BAB VI. ANALISIS JEJAK ATAU SIDIK LINTAS (PATH ANALYSIS)

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB VI. ANALISIS JEJAK ATAU SIDIK LINTAS (PATH ANALYSIS)"

Transkripsi

1 BAB VI. ANALII JEJAK ATAU IDIK LINTA (PATH ANALYI) 6.1 Pendahuluan Telaah statistika mengatakan bahwa dalam analisis hubungan yang bertujuan untuk peramalan atau pendugaan nilai Y atas dasar nilai-nilai X 1, X,, X p terhadap nilai Y maka pola hubungan yang sesuai adalah pola hubungan yang mengikuti model regresi, sedangkan untuk tujuan hubungan sebab akibat yang pola yang tepat adalah model struktural atau analisis jejak atau analisis lintas (path analisis). Yang menjadi pertanyaan sekarang adalah, pola hubungan yang bagaimana yang ingin diungkapkan, apakah hubungan yang bisa digunakan untuk peramalan atau menduga nilai sebuah variabel- respon Y atas dasar nilai tertentu beberapa variabel prediktor X 1, X,, X p. Atau, pola hubungan yang mengisyaratkan besarnya pengaruh variabel penyebab X 1, X,, X p terhadap variabel akibat Y, baik pengaruh langsung secara sendiri-sendiri maupun secara bersamaan. Pada dasarnya metode analisis lintas (path analysis) merupakan bentuk analisis regresi linier terstruktur berkenaan dengan variabel-variabel baku (standardized variables) dalam suatu sistem tertutup (closed system) yang secara formal bersifat lengkap. Dengan demikian, analisis lintas dapat dipandang sebagai sustu analisis struktural yang membahas hubungan kausal di antara variabel-variabel dalam sistem tertutup. Apabila suatu model hubungan kausal antara variabel tak bebas Y dan variabelvariabel bebas X i, untuk i = 1,,, p; telah disfesifikasikan secara tepat berdasarkan teori yang ada, maka dapat diselidiki hubungan kausal atau sebab-akibat dengan menggunakan analisis lintas. Pada dasarnya koefisien lintas (path coefficient) juga merupakan koefisien beta (β) atau koefisien regresi baku, di mana berdasarkan analisis lintas dapat diketahui pengaruh langsung (direct effect) dari setiap variabel bebas yang dibakukan (Z Y ), serta pengaruh tidak langsung (indirect effect) dari variabel bebas baku Z Xi melalui variabel bebas baku Z Xj (di mana i j) di dalam model hubungan kausal tersebut. Metode analisis lintas dikembangkan pertama kali oleh seorang ahli genetika ewall Wright, di mana pada tahun 191 melalui artikelnya yang berjudul: "Correlation and Causation". Wright menjelaskan hubungan kausal dalam genetika populasi mengunakan analisis lintas. Hingga saat ini, paper yang ditulis Wright pada tahun 191 masih dipergunakan sebagai dasar permulaan mempelajari analisis lintas, karena pada dasarnya untuk memahami analisis lintas hanya membutuhkan pemahaman terhadap analisis regresi dan korelasi sebagai dasar analisis. 6. Model Regresi dan Modal truktural Menurut batasan bahwa penelitian adalah suatu usaha untuk mengungkapkan hubungan antar fenoma alami. Jika kemudian, lebih jauh, dapat diterjemahkan ke dalam bahasa statistika, maka pengertian penelitian adalah usaha untuk mengungkapkan hubungan antar variabel. Dari analisis regresi linier dengan berbagai persamaannya, jelas dapat dipakai untuk maksud peramalan dan penaksiran yaitu menentukan nilai peubah tak bebas Y, apabila nilai-nilai peubah bebas X ditetapkan atau ditentukan. 139

2 Dari uraian di atas dapat ditarik suatu kesimpulan, terutama untuk regresi, bahwa di dalam mempelajari hubungan antar-peubah tidak dipermasalahkan kenapa hubungan tersebut ada (atau tidak ada). Juga tidak dipermasalahkan apakah hubungan yang ada diantara peubah tak bebas Y dan peubah penentu atau penjelas atau peubah takbebas X dikarenakan oleh peubah bebas X-nya itu sendiri atau merupakan faktorfaktor lain yang mempengaruhi atau yang erat hubungannya dengan X lainnya sehingga peubah bebas X tersebut berkaitan erat dengan peubah tak bebas Y. Apabila dikaitkan dengan ilmunya itu sendiri yaitu hubunagn antara faktor X dengan Y. Mungkin hubungan yang nyata antara X dan Y tersebut tidak dapat dijelaskan menurut ilmunya sendiri. Adanya hubungan tersebut justru disebabkan oleh faktorfaktor lain yang mempengaruhi peubah tak bebas X. ebagai contoh, suatu penelitian dilakukan untuk mempelajari tingkat penerimaan ibuibu rumah tangga terhadap alat-alat kontrasepsi dalam mempopulerkan program keluarga berencana di Taiwan (Li, 1977). Dari berbagai macam peubah yang dipelajari dan diduga berpengaruh terhadap tingkat penerimaan tersebut ternyata bahwa banyaknya alat-alat listrik (kipas, alat untuk memasak, kulkas, TV, dan lain sebagainya) berhubungan atau berkorelasi sangat erat dengan tingkat penerimaan tersebut. Masalahnya, apakah hal yang sedemikian itu dapat dijelaskan atau wajar berkorelasi, terutama menurut ilmunya itu sendiri?. etelah dipelajari lebih lanjut, ternyata banyaknya alat-alat listrik yang dimiliki per keluarga berhubungan erat dengan tingkat pendapatan, pendidikan, dan status keluarga. Apabila analisis regresi yang telah dibicarakan dalam bab-bab sebelumnya ternyata belum dapat memberikan penjelasan tentang apa dan kenapanya; maka analisis hubungan sebab dan akibat (causal relation) atau path analysis merupakan jawabannya. Path analysis adalah untuk melihat atau menguraikan apakah sesuatu hubungan yang ada disebabkan oleh pengaruh langsung peubah bebas itu sendiri ataukah tidak langsung melalui peubah-peubah bebas lainnya. Untuk memudahkan dalam menggambarkan pola hubungan tersebut umumnya digunakan suatu diagram, dan karena diagram tersebut menunjukkan lintasan atau jejak atau jalur atau arah pengaruh dari peubah atau faktor yang satu ke faktor atau peubah yang lainnya. Maka dengan demikian, analisis ini disebut dengan diagram lintas atau diagram jejak atau analisis litas atau analisis jejak atau diagram jalur (path analysis). Telaah statistika mengatakan bahwa untuk tujuan peramalan/ pendugaan nilai Y atas dasar nilai-nilai X 1,X, X k. pola hubungan yang sesuai adalah pola hubungan yang mengikuti Model Regresi, sedangkan untuk tujuan hubungan sebab akibat pola yang tepat adalah Model truktural. 6.3 Diagram Jalur (Path Diagram) Di dalam melakukan analisis lintas, tidak terlepas dari usaha untuk membangun diagram lintas (path diagram) agar lebih memperjelas uraian yang dikemukakan. Dengan mengkombinasikan diagram-diagram geometrik dan persamaan-persamaan aljabar, maka analisis statistika dalam mempelajari hubungan kausal-efek di antara variabel-variabel menjadi lebih berbobot dalam arti hasilnya menjadi lebih mudah untuk dipahami. 140

3 Terdapat berbagai kombinasi hubungan kausal di antara variabel-variabel dalam sistem, di mana hal ini tergantung kepada sifat dari sistem tersebut. ebagai misal untuk lima buah variabel, maka terdapat berbagai kemungkinan hubungan di antara variabel-variabel tersebut, tergantung kepada sifat hubungan kausal dalam sistem yang dipelajari seperti pada Gambar 6.1. Tentu saja, di dalam membangun model analisis lintas terlebih dahulu harus mempostulatkan hubungan kausal yang akan dipelajari, dan sifat hubungan kausal itu sendiri harus berlandaskan pada teori dan konsep yang ada. Ingin ditunjukkan di sini bahwa terdapat berbagai pertimbagan dan sangat tergantung pada fenomena yang dipelajari dalam mempostulatkan hubungan kausal di antara variabel-variabel yang dipelajari dan dengan demikian bagaimana pembangunan diagram lintas yang akan dipelajari seperti pada Gambar 6.1. Untuk menggambarkan diagram jalur dari lima buah variabel yang dipelajari, maka terdapat berbagai kemungkinan untuk menggambarkan hubungan kausal diantara kelima variabel tersebut deperti yang terlihat pada uraian berikut ini. Beberapa kemungkinan itu adalah: 1. (1,1,1,1,1) 6. (,1,) 11. (,3). (1,1,3) 6. (1,1,,1) 1. (1,4) 3. (1,,) 8. (3,1,1) 13. (,1,1,1) 4. (1,1,1,) 9. (,,1) 14. (3,) 6. (1,3,1) 10. (1,,1,1) 16. (4,1) Berbagai pola hubungan kausal yang mungkin; ditunjukkan dalam gambar berikut. Catatan: Arah hubungan dalam gambar (diagram lintas) ditunjukkan oleh arah anak panah. Gambar 6.1. Berbagai Pola Analisis Lintas 141

4 6.4 Model Analisis Jalur Pembangkit analisis lintas dari model regresi, yang pada dasarnya di mana total keragaman (varians total) dari variabel tak bebas Y dalam model regresi berganda dapat didekomposisikan atau diuraikan menjadi sebagai berikut: Total keragaman dari Y = A + B + C Di mana: A = proporsi keragaman yang diberikan atau dijelaskan secara langsung oleh koefisien lintas, B = proporsi keragaman yang diakibatkan karena adanya korelasi di antara variabel bebas X, dan C = proporsi keragaman yang diakibatkan adanya galat (error). Untuk menjelaskan lebih konkret tentang koefisien lintas, maka bayangkan bahwa kita merumuskan model regresi linier berganda yang terdiri atas p buah variabel bebas, sebagai berikut: [6.1] Y = β 0 + β 1 X 1 + β X + β 3 X β p X p + ε Di mana: Y = variabel tak bebas atau variabel respons X i = variabel bebas ke-i, untuk i = 1,,..,p β i = koefisien regresi parsial tak baku, i = 1,,..,p β 0 = intersep (konstanta) ε = galat atau error Dengan mengansumsikan bahwa E(ε) = 0 serta asumsi klasik lainnya dalam analisis regresi linier berganda, maka dibolehkan menduga persamaan regresi [6.1] berdasarkan persamaan regresi tersebut seperti: [6.] Ŷ = b 0 + b 1 X 1 + b X + b 3 X 3 + b p X p elanjutnya apabila didefinisikan Y sebagai simpangan baku contoh dari variabel tak bebas Y, dan X1, X,..., Xp sebagai simpangan baku contoh dari X i variabelvariabel bebas X 1, X,..., X p, maka dari persamaan [6.] dapat dihitung koefisien regresi baku yang sering disebut juga sebagai koefisien beta (β), sebagi berikut: Xi [6.3] βi = bi. Di mana: i = 1,,..., p Y Telah ditunjukkan secara teoritis dalam buku-buku teks bahwa koefisien lintas atau koefisien jejak (path coeffisient) pada dasarnya adalah serupa dengan koefisien beta (koefisien regresi dari variabel yang dibakukan). Dengan demikian, apabila mendefinisikan C i sebagai koefisien lintas atau koefisien beta dari variabel baku Z yaitu variabel bebas X dan variabel tak bebas Y yang dibakukan; sehingga berdistribusi normal dengan nilai rata-rata = nol dan nilai ragam = satu). Pada dasarnya koefisien lintas C i dapat dihitung berdasarkan rumus [6.3], jadi dalam hal ini berlaku bahwa β i = C i. Pada sisi lain, koefisien lintas dapat juga ditentukan berdasarkan penyeleaian terhadap gugus persamaan simultan dari variabel korelasi antar-variabel bebas. Gugus persamaan simultan yang dimaksud adalah seperti yang dinyatakan dengan pola matriks dari koefisien korelasi antar-peubah bebas X i dan dengan peybah tak bebas Y seperti pada matriks berikut. 14

