ALGORITMA UMUM PENCARIAN INFORMASI DALAM SISTEM TEMU KEMBALI INFORMASI BERBASIS METODE VEKTORISASI KATA DAN DOKUMEN

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "ALGORITMA UMUM PENCARIAN INFORMASI DALAM SISTEM TEMU KEMBALI INFORMASI BERBASIS METODE VEKTORISASI KATA DAN DOKUMEN"

Transkripsi

1 ALGORITMA UMUM PENCARIAN INFORMASI DALAM SISTEM TEMU KEMBALI INFORMASI BERBASIS METODE VEKTORISASI KATA DAN DOKUMEN Hendra Bunyamn Jurusan Teknk Informatka Fakultas Teknolog Informas Unverstas Krsten Maranatha Jl. Prof. drg. Sura Sumantr No. 65, Bandung 4064 E-mal: Abstract Informaton retreval (IR) system s a system, whch s used to search and retreve nformaton relevant to the users needs. IR system retreves and dsplays documents that are relevant to the users nput (query). The nformaton retreval system has several steps and must execute the steps n order to obtan query results. The steps consst of two processes. The frst one s processng query and the second one s processng the document collecton. Processng query ncludes: conduct text operaton, query formulaton, and make terms ndex for query. Processng the document collecton ncludes: conduct text operaton, ndexng, and make collecton ndex for document collecton. Obtanng terms ndex and collecton ndex, we are able to process terms ndex and collecton ndex to obtan rankng results. To obtan rankng results requres knowledge from basc lnear algebra. Ths paper also explores how to make rankng from the most relevant documents to the most rrelevant documents Keywords: nformaton retreval system, non-nterpolated average precson

2 . Pendahuluan Informaton retreval (IR) system dgunakan untuk menemukan kembal (retreve) nformas-nformas yang relevan terhadap kebutuhan pengguna dar suatu kumpulan nformas secara otomats. Query Informaton Retreval System Koleks Dokumen. Dokumen. Dokumen. Dokumen Hasl Pencaran Gambar Ilustras nformaton retreval system Salah satu aplkas umum dar IR system adalah search engne atau mesn pencaran yang terdapat pada jarngan nternet. Pengguna dapat mencar halaman-halaman web yang dbutuhkannya melalu search engne. Contoh lan dar IR system adalah sstem nformas perpustakaan. IR system terutama berhubungan dengan pencaran nformas yang snya tdak memlk struktur. Ekspres kebutuhan pengguna yang dsebut query, juga tdak memlk struktur. Hal n yang membedakan IR system dengan sstem bass data. Dokumen adalah contoh nformas yang tdak terstruktur. Is dar suatu dokumen sangat tergantung pada pembuat dokumen tersebut. Sebaga suatu sstem, IR system memlk beberapa bagan yang membangun sstem secara keseluruhan. Bagan-bagan yang terdapat pada suatu IR system dgambarkan pada Gambar

3 Document Collecton Query Text Operatons Query formulaton. Dokumen. Dokumen. Dokumen.. Text Operatons Indexng Terms Index Rankng Collecton Index Gambar Bagan-bagan nformaton retreval system Gambar memperlhatkan bahwa terdapat dua buah alur operas pada IR system. Alur pertama dmula dar koleks dokumen dan alur kedua dmula dar query pengguna. Alur pertama yatu pemrosesan terhadap koleks dokumen menjad bass data ndeks tdak tergantung pada alur kedua. Sedangkan alur kedua tergantung dar keberadaan bass data ndeks yang dhaslkan pada alur pertama. Bagan-bagan dar IR system menurut gambar melput:. Text Operatons (operas terhadap teks) yang melput pemlhan katakata dalam query maupun dokumen (term selecton) dalam pentransformasan dokumen atau query menjad term ndex (ndeks dar kata-kata).. Query formulaton (formulas terhadap query) yatu member bobot pada ndeks kata-kata query.. Rankng (perangkngan), mencar dokumen-dokumen yang relevan terhadap query dan mengurutkan dokumen tersebut berdasarkan kesesuaannya dengan query. 4. Indexng (pengndeksan), membangun bass data ndeks dar koleks dokumen. Dlakukan terlebh dahulu sebelum pencaran dokumen dlakukan.

