CONTOH SOAL MATEKBIS I

Ukuran: px
Mulai penontonan dengan halaman:

Download "CONTOH SOAL MATEKBIS I"

Transkripsi

1 CONTOH SOAL MATEKBIS I Materi : Deret Ukur dan Deret Hitung 1. Hitunglah S 5, S 14, J 9 dari sebuah deret hitung yang suku pertamanya 1000 dan pembeda antar sukunya : 50. Diketahui : a = 1000, b = 50 Ditanya : S 5, S 14, J 9 Rumus : S n S 5 = (5-1).50 S 14 = (14-1).50 = 1200 = 1650 Rumus : J n = n (a + S n ) S 9 = (9-1).50 J 9 =.9 ( ) = 1400 = Jika a = 100 dan S 7 = 160, berapakah? : a. Ditanya b S 7 = (7-1).b 160 = b b = 10 b. Ditanya S 11, S 11 = 100+(11-1).10 = = 200 1

2 c. Berapa n untuk S n = = (n-1) =10n 10 n = Jika S 3 dan S 7 dari sebuah deret hitung masing masing adalah 60 dan 80, hitunglah! : a. Ditanya, S 1 S 3 = a + (n-1).b S 7 = a + (n-1).b 60 = a + (3-1).b 80 = a + (7-1).b 60 = a + 2b 80 = a + 6b Substitusikan untuk mencari nilai b, diperoleh nilai b = 5, maka a => a = 80 a = 50 = S 1 b. Berapa S 10? S 10 = 50 + (10-1).5 = 95 c. Berapa J 5? S 5 = 50 + (5-1).5 = 70 J 5 =.5 ( ) = 300 d. Berapa J 20? S 20 = 50 + (20-1).5 = 145 J 20 =.20 ( ) =

3 4. Untuk S 6 = dan S 10 = , hitunglah! : a. Berapa b? S 6 = a + (n-1).b S 10 = a + (n-1).b = a + (6-1).b = a + (10-1).b = a + 5b = a + 9b Substitusikan untuk mencari nilai b, diperoleh nilai b = -1500, b. Berapa n untuk S n = 0? mencari nilai a => a = a = S 0 0 = (n-1) = -1500n n = 22 c. Berapa J 21? S 21 = (21-1) = 1500 J 21 =.21 ( ) = d. Berapa J 22? S 22 = (22-1) = 0 J 22 =.22 ( ) =

4 5. Dari sebuah deret hitung yang suku pertamanya 200, dan pembeda antar suku nya 25, hitunglah! a. Berapa S 5? S 5 = (5-1).25 = 300 b. Berapa S 10? S 10 = (10-1).25 = 425 c. Berapa J 5? J 5 =.5 ( ) = 1250 d. Berapa J 10? J 10 =.10 ( ) = Deret hitung X mempunyai nilai a = 180 dan b = -10. Jika deret hitung Y mempunyai nilai a = 45 dan b = 5, pada suku ke berapakah deret hitung X dan deret hitung Y mempunyai nilai yang sama? Diketahui : X => a = 180 Y=> a = 45 b = -10 b = 5 Ditanya : X = Y a + (n-1)b (n-1).-10 = 45+(n-1) n+10 = 45+5n-5 n = 10 4

5 Jadi deret hitung X dan Y mempunyai nilai yang sama pada suku ke Suku pertama deret hitung M adalah 75 dengan pembeda 10 Suku keenam deret hitung N adalah 145 dengan pembeda 5. Carilah nilai n yang memberikan nilai yang sama bagi suku kedua deret tersebut! Ditanya : n, jika M = N M => a = 75 N=> a = 145 b = 10 b = 5 a + (n-1)b 75 + (n-1).10 = 145+(n-1) n-10 = 145+5n-5 n = Apabila suku ke -3 dan suku ke -7 dari sebuah deret ukur masing masing adalah 800 dan , berapakah? a. Berapakah p? Rumus = Sn = a.p n-1 = = = = = b. Berapakah a? S 3 = a.p n = a a = 800 / 16 a = 50 p = 4 = 256 5

6 c. Berapakah S 5? S 5 = a.p n-1 = = d. Berapakah J 5? J 5 = = = = Deret ukur X mempunyai nilai a = 512 dan p = 0,5, sedangkan deret ukur Y memiliki nilai S 3 = 16 dan p = 4.Pada suku ke berapa nilai suku dari kedua deret tersebut sama? Diketahui : X -> a = 512, p = 0,5 dan Y -> S 3 = 16 dan p = 4 Tanya : n X = n Y Langkah 1 : Mencari a untuk S n = 16 pada deret ukur Y S n = S 3 S n = 16 a.p n-1 = 16 a.(0,5) 3-1 = 16 a.0,25 = 16 a = 64 atau Pada S 4 = = 64 Langkah 2 : Mencari n untuk Sn = pada deret ukur X dengan asumsi : n X = ny S 4 = 512.0,5 (n-1) 64 = 512.0,5 (n-1) = 0,5 (n-1) -> 0,125 = 0,5 (n-1) -> 0,5 3 = 0,5 (n-1) -> 3 = n-1 -> n = 4 6

7 10. Dari sebuah deret ukur yang suku awalnya 3 dan p = -2 Hitunglah :! S 5, J 5, S 6, dan J 6 a. Ditanya S 5? S 5 = a.p n-1 = = 48 b. Ditanya J 5? J 5 = = = = 33 c. Ditanya S 6? S 6 = a.p n-1 = = -96 d. Ditanya J 6? J 6 = = = = -63 7

8 Materi : Penerapan Deret Ukur dan Deret Hitung Dalam Ilmu Ekonomi 11. Seorang nasabah Bank ABC meminjam uang di bank sebanyak Rp untuk jangka waktu pinjaman 36 bulan, dengan tingkat bunga 2% per tahun. a. Berapa jumlah seluruh uang yang harus dikembalikan pada saat pelunasan? Diketahui : P : , n : 36 bulan = 3 tahun, i : 0,02 F = P (1 + i) n F 3 = (1 + 0,02) 3 = Jadi jumlah seluruh uang yang harus dikembalikan saat pelunasan Rp b. Jika perhitungan pembayaran bunga bukan tiap tahun, melainkan tiap 6 bulan, berapa jumlah yang harus dia kembalikan? Menggunakan rumus nilai sekarang (present value), dan jika bunga yang diperhitungkan dibayar tiap 6 bulan ( setahun 2 semester, maka m = 2 ) F n = P (1 + i/m ) m.n F3 = (1 + 0,01) 2.3 = (1 + 1,06152) = Rp Jadi jumlah uang yang dikembalikan menjadi lebih besar yaitu Rp Tabungan seorang mahasiswa akan bertambah menjadi Rp dalam waktu 3 tahun mendatang.jika tingkat bunga bank yang berlaku adalah 10 % per tahun, berapa tabungan mahasiswa tersebut pada saat sekarang ini? Menggunakan rumus menghitung nilai sekarang (present value) dari suatu jumlah uang tertentu di masa datang : 8

