAN KEPADATAN RELATIF (Dr) = ± 23% Jemmy NRP : 0021122 Pembimbing : Herianto Wibowo, Ir,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 Seismic Column Demand Pada Rangka Bresing Konsentrik Khusus

BAB II TINJAUAN PUSTAKA. 2.1 Seismic Column Demand Pada Rangka Bresing Konsentrik Khusus BAB II TINJAUAN PUSTAKA 2.1 Seismic Column Demand Pada Rangka Bresing Konsentrik Khusus Sistem Rangka Bresing Konsentrik Khusus merupakan sistem struktur yang efisien dalam menahan gaya gempa lateral.

Lebih terperinci

Gaya. Gaya adalah suatu sebab yang mengubah sesuatu benda dari keadaan diam menjadi bergerak atau dari keadaan bergerak menjadi diam.

Gaya. Gaya adalah suatu sebab yang mengubah sesuatu benda dari keadaan diam menjadi bergerak atau dari keadaan bergerak menjadi diam. Gaya Gaya adalah suatu sebab yang mengubah sesuatu benda dari keadaan diam menjadi bergerak atau dari keadaan bergerak menjadi diam. Dalam mekanika teknik, gaya dapat diartikan sebagai muatan yang bekerja

Lebih terperinci

PEDOMAN PEMBANGUNAN BANGUNAN TAHAN GEMPA

PEDOMAN PEMBANGUNAN BANGUNAN TAHAN GEMPA LAMPIRAN SURAT KEPUTUSAN DIREKTUR JENDERAL CIPTA KARYA NOMOR: 111/KPTS/CK/1993 TANGGAL 28 SEPTEMBER 1993 TENTANG: PEDOMAN PEMBANGUNAN BANGUNAN TAHAN GEMPA A. DASAR DASAR PERENCANAAN BANGUNAN TAHAN GEMPA

Lebih terperinci

PERANCANGAN ALTERNATIF STRUKTUR JEMBATAN KALIBATA DENGAN MENGGUNAKAN RANGKA BAJA

PERANCANGAN ALTERNATIF STRUKTUR JEMBATAN KALIBATA DENGAN MENGGUNAKAN RANGKA BAJA TUGAS AKHIR PERANCANGAN ALTERNATIF STRUKTUR JEMBATAN KALIBATA DENGAN MENGGUNAKAN RANGKA BAJA Diajukan Sebagai Salah Satu Syarat Untuk Mendapatkan Gelar Sarjana Tingkat Strata 1 (S-1) DISUSUN OLEH: NAMA

Lebih terperinci

PERENCANAAN JEMBATAN BUSUR MENGGUNAKAN DINDING PENUH PADA SUNGAI BRANTAS KOTA KEDIRI. Oleh : GALIH AGENG DWIATMAJA 3107 100 616

PERENCANAAN JEMBATAN BUSUR MENGGUNAKAN DINDING PENUH PADA SUNGAI BRANTAS KOTA KEDIRI. Oleh : GALIH AGENG DWIATMAJA 3107 100 616 PERENCANAAN JEMBATAN BUSUR MENGGUNAKAN DINDING PENUH PADA SUNGAI BRANTAS KOTA KEDIRI Oleh : GALIH AGENG DWIATMAJA 3107 100 616 LATAR BELAKANG Kondisi jembatan yang lama yang mempunyai lebar 6 meter, sedangkan

Lebih terperinci

Modul 4 PRINSIP DASAR

Modul 4 PRINSIP DASAR Modul 4 PRINSIP DASAR 4.1 Pendahuluan Ilmu statika pada dasarnya merupakan pengembangan dari ilmu fisika, yang menjelaskan kejadian alam sehari-hari, yang berkaitan dengan gaya-gaya yang bekerja. Insinyur

Lebih terperinci

MODUL STRUKTUR BAJA II 4 BATANG TEKAN METODE ASD

MODUL STRUKTUR BAJA II 4 BATANG TEKAN METODE ASD MODUL 4 BATANG TEKAN METODE ASD 4.1 MATERI KULIAH Panjang tekuk batang tekan Angka kelangsingan batang tekan Faktor Tekuk dan Tegangan tekuk batang tekan Desain luas penampang batang tekan Syarat kekakuan

Lebih terperinci

BAB VIII TAHAP PELAKSANAAN

BAB VIII TAHAP PELAKSANAAN BAB VIII TAHAP PELAKSANAAN 8.1 Umum Dalam bab pelaksanaan ini akan diuraikan mengenai itemitem pekerjaan konstruksi dan pembahasan mengenai pelaksanaan yang berkaitan dengan penggunaan material-material

Lebih terperinci

Struktur Rangka Batang Statis Tertentu

Struktur Rangka Batang Statis Tertentu Mata Kuliah : Statika Kode : TSP 106 SKS : 3 SKS Struktur Rangka Batang Statis Tertentu Pertemuan 10, 11, 12 TIU : Mahasiswa dapat menghitung reaksi perletakan pada struktur statis tertentu Mahasiswa dapat

Lebih terperinci

Buku Pegangan Disain dan Konstruksi Bangunan Rumah Sederhana yang Baik di Nanggroe Aceh Darussalam dan Nias

Buku Pegangan Disain dan Konstruksi Bangunan Rumah Sederhana yang Baik di Nanggroe Aceh Darussalam dan Nias Manfaat Buku Buku pegangan ini berisi informasi sederhana tentang prinsip-prinsip rancangan dan konstruksi yang baik. Informasi tersebut ditujukan kepada pemilik rumah, perancang, kontraktor dan pengawas

Lebih terperinci

BAB II KESETIMBANGAN BENDA TEGAR

BAB II KESETIMBANGAN BENDA TEGAR BAB II KESETIMBANGAN BENDA TEGAR Benda tegar adalah elemen kecil yang tidak mengalami perubahan bentuk apabila dikenai gaya. Struktur dua dimensi dapat diartikan sebuah struktur pipih yang mempunyai panjang

Lebih terperinci

BAB III PERENCANAAN DAN PERHITUNGAN DESAIN RANGKA DAN BODY. Perhitungan Kekuatan Rangka. Menghitung Element Mesin Baut.