4 IR system menerma query dar pengguna, kemudan melakukan perangkngan terhadap dokumen pada koleks berdasarkan kesesuaannya dengan query. Hasl perangkngan yang dberkan kepada pengguna merupakan dokumen yang menurut sstem relevan dengan query. Namun relevans dokumen terhadap suatu query merupakan penlaan pengguna yang subjektf dan dpengaruh banyak faktor sepert topk, pewaktuan, sumber nformas maupun tujuan pengguna. Model IR system menentukan detl IR system yatu melput representas dokumen maupun query, fungs pencaran (retreval functon) dan notas kesesuaan (relevance notaton) dokumen terhadap query. Terdapat beberapa model IR system sepert model boolean dan model ruang vektor. Dalam tulsan n, model ruang vektor dplh karena model ruang vektor mampu menghaslkan dokumen-dokumen terurut berdasarkan kesesuaan dengan query. Dan juga query d dalam model ruang vektor dapat berupa sekumpulan kata-kata dar pengguna dalam ekspres bebas.. Model Ruang Vektor Msalkan terdapat sejumlah n kata yang berbeda sebaga kamus kata (vocabulary) atau ndeks kata (terms ndex). Kata-kata n akan membentuk ruang vektor yang memlk dmens sebesar n. Setap kata dalam dokumen atau query dberkan bobot sebesar w. Bak dokumen maupun query drepresentaskan sebaga vektor berdmens n. Sebaga contoh terdapat buah kata ( T, T dan T ), buah dokumen ( D dan D ) serta sebuah query Q. Masng-masng bernla: D = T + T + 5T ; D = T + 7T + 0T ; Q = 0T + 0T + T Maka representas grafs dar ketga vektor n adalah sepert pada gambar Koleks dokumen drepresentas pula dalam ruang vektor sebaga matrks kata-dokumen (terms-documents matrx). Nla dar elemen matrks w adalah bobot kata dalam dokumen j. j 4

5 T 5 D + T = T + T 5 Q = 0T + T + 0T T D T + T = T + 7 T 7 Gambar Contoh vektor-vektor D, D, D dan Q Msalkan terdapat sekumpulan kata T sejumlah m, yatu T = T, T,, T ) dan sekumpulan dokumen D sejumlah n, yatu ( m ( D, D,, Dn D = ) serta w j adalah bobot kata pada dokumen j. Maka gambar 4 adalah representas matrks kata-dokumen T T Tm D w w wm D w w wm Dn wn w n wmn Gambar 4 Representas matrks kata-dokumen Penentuan relevans dokumen dengan query dpandang sebaga pengukuran kesamaan (smlarty measure) antara vektor dokumen dengan vektor query. Semakn sama suatu vektor dokumen dengan vektor query maka dokumen dapat dpandang semakn relevan dengan query. Salah satu pengukuran 5

6 kesesuaan yang bak adalah dengan memperhatkan perbedaan arah (drecton dfference) dar kedua vektor tersebut. Perbedaan arah kedua vektor dalam geometr dapat danggap sebaga sudut yang terbentuk oleh kedua vektor. Gambar 5 menglustraskan kesamaan antara dokumen D dan D dengan query Q. Sudut θ menggambarkan kesamaan dokumen D dengan query sedangkan sudut θ menggambarkan kesamaan dokumen D dengan query. T D θ Q θ T D T Gambar 5 Representas grafs sudut vektor dokumen dan query Jka Q adalah vektor query dan D adalah vektor dokumen, yang merupakan dua buah vektor dalam ruang berdmens- n, dan θ adalah sudut yang dbentuk oleh kedua vektor tersebut. Maka Q D = Q D cosθ...() dengan Q D adalah hasl perkalan ttk (dot product) kedua vektor, sedangkan D = n D = n Q = dan Q =...() merupakan norm atau panjang vektor d dalam ruang berdmens- n. Perhtungan kesamaan (Smlarty) kedua vektor adalah sebaga berkut 6