5 Gugus persamaan simultan yang dimaksud adalah C 1 r 11 + C r C p r 1p = r 1Y C 1 r 1 + C r C p r p = r Y [6.4] C 1 r p1 + C r p C p r pp = r py Di mana: r ii = r Xi Xi = 1, serta r ij = r Xi Xj = r ji = r Xj Xi i,j = 1,,..., p istem persamaan simultan [6.4] dapat ditulis dalam bentuk matriks, sebagai berikut. r 11 r 1... r 1p C 1 r 1Y r 1 r... r p C r Y [6.5] r p1 r p... r pp C p r py Di mana: R X C R Y R X = matrik korelasi antar variabel bebas dalam model regresi berganda yang memiliki p buah variabel bebas, jadi merupakan matriks dengan elemen r XiXj (i,j = 1,,..., p), C = vektor koefisien lintas yang menunjukkan pengaruh langsung dari setiap variabel bebas yang telah dibakukan, Z i, terhadap variabel tak bebas (nilai koefisienn regresi baku), dan R Y = vektor koefisien korelasi antara variabel bebas X i di mana i = 1,,..., p; dan variabel tak bebas Y. Dari persamaan matriks [6.5] secara mudah dapat ditentukan vektor koefisien lintas C, sebagai berikut: [6.6] C = 1 R X R Y Di mana: 1 R X adalah invers matriks R X R Y adalah vektor koefisien korelasi antara variabel bebas X dengan variabel tak bebas Y. Berdasarkan uraian yang dikemukakan di atas diketahui bahwa terdapat dua untuk menghitung koefisien lintas C i yaitu berdasarkan rumus [6.3] atau berdasarkan rumus [6.6]. Jika persamaan regresi berganda [6.] telah diperoleh maka dapat dinghitung koefisien C berdasarkan rumus [6.3], di mana dalam hal ini koefisien lintas C i sama dengan koefisien regresi baku Beta (β i ). Alternatif lain adalah membangun gugus persamaan simultan [6.4] dan menyelesaikan sistem persamaan itu berdasarkan rumus [6.6]. 143

6 Apabila koefisien lintas C i telah diperoleh, maka beberapa informasi penting akan diperoleh berdasarkan metode analisis lintas antara lain seperti. 1). Pengaruh langsung variabel bebas yang dibakukan, terhadap variabel tak bebas Y, diukur oleh koefisien lintas C i. ). Pengaruh tidak langsung variabel bebas Z i terhadap variabel tak bebas Y, melalui variabel bebas Z j (melalui kehadiran variabel bebas Z j dalam model) diukur dengan besaran C j. r ij. 3). Pengaruh galat atau error atau sisaan atau residual yang tak dapat dijelaskan oleh model analisis lintas. Pengaruh-pengaruh yang tidak dapat dijelaskan oleh suatu model dimasukkan sebagai pengaruh galat atau sisaan yang diukur nilainya dengan rumus: C p = 1 C r. Di mana: i= 1 i ij C = C Besaran C dalam analisis lintas adalah serupa dengan besaran nilai 1 - R dalam analisis regresi linier berganda, di mana keduanya memiliki nilai yang sama besar yang merupakan galat atau error atau sisaan (residual). 6.6 Aplikasi Analisis Lintas Berikut ini dikemukakan penerapan analisis lintas dalam kasus percobaan pembuatan batu bata merah untu ukiran pola orang Bali. Bayangkan bahwa seorang akhli teknik bangunan ingin membangun model hubungan kausal-efek yang menerangkan empat variabel dalam pembuatan batu bata terhadap respons kekerasan yang didapatkan dalam proses pembuatannya. Respons kekerasan diukur dalam satuan banyaknya patahan atau cuil waktu melakukan perubahan bentuk. Variabel-variabel yang dikaji dalam percobaan semen itu adalah : Y = respons yang timbul dalam proses melakukan peubahan bentuk X 1 = banyaknya campuran abu yang digunakan, X = lamanya pemerosesan tanah waktu pelumpuran, X 3 = lamanya pemerosesan penjemuran, dan X 4 = lamanya waktu pembakaran. Di mana: X 1, X, X 3, dan X 4 diukur dalam persen dari dari estándar harian dalam proses; sedangkan Y diukur dalam kalori per gram semen. Peneliti merumuskan model hubungan kausal, sebagai berikut: [6.7] Y = β 0 + β 1 X 1 + β X + β 3 X β p X p + ε Untuk menduga model regresi berganda [6.7] di atas maka dikumpulkan data sebagaimana tampak dalam Tabel 6.1 berikut ini. Dalam melakukan pendugaan model [6.7] dipergunakan bantuan komputer dengan memanfaatkan program aplikasi Microstat atau dapat mengunakan oft-ware Komputer Compatible lainnya seperti P atau dapat mengunakan oft-ware Minitab14.01, atau dapat mengunakan oft-ware tatistica 7.0, dan atau dapat mengunakan oft-ware- oft-ware yang lain. 144

7 Tabel 6.1 Data Percobaan Batu bata No. X1 X X3 X4 Y , , , , , , , , , , , , ,4 Ratarata 7, , ,769 30, ,431 imp. baku 5,884 15,5609 6, ,738 15,0437 Ragam ( ) 34,606 4, ,053 08,1673 6,319 Adapun hasil analisis yang diperoleh dengan menggunakan oft-ware Microstat dikemukakan seperti hasil sebagai berikut ini. Regression Analysis Analisis Regresi Pembuatan batu bata merah bahan ukiran Jumlah pengerajin batu bata yang diteliti: 13 Banyaknya vriabel X dan Y: 5 Tabel 6. Analisis Regresi Model Penuh Y = f(x 1, X, X 3, X 4 ) No. Variabel tandar Rata-rata bebas Deviasi 1 X 1 7,4615 5,84 X 48, , X 3 11,769 6, X 4 30, ,738 Variabel terikat Y 95,431 15,0437 Tabel 6.3 Hasil Analisis Regresi Variabel Koefisien regresi tandar error b i t-stat. (DB = 10) Peluang. t R Parsial X 1 1,5511 0,7448,083 0,0708 0,3516 X 0,510 0,738 0,705 0, ,0585 X 3 0,1019 0,7547 0,135 0,8959 0,003 X 4-0,1441 0,7091-0,03 0, ,0051 Konstata 6,4054 td. error Y. =,4460 Koef. Deterninasi (R = ) = 0,984 R terkoreksi = 0,9736 Mutiple R = 0,

8 Tabel 6.4 Hasil Analisis Varians K JK DB KT F Hit pf Regresi 667, , ,479 0,000 Residu 47, ,9830 Total 716, Dari hasil analisis Tabel 6.3 dapat dibangun persamaan regresi linier berganda sebagai pendugaan bagi model [6.7] sebagai berikut. [6.8] Ŷ = 6, ,5511 X 1 + 0,510 X + 0,1019 X 3-0,1441 X 4 Dari hasil analisis terlihat bahwa meskipun besaran R sangat tinggi, dan juga uji terhadap persamaan regresi dalam analisis ragam bersifat sangat nyata (p 0,01) secara statistika, namun tidak ada satu pun koefisien regresi parsial yang bersifat nyata pada taraf nyata α = 0,05. Apakah dengan demikian, boleh disimpulkan bahwa variabel-variabel bebas tidak berpengaruh terhadap variabel respons Y?. Tentu saja tidak. Kasus penelitian ini menarik untuk ditunjukkan secara statistika bahwa telah terjadi multikolinieritas di antara variabel-variabel bebas X, sehingga mengakibatkan masalah yang serius dalam pendugaan parameter model regresi dan interprestasinya. Menghadapi kasus semacam ini, maka jelas model persamaan regresi [6.8] tersebut diatas tidak dapat diandalkan untuk menerangkan hubungan kausal-efek yang terjadi sesungguhnya, dalam sistem pembuatan batubata tersebut. Nilai R yang tinggi dan uji F atau uji simultan atau uji varians persamaan regresi berganda yang sangat nyata (p 0,01) secara statistika, namun uji koefisien regresi b i secara parsial menunjukkan tidak ada satupun koefisien regresi yang bersifat nyata (p>0,05) secara statistika, merupakan indikasi yang sangat kuat bahwa telah terjadi kasus multikoliniearitas dalam data pembuatan batu bata merah tersebut. Bagaimana mengatasinya masalah tersebut di atas, sehingga didapatkan kesimpulan yang dapat diandalkan baik secara riil maupun secara statistika?. Banyak cara untuk mengatasi kasus semacam ini, namun dalam kesempatan ini hanya dibahas peranan analisis jejak atau analiis lintas atau path analysis dalam mengungkapkan pengaruh yang sesungguhnya dalam model hubungan kausal tersebut di atas; sebagaimana disfesifikasikan dalam model persamaan [6.7]. Oleh karena persamaan regresi sebagai penduga bagi model hubungan kausal pada persamaan [6.7] telah diperoleh sebagaimana ditunjukkan dalam model persamaan [6.8], maka koefisien lintas C i dapat ditentukan berdasarkan rumus [6.3] sebagai berikut: C i = b i Xi Y ; di mana i = 1,, 3, dan 4. C 1 = b 1 C = b C 3 = b 3 C 4 = b 4 X 1 = (1,5511) (5,884/15,0437) = 0,6065 Y X = (0,510) (15,5609/15,0437) = 0,577 Y X 3 = (0,1019) (6,4051/15,0437) = 0,0434 Y X 4 = (0,1441) (16,738/15,0437) = - 0,1603 Y 146