BAB III PERENCANAAN DAN PERHITUNGAN DESAIN RANGKA DAN BODY. Perhitungan Kekuatan Rangka. Menghitung Element Mesin Baut. BAB III PERENCANAAN DAN PERHITUNGAN DESAIN RANGKA DAN BODY.1 Diagram Alir Proses Perancangan Data proses perancangan kendaraan hemat bahan bakar seperti terlihat pada diagram alir berikut ini : Mulai Perhitungan

Lebih terperinci

10Teinik. Template Mesin Pemindahan Bahan Power Point. Sistem Peralatan Tambahan Khusus Kait Pada Mesin Pemindahan Bahan. Ir. H. Pirnadi, MSc. APU.

10Teinik. Template Mesin Pemindahan Bahan Power Point. Sistem Peralatan Tambahan Khusus Kait Pada Mesin Pemindahan Bahan. Ir. H. Pirnadi, MSc. APU. Modul ke: Template Mesin Pemindahan Bahan Power Point Sistem Peralatan Tambahan Khusus Kait Pada Mesin Pemindahan Bahan. Fakultas 10Teinik Ir. H. Pirnadi, MSc. APU. Program Studi Teknik Mesin 2. Peralatan

Lebih terperinci

MODUL 7 TAHANAN FONDASI TERHADAP GAYA ANGKAT KE ATAS

MODUL 7 TAHANAN FONDASI TERHADAP GAYA ANGKAT KE ATAS Program Studi Teknik Sipil Fakultas Teknik Sipil dan Perencanaan Universitas Mercu Buana 7 MODUL 7 TAHANAN FONDASI TERHADAP GAYA ANGKAT KE ATAS Fondasi menara (tower) sering menerima gaya angkat ke atas

Lebih terperinci

SIFAT MEKANIK KAYU. Angka rapat dan kekuatan tiap kayu tidak sama Kayu mempunyai 3 sumbu arah sumbu :

SIFAT MEKANIK KAYU. Angka rapat dan kekuatan tiap kayu tidak sama Kayu mempunyai 3 sumbu arah sumbu : SIFAT MEKANIK KAYU Angka rapat dan kekuatan tiap kayu tidak sama Kayu mempunyai 3 sumbu arah sumbu : Sumbu axial (sejajar arah serat ) Sumbu radial ( menuju arah pusat ) Sumbu tangensial (menurut arah

Lebih terperinci

ANALISA PERBANDINGAN BEBAN BATAS DAN BEBAN LAYAN (LOAD FACTOR) DALAM TAHAPAN PEMBENTUKAN SENDI SENDI PLASTIS PADA STRUKTUR GELAGAR MENERUS

ANALISA PERBANDINGAN BEBAN BATAS DAN BEBAN LAYAN (LOAD FACTOR) DALAM TAHAPAN PEMBENTUKAN SENDI SENDI PLASTIS PADA STRUKTUR GELAGAR MENERUS ANALISA PERBANDINGAN BEBAN BATAS DAN BEBAN LAYAN (LOAD FACTOR) DALAM TAHAPAN PEMBENTUKAN SENDI SENDI PLASTIS PADA STRUKTUR GELAGAR MENERUS Tugas Akhir Diajukan untuk melengkapi tugas-tugas dan memenuhi

Lebih terperinci

d. Apa Yang Jawaban : pembebanan keamanan. KEPADATAN Φ( o ) Dr (%) 0-5 26-30 0-5 5-10 5-30 28-35 30-60 35-42 10-30 30-50 38-46 60-95 RELATIF TANAH

d. Apa Yang Jawaban : pembebanan keamanan. KEPADATAN Φ( o ) Dr (%) 0-5 26-30 0-5 5-10 5-30 28-35 30-60 35-42 10-30 30-50 38-46 60-95 RELATIF TANAH UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK Jawaban UAS Teknikk Pondasi (Waktu 1 menit) Tanggal : 11 Juni 1 Soal no 1. Teori a. Sebutkan data fisik tanah yang diperlukan untuk perencanaan. Data fisik tanah yang

Lebih terperinci

SIFAT MEKANIK MATERIAL BAJA

SIFAT MEKANIK MATERIAL BAJA MODUL 1 1 SIFAT MEKANIK MATERIAL BAJA 1. Sifat Mekanik Material Baja Secara Umum Adanya beban pada elemen struktur selalu menyebabkan terjadinya perubahan dimensional pada elemen struktur tersebut. Struktur

Lebih terperinci

DAFTAR ISI. Kata Pengantar...i Daftar Isi...ii

DAFTAR ISI. Kata Pengantar...i Daftar Isi...ii Kata Pengantar Pedoman Teknis Rumah dan Bangunan Gedung Tahan Gempa dilengkapi dengan Metode dan Cara Perbaikan Kerusakan ini dipersiapkan oleh Panitia Teknik Standarisasi Bidang Konstruksi dan Bangunan,