9 .F Jika diketahui : F : , n : 3, i : 10 % Jadi besar tabungan saat ini adalah Rp = Materi : Soal Modifikasi Persamaan Menggunakan Metode Eliminasi 13. Seorang petani anggrek membutuhkan pupuk sebanyak 9 kg,dimana satu bungkus pupuk jenis A isinya 300 gram, dan satu bungkus pupuk Jenis B isinya 200 gram.sekurang kurangnya diperlukan 40 bungkus pupuk dan Pupuk jenis A seharga Rp per bungkus, dan pupuk jenis B seharga Rp per bungkus. Berapa biaya minimum yang dikeluarkan? a.membuat model matematika dan pembatasnya Misal x = jumlah pupuk jenis A y = jumlah pupuk jenis B Menyamakan satuan kebutuhan pupuk dari 9 kg menjadi 9000 gram Pupuk Jumlah Isi (gram) Harga / bungkus Jenis A x 300 x Jenis B y 200 y Pembatas

10 Model matematika : x + y x + 200y 9000 diringkas 3x + 2y 90 x 0 b.menentukan fungsi obyektif dengan meminimumkan f (x,y) x y dengan metode eliminasi x dan y guna mencari titik pojok. Eliminasi x : 3x + 2y = 90 x 1 3x + 2y = 90 x + y= 40 x 3 3x + 2y = 120 -y = -30 => y = 30 Eliminasi y : 3x + 2y = 90 x 1 3x + 2y = 90 x + y= 40 x 2 2x + 2y = 80 x = 30 Diperoleh titik perpotongan garis 3x + 2y = 90 dan garis x + y= 40 (titik B) di B (10,30) y A(0,45) 40 B (10,30) C(40,0) x + 2y = 90 x x + y = 40 10

11 c.melakukan uji titik pojok daerah penyelesaian ke dalam fungsi obyektif f(x,y) = x y. Titik Pojok f(x,y) =40.000x y A (0,45) = B (10,30) = C (40,0) = Dari 3 titik pojok di atas, diperoleh nilai f(x,y) minimum Rp Jadi biaya minimum yang dikeluarkan Rp

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT MATEMATIKA EKONOMI DAN BISNIS Pengertian BARIS DAN DERET Baris dapat didefinisikan sebagai suatu fungsi yang wilayahnya merupakan himpunan bilangan alam. Setiap bilangan yang merupakan anggota suatu banjar

Lebih terperinci

APLIKASI DERET UKUR PADA ILMU EKONOMI. EvanRamdan

APLIKASI DERET UKUR PADA ILMU EKONOMI. EvanRamdan APLIKASI DERET UKUR PADA ILMU EKONOMI Aplikasi Deret Ukur pada Ilmu Ekonomi 1. Bunga Majemuk Model bunga majemuk merupakan penerapan deret ukur dalam simpan pinjam. Bunga majemuk / bunga berbunga adalah

Lebih terperinci

BAB II DERET UKUR. Husnayetti

BAB II DERET UKUR. Husnayetti BAB II DERET UKUR Husnayetti 1 1. PENGERTIAN DU Deret ukur adalah suatu deret yang perbandingan suku-suku yang berurutannya merupakan bilangan tetap 2 2. BENTUK UMUM Deret Ukur a = suku awal p = pengganda

Lebih terperinci

Bab I Pertemuan Minggu I. Bunga Majemuk, Nilai Sekarang, dan Anuitas

Bab I Pertemuan Minggu I. Bunga Majemuk, Nilai Sekarang, dan Anuitas Bab I Pertemuan Minggu I Bunga Majemuk, Nilai Sekarang, dan Anuitas 1 Suasana aktif kelas Bisa? Tujuan Pembelajaran Setelah menyelesaikan perkuliahan minggu ini, mahasiswa bisa : Menjelaskan tentang praktek

Lebih terperinci

2. Hasil pengukuran panjang suatu benda 50,23 m. Salah mutlaknya adalah. a. 0,1 m b. 0,05 m c. 0,01 m d. 0,005 m e. 0,001 m

2. Hasil pengukuran panjang suatu benda 50,23 m. Salah mutlaknya adalah. a. 0,1 m b. 0,05 m c. 0,01 m d. 0,005 m e. 0,001 m 1. Harga satu meter sutera sama dengan tiga kali harga satu meter katun. Kakak membeli 5 meter sutera dan 4 meter katun dengan harga Rp 228.000. Harga satu meter sutera a. Rp 12.000 b. Rp 36.000 c. Rp

Lebih terperinci

Program Linear - IPA

Program Linear - IPA Program Linear - IPA Tahun 2005 1. Tanah seluas 10.000 m² akan dibangun rumah tipe A dan tipe B. Untuk rumah tipe A diperlukan 100 m² dan tipe B diperlukan 75 m². Jumlah rumah yang dibangun paling banyak

Lebih terperinci

PROGRAM LINEAR. Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel.

PROGRAM LINEAR. Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel. NAMA : KELAS : 1 2 Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel. x y PROGRAM LINEAR 2. Tentukan titik potong dengan sumbu X, yaitu saat y = 0. 3. Tentukan

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2003/2004 SMK. Matematika Non Teknik Bisnis dan Manajemen (E4-1) PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul

UJIAN NASIONAL TAHUN PELAJARAN 2003/2004 SMK. Matematika Non Teknik Bisnis dan Manajemen (E4-1) PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul DOKUMEN NEGARA SANGAT RAHASIA UJIAN NASIONAL TAHUN PELAJARAN 2003/2004 SMK Matematika Non Teknik Bisnis dan Manajemen (E4-1) PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul 07.30 09.30 DEPARTEMEN PENDIDIKAN

Lebih terperinci

Ely Purnamasari (2008.V.I.0019) Kd. Winda Mahayanti (2008.V.I.0027) Pend. Matematika IKIP PGRI BALI

Ely Purnamasari (2008.V.I.0019) Kd. Winda Mahayanti (2008.V.I.0027) Pend. Matematika IKIP PGRI BALI Ely Purnamasari (2008.V.I.0019) Kd. Winda Mahayanti (2008.V.I.0027) Pend. Matematika IKIP PGRI BALI Indikator Standar Kompetensi Mamahami dan dapat melakukan operasi bentuk aljabar, persamaan dan pertidaksamaan

Lebih terperinci

BARISAN DAN DERET Jenis-jenis barisan dan deret yang sering diujikan adalah soal-soal tentang :

BARISAN DAN DERET Jenis-jenis barisan dan deret yang sering diujikan adalah soal-soal tentang : BARISAN DAN DERET Jenis-jenis barisan dan deret yang sering diujikan adalah soal-soal tentang : 1. Barisan dan deret aritmatika 2. Barisan dan deret geometri 3. Sisipan SOAL DAN PEMBAHASAN 14.1 Soal dan

Lebih terperinci

UN SMK AKP 2014 Matematika

UN SMK AKP 2014 Matematika UN SMK AKP 204 Matematika Soal Doc. Name: UNSMKAKP204MAT999 Doc. Version : 206-03 halaman 0. Seorang pedagang menjual salah satu jenis mesin cuci seharga Rp637.500,00. Jika harga beli mesin cuci itu Rp750.000,00,

Lebih terperinci

Soal-Soal dan Pembahasan SBMPTN - SNMPTN Matematika Dasar Tahun Pelajaran 2010/2011

Soal-Soal dan Pembahasan SBMPTN - SNMPTN Matematika Dasar Tahun Pelajaran 2010/2011 Soal-Soal dan Pembahasan SBMPTN - SNMPTN Matematika Dasar Tahun Pelajaran 2010/2011 Tanggal Ujian: 31 Mei 2011 1. Jika 6(3 40 ) ( 2 log a) + 3 41 ( 2 log a) = 3 43, maka nilai a adalah... A. B. C. 4 D.