9 Pada sisi lain, dapat pula ditentukan koefisien lintas terhadap model hubungan kausal persamaan [6.7] dengan jalan membangun gugus persamaan simultan dalam variabel korelasi antar variabel bebas. Untuk kasus empat buah variabel bebas yang mempengaruhi variabel respons persamaan [6.7], maka gugus persamaan simultan dapat dibangun sebagai berikut (lihat persamaan 6.4). Pada sisi lain dapat pula ditentukan koefisien lintas terhadap model hubungan kausal pada persamaan [6.7] dengan jalan membangun gugus persamaan simultan dalam variabel koefisien korelasi antar-variabel bebas X yang berada dalam model. Untuk kasus empat buah variabel yang mempengaruhi respon pada persamaan [6.7], maka gugus persamaan simultan dapat dibangun sebagai berikut. C 1 r 11 + C r 1 + C 3 r 13 + C 4 r 14 = r 1Y [6.9] C 1 r 1 + C r + C 3 r 3 + C 4 r 4 = r Y C 1 r 31 + C r 3 + C 3 r 33 + C 4 r 34 = r 3Y C 1 r 41 + C r 4 + C 3 r 43 + C 4 r 44 = r 4Y Dengan jalan mengerjakan analisis korelasi sederhana terhadap data dalam Tabel 6.1 di atas; dengan menggunakan persamaan umum untuk analisis koefisien korelasi linier sederhana seperti: [6.10] r XY = [{ n X ( X ) }{ n Y ( Y ) }] i n X iyi X i i Yi Dari perhitungan koefisien korelasi dapat diperoleh hasil seperti berikut yang dapat dibuat dengan susunan matriksnya. r ij = r X1X1 = 1,00 r 1 = r X1X = r 1 = r XX1 = 0,86 r 13 = r X1X3 = r 31 = r X3X1 = - 0,84 r 14 = r X1X4 = r 41 = r X4X1 = - 0,454 r = r XX = 1,00 r 3 = r XX3 = r 3 = r X3X = - 0,139 r 4 = r XX4 = r 4 = r X4X = - 0,930 r 33 = r X3X3 = 1,00 r 34 = r X3X4 = r 43 = r X4X3 = 0,095 r 44 = r X4X4 = 1,00 r 1Y = r X1Y = 0,7307 r Y = r XY = 0,8163 r 3Y = r X3Y = - 0,5347 r 4Y = r X4Y = 0,813 Dengan mensubstitusikan nilai-nilai koefisien korelasi yang diperoleh ke dalam sistem persamaan [6.9], maka diperoleh sistem persamaan simultan sebagai berikut 1,0000 C 1 + 0,86 C - 0,841 C 3-0,454 C 4 = 0,7307 0,86 C 1 + 1,0000 C - 0,139 C 3-0,9730 C 4 = 0,8163-0,841 C 1-0,139 C + 1,0000 C 3 + 0,095 C 4 = -0,5347-0,454 C 1-0,9730 C + 0,095 C 3 + 1,0000 C 4 = -0,813 i i 147

10 istem persamaan di atas dapat pula ditulis dalam bentuk matrik sebagai berikut: 1, ,86-0,841-0,454 C 1 = 0,7307 0,86 + 1,0000-0,139-0,9730 C = 0,8163 [6.11] - 0,841-0, , ,095 C 3 = -0,5347-0,454-0, , ,0000 C 4 = -0,813 R X C R Y Dengan sistem matriks kebalikan dari persamaan (6.11) dapat pula ditulis dalam bentuk matriks sebagai berikut: C 1 38, ,795 4, ,4907 0,7307 0,6051 C 94,795 56, ,863 69,6741 0,8163 = 0,548 = C 3 4, ,863 47, ,958-0,5347 0,0418 C 4 100, , ,958 84,7507-0,813-0,1634 Catatan: Terdapat sedikit perbedaan hasil koefisien lintas yang ditentukan berdasarkan persamaan [6.3] dan persamaan [6.6] hanya semata-mata karena adanya proses pembulatan dalam perhitungan. Untuk pembahasan lebih lanjut akan dipergunakan hasil yang diperoleh berdasarkan persamaan [6.3]. Berdasarkan koefisien lintasn yang diperoleh maka dapat ditentukan pengaruh langsung dan tidak langsung dari variabel-variabel bebas X terhadap variabel respons Y, sebagai berikut di bawah ini. 1. Penentuan Pengaruh Variabel Z 1 (X 1 dibakukan) terhadap Variabel Respons Y. 1). Pengaruh langsung Z 1 terhadap Y = C 1 = 0,6066. ). Pengaruh tidak langsung Z 1 melalui Z = C r 1 = 0,106. 3). Pengaruh tidak langsung Z 1 melalui Z 3 = C 3 r 1 = - 0, ). Pengaruh tidak langsung Z 1 melalui Z 4 = C 4 r 14 = 0,0394. Pengaruh total = r 1Y = r X1Y = r Z1Y = 0, Penentuan Pengaruh Variabel Z (X dibakukan) terhadap Variabel Respons Y. 1). Pengaruh langsung Z terhadap Y = C = 0,576. ). Pengaruh tidak langsung Z melalui Z 1 = C 1 r 1 = 0, ). Pengaruh tidak langsung Z melalui Z 3 = C 3 r 3 = - 0, ). Pengaruh tidak langsung Z melalui Z 4 = C 4 r 4 = 0,1560. Pengaruh total = r Y = r XY = r ZY = 0, Penentuan Pengaruh Variabel Z 3 (X 3 dibakukan) terhadap Variabel Respons Y. 1). Pengaruh langsung Z 3 terhadap Y = C 3 = 0,0434. ). Pengaruh tidak langsung Z 3 melalui Z 1 = C 1 r 31 = - 0, ). Pengaruh tidak langsung Z 3 melalui Z = C r 3 = - 0, ). Pengaruh tidak langsung Z 3 melalui Z 4 = C 4 r 34 = - 0,0048. Pengaruh total = r 3Y = r X3Y = r Z3Y = - 0,

11 4. Penentuan Pengaruh Variabel Z 4 (X 4 dibakukan) terhadap Variabel Respons Y. 1). Pengaruh langsung Z 4 terhadap Y = C 4 = - 0,1603. ). Pengaruh tidak langsung Z 4 melalui Z 1 = C 1 r 41 = - 0, ). Pengaruh tidak langsung Z 4 melalui Z = C r 4 = - 0, ). Pengaruh tidak langsung Z 4 melalui Z 3 = C 4 r 43 = - 0,0013. Pengaruh total = r 3Y = r X3Y = r Z3Y = - 0, Penentuan Pengaruh isa (Residual) terhadap Variabel Respons Y. C = 1 C r 4 i= 1 i iy = 1 - {(0,6065)(0,7306) + (0,577)(0,8163) + (0,0434)(- 0,5347) + (- 0,1603)(- 0,813) = 0,0176 C = 0,0176 = 0,137 Berdasarkan analisis lintas tampak bahwa dua variabel bebas yang memiliki pengaruh langsung terbesar yaitu variabel X 1 dan X. Pengaruh variabel langsung X 1 terhadap Y adalah sebesar 0,6065 dapat diinterpretasikan bahwa setiap kenaikan satu simpangan baku dalam nilai X 1 secara rata-rata akan meningkatkan nilai Y sebesar 0,6065 simpanan baku. Demikian pula interpretasi tentang pengaruh langsung dari variabel X, X 3, dan X 4 terhadap variabel respons Y. Besaran C = 0,0176 dapat diinterpretasikan babwa analisis lintas tidak menjelaskan keragaman total dari variabel Y sebesar 0,0176 atau 1,76%. Dengan demikian analisis lintas berhasil menjelaskan keragaman total dari Y sebesar 1 C = 1-0,0176 = 0,984 atau 98,4%, yang ternyata sama dengan besaran R dari persamaan regresi berganda [6.8]. Berdasarkan kenyataan ini, maka dapat dikemukakan bahwa sifat hubungan antara R dan sebagai berikut yaitu di bawah ini. C Koefisien determinasi = R = 1 - C Koefisien non determinasi = 1 R =, sehingga Pengaruh langsung, pengaruh tidak langsung, dan pengaruh total dari keempat variabel bebas yang dibakukan terhadap variabel respons Y dapat ditunjukkan secara lebih jelas dalam Tabel Tabel 6.5 beikut ini. C 149

12 Tabel 6.5 Pengaruh Langsung, Tidak Langsung, dan Pengaruh Total Variabel bebas dibakukan Pengaruh langsung Pengaruh tidak langsung melalui variabel Z 1 Z Z 3 Z 4 Pengaruh total Z 1 0,6065-0,106-0,0358 0,0394 0,7306 Z 0,577 0, ,0060 0,1560 0,8163 Z 3 0,0434 0,4998-0, ,0048-0,5347 Z 4-0,1603 0,1488-0,5135 0, ,813 Keterangan: 1. Koefisien lintas adalah serupa dengan koefisien beta atau koefisien regresi variable baku, sehingga pengaruh langsung yang ditunjukkan dalam analisis lintas dapat langsung dibandingkan untuk mengetahui peranan dari setiap variabel bebas X i dalam mempengaruhi variabel tak bebas (respons) Y.. Berdasarkan sifat di atas maka variabel bebas Y yang belum dibakukan akan dibakukan dalam analisis lintas sehingga koefisien lintas C i yang diperoleh dapat diperbandingkan. ecara geometrik dapat dibangun diagram lintas untuk hubungan kausal dari model regresi [6.7] seperti tampak dalam gambar di bawah ini. Y Z 1 C 1 = 10,6065 r 1 = 0,80 Z C = 0,577 r 13 = - 0,841 r 3 = - 0,139 r 14 = 0,80 C 3 = 0,0434 C s = 0,137 Z 3 r 4 = - 0,9730 (E) = isa C 4 = - 0,1603 r 34 = 0,095 Z 4 Diagram Lintas untuk Model Regresi dengan Empat Variabel Bebas Berdasarkan analisis lintas diketahui bahwa variabel bebas yang memiliki pengaruh langsung terbesar terhadap variabel respons Y adalah variabel Z 1 dan Z dengan masing-masing memiliki koefisien lintas terbesar C 1 = 10,6065 dan C = 0,577; sedangkan variabel bebas Z 3 dan Z 4 memiliki pengaruh langsung yang sangat kecil yaitu sebesar C 3 = 0,0434 dan C 4 = - 0,1603. elanjutnya, dari pernyataan tersebut di atas dapat dijelaskan bahwa seandainya diperkenankan untuk memodifikasi model hubungan kausal efek di atas melalui seleksi variabel berdasarkan pertimbangan statistika dengan teori trimming yaitu membuah variabel yang tidak signifikan dan apabila hal ini diperkenankan juga oleh teori dan konsep dalam arti bahwa seleksi variabel tidak menyalahi teori dan konsep yang ada, maka dapat dirumuskan persamaan regresi "terbaik" dengan membuang atau mengeliminir atau mengeluarkan variabel X 3 dan X 4, dan berdasarkan alasan tersebut di atas mempunyai pengaruh yang sangat kecil terhadap variabel bebas Y. 150