Lebih terperinci

PEDOMAN TEKNIS BANGUNAN SEKOLAH TAHAN GEMPA

PEDOMAN TEKNIS BANGUNAN SEKOLAH TAHAN GEMPA PEDOMAN TEKNIS BANGUNAN SEKOLAH TAHAN GEMPA FKTGMVQTCV"RGODKPCCP"UGMQNCJ"OGPGPICJ"CVCU FKTGMVQTCV"LGPFGTCN"RGPFKFKMCP"OGPGPICJ MGOGPVGTKCP"RGPFKFKMCP"PCUKQPCN i ii KATA PENGANTAR Pedoman Teknis Bangunan

Lebih terperinci

PELAKSANAAN KONSTRUKSI BANGUNAN TAHAN GEMPA: PENGALAMAN DARI BENCANA

PELAKSANAAN KONSTRUKSI BANGUNAN TAHAN GEMPA: PENGALAMAN DARI BENCANA PELAKSANAAN KONSTRUKSI BANGUNAN TAHAN GEMPA: PENGALAMAN DARI BENCANA Biemo W. Soemardi Peniliti pada KK Manajemen & Rekayasa Konstruksi, Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung,

Lebih terperinci

BAB V RENCANA PENANGANAN

BAB V RENCANA PENANGANAN BAB V RENCANA PENANGANAN 5.. UMUM Strategi pengelolaan muara sungai ditentukan berdasarkan beberapa pertimbangan, diantaranya adalah pemanfaatan muara sungai, biaya pekerjaan, dampak bangunan terhadap

Lebih terperinci

Pertemuan XIII VIII. Balok Elastis Statis Tak Tentu

Pertemuan XIII VIII. Balok Elastis Statis Tak Tentu Pertemuan XIII VIII. Balok Elastis Statis Tak Tentu.1 Definisi Balok Statis Tak Tentu Balok dengan banyaknya reaksi melebihi banyaknya persamaan kesetimbangan, sehingga reaksi pada balok tidak dapat ditentukan

Lebih terperinci

SIMULASI NUMERIK MODEL RUMAH TAHAN GEMPA TANPA BETON BERTULANG

SIMULASI NUMERIK MODEL RUMAH TAHAN GEMPA TANPA BETON BERTULANG SIMULASI NUMERIK MODEL RUMAH TAHAN GEMPA TANPA BETON BERTULANG SKRIPSI Diajukan sebagai syarat untuk menyelesaikan pendidikan Program Strata-I pada Jurusan Teknik Sipil Fakultas Teknik Universitas Andalas

Lebih terperinci

UNIVERSITAS NEGERI YOGYAKARTA

UNIVERSITAS NEGERI YOGYAKARTA KAJIAN KUAT TEKAN BETON DENGAN PERBANDINGAN VOLUME DAN PERBANDINGAN BERAT UNTUK PRODUKSI BETON MASSA MENGGUNAKAN AGREGAT KASAR BATU PECAH MERAPI (STUDI KASUS PADA PROYEK PEMBANGUNAN SABO DAM) Oleh : Yudi

Lebih terperinci

Efisiensi Dimensi dan Biaya Atap Baja Rumah Susun C Siwalankerto. Sri Utami Setyowati, Ir., MT

Efisiensi Dimensi dan Biaya Atap Baja Rumah Susun C Siwalankerto. Sri Utami Setyowati, Ir., MT Efisiensi Dimensi dan Biaya Atap Baja Rumah Susun C Siwalankerto 91 Efisiensi Dimensi dan Biaya Atap Baja Rumah Susun C Siwalankerto Sri Utami Setyowati, Ir., MT ABSTRAK Tujuan efisiensi struktur rangka

Lebih terperinci

METODA CONSISTENT DEFORMATION

METODA CONSISTENT DEFORMATION Modul ke: 01 Analisa Struktur I METODA CONSISTENT Fakultas FTPD Acep Hidayat,ST,MT Program Studi Teknik Sipil Struktur Statis Tidak Tertentu Analisis Struktur Analisis struktur adalah proses untuk menentukan

Lebih terperinci

Persyaratan beton struktural untuk bangunan gedung

Persyaratan beton struktural untuk bangunan gedung Standar Nasional Indonesia SNI 2847:2013 Persyaratan beton struktural untuk bangunan gedung ICS 91.080.40 Badan Standardisasi Nasional BSN 2013 Hak cipta dilindungi undang-undang. Dilarang mengumumkan

Lebih terperinci

Evaluasi Kinerja Bangunan Baja Tahan Gempa dengan SAP2000 1

Evaluasi Kinerja Bangunan Baja Tahan Gempa dengan SAP2000 1 Evaluasi Kinerja Bangunan Baja Tahan Gempa dengan SAP2000 1 Wiryanto Dewobroto wir@uph.edu Jurusan Teknik Sipil - Universitas Pelita Harapan Abstrak : Indonesia daerah rawan gempa, untuk mengurangi resiko

Lebih terperinci

PERBANDINGAN KINERJA STRUKTUR GEDUNG 6 LANTAI TIPE SISTEM RANGKA PEMIKUL MOMEN MENENGAH (SRPMM) DENGAN DAN TANPA INVERTED V-BRESING

PERBANDINGAN KINERJA STRUKTUR GEDUNG 6 LANTAI TIPE SISTEM RANGKA PEMIKUL MOMEN MENENGAH (SRPMM) DENGAN DAN TANPA INVERTED V-BRESING PERBANDINGAN KINERJA STRUKTUR GEDUNG 6 LANTAI TIPE SISTEM RANGKA PEMIKUL MOMEN MENENGAH (SRPMM) DENGAN DAN TANPA INVERTED V-BRESING SKRIPSI Oleh ANITA INTAN NURA DIANA NIM 071910301024 PROGRAM STUDI STRATA