7 n Q D Sm( Q, D) = cos( Q, D) = = Q D...() Q D Q D = dengan Q D adalah perkalan antara Q dan D. Metode pengukuran kesesuaan n memlk beberapa keuntungan, yatu adanya normalsas terhadap panjang dokumen. Hal n memperkecl pengaruh panjang dokumen. Panjang kedua vektor dgunakan sebaga faktor normalsas. Hal n dperlukan karena dokumen yang panjang cenderung mendapatkan nla yang besar dbandngkan dengan dokumen yang lebh pendek. Proses perangkngan dar dokumen dapat danggap sebaga proses pemlhan (vektor) dokumen yang dekat dengan (vektor) query, kedekatan n dndkaskan dengan sudut yang dbentuk. Nla cosnus yang cenderung besar mengndkaskan bahwa dokumen cenderung sesua query. Nla cosnus sama dengan mengndkaskan bahwa dokumen sesua dengan query.. Pembobotan Kata Bagan sebelumnya membahas mengena metode pengukuran kesesuaan antara dokumen dan query dalam model ruang vektor. Dokumen maupun query drepresentaskan sebaga vektor berdmens- n. Bagan n akan membahas mengena nla dar vektor atau bobot kata dalam dokumen. Salah satu cara untuk member bobot terhadap suatu kata adalah memberkan nla jumlah kemunculan suatu kata (term frequency) sebaga bobot. Semakn besar kemunculan suatu kata dalam dokumen akan memberkan nla kesesuaan yang semakn besar. Faktor lan yang dperhatkan dalam pemberan bobot adalah kejarangmunculan kata (term scarcty) dalam koleks. Kata yang muncul pada sedkt dokumen harus dpandang sebaga kata yang lebh pentng (uncommon terms) darpada kata yang muncul pada banyak dokumen. Pembobotan akan memperhtungkan faktor kebalkan frekuens dokumen yang mengandung suatu kata (nverse document frequency). Hal n merupakan usulan dar George Zpf. Zpf mengamat bahwa frekuens dar sesuatu cenderung kebalkan secara proporsonal dengan urutannya. Faktor terakhrnya adalah faktor normalsas terhadap panjang dokumen. Dokumen dalam koleks dokumen memlk karakterstk panjang yang beragam. Ketmpangan terjad karena dokumen yang panjang akan cenderung mempunya frekuens kemunculan kata yang besar. Sehngga untuk mengurang ketmpangan tersebut dperlukan faktor normalsas dalam pembobotan. 7

8 Perbedaan antara normalsas pada pembobotan dan perangkngan adalah normalsas pada pembobotan dlakukan terhadap suatu kata dalam suatu dokumen sedangkan pada perangkngan dlakukan terhadap suatu dokumen dalam koleks dokumen. Pembobotan yang danggap palng bak adalah menggunakan persamaan log( tf + = ).0 w...(4) t [log( tf j ) +.0] j= untuk pembobotan kata ( w ) pada dokumen dan menggunakan persamaan (log( tf ) +.0) + log( N ) n q =...(5) t tf j + N [(log( ).0) (log( ))] n j j= untuk pembobotan kata ( q ) pada query. Dengan tf adalah frekuens kemunculan kata, n banyak dokumen yang mengandung kata dan N jumlah dokumen dalam koleks. 4. Kesmpulan Pengguna menggunakan IR system sebaga alat bantu untuk dapat mencar dokumen yang sesua dengan query pengguna. D dalam IR system, terdapat beberapa proses yang harus dlakukan sehngga IR system dapat menamplkan daftar rankng dokumen dar dokumen yang palng relevan dengan query sampa dengan dokumen yang tdak relevan dengan query. Model IR system yang dgunakan dalam tulsan n adalah model ruang vektor. D dalam model ruang vektor, query dan dokumen drepresentaskan sebaga vektor-vektor. Kesesuaan vektor query dengan vektor-vektor dokumen dhtung dengan menggunakan aljabar lner sederhana. 5. Daftar Pustaka Jacob, Bll (990), Lnear Algebra, W.H. Freeman and Company. Karlgren, Juss (998), The Bascs of Informaton Retreval. URL: Lddy, Elzabeth (00), How a search engne works URL: Rjsbergen, C.J. van (979), Informaton Retreval, Butterworths, London. Setawan, Hendra (00), Umpan Balk Relevans pada Sstem Temu Kembal Informas, Tugas Akhr Departemen Teknk Informatka ITB. 8