13 Dengan demikian berlandaskan pada informasi dari analisis lintas di atas dapat dirumuskan model hubungan kausal efek berdasarkan fungsi yang baru yaitu: Y = f (X 1, X ), karena memang diketahui bahwa variabel bebas X 1 dan X yang memiliki pengaruh langsung terbesar terhadap variabel respons Y. Apabila dilanjutkan membangun model regresi "terbaik" yang hanya melibatkan dua buah variabel yang memiliki pengaruh langsung terbesar terhadap variabel respons Y. Model hubungan kausal itu adalah sebagai berikut. [6.1] Y = β 0 + β 1 X 1 + β X + ε Analisis selanjutnya, dengan menggunakan bantuan komputer terhadap model regresi [6.1] menghasilkan output berikut. Hasil Analisis Regresi Judul: Analisis Path Banyaknya sampel: 13 Jumlah variabels: 5 Tabel 6.6 Analisis Deskriptif Fungsi Y = f(x 1 ; X ) Indeks Nama Rata-rata td. deviasi 1 X 1 7,4615 5,84 X 48, ,5609 Var Terikat Y 95,431 15,0437 Tabel 6.7 Analisis Regresi Variabel Koefisien regresi tandar error t-stat. (DB = 10) Peluang t R parsial X 1 1,4683 0,113 1,105 0,0000 0,9361 X 0,663 0, ,44 0,0000 0,9543 Konstanta 5,8773 td. error Y. =,4063 Koef. Deterninasi (R = ) = 0,9787 R terkoreksi = 0,9744 Mutiple R = 0,9893. Dari hasil analisis komputer Tabel 6.7 di atas tampak bahwa model regresi [6.1] memberikan hasil yang sangat memuaskan, di mana model tersebut memiliki besaran R yang tinggi, uji persamaan regresi bersifat sangat nyata secara statistika, serta yang terpenting lagi adalah kedua variabel bebas X 1 dan X masing-masing telah bersifat sangat nyata secara statistika berdasarkan uji koefisien regresi secara parsial. Keadaan ini mengindikasikan bahwa benar telah terjadi multikolinieritas dalam model regresi dengan empat variabel bebas X 1, X, X 3, dan X 4 pada model regresi [6.7], karena dengan mengeluarkan variabel-variabel X 3 dan X 4 yang tadinya bersifat tidak nyata secara statistika ketika diuji secara parsial telah menjadi nyata secara statistika. Berdasarkan kenyataan ini, maka model hubungan kausal yang tepat untuk menerangkan kasus percobaan semen portland adalah persamaan regresi "terbaik" berikut: [6.13] 5, ,4683 X 1 + 0,663 X dengan R = 0,

14 elanjutnya, analisis lintas dapat dilakukan terhadap model regresi [6.11]. Oleh karena persamaan regresi untuk model hubungan kausal yang dirumuskan telah diperoleh, maka koefisien lintas dapat dihitung serupa dengan koefisien beta (β) atau koefisien regresi baku menggunakan persamaan [6.3]. Dengan menggunakan rumus [6.3] maka dapat dihitung koefisien lintas untuk model hubungan kausal [6.11], sebagai berikut. C i = b i Xi Y X 1 ; di mana i = 1,. C 1 = b 1 Y = (1,4683) (5,884/15,0437) = 0,5741 C = b X Y = (0,663) (15,5609/15,0437) = 0,6851 elanjutnya, dapat dibuat perhitungan tentang pengaruh langsung dan tidak langsung dari setiap variabel bebas yang dibakukan (Z i ) terhadap variabel respons Y, sebagai berikut di bawah ini. 1. Penentuan Pengaruh Variabel Z 1 (X 1 dibakukan) terhadap Variabel Respons Y. 1). Pengaruh langsung Z 1 terhadap Y = C 1 = 0,5741. ). Pengaruh tidak langsung Z 1 melalui Z = C r 1 = 0,1566. Pengaruh total = r 1Y = r X1Y = r Z1Y = 0, Penentuan Pengaruh Variabel Z (X dibakukan) terhadap Variabel Respons Y. 1). Pengaruh langsung Z terhadap Y = C = 0,6851. ). Pengaruh tidak langsung Z melalui Z 1 = C 1 r 1 = 0,131. Pengaruh total = r Y = r XY = r ZY = 0, Penentuan Pengaruh isa (Residual) terhadap Variabel Respons Y. C = 1 = i 1 C r i iy = 1 - {(0,5741)(0,7306) + (0,6851)(0,8163) = 0,01 C = 0,013 = 0,1459. Besaran koefisien lintas C i sebesar 0,5741 dapat diinterpretasikan apabila variabel bebas X meningkat nilainya sebesar satu simpanan baku, maka nilai dari variabel respons Y akan meningkat secara rata-rata sebesar 0,5741 simpanan baku. Demikian pula, koefisien lintas C nilainya sebesar 0,6851 dapat diintepretasikan apabila variabel X 1 dibuat konstan, maka setiap peningkatan nilai X sebesar satu simpangan baku akan meningkatkan nilai Y secara rata-rata sebasar 0,6851 simpangan baku. 15

15 Besaran C sebesar 0,013 dapat diinterpretasikan sebagai model analisis lintas tidak mampu menjelaskan pengaruh-pengaruh lain diluar pengaruh variabel bebas yang dibakukan Z 1 dan Z sebesar 0,013 atau sebesar,13%. Dengan kata lain, pengaruh sisa yang tidak dapat dijelaskan oleh model adalah sebesar 0,013 atau,13%. Hal ini berarti model analisis lintas mampu menjelaskan total keragaman dalam Y sebesar 1 - C = 1 0,013 = 0,9787 atau 97,87%. Bandingkan hasil ini dengan R = 0,9787 dalam persamaan regresi [6.1] yang ternyata adalah sama. Pengaruh langsung dan tidak langsung dari setiap variabel bebas dalam model ditunjukkan dalam Tabel 6.8 di bawah ini. Tabel 6.8 Hasil Analisis Lintas dari Model Dua Peubah Bebas Variabel bebas Pengaruh Pengaruh Pengaruh yang dibakukan langsung tidak langsung total Z 1 0,5741 0,1565 0,7306 Z 0,6851 0,1386 0,8163 Diagram lintas untuk model hubungan kausal untuk persamaan [6.11] ditunjukkan dalam gambar di bawah ini. Z 1 C 1 = 0,5741 Y r 14 = 0,86 C = 0,1459 C = - 0,6851 (E) = isa Z Diagram Lintas untuk Model Regresi dengan Dua Variabel Bebas Dari uraian tersebut di atas, tentang analisis lintas yang didapatkan tampak bahwa informasi yang diperoleh berdasarkan analisis lintas lebih komprehensif, di mana selain mampu menjelaskan pengaruh langsung dan tidak langsung dari suatu variabel bebas X i terhadap variabel respons Y, juga dapat dipergunakan sebagai landasan pemilihan model regresi "terbaik" dalam pengertian bahwa variabel-variabel bebas X yang tidak berperanan penting dalam model dapat dikeluarkan dari model. Dengan demikian akan diperoleh persamaan regresi "terbaik" yang hanya terdiri dari variabelvariabel bebas X penting yang dapat menjelaskan variabel bebas Y. Tampak dari uraian di atas, bahwa persamaan regresi yang dibangun berdasarkan informasi dari analisis lintas, di mana persamaan regresi yang diterangkan dari dua variabel hasil eliminasi, ternyata memiliki keandalan yang lebih tinggi dan secara teoritik jauh lebih baik daripada persamaan regresi yang terdiri dari empat variabel bebas asal. 153

16 Ingat bahwa dalam persamaan regresi dengan empat variabel bebas X, tidak ada satupun koefisien regresi yang nyata secara statistika, sedangkan dalam persamaan regresi yang terdiri dari dua variabel bebas X yang telah dieliminasi memiliki koefisien regresi yang nyata secara statistika. Dalam hal ini, dapat ditunjukkan bahwa seleksi variabel untuk menghasilkan persamaan regresi terbaik berdasarkan informasi dari analisis lintas ternyata memiliki tingkat ketepatan yang sama dengan analisis regresi bertatar (stepwise regression) dalam memirlih persamaan regresi terbaik. Berdasarkan analisis regrasi bertatar (stepwise regression) juga diperoleh bahwa persamaan regresi terbaik adalah persamaan regresi yang terdiri dari dua variabel X 1 dan X. Analisis regresi bertatar dengan menggunakan bantuan komputer memberikan hasil seperti yang ditunjukkan berikut ini. Hasil Analisis Regresi Judul: Analisis Path Banyaknya sampel: 13 Jumlah variabels: 5 Tabel 6.9 Pemilihan Persamaan Terbaik Berdasarkan Regresi Bertatar Indeks Variabel Rata-rata td. deviasi 1 X 1 7,4615 5,84 X 48, , X 3 11,769 6, X 4 30, ,738 Variabel terikat Y 95,431 15,0437 F to enter = 3; F to remove = 3; dan Tolerance = 0,001 tep 1. Variabel X 4 dalam persamaan Tabel 6.10 Hasil Analisis Regresi Koefisien tandar t-stat Variabel Peluang regresi error (DB = 10) X 4-0,738 0,1546,799 0,00058 Const. 117,5679 td. error Y. = 8,9639 Koef. Deterninasi (R = ) = 0,6745 R terkoreksi = 0,67 Mutiple R = 0,9893. Tabel 6.11 Analisis Ragam Regresi K JK DB KT F-Hit pf Regression 1831, ,896,799 5,76 E -04 Residual 883, ,3515 Total 715,

17 Tabel 6.1 Variabel yang Tidak Ada dalam Persamaan Name R parsial Tolerance F to enter Peluang F X 1 0,9154 0, ,4 1,105 E -06 X 0,0170 0,0534 0,17 0,6867 X 3 0,811 0, ,95 8,375 E -05 tep. Variabel X 1 dimasukan setelah X 4 Tabel 6.13 Hasil Analisis Regresi Koefisien tandar t-stat R Variabel Peluang regresi error (DB = 1) parsial X 1 1,4400 0, ,4 0,000 0,9154 X 4-0,6140 0, ,95 0,0000 0,9409 Const. 103,0974 td. error Y. =,7343 Koef. Deterninasi (R = ) = 0,975 R terkoreksi = 0,965 Mutiple R = 0,8986. Tabel 6.14 Analisis Keragaman Regresi K JK DB KT F-Hit pf Regression 641, , ,67 1,581 E-08 Residual 74, ,476 Total 715, Tabel 6.15 Variabel yang Tidak Ada dalam Persamaan Name R parsial Tolerance F to enter Prob X 0,3583 0,053 5,06 0,0517 X 3 0,300 0,891 4,36 0,0697 tep 3 Variabel X yang dimasukan setelah X 4 dan X 1 Tabel 6.16 Hasil Analisis Regresi Variabel Koefisien tandar t-stat R Peluang regresi error (DB = 1,9) parsial X 1 1,4519 0, ,008 0,0000 0,9448 X 0,4161 0,1856 5,06 0,5169 0,3583 X 4-0,365 0,1733 1,863 0,0540 0,1715 Const. 71,64834 td. error Y. =,3087 Koef. Deterninasi (R = ) = 0,983 R terkoreksi = 0,9764 Mutiple R = 0,