Lebih terperinci

BAB I KOMPONEN STRUKTUR JALAN REL DAN PEMBEBANAN NYA

BAB I KOMPONEN STRUKTUR JALAN REL DAN PEMBEBANAN NYA BAB I KOMPONEN STRUKTUR JALAN DAN PEMBEBANAN NYA 1.1 STRUKTUR JALAN Struktur jalan rel adalah struktur elastis, dengan pola distribusi beban yang cukup rumit, sebagai gambaran adalah tegangan kontak antara

Lebih terperinci

Stabilitas lereng (lanjutan)

Stabilitas lereng (lanjutan) Program Studi Teknik Sipil Fakultas Teknik Sipil dan Perencanaan Universitas Mercu Buana 12 MODUL 12 Stabilitas lereng (lanjutan) 6. Penanggulangan Longsor Yang dimaksud dengan penanggulangan longsoran

Lebih terperinci

XI. BALOK ELASTIS STATIS TAK TENTU

XI. BALOK ELASTIS STATIS TAK TENTU XI. OK ESTIS STTIS TK TENTU.. alok Statis Tak Tentu Dalam semua persoalan statis tak tentu persamaan-persamaan keseimbangan statika masih tetap berlaku. ersamaan-persamaan ini adalah penting, tetapi tidak

Lebih terperinci

I. Tegangan Efektif. Pertemuan I

I. Tegangan Efektif. Pertemuan I Pertemuan I I. Tegangan Efektif I.1 Umum. Bila tanah mengalami tekanan yang diakibatkan oleh beban maka ; Angka pori tanah akan berkurang Terjadinya perubahan-perubahan sifat mekanis tanah (tahanan geser

Lebih terperinci

3. Bagian-Bagian Atap Bagian-bagian atap terdiri atas; kuda-kuda, ikatan angin, jurai, gording, sagrod, bubungan, usuk, reng, penutup atap, dan

3. Bagian-Bagian Atap Bagian-bagian atap terdiri atas; kuda-kuda, ikatan angin, jurai, gording, sagrod, bubungan, usuk, reng, penutup atap, dan 3. Bagian-Bagian Atap Bagian-bagian atap terdiri atas; kuda-kuda, ikatan angin, jurai, gording, sagrod, bubungan, usuk, reng, penutup atap, dan talang. a. Gording Gording membagi bentangan atap dalam jarak-jarak

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian Jembatan Jembatan adalah suatu konstruksi yang gunanya untuk meneruskan jalan melalui suatu rintangan yang berada lebih rendah. Rintangan ini biasanya jalan lain

Lebih terperinci

GELOMBANG MEKANIK. (Rumus) www.aidianet.co.cc

GELOMBANG MEKANIK. (Rumus) www.aidianet.co.cc GELOMBANG MEKANIK (Rumus) Gelombang adalah gejala perambatan energi. Gelombang Mekanik adalah gelombang yang memerlukan medium untuk merambat. A = amplitudo gelombang (m) = = = panjang gelombang (m) v

Lebih terperinci

KATA PENGANTAR. Tim Penyusun

KATA PENGANTAR. Tim Penyusun KATA PENGANTAR Modul dengan judul Memasang Pondasi Batu Kali merupakan bahan ajar yang digunakan sebagai panduan praktikum peserta diklat (siswa) Sekolah Menengah Kejuruan (SMK) untuk membentuk salah satu

Lebih terperinci

BAB III. Universitas Sumatera Utara MULAI PENGISIAN MINYAK PELUMAS PENGUJIAN SELESAI STUDI LITERATUR MINYAK PELUMAS SAEE 20 / 0 SAE 15W/40 TIDAK

BAB III. Universitas Sumatera Utara MULAI PENGISIAN MINYAK PELUMAS PENGUJIAN SELESAI STUDI LITERATUR MINYAK PELUMAS SAEE 20 / 0 SAE 15W/40 TIDAK BAB III METODE PENGUJIAN 3.1. Diagram Alir Penelitian MULAI STUDI LITERATUR PERSIAPAN BAHAN PENGUJIAN MINYAK PELUMAS SAE 15W/40 MINYAK PELUMAS SAEE 20 / 0 TIDAK PENGUJIAN KEKENTALAN MINYAK PELUMAS PENGISIAN

Lebih terperinci

BAB VIII RENCANA ANGGARAN BIAYA (RAB)

BAB VIII RENCANA ANGGARAN BIAYA (RAB) BAB VIII RENCANA ANGGARAN BIAYA (RAB) Dalam merencanakan suatu proyek, adanya rencana anggaran biaya merupakan hal yang tidak dapat diabaikan. Rencana anggaran biaya disusun berdasarkan dimensi dari bangunan

Lebih terperinci

Kopling tetap adalah suatu elemen mesin yang berfungsi sebagai penerus putaran dan daya dari poros penggerak ke poros yang digerakkan secara pasti

Kopling tetap adalah suatu elemen mesin yang berfungsi sebagai penerus putaran dan daya dari poros penggerak ke poros yang digerakkan secara pasti Kopling tetap adalah suatu elemen mesin yang berfungsi sebagai penerus putaran dan daya dari poros penggerak ke poros yang digerakkan secara pasti (tanpa terjadi slip), dimana sumbu kedua poros tersebut