Lebih terperinci

x 100% = = 84 -x = -20 x = 20

x 100% = = 84 -x = -20 x = 20 1. ( 2 ) x ( 2 ) = 2 x 2 ( ) = 2 x 2 = 2 ( ) = 2 = = 2. Log 45 = log ( 9 x 5 ) = log 9 + log 5 = log 3 + log 5 = 2 log 3 + log 5 = 2(0,477) + 0,699 = 1,653 3. Panjang (p) = 3 x 100 cm = 300 cm lebar (l

Lebih terperinci

BANK SOAL MATEMATIKA IPS

BANK SOAL MATEMATIKA IPS BANK SOAL MATEMATIKA IPS Tim Guru Matematika SMAN 1 Kendari KENDARI 2013 1. Bentuk sederhana dari adalah... A. B. E. Jawaban : E Bentuk sederhana dari : 2. Nilai x yang memenuhi persamaan adalah... A.

Lebih terperinci

BAB III NILAI WAKTU UANG

BAB III NILAI WAKTU UANG BAB III NILAI WAKTU UANG Nilai waktu uang merupakan konsep sentral dalam manajemen keuangan. Pemahaman nilai waktu uang sangat penting dalam studi manajemen keuangan. Banyak keputusan dan teknik dalam

Lebih terperinci

i % per bulan. Perhitungan bunga

i % per bulan. Perhitungan bunga Matematika15.wordpress.com LEMBAR AKTIVITAS SISWA MATEMATIKA KEUANGAN (PEMINATAN) Unsur Pada Matematika Keuangan Nama Siswa : Kelas : Kompetensi Dasar (KURIKULUM 2013): 3.3 Menganalisis konsep dan prinsip

Lebih terperinci

a. Rp b.rp c. Rp d. Rp e. Rp

a. Rp b.rp c. Rp d. Rp e. Rp 1. Menjelang hari raya sebuah took M memberikan diskon 15% untuk setiap pembelian barang. Jika Rini membayar pada kasir sebesar Rp 127.500, maka harga barang yang dibeli Rini sebelum dikenakan diskon adalah.

Lebih terperinci

Perhitungan Bunga dan Time Value of Money. Jurusan Sistem Informasi ITS 2010

Perhitungan Bunga dan Time Value of Money. Jurusan Sistem Informasi ITS 2010 Perhitungan Bunga dan Time Value of Money Jurusan Sistem Informasi ITS 2010 TUJUAN Setelah mempelajari Bab ini diharapkan mahasiswa dapat: Menjelaskan konsep perhitungan bunga dan nilai waktu uang. Menjelaskan

Lebih terperinci

EKONOMI TEKNIK MATEMATIKA UANG

EKONOMI TEKNIK MATEMATIKA UANG EKONOMI TEKNIK MATEMATIKA UANG PENDAHULUAN Setiap aktivitas akan selalu menimbulkan sejumlah biaya Dari kegiatan/aktivitas akan diperoleh manfaat dalam bentuk produk fisik, servis / jasa dan kemudahan

Lebih terperinci

LEMBAR AKTIVITAS SISWA PROGRAM LINEAR

LEMBAR AKTIVITAS SISWA PROGRAM LINEAR LEMBAR AKTIVITAS SISWA PROGRAM LINEAR c) Subtitusikan titik (0,0) kedalam pertidaksamaan. Nama Siswa : Jika hasil benar, maka penyelesaiaannya adalah daerah Kelas : yang memuat titik tersebut. Jika hasil

Lebih terperinci

PREDIKSI SOAL UAN MATEMATIKA KELOMPOK NON-TEKNIK

PREDIKSI SOAL UAN MATEMATIKA KELOMPOK NON-TEKNIK PREDIKSI SOAL UAN MATEMATIKA KELOMPOK NON-TEKNIK 1. Perhatikan gambar berikut ini! y 5 R 5 6 x Daerah R pada gambar di atas ini merupakan daerah penyelesain dari suatu sistem pertidaksamaan. Nilai minimum

Lebih terperinci

MATEMATIKA UANG. Pusat Pengembangan Pendidikan - Universitas Gadjah Mada

MATEMATIKA UANG. Pusat Pengembangan Pendidikan - Universitas Gadjah Mada MATEMATIKA UANG 1 Time Value of Money Money has value Uang dapat dipinjam atau dipinjamkan Uang dipinjamkan kompensasi Contoh : interest (BUNGA) If you put $100 in a bank at 9% interest for one time period

Lebih terperinci

Model soal Ujian Matematika kelas XII AP- UPW - TB. Pilihlah salah satu jawaban yang paling benar dengan memberi tanda X pada jawaban a, b,c,d atau e!

Model soal Ujian Matematika kelas XII AP- UPW - TB. Pilihlah salah satu jawaban yang paling benar dengan memberi tanda X pada jawaban a, b,c,d atau e! Model soal Ujian Matematika kelas XII AP- UPW - TB Pilihlah salah satu jawaban yang paling benar dengan memberi tanda X pada jawaban a, b,c,d atau e!. Diketahui sistem pertidaksamaan x + 2y 0 ; 3x + 2y

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2003/2004 SMK. Matematika Non Teknik Bisnis dan Manajemen (E4-1) PAKET 1 (UTAMA) SELASA, 11 MEI 2004 Pukul

UJIAN NASIONAL TAHUN PELAJARAN 2003/2004 SMK. Matematika Non Teknik Bisnis dan Manajemen (E4-1) PAKET 1 (UTAMA) SELASA, 11 MEI 2004 Pukul DOKUMEN NEGARA SANGAT RAHASIA UJIAN NASIONAL TAHUN PELAJARAN 200/2004 SMK Matematika Non Teknik Bisnis dan Manajemen (E4-) PAKET (UTAMA) SELASA, MEI 2004 Pukul 0.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL Hak

Lebih terperinci

BARISAN DAN DERET. Penggunaan Barisan dan Deret pada Ilmu Ekonomi AHMAT RIF AN MAULANA. STIE PGRI Dewantara Jombang. Oktober 2013

BARISAN DAN DERET. Penggunaan Barisan dan Deret pada Ilmu Ekonomi AHMAT RIF AN MAULANA. STIE PGRI Dewantara Jombang. Oktober 2013 BARISAN DAN DERET Penggunaan Barisan dan Deret pada Ilmu Ekonomi AHMAT RIF AN MAULANA STIE PGRI Dewantara Jombang Oktober 2013 A.Rif an M. (STIE PGRI Dew Jbg) Barisan dan Deret pada Ilmu Ekonomi Oktober

Lebih terperinci

TAHUN PELAJARAN 2003/2004 SMK. Matematika Non Teknik Pekerjaan Sosial (E4-3) PAKET 1 (UTAMA) SELASA, 11 MEI 2004 Pukul

TAHUN PELAJARAN 2003/2004 SMK. Matematika Non Teknik Pekerjaan Sosial (E4-3) PAKET 1 (UTAMA) SELASA, 11 MEI 2004 Pukul DOKUMEN NEGARA 0-04 E4--P9-0-4 SANGAT RAHASIA UJIAN NASIONAL TAHUN PELAJARAN 00/004 SMK Matematika Non Teknik Pekerjaan Sosial (E4-) PAKET (UTAMA) SELASA, MEI 004 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN

Lebih terperinci

SMK WIJAYA PUTRA SURABAYA UJIAN SEKOLAH TERTULIS TAHUN PELAJARAN 2010 / 2011 LEMBAR SOAL

SMK WIJAYA PUTRA SURABAYA UJIAN SEKOLAH TERTULIS TAHUN PELAJARAN 2010 / 2011 LEMBAR SOAL DOKUMEN SEKOLAH SANGAT RAHASIA SMK WIJAYA PUTRA SURABAYA UJIAN SEKOLAH TERTULIS TAHUN PELAJARAN 20 / 2011 LEMBAR SOAL Satuan Pendidikan : Sekolah Menengah Kejuruan Mata Pelajaran : Matematika Program Keahlian

Lebih terperinci

Teori Bunga II. Arum H. Primandari

Teori Bunga II. Arum H. Primandari Teori Bunga II Arum H. Primandari Bunga Majemuk Nominal Bunga tunggal jarang dipakai di perbankan, kebanyakan bankbank sekarang membayar bunga dengan frekuensi bulanan atau mingguan, bahkan harian. Selanjutnya

Lebih terperinci

Selamat Datang di Media Pembelajaran Berbasis Website. Pada Materi Barisan dan deret aritmatika

Selamat Datang di Media Pembelajaran Berbasis Website. Pada Materi Barisan dan deret aritmatika Selamat Datang di Media Pembelajaran Berbasis Website Pada Materi Barisan dan deret aritmatika L O A D I N G... Created : Novialdi Bengkalis, 12 November 1993 A. Barisan Aritmaitka Apa anda sudah mengetahui

Lebih terperinci

DASAR DASAR TEORI OF INTEREST & ANUITAS Jakarta, 10 Mei Oleh : Masyhar Hisyam Wisananda, S.Si, ASAI

DASAR DASAR TEORI OF INTEREST & ANUITAS Jakarta, 10 Mei Oleh : Masyhar Hisyam Wisananda, S.Si, ASAI DASAR DASAR TEORI OF INTEREST & ANUITAS Jakarta, 10 Mei 2016 Oleh : Masyhar Hisyam Wisananda, S.Si, ASAI PENGERTIAN BUNGA Bunga merupakan pertambahan nilai dalam suatu periode Biasanya disimbolkan dengan

Lebih terperinci

MODUL 1 : PROGRAM LINEAR

MODUL 1 : PROGRAM LINEAR MODUL 1 : PROGRAM LINEAR E. Kegiatan Belajar 2 PENERAPAN PROGRAM LINEAR 1. K A. Nilai Optimum Fungsi Obyektif Fungsi objektif merupakan fungsi yang menjelaskan tujuan (meminimumkan atau memaksimumkan)

Lebih terperinci

Bab 3 Nilai Waktu Terhadap Uang

Bab 3 Nilai Waktu Terhadap Uang Dasar Manajemen Keuangan 37 Bab 3 Nilai Waktu Terhadap Uang Mahasiswa diharapkan dapat memahami dan menjelaskan tentang konsep nilai waktu terhadap uang sebagai alat analisis keputusan di bidang keuangan.

Lebih terperinci

MATEM ATI TI A KEUA EU N A G N AN (Bun (Bu ga ajemuk mu ) Osa s Oma m r Sh S a h rif

MATEM ATI TI A KEUA EU N A G N AN (Bun (Bu ga ajemuk mu ) Osa s Oma m r Sh S a h rif MATEMATIKA KEUANGAN (Bunga Majemuk) Osa Omar Sharif The Time Value of Money Compounding and Discounting Kita tahu bahwa mempunyai Rp 1 hari ini lebih berharga daripada mempunyai Rp 1 di masa depan. Hal

Lebih terperinci

Asuransi Jiwa

Asuransi Jiwa Bab 3: Bunga dan Anuitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Bunga Bunga Bunga Macam-macam Bunga Bunga Bunga 1. Bunga Tunggal (Bunga Tidak Mendapat Bunga) Misalkan P menyatakan

Lebih terperinci

1. 1 ANUITAS DIMUKA 1. 2 NILAI SEKARANG PADA ANUITAS DI MUKA ANUITAS DI MUKA DAN DITUNDA

1. 1 ANUITAS DIMUKA 1. 2 NILAI SEKARANG PADA ANUITAS DI MUKA ANUITAS DI MUKA DAN DITUNDA ANUITAS DI MUKA DAN DITUNDA 1. 1 ANUITAS DIMUKA Pada BAB 4, kita telah mempelajari tentag anuitas biasa. Pada dasaranya anuitas dimuka tidak jauh berbeda dengan anuitas biasa, perbedaanya hanya terletak

Lebih terperinci

muhammadamien.wordpress.com

muhammadamien.wordpress.com 1. 2. Gradien garis singgung di setiap titik dapat dinyatakan sebagai 34 maka nilai minimumnya 1 3 5 7 9. Jika nilai maksimum 3. Jika maka 4. 5. 1 3 4 5 6 1 6. 7. Luas daerah yang dibatasi oleh parabola

Lebih terperinci

PENERAPAN TEORI BARIS DAN DERET DALAM EKONOMI

PENERAPAN TEORI BARIS DAN DERET DALAM EKONOMI PENERAPAN TEORI BARIS DAN DERET DALAM EKONOMI Perkembangan Usaha Perkembangan usaha yang dimaksud adalah sejauh usaha usaha yang pertubuhannya konstan dari waktu ke waktu mengikuti perubahan baris hitung

Lebih terperinci

Evaluasi Belajar Tahap Akhir Nasional TAHUN 1990 Matematika

Evaluasi Belajar Tahap Akhir Nasional TAHUN 1990 Matematika Evaluasi Belajar Tahap Akhir Nasional TAHUN 0 Matematika EBTANAS-IPS-0-0 x Nilai x R yang memenuhi ( ) = 8 EBTANAS-IPS-0-0 Bentuk sederhana dari + ( + ) 5 ( + 7 + EBTANAS-IPS-0-0 Ordinat titik balik grafik

Lebih terperinci

Gambar 1: Ilustrasi Bunga. = 8% p.a

Gambar 1: Ilustrasi Bunga. = 8% p.a BUNGA SEDERHANA Gambar 1: Ilustrasi Bunga Orang yang memiliki uang lebih biasanya akan meminjamkan atau menyimpan uang mereka pada lembaga keuangan, baik bank ataupun nonbank yang menberikan tingkat bunga

Lebih terperinci

LBM Bina Mahunika Tahun 2013 MATEMATIKA EKONOMI ESPA4122

LBM Bina Mahunika Tahun 2013 MATEMATIKA EKONOMI ESPA4122 MATEMATIKA EKONOMI ESPA4122 PILIHLAH SALAH SATU JAWABAN YANG PALING TEPAT! 1. Seandainya himpunan Semesta S = {a,b,c,d,e}, A = {a,b,e}, B = {a,c,d} dan C = {b,e} maka... 2. Pada soal diatas maka adalah...

Lebih terperinci

4. Persamaan garis yang melalui titik ( 4, 0 ) dan ( 3, 1 ) adalah. a. y = x 4 b. y = x + 4 c. y = ½ x + 2 d. y = ½ x 2 e.