18 Tabel 6.17 Hasil Analisis Varians K JK DB KT F-Hit pf Regression 667, , ,83 3,33 E-08 Residual 47, ,3303 Total 715, Tabel 6.18 Variabel yang Tidak Ada dalam Persamaan Name Parsial r Tolerance F to enter Prob X 3 0,003 0,013 0,018 0,8959 tep 4 Variabel X dikeluarkan Tabel 6.19 Variabel Hasil Analisis Regresi Koefisien regresi tandar error F Hitung (DB = 1,9) Peluang R parsial X 1 1,4683 0, ,53 0,0000 0,9361 X 0,663 0, ,58 0,0000 0,9543 Const. 5,5773 td. error Y. =,4063 Koef. Deterninasi (R = ) = 0,9787 R terkoreksi = 0,9744 Mutiple R = 0,9893. Tabel 6.0 Hasil Analisis Varians ource un of squares D.F Mean of squares F ratio Prob Regression 657, ,993 9,504 4,407 E-09 Residual 57, ,7904 Total 715, Tabel 6.1 Variabel yang Tidak Ada dalam Persamaan Name Parsial r Tolerance F to enter Prob X 3 0,1691 0,3183 1,83 0,089 X 4 0,1715 0,058 1,863 0,

BAB. IX ANALISIS REGRESI FAKTOR (REGRESSION FACTOR ANALYSIS)

BAB. IX ANALISIS REGRESI FAKTOR (REGRESSION FACTOR ANALYSIS) BAB. IX ANALII REGREI FAKTOR (REGREION FACTOR ANALYI) 9. PENDAHULUAN Analisis regresi faktor pada dasarnya merupakan teknik analisis yang mengkombinasikan analisis faktor dengan analisis regresi linier

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 32 BAB 2 LANDASAN TEORI 2.1 Pengertian Analisis Jalur Analisis jalur dikenal dengan path analysis dikembangkan pertama tahun 1920-an oleh seorang ahli genetika yaitu Sewall Wright. Analisis jalur sebenarnya

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. Statistika merupakan cara cara tertentu yang digunakan dalam

BAB 2 TINJAUAN PUSTAKA. Statistika merupakan cara cara tertentu yang digunakan dalam BAB 2 TINJAUAN PUSTAKA 2.1 Konsep Dasar Statistika Statistika merupakan cara cara tertentu yang digunakan dalam mengumpulkan, menyusun atau mengatur, menyajikan, menganalisa, dan memberi informasi serta

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. Analisis jalur dikenal dengan path analysis dikembangkan pertama tahun 1920-an

BAB 2 TINJAUAN PUSTAKA. Analisis jalur dikenal dengan path analysis dikembangkan pertama tahun 1920-an BAB 2 TINJAUAN PUSTAKA 2.1 Pengertian Analisis Jalur Analisis jalur dikenal dengan path analysis dikembangkan pertama tahun 1920-an oleh seorang ahli genetika yaitu Sewall Wright. Analisis jalur sebenarnya

Lebih terperinci

BAB 2 LANDASAN TEORI. regresi adalah sebuah teknik statistik untuk membuat model dan menyelediki

BAB 2 LANDASAN TEORI. regresi adalah sebuah teknik statistik untuk membuat model dan menyelediki BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Analisis Regresi Dalam beberapa masalah terdapat dua atau lebih variabel yang hubungannya tidak dapat dipisahkan, dan hal tersebut biasanya diselidiki sifat hubungannya.

Lebih terperinci

PENANGANAN MULTIKOLINEARITAS (KEKOLINEARAN GANDA) DENGAN ANALISIS REGRESI KOMPONEN UTAMA. Tatik Widiharih Jurusan Matematika FMIPA UNDIP

PENANGANAN MULTIKOLINEARITAS (KEKOLINEARAN GANDA) DENGAN ANALISIS REGRESI KOMPONEN UTAMA. Tatik Widiharih Jurusan Matematika FMIPA UNDIP PENANGANAN MULTIKOLINEARITAS (KEKOLINEARAN GANDA) DENGAN ANALISIS REGRESI KOMPONEN UTAMA Tatik Widiharih Jurusan Matematika FMIPA UNDIP Abstrak Multikolinearitas yang tinggi diantara peubah-peubah bebas,

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. Analisis jalur dikenal dengan path analysis dikembangkan pertama tahun 1920-an

BAB 2 TINJAUAN PUSTAKA. Analisis jalur dikenal dengan path analysis dikembangkan pertama tahun 1920-an BAB 2 TINJAUAN PUSTAKA 2.1 Pengertian Analisis Jalur Analisis jalur dikenal dengan path analysis dikembangkan pertama tahun 1920-an oleh seorang ahli genetika yaitu Sewall Wright. Analisis jalur sebenarnya

Lebih terperinci

BAB 2 LANDASAN TEORI. berarti ramalan atau taksiran pertama kali diperkenalkan Sir Francis Galton pada

BAB 2 LANDASAN TEORI. berarti ramalan atau taksiran pertama kali diperkenalkan Sir Francis Galton pada BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Analisis regresi merupakan suatu model matematis yang dapat digunakan untuk mengetahui pola hubungan antara dua atau lebih variabel. Istilah regresi yang berarti

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 2, 71-81, Agustus 2001, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 2, 71-81, Agustus 2001, ISSN : PENANGANAN MULTIKOLINEARITAS (KEKOLINEARAN GANDA) DENGAN ANALISIS REGRESI KOMPONEN UTAMA Tatik Widiharih Jurusan Matematika FMIPA UNDIP Abstrak Multikolinearitas yang tinggi diantara peubah-peubah bebas,

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi merupakan bentuk analisis hubungan antara variabel prediktor

BAB 2 LANDASAN TEORI. Analisis regresi merupakan bentuk analisis hubungan antara variabel prediktor 8 BAB 2 LANDASAN TEORI 2.1 Pengertian Analisis Regresi Analisis regresi merupakan bentuk analisis hubungan antara variabel prediktor (variabel independent) dengan variabel outcome (variabel dependen) untuk

Lebih terperinci

= parameter regresi = variabel gangguan Model persamaan regresi linier pada persamaan (2.2) dapat dinyatakan dalam bentuk matriks berikut:

= parameter regresi = variabel gangguan Model persamaan regresi linier pada persamaan (2.2) dapat dinyatakan dalam bentuk matriks berikut: BAB II LANDASAN TEORI 2. Analisis Regresi Linier Berganda Analisis regresi merupakan salah satu analisis statistik yang sering digunakan untuk menganalisis hubungan antara dua variabel atau lebih. Menurut

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. Analisis jalur dikenal dengan path analysis dikembangkan pertama tahun 1920-an

BAB 2 TINJAUAN PUSTAKA. Analisis jalur dikenal dengan path analysis dikembangkan pertama tahun 1920-an 9 BAB 2 TINJAUAN PUSTAKA 2.1 Pengertian Analisis Jalur Analisis jalur dikenal dengan path analysis dikembangkan pertama tahun 1920-an oleh seorang ahli genetika yaitu Sewall Wright. Analisis jalur sebenarnya

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Konsep Dasar Statistika Statistik adalah ilmu yang mempelajari tentang seluk beluk data, yaitu tentang pengumpulan, pengolahan, penganalisisa, penafsiran, dan penarikan kesimpulan

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi (regression analysis) merupakan suatu teknik untuk membangun

BAB 2 LANDASAN TEORI. Analisis regresi (regression analysis) merupakan suatu teknik untuk membangun BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Analisis regresi (regression analysis) merupakan suatu teknik untuk membangun persamaan dan menggunakan persamaan tersebut untuk membuat perkiraan (prediction).

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi (regression analysis) merupakan suatu teknik untuk membangun

BAB 2 LANDASAN TEORI. Analisis regresi (regression analysis) merupakan suatu teknik untuk membangun BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Analisis regresi (regression analysis) merupakan suatu teknik untuk membangun persamaan dan menggunakan persamaan tersebut untuk membuat perkiraan (prediction).

Lebih terperinci

MENGATASI MULTIKOLINEARITAS MENGGUNAKAN PRINCIPAL COMPONENT ANALYSIS (PCA)

MENGATASI MULTIKOLINEARITAS MENGGUNAKAN PRINCIPAL COMPONENT ANALYSIS (PCA) MENGATASI MULTIKOLINEARITAS MENGGUNAKAN PRINCIPAL COMPONENT ANALYSIS (PCA) Laporan Praktikum ke-2 Disusun untuk Memenuhi Laporan Praktikum Analisis Regresi Lanjutan Oleh Nama : Faisyal Nim : 125090507111001

Lebih terperinci

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali digunakan oleh Francis Galton. Dalam papernya yang

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali digunakan oleh Francis Galton. Dalam papernya yang 13 BAB 2 LANDASAN TEORI 2.1 Analisis Regresi Istilah regresi pertama kali digunakan oleh Francis Galton. Dalam papernya yang terkenal Galton menemukan bahwa meskipun terdapat tendensi atau kecenderungan

Lebih terperinci

BAB III METODE TRIMMING PADA ANALISIS JALUR

BAB III METODE TRIMMING PADA ANALISIS JALUR 36 BAB III METODE TRIMMING PADA ANALISIS JALUR 3.1 Analisis Jalur Analisis jalur yang dikenal sebagai path analysis dikembangkan pertama tahun 1920-an oleh seorang ahli genetika yaitu Sewall Wright (Riduwan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. satu peubah prediktor dengan satu peubah respon disebut analisis regresi linier

BAB II TINJAUAN PUSTAKA. satu peubah prediktor dengan satu peubah respon disebut analisis regresi linier BAB II TINJAUAN PUSTAKA 2.1 Analisis Regresi Linier Berganda Analisis regresi pertama kali dikembangkan oleh Sir Francis Galton pada abad ke-19. Analisis regresi dengan satu peubah prediktor dan satu peubah

Lebih terperinci

Analisis Regresi 2. Pokok Bahasan : Memilih Persamaan Regresi Terbaik

Analisis Regresi 2. Pokok Bahasan : Memilih Persamaan Regresi Terbaik Analisis Regresi 2 Pokok Bahasan : Memilih Persamaan Regresi Terbaik TUJUAN INSTRUKSIONAL KHUSUS : Mahasiswa dapat memilih persamaan regresi terbaik dengan mencobakan berbagai prosedur. Analisis Regresi

Lebih terperinci

Regresi linier berganda Pada regresi linier sederhana variabel bebas (X) dan variabel tak bebas (Y) Regresi linier berganda : atau lebih variabel beba