Lebih terperinci

Panduan Belajar Struktur Beton Dasar

Panduan Belajar Struktur Beton Dasar Panduan Belajar Struktur Beton Dasar Gambar 1 Tampilan Depan Mata Kuliah Struktur Beton Dasar Pada tampilan depan halaman mata kuliah Struktur Beton Dasar sebagaimana diperlihatkan pada Gambar 1, terdapat

Lebih terperinci

KULIAH PERTEMUAN 1. Teori dasar dalam analisa struktur mengenai hukum Hooke, teorema Betti, dan hukum timbal balik Maxwel

KULIAH PERTEMUAN 1. Teori dasar dalam analisa struktur mengenai hukum Hooke, teorema Betti, dan hukum timbal balik Maxwel KULIH PERTEMUN 1 Teori dasar dalam analisa struktur mengenai hukum Hooke, teorema etti, dan hukum timbal balik Maxwel. Lembar Informasi 1. Kompetensi : Setelah selesai mempelajari kuliah pertemuan ke-1

Lebih terperinci

STUDI PERBANDINGAN PERSYARATAN LUAS TULANGAN PENGEKANG KOLOM PERSEGI PADA BEBERAPA PERATURAN DAN USULAN PENELITIAN (166S)

STUDI PERBANDINGAN PERSYARATAN LUAS TULANGAN PENGEKANG KOLOM PERSEGI PADA BEBERAPA PERATURAN DAN USULAN PENELITIAN (166S) STUDI PERBANDINGAN PERSYARATAN LUAS TULANGAN PENGEKANG KOLOM PERSEGI PADA BEBERAPA PERATURAN DAN USULAN PENELITIAN (166S) Anang Kristianto 1 dan Iswandi Imran 2 1 Jurusan Teknik Sipil, Universitas Kristen

Lebih terperinci

BAB III KOMPILASI DATA

BAB III KOMPILASI DATA BAB III KOMPILASI DATA 3.1 TINJAUAN UMUM Tanah memiliki sifat fisik (Soil Properties) dan sifat mekanik (Index Properties). Sifat - sifat fisik tanah meliputi ukuran butiran tanah, warnanya, bentuk butiran,

Lebih terperinci

Pertemuan IV,V,VI,VII II. Sambungan dan Alat-Alat Penyambung Kayu

Pertemuan IV,V,VI,VII II. Sambungan dan Alat-Alat Penyambung Kayu Pertemuan IV,V,VI,VII II. Sambungan dan Alat-Alat Penyambung Kayu II.1 Sambungan Kayu Karena alasan geometrik, konstruksi kayu sering kali memerlukan sambungan perpanjang untuk memperpanjang kayu atau

Lebih terperinci

KONSTRUKSI DINDING BAMBU PLASTER Oleh Andry Widyowijatnoko Mustakim Departemen Arsitektur Institut Teknologi Bandung

KONSTRUKSI DINDING BAMBU PLASTER Oleh Andry Widyowijatnoko Mustakim Departemen Arsitektur Institut Teknologi Bandung MODUL PELATIHAN KONSTRUKSI DINDING BAMBU PLASTER Oleh Andry Widyowijatnoko Mustakim Departemen Arsitektur Institut Teknologi Bandung Pendahuluan Konsep rumah bambu plester merupakan konsep rumah murah

Lebih terperinci

IV.HASIL DAN PEMBAHASAN. di peroleh hasil-hasil yang di susun dalam bentuk tabel sebagai berikut: 1.Pengujian pada jarak ½.l(panjang batang) =400 mm

IV.HASIL DAN PEMBAHASAN. di peroleh hasil-hasil yang di susun dalam bentuk tabel sebagai berikut: 1.Pengujian pada jarak ½.l(panjang batang) =400 mm 38 IVHASIL DAN PEMBAHASAN A Hasil Berdasarkan pengujian defleksi yang di lakukan sebanyak tiga kali maka di peroleh hasil-hasil yang di susun dalam bentuk tabel sebagai berikut: 1Pengujian pada jarak ½l(panjang

Lebih terperinci

Tata cara perencanaan dan pemasangan sarana jalan ke luar untuk penyelamatan terhadap bahaya kebakaran pada bangunan gedung.

Tata cara perencanaan dan pemasangan sarana jalan ke luar untuk penyelamatan terhadap bahaya kebakaran pada bangunan gedung. Kembali SNI 03 1746-2000 Tata cara perencanaan dan pemasangan sarana jalan ke luar untuk penyelamatan terhadap bahaya kebakaran pada bangunan gedung. 1. Ruang lingkup. 1.1. Standar ini ditujukan untuk

Lebih terperinci

MODUL 5 DAYA DUKUNG TIANG TUNGGAL

MODUL 5 DAYA DUKUNG TIANG TUNGGAL MODUL 5 DAYA DUKUNG TIANG TUNGGAL DAFTAR ISI Bab 1 Pengantar... 1 1.1. Umum... 1 1.2. Tujuan Instruksional Umum... 1 1.3. Tujuan Instruksional Khusus... 1 Bab 2 Mekanisme Transfer Beban... 2 Bab 3 Persamaan

Lebih terperinci

4.6 Perhitungan Debit Perhitungan hidrograf debit banjir periode ulang 100 tahun dengan metode Nakayasu, ditabelkan dalam tabel 4.