4. Persamaan garis yang melalui titik ( 4, 0 ) dan ( 3, 1 ) adalah. a. y = x 4 b. y = x + 4 c. y = ½ x + 2 d. y = ½ x 2 e. 1. Harga satu kilogram apel sama dengan tiga kali harga satu kilogram jeruk. Dana membeli 4 kg apel dan 6 kg jeruk dengan harga Rp 61.200. Harga satu kilogram apel adalah. a. Rp 1.020 b. Rp 3.400 c. Rp

Lebih terperinci

a. Rp b. Rp c. Rp d. Rp e. Rp a. Rp b. Rp c. Rp d. Rp e. Rp 203.

a. Rp b. Rp c. Rp d. Rp e. Rp a. Rp b. Rp c. Rp d. Rp e. Rp 203. 1. Toko MERDEKA memberikan potongan harga 20% pada setiap penjualan barang. Untuk pembelian sepasang sepatu,ibu Asmaniar membayar kepada kasir sebesar Rp 40.000. Harga sepatu tersebut sebelum mendapat

Lebih terperinci

DAFTAR ISI. A. Pengertian Bunga Tunggal 5. B. Menghitung Bunga Tunggal 7. A. Pengertian Bunga Majemuk 14. B. Pembahasan Masalah Bunga Majemuk 16

DAFTAR ISI. A. Pengertian Bunga Tunggal 5. B. Menghitung Bunga Tunggal 7. A. Pengertian Bunga Majemuk 14. B. Pembahasan Masalah Bunga Majemuk 16 DAFTAR ISI KOMPETENSI/SUBKOMPETENSI PENDAHULUAN 2 HITUNG KEUANGAN I Bunga Tunggal A Pengertian Bunga Tunggal B Menghitung Bunga Tunggal 7 II Bunga Majemuk A Pengertian Bunga Majemuk B Pembahasan Masalah

Lebih terperinci

Ujian Akhir Nasional Tahun Pelajaran 2002/2003

Ujian Akhir Nasional Tahun Pelajaran 2002/2003 DOKUMEN NEGARA SANGAT RAHASIA Ujian Akhir Nasional Tahun Pelajaran 00/00 SMK Bidang keahlian Bisnis Manajemen Paket Utama (P) MATEMATIKA (E4-) Non Teknik SELASA, 6 MEI 00 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN

Lebih terperinci

LAB. MANAJEMEN DASAR LITBANG PTA 16/17

LAB. MANAJEMEN DASAR LITBANG PTA 16/17 LAB. MANAJEMEN DASAR LITBANG PTA 16/17 MATEMATIKA EKONOMI 1 KATA PENGANTAR Puji syukur kehadirat Tuhan Yang Maha Esa atas rahmat, hidayah, dan karunia yang diberikan-nya, sehingga penyusun dapat menyelesaikan

Lebih terperinci

Rangkuman Soal-soal Ujian Nasional Sekolah Menengah Kejuruan

Rangkuman Soal-soal Ujian Nasional Sekolah Menengah Kejuruan Daftar Isi Sistem Bilangan... Geometri... Persamaan dan Fungsi linier... Program linier... 8 Persamaan dan Fungsi kuadrat... Pertidaksamaan... Matriks... Skala... 8 Deret aritmatika... 9 Deret geometri...

Lebih terperinci

Barisan dan Deret. Matematika dapat dikatakan sebagai bahasa simbol. Hal ini. A. Barisan dan Deret Aritmetika B. Barisan dan Deret Geometri

Barisan dan Deret. Matematika dapat dikatakan sebagai bahasa simbol. Hal ini. A. Barisan dan Deret Aritmetika B. Barisan dan Deret Geometri Bab 3 Sumber: www.jakarta.go.id Barisan dan Deret Matematika dapat dikatakan sebagai bahasa simbol. Hal ini dikarenakan matematika banyak menggunakan simbol-simbol. Dengan menggunakan simbol-simbol tersebut,

Lebih terperinci

TAHUN PELAJARAN 2003/2004 SMK. Matematika Non Teknik Pariwisata (E4-2) PAKET 1 (UTAMA) SELASA, 11 MEI 2004 Pukul

TAHUN PELAJARAN 2003/2004 SMK. Matematika Non Teknik Pariwisata (E4-2) PAKET 1 (UTAMA) SELASA, 11 MEI 2004 Pukul DOKUMEN NEGARA SANGAT RAHASIA UJIAN NASIONAL TAHUN PELAJARAN 200/200 SMK Matematika Non Teknik Pariwisata (E-2) PAKET 1 (UTAMA) SELASA, 11 MEI 200 Pukul 0.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL Hak Cipta

Lebih terperinci

4 + 3 = 13 + = 4. , maka nilai 2x + y. 3. Jika x dan y adalah penyelesaian dari sistem persamaan A. 1 B. 3 C. 4 D. 5 E. 7

4 + 3 = 13 + = 4. , maka nilai 2x + y. 3. Jika x dan y adalah penyelesaian dari sistem persamaan A. 1 B. 3 C. 4 D. 5 E. 7 1. Sebuah laptop dengan harga Rp10.000.000,00 setelah dipakai selama 1 tahun dijual dengan harga Rp7.500.000,00, maka presentase kerugian dari penjualan laptop adalah A. 5% B. 10% C. 25% D. 50% E. 75%

Lebih terperinci

MATEMATIKA EKONOMI DAN BISNIS

MATEMATIKA EKONOMI DAN BISNIS Modul Mata Kuliah MATEMATIKA EKONOMI DAN BISNIS FAKULTAS EKONOMI UNIVERSITAS WIJAYA PUTRA SURABAYA 2014/2015 Erik Valentino, S.Pd., M.Pd DAFTAR ISI Kontrak Perkuliahan... 1 BAB I Barisan dan Deret... 4

Lebih terperinci

UJI COBA UJIAN NASIONAL SMK

UJI COBA UJIAN NASIONAL SMK UJI COBA UJIAN NASIONAL SMK Tahun Pelajaran 014 / 015 MATEMATIKA NON TEKNIK KELOMPOKPARIWISATA, SENI DAN KERAJINAN, PEKERJAAN SOSIAL TEKNOLOGI KERUMAHTANGGAAN, DAN ADMINISTRASI PERKANTORAN (UTAMA) 1 MATA

Lebih terperinci

Model Matematika. Persamaan atau pertidaksamaan Matematika Tujuan

Model Matematika. Persamaan atau pertidaksamaan Matematika Tujuan Kehidupan Nyata Bisa Disajikan Bahasa Matematika Diperlukan Alat Bantu Model Matematika Menggunakan Persamaan atau pertidaksamaan Matematika Tujuan Penyelesaian masalah Kemampuan yang akan dibahas Menentukan

Lebih terperinci

UN SMK AKP 2015 Matematika

UN SMK AKP 2015 Matematika UN SMK AKP 015 Matematika Soal Doc. Name: UNSMKAKP015MAT999 Doc. Version : 016-03 halaman 1 01. Seorang peternak yang memiliki 0 ekor kambing mempunyai persediaan pakan untuk 30 hari. Jika 5 kambing laku

Lebih terperinci

BAB VI FUNGSI KUADRAT (PARABOLA)

BAB VI FUNGSI KUADRAT (PARABOLA) BAB VI FUNGSI KUADRAT (PARABOLA) Secara umum, persamaan kuadrat dituliskan sebagai ax 2 + bx + c = 0 atau dalam bentuk fungsi dituliskan sebagai f(x) = ax 2 + bx + c, dengan a, b, dan c elemen bilangan

Lebih terperinci

C34 MATEMATIKA. Pak Anang. Rabu, 18 April 2012 ( ) Pembahasan soal oleh

C34 MATEMATIKA. Pak Anang. Rabu, 18 April 2012 ( ) Pembahasan soal oleh DOKUMEN NEGARA C MATEMATIKA SMA/MA IPA MATEMATIKA SMA/MA IPA Pak Anang http://pakhttp://pak-anang.blogspot.com MATEMATIKA Rabu, 8 April 0 (08.00 0.00) A-MAT-ZD-M9-0/0 Hak Cipta pada Pusat Penilaian Pendidikan-BALITBANG-KEMDIKBUD

Lebih terperinci

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2011/2012

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2011/2012 Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2011/2012 1. Hasil dari 17 - ( 3 x (-8) ) adalah... A. 49 B. 41 C. 7 D. -41 BAB II Bentuk Aljabar - perkalian/pembagian mempunyai tingkat

Lebih terperinci

ARITMETIKA. Bahan Diskusi dan Presentasi_p.49

ARITMETIKA. Bahan Diskusi dan Presentasi_p.49 ARITMETIKA Bahan Diskusi dan Presentasi_p.49 No.1 Ibnu baru datang dari pasar. Ia membawa sebotol minuman... 2 liter minuman dan berat satu botolnya 200 gram. Berapa gram berat air beserta botolnya?...????