Regresi linier berganda Pada regresi linier sederhana variabel bebas (X) dan variabel tak bebas (Y) Regresi linier berganda : atau lebih variabel beba Kuswanto-0 Regresi linier berganda Pada regresi linier sederhana variabel bebas (X) dan variabel tak bebas (Y) Regresi linier berganda : atau lebih variabel bebas (X, X,,Xn) variabel tak bebas (Y) Apabila

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 21 Konsep Dasar Statistika Statistika merupakan cara-cara tertentu yang digunakan dalam mengumpulkan, menyusun atau mengatur, menyajikan, menganalisis dan memberi interpretasi terhadap

Lebih terperinci

III. METODOLOGI PENELITIAN

III. METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN 3.1. Kerangka Pemikiran Bank adalah lembaga keuangan yang merupakan penggerak utama dalam pertumbuhan perekonomian masyarakat Indonesia. Sebagai lembaga Intermediasi, bank memiliki

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. Analisis jalur yang dikenal dengan path analysis dikembangkan pertama pada tahun 1920-an

BAB 2 TINJAUAN PUSTAKA. Analisis jalur yang dikenal dengan path analysis dikembangkan pertama pada tahun 1920-an BAB 2 TINJAUAN PUSTAKA 2.1 Sejarah Analisis jalur Analisis jalur yang dikenal dengan path analysis dikembangkan pertama pada tahun 1920-an oleh seorang ahli genetika yaitu Sewall Wright (Joreskog dan Sorbom,

Lebih terperinci

III. METODE PENELITIAN. Jenis data yang digunakan dalam penelitian ini adalah data sekunder deret waktu

III. METODE PENELITIAN. Jenis data yang digunakan dalam penelitian ini adalah data sekunder deret waktu III. METODE PENELITIAN A. Jenis dan Data Jenis data yang digunakan dalam penelitian ini adalah data sekunder deret waktu (time-series data) bulanan dari periode 2004:01 2011:12 yang diperoleh dari PT.

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. penjelasan tentang pola hubungan (model) antara dua variabel atau lebih.. Dalam

BAB 2 TINJAUAN TEORITIS. penjelasan tentang pola hubungan (model) antara dua variabel atau lebih.. Dalam BAB 2 TINJAUAN TEORITIS 21 Pengertian Regresi Linier Pengertian regresi secara umum adalah sebuah alat statistik yang memberikan penjelasan tentang pola hubungan (model) antara dua variabel atau lebih

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Analisis Regresi Linier Analisis regresi merupakan teknik yang digunakan dalam persamaan matematik yang menyatakan hubungan fungsional antara variabel-variabel. Analisis regresi linier

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis Structural Equation Modeling (SEM) adalah pengembangan dari analisis

BAB 2 LANDASAN TEORI. Analisis Structural Equation Modeling (SEM) adalah pengembangan dari analisis 10 BAB 2 LANDASAN TEORI 2.1 Sejarah dan Perkembangan Analisis Jalur Analisis Structural Equation Modeling (SEM) adalah pengembangan dari analisis jalur (path analysis) sehingga analisis jalur merupakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. level, model regresi tiga level, penduga koefisien korelasi intraclass, pendugaan

BAB II TINJAUAN PUSTAKA. level, model regresi tiga level, penduga koefisien korelasi intraclass, pendugaan 6 BAB II TINJAUAN PUSTAKA Pada Bab II akan dibahas konsep-konsep yang menjadi dasar dalam penelitian ini yaitu analisis regresi, analisis regresi multilevel, model regresi dua level, model regresi tiga

Lebih terperinci

BAB III METODE PENELITIAN. September). Data yang dikumpulkan berupa data jasa pelayanan pelabuhan, yaitu

BAB III METODE PENELITIAN. September). Data yang dikumpulkan berupa data jasa pelayanan pelabuhan, yaitu BAB III METODE PENELITIAN 3.1 Jenis dan Sumber Data Data yang digunakan dalam penelitian ini berasal dari data sekunder dengan jenis data bulanan mulai tahun 2004 sampai dengan tahun 2011 (bulan September).

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Statistika Statistika merupakan cara-cara tertentu yang digunakan dalam megumpulkan, menyusun atau mengatur, menyajikan, menganalisa dan mmberi interpretasi terhadap

Lebih terperinci

BAB 2 LANDASAN TEORI. Perubahan nilai suatu variabel dapat disebabkan karena adanya perubahan pada

BAB 2 LANDASAN TEORI. Perubahan nilai suatu variabel dapat disebabkan karena adanya perubahan pada 19 BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Analisis Regresi Perubahan nilai suatu variabel dapat disebabkan karena adanya perubahan pada variabel-variabel lain yang mempengaruhinya.misalnya pada seorang

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. deskripsi suatu data yang dilihat dari nilai rata-rata (mean), standar deviasi,

BAB IV HASIL DAN PEMBAHASAN. deskripsi suatu data yang dilihat dari nilai rata-rata (mean), standar deviasi, BAB IV HASIL DAN PEMBAHASAN A. Hasil Analisis 1. Analisis Statistik Deskriptif Statistik deskriptif berfungsi untuk memberikan gambaran atau deskripsi suatu data yang dilihat dari nilai rata-rata (mean),

Lebih terperinci

BAB 2 LANDASAN TEORI. 1. Analisis regresi linier sederhana 2. Analisis regresi linier berganda. Universitas Sumatera Utara

BAB 2 LANDASAN TEORI. 1. Analisis regresi linier sederhana 2. Analisis regresi linier berganda. Universitas Sumatera Utara BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Pengertian regresi secara umum adalah sebuah alat statistik yang memberikan penjelasan tentang pola hubungan (model) antara dua variabel atau lebih. Istilah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Analisis Regresi Istilah regresi pertama kali digunakan oleh Francis Galton. Dalam papernya yang terkenal Galton menemukan bahwa meskipun terdapat tendensi atau kecenderungan bahwa

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 10 BAB 2 LANDASAN TEORI 2.1 Analisa Regresi Regresi pertama kali dipergunakan sebagai konsep statistik pada tahun 1877 oleh Sir Francis Galton. Galton melakukan studi tentang kecenderungan tinggi badan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Statistik Menurut Sofyan (2013) pengertian statistik berasal dari bahasa Latin, yaitu status yang berarti negara dan digunakan untuk urusan negara. Pada mulanya, statistik

Lebih terperinci

ANALISA METODE BACKWARD DAN METODE FORWARD UNTUK MENENTUKAN PERSAMAAN REGRESI LINIER BERGANDA

ANALISA METODE BACKWARD DAN METODE FORWARD UNTUK MENENTUKAN PERSAMAAN REGRESI LINIER BERGANDA Saintia Matematika ISSN: 2337-9197 Vol 2, No 4 (2014), pp 345 360 ANALISA METODE BACKWARD DAN METODE FORWARD UNTUK MENENTUKAN PERSAMAAN REGRESI LINIER BERGANDA (Studi Kasus: Jumlah Kecelakaan Lalu Lintas

Lebih terperinci

BAB 2 LANDASAN TEORI. 1. Analisis Korelasi adalah metode statstika yang digunakan untuk menentukan

BAB 2 LANDASAN TEORI. 1. Analisis Korelasi adalah metode statstika yang digunakan untuk menentukan BAB 2 LANDASAN TEORI 2.1 Defenisi Analisis Regresi dan Korelasi 1. Analisis Korelasi adalah metode statstika yang digunakan untuk menentukan kuatnya atau derajat hubungan linier antara dua variabel atau

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi pertama kali dipergunakan sebagai konsep statistik pada tahun 1877 oleh Sir francis

BAB 2 LANDASAN TEORI. Regresi pertama kali dipergunakan sebagai konsep statistik pada tahun 1877 oleh Sir francis BAB 2 LANDASAN TEORI 2.1 Analisis Regresi Regresi pertama kali dipergunakan sebagai konsep statistik pada tahun 1877 oleh Sir francis Galton. Galton melakukan studi tentang kecenderungan tinggi badan anak.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1. Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang akan datang. Sedangkan ramalan adalah suatu situasi atau kondisi yang diperkirakan

Lebih terperinci

Bab 2 LANDASAN TEORI

Bab 2 LANDASAN TEORI 17 Bab 2 LANDASAN TEORI 2.1 Aljabar Matriks 2.1.1 Definisi Matriks Matriks adalah suatu kumpulan angka-angka yang juga sering disebut elemen-elemen yang disusun secara teratur menurut baris dan kolom sehingga

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Untuk menguji apakah alat ukur (instrument) yang digunakan memenuhi

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Untuk menguji apakah alat ukur (instrument) yang digunakan memenuhi BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1 Hasil uji itas dan Reliabilitas Untuk menguji apakah alat ukur (instrument) yang digunakan memenuhi syarat-syarat alat ukur yang baik, sehingga mengahasilkan

Lebih terperinci

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel 8 BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Regresi dalam statistika adalah salah satu metode untuk menentukan tingkat pengaruh suatu variabel terhadap variabel yang lain. Variabel yang pertama disebut

Lebih terperinci

BAB 2. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton,

BAB 2. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton, 10 BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton, analisis regresi berkenaan dengan studi ketergantungan dari suatu varibel

Lebih terperinci

METODOLOGI PENELITIAN

METODOLOGI PENELITIAN 22 III. METODOLOGI PENELITIAN 3.1 Kerangka Pemikiran Penelitian Bank merupakan lembaga keuangan yang memiliki fungsi sebagai penghimpun dana dari masyarakat dan menyalurkannya kembali dalam bentuk kredit

Lebih terperinci

Analisis Regresi 2. Pokok Bahasan : Review Regresi Linier Sederhana dan Berganda

Analisis Regresi 2. Pokok Bahasan : Review Regresi Linier Sederhana dan Berganda Analisis Regresi Pokok Bahasan : Review Regresi Linier Sederhana dan Berganda Tuuan Instruksional Khusus : Mahasiswa dapat menelaskan regresi linier sederhana dan berganda dan asumsi-asumsi yang mendasarinya

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN 47 BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. Deskripsi Unit Analisis Data 1. Data Hasil Penelitian Pada bagian ini akan dibahas mengenai proses pengolahan data untuk menguji hipotesis yang telah dibuat

Lebih terperinci

BAB 2 LANDASAN TEORI. digunakan sebagai konsep statistik pada tahun 1877 oleh Sir Francis Galton. Dia

BAB 2 LANDASAN TEORI. digunakan sebagai konsep statistik pada tahun 1877 oleh Sir Francis Galton. Dia 10 BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Dalam ilmu statistika teknik yang umum digunakan untuk menganalisa hubungan antara dua variabel atau lebih adalah analisa regresi linier. Regresi pertama

Lebih terperinci

2.1 Konsep Dasar Statistika

2.1 Konsep Dasar Statistika 8 BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Statistika Statistika merupakan cara-cara tertentu yang digunakan dalam mengumpulkan, menyusun atau mengatur, menyajikan, menganalisis dan memberi interpretasi terhadap