4.6 Perhitungan Debit Perhitungan hidrograf debit banjir periode ulang 100 tahun dengan metode Nakayasu, ditabelkan dalam tabel 4. Sebelumnya perlu Dari perhitungan tabel.1 di atas, curah hujan periode ulang yang akan digunakan dalam perhitungan distribusi curah hujan daerah adalah curah hujan dengan periode ulang 100 tahunan yaitu

Lebih terperinci

ANALISIS MID-POINT TIE-IN PADA PIPA BAWAH LAUT

ANALISIS MID-POINT TIE-IN PADA PIPA BAWAH LAUT ANALISIS MID-POINT TIE-IN PADA PIPA BAWAH LAUT Mulyadi Maslan Hamzah (mmhamzah@gmail.com) Program Studi Magister Teknik Kelautan Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung, Jl Ganesha

Lebih terperinci

Sifat Sifat Material

Sifat Sifat Material Sifat Sifat Material Secara garis besar material mempunyai sifat-sifat yang mencirikannya, pada bidang teknik mesin umumnya sifat tersebut dibagi menjadi tiga sifat. Sifat sifat itu akan mendasari dalam

Lebih terperinci

BAB IV UJI LABORATORIUM

BAB IV UJI LABORATORIUM IV - 1 BAB IV UJI LABORATORIUM 4.1. Tinjauan Umum Sebelum beton serat polypropylene SikaFibre diaplikasikan pada rigid pavement di lapangan, perlu dilakukan suatu pengujian terlebih dahulu untuk mengetahui

Lebih terperinci

PEKERJAAN UMUM DAN PERUMAHAN RAKYAT

PEKERJAAN UMUM DAN PERUMAHAN RAKYAT PEDOMAN Bahan Konstruksi Bangunan dan Rekayasa Sipil LAMPIRAN SURAT EDARAN MENTERI PEKERJAAN UMUM DAN PERUMAHAN RAKYAT NOMOR : 10/SE/M/2015 TENTANG PEDOMAN PERANCANGAN BANTALAN ELASTOMER UNTUK PERLETAKAN

Lebih terperinci

DEFINISI DAN SIFAT-SIFAT FLUIDA

DEFINISI DAN SIFAT-SIFAT FLUIDA DEFINISI DAN SIFAT-SIFAT FLUIDA Mekanika fluida dan hidrolika adalah bagian dari mekanika terpakai (Applied Mechanics) yang merupakan salah satu cabang ilmu pengetahuan dasar bagi teknik sipil. Mekanika

Lebih terperinci

PENGARUH BEBAN LALULINTAS STANDAR PADA KEKUATAN JEMBATAN RANGKA BAJA TIMBANG WINDU

PENGARUH BEBAN LALULINTAS STANDAR PADA KEKUATAN JEMBATAN RANGKA BAJA TIMBANG WINDU PENGARUH BEBAN LALULINTAS STANDAR PADA KEKUATAN JEMBATAN RANGKA BAJA TIMBANG WINDU Arni Wahyuni NRP: 0921026 Pembimbing: Tan Lie Ing, S.T., M.T. Pembimbing Pendamping: Ronald Simatupang, S.T., M.T. ABSTRAK

Lebih terperinci

C 7 D. Pelat Buhul. A, B, C, D, E = Titik Buhul A 1 2 B E. Gambar 1

C 7 D. Pelat Buhul. A, B, C, D, E = Titik Buhul A 1 2 B E. Gambar 1 Konstruksi rangka batang atau vakwerk adalah konstruksi batang yang terdiri dari susunan batangbatang lurus yang ujungujungnya dihubungkan satu sama lain sehingga berbentuk konstruksi segitigasegitiga.

Lebih terperinci

OPTIMASI DAYA DUKUNG TANAH PADA STRUKTUR PONDASI TELAPAK DENGAN METODE SUB-SOIL IMPROVEMENT PADA PROYEK AUDITORIUM UNSYIAH BANDA ACEH

OPTIMASI DAYA DUKUNG TANAH PADA STRUKTUR PONDASI TELAPAK DENGAN METODE SUB-SOIL IMPROVEMENT PADA PROYEK AUDITORIUM UNSYIAH BANDA ACEH OPTIMASI DAYA DUKUNG TANAH PADA STRUKTUR PONDASI TELAPAK DENGAN METODE SUB-SOIL IMPROVEMENT PADA PROYEK AUDITORIUM UNSYIAH BANDA ACEH Iskandar Jurusan Teknik Sipil, Politeknik Negeri Lhokseumawe Jl. Banda

Lebih terperinci

1. Dua batang logam P dan Q disambungkan dengan suhu ujung-ujung berbeda (lihat gambar). D. 70 E. 80

1. Dua batang logam P dan Q disambungkan dengan suhu ujung-ujung berbeda (lihat gambar). D. 70 E. 80 1. Dua batang logam P dan Q disambungkan dengan suhu ujung-ujung berbeda (lihat gambar). Apabila koefisien kondutivitas Q, logam P kali koefisien konduktivitas logam Q, serta AC = 2 CB, maka suhu di C

Lebih terperinci

PEMILIHAN MOTOR LISTRIK SEBAGAI PENGGERAK MULA RUMAH CRANE PADA FLOATING DOCK DI PT. INDONESIA MARINA SHIPYARD GRESIK

PEMILIHAN MOTOR LISTRIK SEBAGAI PENGGERAK MULA RUMAH CRANE PADA FLOATING DOCK DI PT. INDONESIA MARINA SHIPYARD GRESIK LAPORAN FIELD PROJECT PEMILIHAN MOTOR LISTRIK SEBAGAI PENGGERAK MULA RUMAH CRANE PADA FLOATING DOCK DI PT. INDONESIA MARINA SHIPYARD GRESIK POTOT SUGIARTO NRP. 6308030007 DOSEN PEMBIMBING IR. EKO JULIANTO,