Lebih terperinci

CONTOH SOAL UAN BARIS DAN DERET

CONTOH SOAL UAN BARIS DAN DERET CONTOH SOAL UAN BARIS DAN DERET 1. Dari suatu barisan aritmetika, suku ketiga adalah 36, jumlah suku kelima dan ketujuh adalah 144. Jumlah sepuluh suku pertama deret tersebut adalah. a. 840 b. 660 c. 640

Lebih terperinci

TAHUN PELAJARAN 2003/2004 SMK. Matematika Non Teknik Pekerjaan Sosial (E4-3) PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul

TAHUN PELAJARAN 2003/2004 SMK. Matematika Non Teknik Pekerjaan Sosial (E4-3) PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul DOKUMEN NEGARA 03-04 E4-3-P10-01-14 SANGAT RAHASIA UJIAN NASIONAL TAHUN PELAJARAN 2003/2004 SMK Matematika Non Teknik Pekerjaan Sosial (E4-3) PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul 07.30 09.30 DEPARTEMEN

Lebih terperinci

PERHITUNGAN BUNGA KREDIT

PERHITUNGAN BUNGA KREDIT PERHITUNGAN BUNGA KREDIT Metode perhitungan bunga kredit: 1. Pembebanan bunga setiap bulan tetap dari jumlah pinjamannya, demikian juga angsuran (cicilan) pokok juga akan tetap sampai pinjaman lunas 2.

Lebih terperinci

BARISAN DAN DERET 1. A. Barisan dan Deret Aritmatika 11/13/2015. Peta Konsep. A. Barisan dan Deret Aritmatika

BARISAN DAN DERET 1. A. Barisan dan Deret Aritmatika 11/13/2015. Peta Konsep. A. Barisan dan Deret Aritmatika Jurnal Peta Konsep Daftar Hadir MateriA SoalLatihan Materi Umum BARISAN DAN DERET 1 Kelas X, Semester A. Barisan dan Deret Aritmatika Barisan dan Deret Aritmatika Barisan dan Deret Soal Aplikasi dalam

Lebih terperinci

KEBIJAKAN/ STRATEGI HARGA BANK. Manajemen Pemasaran Bank Andri Helmi M, SE., MM.

KEBIJAKAN/ STRATEGI HARGA BANK. Manajemen Pemasaran Bank Andri Helmi M, SE., MM. KEBIJAKAN/ STRATEGI HARGA BANK Manajemen Pemasaran Bank Andri Helmi M, SE., MM. INTRODUCTION Bagi perbankan, terutama bank yang berdasarkan prinsip konvensional, harga adalah bunga, biaya administrasi,

Lebih terperinci

PREDIKSI UN 2012 MATEMATIKA SMP

PREDIKSI UN 2012 MATEMATIKA SMP Dibuat untuk persiapan menghadapi UN 2012 PREDIKSI UN 2012 MATEMATIKA SMP Lengkap dengan kisi-kisi dan pembahasan Mungkin (tidak) JITU 12 1. Menghitung hasil operasi tambah, kurang, kali dan bagi pada

Lebih terperinci

AKUNTANSI KEUANGAN BAB 6 TAGIHAN (2) M. REZEKI APRILIYAN, SE., MM.

AKUNTANSI KEUANGAN BAB 6 TAGIHAN (2) M. REZEKI APRILIYAN, SE., MM. AKUNTANSI KEUANGAN BAB 6 TAGIHAN (2) M. REZEKI APRILIYAN, SE., MM. Ada dua cara memanfaatkan piutang sebagai sumber dana, yaitu: Menjaminkan piutang Menjual piutang (anjak piutang) 2 Piutang dijaminkan

Lebih terperinci

LEMBAR AKTIVITAS SISWA BARISAN DAN DERET, BUNGA, PERTUMBUHAN DAN PELURUHAN, DAN ANUITAS

LEMBAR AKTIVITAS SISWA BARISAN DAN DERET, BUNGA, PERTUMBUHAN DAN PELURUHAN, DAN ANUITAS LEMBAR AKTIVITAS SISWA BARISAN DAN DERET, BUNGA, PERTUMBUHAN DAN PELURUHAN, DAN ANUITAS Nama Siswa : Kelas : A. BUNGA TUNGGAL 1. Barisan dan Deret Aritmatika (Mengulang) 3. 4. Latihan 1 1. 5. 2. 1 6. 10.

Lebih terperinci

Perhatikanlah contoh di bawah ini untuk memahami konsep bunga majemuk:

Perhatikanlah contoh di bawah ini untuk memahami konsep bunga majemuk: BUNGA MAJEMUK 1. 1 BUNGA MAJEMUK Pada bab sebelumnya, kita menggunakan P awal yang sama sebagai dasar perhitungan bunga yang disebut dengan bunga sederhana. Pada bunga majemuk dasar pengenaan bunga pada

Lebih terperinci

SISTEM PERSAMAAN LINEAR DUA VARIABEL

SISTEM PERSAMAAN LINEAR DUA VARIABEL SMP - 1 SISTEM PERSAMAAN LINEAR DUA VARIABEL A. Pengertian persamaan linear dua variabel (PLDV) Persamaan linear dua variabel ialah persamaan yang mengandung dua variabel dimana pangkat/derajat tiap-tiap

Lebih terperinci

Hikmah Agustin, SP.,MM

Hikmah Agustin, SP.,MM Hikmah Agustin, SP.,MM Barisan : Susunan bilangan terurut menggunakan pola tertentu (rumus tertentu) Deret : Penjumlahan suku-suku barisan Barisan aritmatika adalah suatu barisan bilangan yang selisih

Lebih terperinci

SEKOLAH MENENGAH KEJURUAN KABUPATEN CILACAP ULANGAN UMUM SEMESTER GANJIL TAHUN PELAJARAN 2014/2015 LEMBAR SOAL MATA DIKLAT : MATEMATIKA

SEKOLAH MENENGAH KEJURUAN KABUPATEN CILACAP ULANGAN UMUM SEMESTER GANJIL TAHUN PELAJARAN 2014/2015 LEMBAR SOAL MATA DIKLAT : MATEMATIKA DOKUMEN NEGARA SANGAT RAHASIA XII/36/SB/S/2014 SEKOLAH MENENGAH KEJURUAN KABUPATEN CILACAP ULANGAN UMUM SEMESTER GANJIL TAHUN PELAJARAN 2014/2015 LEMBAR SOAL MATA DIKLAT : MATEMATIKA Sekolah : SMK Kabupaten