Lebih terperinci

Penggunaan Metode Trimming pada Analisis Jalur dalam Menentukan Model Kausal Dana Alokasi Umum Kabupaten/Kota di Provinsi Sumatera Selatan

Penggunaan Metode Trimming pada Analisis Jalur dalam Menentukan Model Kausal Dana Alokasi Umum Kabupaten/Kota di Provinsi Sumatera Selatan Jurnal Penelitian Sains Edisi Khusus Desember 2009 (A) 09:12-01 Penggunaan Metode Trimming pada Analisis Jalur dalam Menentukan Model Kausal Dana Alokasi Umum Kabupaten/Kota di Provinsi Sumatera Selatan

Lebih terperinci

TINJAUAN PUSTAKA. Analisis regresi merupakan suatu teknik statistika untuk menyelidiki dan

TINJAUAN PUSTAKA. Analisis regresi merupakan suatu teknik statistika untuk menyelidiki dan TINJAUAN PUSTAKA Analisis Regresi Linier Berganda Analisis regresi merupakan suatu teknik statistika untuk menyelidiki dan memodelkan hubungan diantara peubah-peubah, yaitu peubah tak bebas (respon) dan

Lebih terperinci

BAB IV ANALISIS DAN PEMBAHASAN

BAB IV ANALISIS DAN PEMBAHASAN 63 BAB IV ANALISIS DAN PEMBAHASAN 4.1 Penyajian Data Penelitian Data dari variabel-variabel yang akan digunakan dalam analisis pada penelitian ini akan penulis sajikan dalam bentuk tabelaris sebagai berikut

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Konsep dan Definisi Pendapatan Regional adalah tingkat (besarnya) pendapatan masyarakat pada wilayah analisis. Tingkat pendapatan dapat diukur dari total pendapatan wilayah maupun

Lebih terperinci

BAB IV ANALISIS DAN PEMBAHASAN

BAB IV ANALISIS DAN PEMBAHASAN BAB IV ANALISIS DAN PEMBAHASAN Pada bab ini akan dijelaskan mengenai proses dan hasil serta pembahasan dari pengolahan data yang telah dilakukan. Sebagai alat bantu analisis digunakan software SPSS versi

Lebih terperinci

BAB IV ANALISIS DAN PEMBAHASAN

BAB IV ANALISIS DAN PEMBAHASAN BAB IV ANALISIS DAN PEMBAHASAN Dalam penelitian ini, analisis data yang dilakukan menggunakan pendekatan kuantitatif yaitu dengan menggunakan analisis regresi sederhana, dan perhitungannya menggunakan

Lebih terperinci

BAB 2 TINJAUAN TEORITIS

BAB 2 TINJAUAN TEORITIS BAB 2 TINJAUAN TEORITIS 2.1 Regresi Liniear Sederhana Kata regresi (regression) diperkenalkan pertama kali oleh Francis Dalton pada tahun 1886. Menurut Dalton, analisis regresi berkenaan dengan studi ketergantungan

Lebih terperinci

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Regresi dalam statistika adalah salah satu metode untuk menentukan tingkat pengaruh suatu variabel terhadap variabel yang lain. Variabel yang pertama disebut

Lebih terperinci

Hipotesis adalah suatu pernyataan tentang parameter suatu populasi.

Hipotesis adalah suatu pernyataan tentang parameter suatu populasi. PERTEMUAN 9-10 PENGUJIAN HIPOTESIS Hipotesis adalah suatu pernyataan tentang parameter suatu populasi. Apa itu parameter? Parameter adalah ukuran-ukuran. Rata-rata penghasilan karyawan di kota binjai adalah

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Objek Penelitian Variabel-variabel yang akan diteliti dalam penelitian ini yaitu iklim sekolah dan motivasi belajar. Dengan demikian yang menjadi objek dalam penelitian ini

Lebih terperinci

BAB I. PENDAHULUAN. 1.1 Pengertian Ekonometrika. 1.2 Ekonometrika Merupakan Suatu Ilmu

BAB I. PENDAHULUAN. 1.1 Pengertian Ekonometrika. 1.2 Ekonometrika Merupakan Suatu Ilmu 1.1 Pengertian Ekonometrika BAB I. PENDAHULUAN Apakah ekonometrika itu?. Ekonometrika berarti pengukuran masalah ekonomi (economic measurement) secara kuantitatif. Walaupun pengukuran merupakan bagian

Lebih terperinci

BAB IV ANALISIS DATA DAN PEMBAHASAN. sembako. Adapun pertanyaan yang termuat dalam kuesioner terdiri dari

BAB IV ANALISIS DATA DAN PEMBAHASAN. sembako. Adapun pertanyaan yang termuat dalam kuesioner terdiri dari BAB IV ANALISIS DATA DAN PEMBAHASAN A. ANALISIS DATA 1. Deskripsi Responden Penelitian Responden dari penelitian ini adalah pedagang pasar tradisional Balamoa Kecamatan Pangkah Kabupaten Tegal khususnya

Lebih terperinci

BAB 2 LANDASAN TEORI. 1. Analisis korelasi adalah metode statistika yang digunakan untuk menentukan

BAB 2 LANDASAN TEORI. 1. Analisis korelasi adalah metode statistika yang digunakan untuk menentukan 7 BAB 2 LANDASAN TEORI 2.1 Defenisi Analisis Regresi dan Korelasi 1. Analisis korelasi adalah metode statistika yang digunakan untuk menentukan kuatnya atau derajat hubungan linier antara dua variabel

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. belajar kimia SMA Negeri 1 Jogonalan Kabupaten Klaten.

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. belajar kimia SMA Negeri 1 Jogonalan Kabupaten Klaten. BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. Hasil Penelitian 1. Diskripsi Data Diskripsi hasil penelitian ini didasarkan pada skor dari kuesioner yang digunakan untuk mengetahui pengaruh motivasi dan iklim

Lebih terperinci

STK 511 Analisis statistika. Materi 7 Analisis Korelasi dan Regresi

STK 511 Analisis statistika. Materi 7 Analisis Korelasi dan Regresi STK 511 Analisis statistika Materi 7 Analisis Korelasi dan Regresi 1 Pendahuluan Kita umumnya ingin mengetahui hubungan antar peubah Analisis Korelasi digunakan untuk melihat keeratan hubungan linier antar

Lebih terperinci

BAB 1 PENDAHULUAN. data dan penarikan kesimpulan berdasarkan kumpulan data dan pengolahan data

BAB 1 PENDAHULUAN. data dan penarikan kesimpulan berdasarkan kumpulan data dan pengolahan data BAB 1 PENDAHULUAN 1.1 Latar Belakang Perkembangan ilmu pengetahuan dan teknologi menghantar manusia pada tahap pemahaman yang lebih tinggi di masing-masing bidang ilmu pengetahuan. Dalam mengaplikasikan

Lebih terperinci

TINJAUAN PUSTAKA. Matriks adalah suatu susunan bilangan berbentuk segi empat. Bilangan-bilangan

TINJAUAN PUSTAKA. Matriks adalah suatu susunan bilangan berbentuk segi empat. Bilangan-bilangan 4 II. TINJAUAN PUSTAKA 2.1 Konsep Dasar Matriks 2.1.1 Matriks Matriks adalah suatu susunan bilangan berbentuk segi empat. Bilangan-bilangan dalam susunan itu disebut anggota dalam matriks tersebut. Suatu

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan dalam rangka penyusunan skripsi sebagai salah satu persyaratan untuk menyelesaikan studi program Strata 1 (S1) jurusan

Lebih terperinci

BAB 2 LANDASAN TEORI. mengetahui pola hubungan antara dua atau lebih variabel. Istilah regresi yang

BAB 2 LANDASAN TEORI. mengetahui pola hubungan antara dua atau lebih variabel. Istilah regresi yang 8 BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Analisis regresi merupakan suatu model matematis yang dapat di gunakan untuk mengetahui pola hubungan antara dua atau lebih variabel. Istilah regresi yang

Lebih terperinci

OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2010

OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2010 ANALISIS KORELASI OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2010 ANALISIS KORELASI II. ANALISIS KORELASI 1. Koefisien Korelasi Pearson Koefisien Korelasi Moment Product Korelasi

Lebih terperinci

BAB 2 LANDASAN TEORI. bebas X yang dihubungkan dengan satu peubah tak bebas Y.

BAB 2 LANDASAN TEORI. bebas X yang dihubungkan dengan satu peubah tak bebas Y. BAB 2 LANDASAN TEORI 2.1 Regresi Linier Sederhana Regresi linier sederhana merupakan suatu prosedur untuk mendapatkan hubungan matematis dalam bentuk suatu persamaan antara variabel tak bebas tunggal dengan

Lebih terperinci

BAB 4 ANALISIS DAN PEMBAHASAN

BAB 4 ANALISIS DAN PEMBAHASAN 43 BAB 4 ANALISIS DAN PEMBAHASAN 4.1 Deskriptif Sampel 1. Gambaran Umum Sampel Perusahaan manufaktur merupakan perusahaan yang kegiatan utamanya adalah memproduksi atau membuat bahan baku menjadi barang

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis jalur yang dikenal dengan path analysis dikembangkan pertama pada tahun

BAB 2 LANDASAN TEORI. Analisis jalur yang dikenal dengan path analysis dikembangkan pertama pada tahun BAB 2 LANDASAN TEORI 2.1 Sejarah Analisis jalur Analisis jalur yang dikenal dengan path analysis dikembangkan pertama pada tahun 1920-an oleh seorang ahli genetika yaitu Sewall Wright (Joreskog dan Sorbom,

Lebih terperinci

BAB 2 LANDASAN TEORI. pengetahuan, terutama para peneliti yang dalam penelitiannya banyak

BAB 2 LANDASAN TEORI. pengetahuan, terutama para peneliti yang dalam penelitiannya banyak BAB 2 LANDASAN TEORI 2.1 Pengertian Analisis Regresi Statistik merupakan salah satu cabang ilmu pengetahuan yang paling banyak mendapatkan perhatian dan dipelajari oleh ilmuan dari hampir semua ilmu bidang

Lebih terperinci

STK511 Analisis Statistika. Pertemuan 10 Analisis Korelasi & Regresi (1)

STK511 Analisis Statistika. Pertemuan 10 Analisis Korelasi & Regresi (1) STK511 Analisis Statistika Pertemuan 10 Analisis Korelasi & Regresi (1) Analisis Hubungan Jenis/tipe hubungan Ukuran Keterkaitan Skala pengukuran peubah Pemodelan Keterkaitan anang kurnia (anangk@apps.ipb.ac.id)

Lebih terperinci

OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2011

OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2011 ANALISIS KORELASI OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2011 ANALISIS KORELASI II. ANALISIS KORELASI 1. Koefisien Korelasi Pearson Koefisien Korelasi Moment Product Korelasi