Lebih terperinci

Optimalisasi Daya Dukung Tanah dan Penurunan Melalui Pemilihan Bentuk Dasar Penampang Pondasi Tiang Pada Tanah Lempung

Optimalisasi Daya Dukung Tanah dan Penurunan Melalui Pemilihan Bentuk Dasar Penampang Pondasi Tiang Pada Tanah Lempung LAPORAN AKHIR PENELITIAN DOSEN PEMULA Optimalisasi Daya Dukung Tanah dan Penurunan Melalui Pemilihan Bentuk Dasar Penampang Pondasi Tiang Pada Tanah Lempung TIM PENGUSUL : Ir.Isnaniati, MT (0724086501)

Lebih terperinci

Pasal 6 Peraturan Menteri ini mulai berlaku pada tanggal ditetapkan.

Pasal 6 Peraturan Menteri ini mulai berlaku pada tanggal ditetapkan. SALINAN PERATURAN MENTERI NEGARA LINGKUNGAN HIDUP NOMOR 12 TAHUN 2009 TENTANG PEMANFAATAN AIR HUJAN MENTERI NEGARA LINGKUNGAN HIDUP, Menimbang : a. bahwa air hujan merupakan sumber air yang dapat dimanfaatkan

Lebih terperinci

Observasi Tahap Awal Gempa Jawa Tengah Tanggal 27 Mei 2006 DAMPAK terhadap RUMAH NASKAH hanya untuk tinjauan ulang dan diskusi 19 Juni 2006

Observasi Tahap Awal Gempa Jawa Tengah Tanggal 27 Mei 2006 DAMPAK terhadap RUMAH NASKAH hanya untuk tinjauan ulang dan diskusi 19 Juni 2006 Tinjauan Umum Pada tanggal 27 Mei 2006 pukul 5:54 pagi waktu setempat, gempa dengan magnitudo momen 6,3 menghantam pulau Jawa, Indonesia di dekat Yogyakarta. Daerah yang terkena dampaknya merupakan daerah

Lebih terperinci

PERBANDINGAN KUAT TARIK TIDAK LANGSUNG CAMPURAN BETON ASPAL DENGAN MENGGUNAKAN ASPAL PENETRASI 60 DAN PENETRASI 80. Pembimbing : Wimpy Santosa, Ph.

PERBANDINGAN KUAT TARIK TIDAK LANGSUNG CAMPURAN BETON ASPAL DENGAN MENGGUNAKAN ASPAL PENETRASI 60 DAN PENETRASI 80. Pembimbing : Wimpy Santosa, Ph. PERBANDINGAN KUAT TARIK TIDAK LANGSUNG CAMPURAN BETON ASPAL DENGAN MENGGUNAKAN ASPAL PENETRASI 60 DAN PENETRASI 80 Shanti Destawati NRP : 9821010 Pembimbing : Wimpy Santosa, Ph.D FAKULTAS TEKNIK JURUSAN

Lebih terperinci

BAB IV PROGRAM PERENCANAAN DAN PERANCANGAN GOR BASKET DI KAMPUS UNDIP TEMBALANG. sirkulasi/flow, sirkulasi dibuat berdasarkan tingkat kenyamanan sbb :

BAB IV PROGRAM PERENCANAAN DAN PERANCANGAN GOR BASKET DI KAMPUS UNDIP TEMBALANG. sirkulasi/flow, sirkulasi dibuat berdasarkan tingkat kenyamanan sbb : BAB IV PROGRAM PERENCANAAN DAN PERANCANGAN GOR BASKET DI KAMPUS UNDIP TEMBALANG 4.1. Program Ruang Besaran ruang dan kapasitas di dalam dan luar GOR Basket di kampus Undip Semarang diperoleh dari studi

Lebih terperinci

STUDI EKSPERIMENTAL PENGGUNAAN PEN- BINDER TERHADAP PERKUATAN KOLOM BETON BERTULANG ABSTRAK

STUDI EKSPERIMENTAL PENGGUNAAN PEN- BINDER TERHADAP PERKUATAN KOLOM BETON BERTULANG ABSTRAK STUDI EKSPERIMENTAL PENGGUNAAN PEN- BINDER TERHADAP PERKUATAN KOLOM BETON BERTULANG Ichsan Yansusan NRP: 1221901 Pembimbing: Dr. Anang Kristianto, ST.,MT ABSTRAK Indonesia merupakan wilayah yang rawan

Lebih terperinci

BAB IV PENGOLAHAN DAN ANALISIS DATA PERCOBAAN

BAB IV PENGOLAHAN DAN ANALISIS DATA PERCOBAAN BAB IV PENGOLAHAN DAN ANALISIS DATA PERCOBAAN 4.1 UMUM Pada bab ini berisi pengolahan data dan analisis data percobaan yang dilakukan di laboratorium. Pada umumnya, suatu penelitian perlu dilakukan berulang

Lebih terperinci

MENTERI PEKERJAAN UMUM REPUBLIK INDONESIA PERATURAN MENTERI PEKERJAAN UMUM NOMOR: 45/PRT/M/2007 TENTANG

MENTERI PEKERJAAN UMUM REPUBLIK INDONESIA PERATURAN MENTERI PEKERJAAN UMUM NOMOR: 45/PRT/M/2007 TENTANG MENTERI PEKERJAAN UMUM REPUBLIK INDONESIA PERATURAN MENTERI PEKERJAAN UMUM NOMOR: 45/PRT/M/2007 TENTANG PEDOMAN TEKNIS PEMBANGUNAN BANGUNAN GEDUNG NEGARA MENTERI PEKERJAAN UMUM Menimbang : a. bahwa sesuai

Lebih terperinci

BAB IV SIFAT MEKANIK LOGAM

BAB IV SIFAT MEKANIK LOGAM BAB IV SIFAT MEKANIK LOGAM Sifat mekanik bahan adalah : hubungan antara respons atau deformasi bahan terhadap beban yang bekerja. Sifat mekanik : berkaitan dengan kekuatan, kekerasan, keuletan, dan kekakuan.