Lebih terperinci

Sistem PERSAMAAN dan PERTIDAKSAMAAN linier

Sistem PERSAMAAN dan PERTIDAKSAMAAN linier Materi W4a Sistem PERSAMAAN dan PERTIDAKSAMAAN linier Kelas X, Semester 1 A. Sistem Persamaan Linier dengan Dua Variabel www.yudarwi.com A. Sistem Persamaan Linier dengan dua Variabel Bentuk umum : ax

Lebih terperinci

SOAL PERSIAPAN UJIAN NASIONAL TAHUN PELAJARAN 2016 / 2017

SOAL PERSIAPAN UJIAN NASIONAL TAHUN PELAJARAN 2016 / 2017 SOAL PERSIAPAN UJIAN NASIONAL TAHUN PELAJARAN 06 / 07 MATA PELAJARAN : Matematika KELOMPOK : TEKNIK (RPL, TKJ). Bentuk sederhana dari p q r 0 0 0 0 p q r 8 0 p q r 8 pqr 6 5 5 p q r p q r p q r 5 adalah....

Lebih terperinci

Nilai uang saat ini lebih berharga dari pada nanti. Individu akan memilih menerima uang yang sama sekarang daripada nanti, dan lebih suka membayar

Nilai uang saat ini lebih berharga dari pada nanti. Individu akan memilih menerima uang yang sama sekarang daripada nanti, dan lebih suka membayar SESI 3 Nilai uang saat ini lebih berharga dari pada nanti. Individu akan memilih menerima uang yang sama sekarang daripada nanti, dan lebih suka membayar dalam jumlah yang sama nanti daripada saat ini.

Lebih terperinci

PENGERTIAN DASAR APAKAH INVESTASI ITU?

PENGERTIAN DASAR APAKAH INVESTASI ITU? PENGERTIAN DASAR Investasi Ekonomi Teknik Bunga (interest) Arus Dana (Cash Flow) Ekivalensi APAKAH INVESTASI ITU? Contoh : Seorang pengusaha membangun sebuah pabrik baru senilai miliaran rupiah. Seorang

Lebih terperinci

Kuliah 4 TIME VALUE OF MONEY DEPARTEMEN AGRIBISNIS FEM-IPB

Kuliah 4 TIME VALUE OF MONEY DEPARTEMEN AGRIBISNIS FEM-IPB Kuliah 4 TIME VALUE OF MONEY DEPARTEMEN AGRIBISNIS FEM-IPB FAKTOR YANG MEMPENGARUHI UMUR BISNIS JANGKA WAKTU UMUR BISNIS YANG DIANALISIS KELAYAKANNYA HAL INI TERKAIT DENGAN SIFAT PROYEK/USAHA YANG DIANALISIS

Lebih terperinci

MODUL MATEMATIKA EKONOMI 1 LABORATORIUM MANAJEMEN DASAR

MODUL MATEMATIKA EKONOMI 1 LABORATORIUM MANAJEMEN DASAR MODUL MATEMATIKA EKONOMI 1 LABORATORIUM MANAJEMEN DASAR NAMA : NPM : KELAS : MATA KULIAH : HARI/SHIFT : PJ : KP : TUTOR : ASBAR : FAKULTAS EKONOMI UNIVERSITAS GUNADARMA DEPOK 2015 KATA PENGANTAR Puji syukur

Lebih terperinci

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2004/2005

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2004/2005 Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2004/2005 1. Perhatikan himpunan di bawah ini! A = {bilangan prima kurang dari 11} B = { 1 < 11, bilangan ganjil} C = {semua faktor dari 12}

Lebih terperinci

Nilai Dalam Konsep Ekonomi

Nilai Dalam Konsep Ekonomi Materi #2 TIN205 EKONOMI TEKNIK Nilai Dalam Konsep Ekonomi 2 Nilai merupakan ukuran penghargaan seseorang terhadap barang/jasa. Maka, nilai termasuk didalamnya bila seseorang ingin membayarnya untuk barang/jasa

Lebih terperinci

11. Memecahkan masalah keuangan menggunakan konsep matematika

11. Memecahkan masalah keuangan menggunakan konsep matematika Standar Kompetensi 11. Memecahkan masalah keuangan menggunakan konsep matematika Kompetensi Dasar 11. 1 Menyelesaikan masalah bunga tunggal dan bunga majemuk dalam keuangan 11. 2 Menyelesaikan masalah

Lebih terperinci

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Tahun 2012

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Tahun 2012 Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Tahun 2012 Bidang Matematika Dasar Kode Paket 623 Oleh : Fendi Alfi Fauzi 1. Jika a dan b adalah bilangan bulat positif yang memenuhi

Lebih terperinci

E-learning matematika, GRATIS 1

E-learning matematika, GRATIS 1 Elearning matematika, GRATIS 1 Editor Penyusun : Dian Novita L, S.Pd. ; Fuat, S.Pd. : Drs. Keto Susanto, M.Si. M.T. ; Istijab, S.H. M.Hum. Imam Indra Gunawan, S.Si. Materi pembelajaran hitung keuangan

Lebih terperinci

Peta Konsep. Bab 3 Matematika Keuangan

Peta Konsep. Bab 3 Matematika Keuangan Bab 3 Matematika Keuangan Sumber: Majalah Tempo 29 Des 03-4 Jan 04 Dalam dunia bisnis, ilmu matematika keuangan banyak diterapkan dalam dunia perbankan, perdagangan, bahkan dunia pemerintahan. Dalam dunia

Lebih terperinci

UJIAN NASIONAL TAHUN 2009/2010 MATEMATIKA (E-4.2) SMK

UJIAN NASIONAL TAHUN 2009/2010 MATEMATIKA (E-4.2) SMK UJIAN NASIONAL TAHUN 009/00 MATEMATIKA (E-.) SMK Kelompok Pariwisata, Seni, dan Kerajinan, Teknologi Kerumahtanggaan, Pekerjaan Sosial, dan Administrasi Perkantoran (P UTAMA). Konveksi milik Bu Nina mengerjakan

Lebih terperinci

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM MATA PELAJARAN Mata Pelajaran Jenjang Kelompok : Matematika : SMK : Bisnis Managemen WAKTU PELAKSANAAN Hari : Sabtu Tanggal : 9 Januari 0 Jam : Pukul. 07.00 09.00 PETUNJUK UMUM Isikan identitas Anda ke

Lebih terperinci

PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang :

PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang : PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang : 1. Menggambar daerah yang memenuhi 2. Menentukan system pertidaksamaan suatu daerah 3. Menentukan nilai optimum

Lebih terperinci

PEMBAHASAN SOAL UN MATEMATIKA SMK Kelompok Pariwisata, Seni, dan Kerajinan, Teknologi Kerumahtanggaan, Pekerjaan Sosial, dan Administrasi Perkantoran

PEMBAHASAN SOAL UN MATEMATIKA SMK Kelompok Pariwisata, Seni, dan Kerajinan, Teknologi Kerumahtanggaan, Pekerjaan Sosial, dan Administrasi Perkantoran PEMBAHASAN SOAL UN MATEMATIKA SMK Kelompok Pariwisata, Seni, dan Kerajinan, Teknologi Kerumahtanggaan, Pekerjaan Sosial, dan Administrasi Perkantoran TAHUN PELAJARAN 9/ MATEMATIKA PEMBAHAS: UJIAN NASIONAL