Lebih terperinci

Analisis Regresi 1. Pokok Bahasan Pengujian pada Regresi Ganda

Analisis Regresi 1. Pokok Bahasan Pengujian pada Regresi Ganda Analisis Regresi Pokok Bahasan Pengujian pada Regresi Ganda Model Regresi Linier Berganda Model Regresi Linier Berganda, dengan k peubah penjelas : Y β β X β X β X k k Parameter regresi sebanyak k+ diduga

Lebih terperinci

APLIKASI REGRESI SEDERHANA DENGAN SPSS. HENDRY admin teorionline.net Phone : 021-834 14694 / email : klik.statistik@gmail.com

APLIKASI REGRESI SEDERHANA DENGAN SPSS. HENDRY admin teorionline.net Phone : 021-834 14694 / email : klik.statistik@gmail.com APLIKASI REGRESI SEDERHANA DENGAN SPSS HENDRY admin teorionline.net Phone : 02-834 4694 / email : klik.statistik@gmail.com Tentang Regresi Sederhana Analisis regresi merupakan salah satu teknik analisis

Lebih terperinci

OLEH : WIJAYA. FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2009

OLEH : WIJAYA.   FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2009 PERANCANGAN PERCOBAAN OLEH : WIJAYA email : zeamays_hibrida@yahoo.com FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2009 I. ANALISIS REGRESI 1. 2. Regresi Linear : Regresi Linear Sederhana

Lebih terperinci

BAB III OBJEK DAN METODE PENELITIAN

BAB III OBJEK DAN METODE PENELITIAN 73 BAB III OBJEK DAN METODE PENELITIAN 3.1 Objek Penelitian Yang menjadi objek dalam penelitian ini adalah menganalisis tentang faktor-faktor yang mempengaruhi distribusi pendapatan Indonesia yang terjadi

Lebih terperinci

Pertemuan keenam ANALISIS REGRESI

Pertemuan keenam ANALISIS REGRESI Pertemuan keenam ANALISIS REGRESI Secara umum ada dua macam hubungan antara dua variable atau lebih, yaitu bentuk hubungan dan keeratan hubungan. Untuk mengetahui bentuk hubungan digunakan analisis regresi.

Lebih terperinci

ANALISA FAKTOR-FAKTOR YANG MEMPENGARUHI HASIL PRODUKSI PADI DI DELI SERDANG. Riang Enjelita Ndruru,Marihat Situmorang,Gim Tarigan

ANALISA FAKTOR-FAKTOR YANG MEMPENGARUHI HASIL PRODUKSI PADI DI DELI SERDANG. Riang Enjelita Ndruru,Marihat Situmorang,Gim Tarigan Saintia Matematika Vol. 2, No. 1 (2014), pp. 71 83. ANALISA FAKTOR-FAKTOR YANG MEMPENGARUHI HASIL PRODUKSI PADI DI DELI SERDANG Riang Enjelita Ndruru,Marihat Situmorang,Gim Tarigan Abstrak. Penyediaan

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis Korelasi adalah metode statstika yang digunakan untuk menentukan tingkat

BAB 2 LANDASAN TEORI. Analisis Korelasi adalah metode statstika yang digunakan untuk menentukan tingkat BAB 2 LANDASAN TEORI 2.1 Pengertian Analisis Regresi dan Korelasi 2.1.1 Analisis Korelasi Analisis Korelasi adalah metode statstika yang digunakan untuk menentukan tingkat hubungan Y dan X dalam bentuk

Lebih terperinci

BAB 1 PENDAHULUAN. banyak diterapkan pada berbagai bidang sebagai dasar bagi pengambilan

BAB 1 PENDAHULUAN. banyak diterapkan pada berbagai bidang sebagai dasar bagi pengambilan BAB 1 PENDAHULUAN 1.1. Latar Belakang Masalah Dalam masyarakat modern seperti sekarang ini, metode statistika telah banyak diterapkan pada berbagai bidang sebagai dasar bagi pengambilan keputusan / kebijakan.

Lebih terperinci

BAB III ANALISIS JALUR DAN PENERAPANNYA DALAM MENYELESAIKAN MASALAH DI BIDANG LALU LINTAS

BAB III ANALISIS JALUR DAN PENERAPANNYA DALAM MENYELESAIKAN MASALAH DI BIDANG LALU LINTAS BAB III ANALISIS JALUR DAN PENERAPANNYA DALAM MENYELESAIKAN MASALAH DI BIDANG LALU LINTAS 3.1 MODEL ANALISIS JALUR Menurut Bohrnstedt (dalam Kusnendi,2005 dan Somantri & Mohidin,2006), Analisis Jalur (path

Lebih terperinci

BAB III OBJEK DAN METODE PENELITIAN

BAB III OBJEK DAN METODE PENELITIAN BAB III OBJEK DAN METODE PENELITIAN 3.1 Objek Penelitian Objek penelitian merupakan sesuatu yang menjadi perhatian dalam suatu penelitian, objek penelitian ini menjadi sasaran dalam penelitian untuk mendapatkan

Lebih terperinci

Gambar 2.1 Klasifikasi Metode Dependensi dan Interdependensi Analisis Multivariat

Gambar 2.1 Klasifikasi Metode Dependensi dan Interdependensi Analisis Multivariat Bab Landasan Teori.1 Analisis Multivariat Analisis statistik multivariat merupakan metode dalam melakukan penelitian terhadap lebih dari dua variable secara bersamaan. Dengan menggunakan teknik analisis

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini mengambil lokasi di Bursa Efek Indonesia (BEI), ditetapkannya BEI sebagai tempat penelitian karena BEI merupakan tempat yang tepat

Lebih terperinci

Metode Statistika Pertemuan XII. Analisis Korelasi dan Regresi

Metode Statistika Pertemuan XII. Analisis Korelasi dan Regresi Metode Statistika Pertemuan XII Analisis Korelasi dan Regresi Analisis Hubungan Jenis/tipe hubungan Ukuran Keterkaitan Skala pengukuran variabel Pemodelan Keterkaitan Relationship vs Causal Relationship

Lebih terperinci

BAB III METODE PENELITIAN. umum dari obyek penelitian. Pada penelitian ini peneliti mengambil data waktu tiga

BAB III METODE PENELITIAN. umum dari obyek penelitian. Pada penelitian ini peneliti mengambil data waktu tiga BAB III METODE PENELITIAN 1.1 Waktu dan Tempat Penelitian Waktu dan tempat penelitian menguraikan tentang jadwal penelitian dilaksanakan dan lokasi dimana penelitian dilakukan, yang juga mencakup gambaran

Lebih terperinci

REGRESI LANJUTAN RETNO DWI ANDAYANI, SP. MP

REGRESI LANJUTAN RETNO DWI ANDAYANI, SP. MP REGRESI LANJUTAN RETNO DWI ANDAYANI, SP. MP REGRESI LANJUTAN Regresi Linier Berganda Regresi Kuadratik Regresi Kubik Analisis regresi dari RAL atau RAK REGRESI LANJUTAN Regresi Linier Berganda Regresi

Lebih terperinci

REGRESI LINEAR SEDERHANA

REGRESI LINEAR SEDERHANA REGRESI LINEAR SEDERHANA DAN KORELASI 1. Model Regresi Linear 2. Penaksir Kuadrat Terkecil 3. Prediksi Nilai Respons 4. Inferensi Untuk Parameter-parameter Regresi 5. Kecocokan Model Regresi 6. Korelasi

Lebih terperinci

VI. ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI USAHA PEMBESARAN LELE DUMBO DI CV JUMBO BINTANG LESTARI

VI. ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI USAHA PEMBESARAN LELE DUMBO DI CV JUMBO BINTANG LESTARI VI. ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI USAHA PEMBESARAN LELE DUMBO DI CV JUMBO BINTANG LESTARI 6.1. Analisis Fungsi Produksi Model fungsi produksi yang digunakan adalah fungsi Cobb Douglas. Faktor-faktor

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. Deskripsi Data Data yang diperoleh pada penelitian ini adalah nilai kemampuan memori, kemampuan analisis terhadap prestasi belajar siswa pada materi pokok Koloid.

Lebih terperinci

BAB IV ANALISIS HASIL PEMBAHASAN

BAB IV ANALISIS HASIL PEMBAHASAN BAB IV ANALISIS HASIL PEMBAHASAN 4.1 Analisis Profil Responden 4.1.1 Statistik Deskriptif Statistik deskriptif digunakan untuk melihat gambaran secara umum data yang telah dikumpulkan dalam penelitian

Lebih terperinci

Program Magister Manajemen dan Bisnis Institut Pertanian Bogor 2014

Program Magister Manajemen dan Bisnis Institut Pertanian Bogor 2014 TUGAS Metode Kuantitatif Manajemen Analisis Regresi pada Data Penjualan Tahunan Lezat Fried Chicken (LFC) Disusun sebagai Tugas Akhir Triwulan I Mata Kuliah Metode Kuantitatif Manajemen Disusun Oleh :

Lebih terperinci

Bab 2 LANDASAN TEORI

Bab 2 LANDASAN TEORI 9 Bab 2 LANDASAN TEORI 21 Uji Kecukupan Sampel Dalam melakukan penelitian yang berhubungan dengan kecukupan sampel maka langkah awal yang harus dilakukan adalah pengujian terhadap jumlah sampel Pengujian

Lebih terperinci

Regresi Linier Sederhana dan Korelasi. Pertemuan ke 4

Regresi Linier Sederhana dan Korelasi. Pertemuan ke 4 Regresi Linier Sederhana dan Korelasi Pertemuan ke 4 Pengertian Regresi merupakan teknik statistika yang digunakan untuk mempelajari hubungan fungsional dari satu atau beberapa variabel bebas (variabel

Lebih terperinci

PENGARUH INVESTASI DAN KONSUMSI TERHADAP PENYERAPAN TENAGA KERJA DI SUMATERA SELATAN PERIODE

PENGARUH INVESTASI DAN KONSUMSI TERHADAP PENYERAPAN TENAGA KERJA DI SUMATERA SELATAN PERIODE PENGARUH INVESTASI DAN KONSUMSI TERHADAP PENYERAPAN TENAGA KERJA DI SUMATERA SELATAN PERIODE 1995-2010 Fitri Suciani Jaka Pratama Tetiyeni Dwi Lestari ABSTRAK Penelitian ini bertujuan untuk mengetahui

Lebih terperinci

BAB III METODE PENELITIAN. Objek dari penelitian ini adalah kemiskinan di Jawa Barat tahun ,

BAB III METODE PENELITIAN. Objek dari penelitian ini adalah kemiskinan di Jawa Barat tahun , BAB III METODE PENELITIAN 3.1 Objek Penelitian Objek dari penelitian ini adalah kemiskinan di Jawa Barat tahun 2003-2009, dengan variabel yang mempengaruhinya yaitu pertumbuhan ekonomi, Dana Alokasi Khusus

Lebih terperinci