Lebih terperinci

Bagian 6 Perlengkapan Hubung Bagi dan Kendali (PHB) serta komponennya

Bagian 6 Perlengkapan Hubung Bagi dan Kendali (PHB) serta komponennya SNI 0405000 Bagian 6 Perlengkapan Hubung Bagi dan Kendali (PHB) serta komponennya 6. Ruang lingkup 6.. Bab ini mengatur persyaratan PHB yang meliputi, pemasangan, sirkit, ruang pelayanan, penandaan untuk

Lebih terperinci

PENGARUH TEBAL PELAT BAJA KARBON RENDAH LAMA PENEKANAN DAN TEGANGAN LISTRIK PADA PENGELASAN TITIK TERHADAP SIFAT FISIS DAN MEKANIS

PENGARUH TEBAL PELAT BAJA KARBON RENDAH LAMA PENEKANAN DAN TEGANGAN LISTRIK PADA PENGELASAN TITIK TERHADAP SIFAT FISIS DAN MEKANIS PENGARUH TEBAL PELAT BAJA KARBON RENDAH LAMA PENEKANAN DAN TEGANGAN LISTRIK PADA PENGELASAN TITIK TERHADAP SIFAT FISIS DAN MEKANIS Joko Waluyo 1 1 Jurusan Teknik Mesin Institut Sains & Teknologi AKPRIND

Lebih terperinci

BAB III STRUKTUR JALAN REL

BAB III STRUKTUR JALAN REL BAB III STRUKTUR JALAN REL 1. TUJUAN INSTRUKSIONAL UMUM Setelah mempelajari pokok bahasan ini, mahasiswa diharapkan mampu : 1. Mengetahui definisi, fungsi, letak dan klasifikasi struktur jalan rel dan

Lebih terperinci

ALTERNATIF ALAT SAMBUNG KONSTRUKSI SAMBUNGAN KAYU TAHAN TARIK,TEKAN DAN LENTUR ABSTRAK

ALTERNATIF ALAT SAMBUNG KONSTRUKSI SAMBUNGAN KAYU TAHAN TARIK,TEKAN DAN LENTUR ABSTRAK ALTERNATIF ALAT SAMBUNG KONSTRUKSI SAMBUNGAN KAYU TAHAN TARIK,TEKAN DAN LENTUR Munarus Suluch Dosen Diploma Teknik Sipil, FTSP-ITS. Email : munarusz@ce.its.ac.id & munarusz@yahoo.com ABSTRAK Penelitian

Lebih terperinci

DIKTAT MEKANIKA KEKUATAN MATERIAL

DIKTAT MEKANIKA KEKUATAN MATERIAL 1 DIKTAT MEKANIKA KEKUATAN MATERIAL Disusun oleh: Asyari Darami Yunus Teknik Mesin Universitas Darma Persada Jakarta 010 KATA PENGANTAR Untuk memenuhi buku pegangan dalam perkuliahan, terutama yang menggunakan

Lebih terperinci

Materi #2 TIN107 Material Teknik 2013 SIFAT MATERIAL

Materi #2 TIN107 Material Teknik 2013 SIFAT MATERIAL #2 SIFAT MATERIAL Material yang digunakan dalam industri sangat banyak. Masing-masing material memiki ciri-ciri yang berbeda, yang sering disebut dengan sifat material. Pemilihan dan penggunaan material

Lebih terperinci

Daya Dukung (Bearing Capacity)

Daya Dukung (Bearing Capacity) Daya Dukung (Bearing Capacity) Tanah kuat SIVA batuan (rock) 1 Pondasi Dangkal ~ untuk melimpahkan beban ke lapisan di bawahnya ~ utamanya untuk tanah kuat atau beban ringan Tanah kuat batuan (rock) 2

Lebih terperinci

! " #! $ %" & ' (!! " # % & & & ) )! " ) # $ % & ' & ( ) ( *+,,-!. / (!" #$ 0 * " ) ) % 12 3 2 4 5,,6!

!  #! $ % & ' (!!  # % & & & ) )!  ) # $ % & ' & ( ) ( *+,,-!. / (! #$ 0 *  ) ) % 12 3 2 4 5,,6! PENGARUH VARIASI KADAR AIR TERHADAP DAYA DUKUNG PONDASI TIANG TYPE FRICTION PILE PADA TANAH EKSPANSIF Imam Alwan 1 & Indarto 2 1 Mahasiswa Program Pascasarjana Bidang Keahlian Geoteknik Jurusan Teknik

Lebih terperinci

PERANCANGAN OVERHEAD TRAVELLING CRANE BERPALANG TUNGGAL KAPASITAS 10 TON

PERANCANGAN OVERHEAD TRAVELLING CRANE BERPALANG TUNGGAL KAPASITAS 10 TON PERANCANGAN OVERHEAD TRAVELLING CRANE BERPALANG TUNGGAL KAPASITAS 10 TON SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik EKO AUGUSTINUS NIM. 070421009 PROGRAM PENDIDIKAN

Lebih terperinci