Lebih terperinci

b. pada tahun berapa nantinya jumlah penduduk di Malang mencapai jiwa?

b. pada tahun berapa nantinya jumlah penduduk di Malang mencapai jiwa? Mata Kuliah : Matematika Ekonomi Program Studi : Matematika B Waktu : 90 menit UJIAN AKHIR SEMESTER GENAP 2O13I2OI4 Sifat Ujian : Tutup Buku HarilTanggal : SELASA l24juni2av Dosen : Prof.Dr.Agus Widodo

Lebih terperinci

UJI COBA UJIAN NASIONAL SMK. Tahun Pelajaran 2014 / 2015 PAKET 04 MATEMATIKA NON TEKNIK KELOMPOK AKUNTANSI DAN PENJUALAN (UTAMA)

UJI COBA UJIAN NASIONAL SMK. Tahun Pelajaran 2014 / 2015 PAKET 04 MATEMATIKA NON TEKNIK KELOMPOK AKUNTANSI DAN PENJUALAN (UTAMA) UJI COBA UJIAN NASIONAL SMK Tahun Pelajaran 04 / 05 MATEMATIKA NON TEKNIK KELOMPOK AKUNTANSI DAN PENJUALAN (UTAMA) A Mata Pelajaran Kelompok : MATEMATIKA : Akuntansi dan Penjualan MATA PELAJARAN PELAKSANAAN

Lebih terperinci

EKONOMI TEKNIK- PEMILIHAN ALTERNATIF2 EKONOMI. Teknik Industri - UB

EKONOMI TEKNIK- PEMILIHAN ALTERNATIF2 EKONOMI. Teknik Industri - UB EKONOMI TEKNIK- PEMILIHAN ALTERNATIF2 EKONOMI Teknik Industri - UB Prosedur Pengambilan keputusan pada Permasalahan-permasalahan teknik 1) Mendefinisikan sejumlah alternatif yang akan dianalisis 2) Mendefinisikan

Lebih terperinci

Kebijakan pengambilan keputusan investasi

Kebijakan pengambilan keputusan investasi Makalah ekonomi teknik Kebijakan pengambilan keputusan investasi OLEH: PUTU NOPA GUNAWAN NIM : D411 10 009 JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS HASANUDDIN 2011 1 BAB I PENDAHULUAN A. Latar

Lebih terperinci

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK PARIWISATA PAKET II B KOTA SURABAYA

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK PARIWISATA PAKET II B KOTA SURABAYA LATIHAN UJIAN NASIONAL TAHUN PELAJARAN 00-0 SMK NEGERI DAN SWASTA KOTA SURABAYA MATEMATIKA KELOMPOK PARIWISATA PAKET II B MGMP MATEMATIKA SMK NEGERI / SWASTA KOTA SURABAYA M A T E M A T I K A S M K P A

Lebih terperinci

KONSEP DASAR BARISAN DAN DERET SERTA PENERAPAN

KONSEP DASAR BARISAN DAN DERET SERTA PENERAPAN KONSEP DASAR BARISAN DAN DERET SERTA PENERAPAN Diskripsi Mata Kuliah Tujuan : Memberikan gambaran dan dasardasar pengertian serta pola pikir yang logis. Barisan dan deret : Bilangan yang tersusun secara

Lebih terperinci

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM MATA PELAJARAN Mata Pelajaran Jenjang Kelompok : Matematika : SMK : Bisnis Managemen WAKTU PELAKSANAAN Hari : Sabtu Tanggal : 9 Januari 0 Jam : Pukul. 07.00 09.00 PETUNJUK UMUM Isikan identitas Anda ke

Lebih terperinci

RUMUS BUNGA & Christina Wirawan 1

RUMUS BUNGA & Christina Wirawan 1 RUMUS BUNGA & EKIVALENSI Christina Wirawan 1 Bunga : PENGERTIAN Uang gyang dibayar untuk penggunaan uang dipinjam Uang pengembalian yang diperoleh dari investasi yang produktif Tingkat suku bunga: Perbandingan

Lebih terperinci

HUTANG JANGKA PENDEK DAN AKUNTANSI UNTUK GAJI DAN UPAH

HUTANG JANGKA PENDEK DAN AKUNTANSI UNTUK GAJI DAN UPAH HUTANG JANGKA PENDEK DAN AKUNTANSI UNTUK GAJI DAN UPAH Hutang merupakan kewajiban untuk memindahkan harta atau memberikan jasa di masa yang akan datang. Kewajiban tersebut muncul karena adanya transaksi

Lebih terperinci

Mengenal Fungsi Finansial pada Excel

Mengenal Fungsi Finansial pada Excel Mengenal Fungsi Finansial pada Excel Sebelum Anda meneruskan membaca bab ini, perlu saya sampaikan bahwa Anda boleh saja melewati atau melompati bab ini apabila Anda tidak terlalu tertarik dengan pemakaian

Lebih terperinci

BAB 1 PENDAHULUAN. A. Latar Belakang Masalah. Pembangunan nasional suatu bangsa mencakup di dalamnya

BAB 1 PENDAHULUAN. A. Latar Belakang Masalah. Pembangunan nasional suatu bangsa mencakup di dalamnya 1 BAB 1 PENDAHULUAN A. Latar Belakang Masalah Pembangunan nasional suatu bangsa mencakup di dalamnya pembangunan ekonomi. Dalam pembangunan ekonomi diperlukan peran serta lembaga keuangan untuk membiayai,

Lebih terperinci

PREDIKSI UN MATEMATIKA SMP

PREDIKSI UN MATEMATIKA SMP MGMP MATEMATIKA SMPN SATU ATAP KAB. MALANG PREDIKSI UN MATEMATIKA SMP Sesuai kisi-kisi UN 2012 plus Pembahasan Marsudi Prahoro 2012 M G M P M A T S A T A P M A L A N G. W O R D P R E S S. C O M 1. Menyelesaikan

Lebih terperinci

Hikmah Agustin, S.P., MM Politeknik Dharma Patria Kebumen

Hikmah Agustin, S.P., MM Politeknik Dharma Patria Kebumen Hikmah Agustin, S.P., MM Politeknik Dharma Patria Kebumen Konsep Dasar Time Value of Money Konsep ini berbicara bahwa nilai uang satu juta yang Anda punya sekarang tidak sama dengan satu juta pada sepuluh

Lebih terperinci

TAHUN PELAJARAN 2003/2004 SMK. Matematika Non Teknik Pariwisata (E4-2) PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul

TAHUN PELAJARAN 2003/2004 SMK. Matematika Non Teknik Pariwisata (E4-2) PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul DOKUMEN NEGARA SANGAT RAHASIA UJIAN NASIONAL TAHUN PELAJARAN 2003/2004 SMK Matematika Non Teknik Pariwisata (E4-2) PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul 07.30 09.30 DEPARTEMEN PENDIDIKAN NASIONAL Hak

Lebih terperinci

1. Daerah berbayang-bayang pada gambar di bawah ini menunjukkan...

1. Daerah berbayang-bayang pada gambar di bawah ini menunjukkan... 1. Daerah berbayang-bayang pada gambar di bawah ini menunjukkan... 2. Dari 12 m pita dipotong-potong menjadi 20 yang sama panjangnya, maka tiap potong panjangnya... 50 cm 60 cm 70 cm 80 cm 3. Bangun ruang

Lebih terperinci