BAB VB PERSEPTRON & CONTOH

BAB VB PERSEPTRON & CONTOH BAB VB PERSEPTRON & CONTOH Model JST perseptron dtemukan oleh Rosenblatt (1962) dan Mnsky Papert (1969). Model n merupakan model yang memlk aplkas dan pelathan yang lebh bak pada era tersebut. 5B.1 Arstektur

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Dalam pembuatan tugas akhr n, penulsan mendapat referens dar pustaka serta lteratur lan yang berhubungan dengan pokok masalah yang penuls ajukan. Langkah-langkah yang akan

Lebih terperinci

Preferensi untuk alternatif A i diberikan

Preferensi untuk alternatif A i diberikan Bahan Kulah : Topk Khusus Metode Weghted Product (WP) menggunakan perkalan untuk menghubungkan ratng atrbut, dmana ratng setap atrbut harus dpangkatkan dulu dengan bobot atrbut yang bersangkutan. Proses

Lebih terperinci

MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM

MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM Tut Susant, Mashad, Sukamto Mahasswa Program S Matematka Dosen Jurusan Matematka Fakultas Matematka dan Ilmu Pengetahuan Alam

Lebih terperinci

BAB X RUANG HASIL KALI DALAM

BAB X RUANG HASIL KALI DALAM BAB X RUANG HASIL KALI DALAM 0. Hasl Kal Dalam Defns. Hasl kal dalam adalah fungs yang mengatkan setap pasangan vektor d ruang vektor V (msalkan pasangan u dan v, dnotaskan dengan u, v ) dengan blangan

Lebih terperinci

Didownload dari ririez.blog.uns.ac.id BAB I PENDAHULUAN

Didownload dari ririez.blog.uns.ac.id BAB I PENDAHULUAN BAB I PENDAHULUAN Sebuah jarngan terdr dar sekelompok node yang dhubungkan oleh busur atau cabang. Suatu jens arus tertentu berkatan dengan setap busur. Notas standart untuk menggambarkan sebuah jarngan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Kamus Buku acuan yang memuat kata dan ungkapan, basanya dsusun menurut abjad berkut keterangan tentang makna, pemakaan, atau terjemahannya, kamus juga dsebut buku yang memuat

Lebih terperinci

PENENTUAN LOKASI PEMANCAR TELEVISI MENGGUNAKAN FUZZY MULTI CRITERIA DECISION MAKING

PENENTUAN LOKASI PEMANCAR TELEVISI MENGGUNAKAN FUZZY MULTI CRITERIA DECISION MAKING Meda Informatka, Vol. 2, No. 2, Desember 2004, 57-64 ISSN: 0854-4743 PENENTUAN LOKASI PEMANCAR TELEVISI MENGGUNAKAN FUZZY MULTI CRITERIA DECISION MAKING Sr Kusumadew Jurusan Teknk Informatka, Fakultas

Lebih terperinci

SISTEM PENDUKUNG KEPUTUSAN PENILAIAN KINERJA DAN PEMILIHAN MITRA BADAN PUSAT STATISTIK (BPS) KABUPATEN GUNUNGKIDUL MENGGUNAKAN METODE SAW BERBASIS WEB

SISTEM PENDUKUNG KEPUTUSAN PENILAIAN KINERJA DAN PEMILIHAN MITRA BADAN PUSAT STATISTIK (BPS) KABUPATEN GUNUNGKIDUL MENGGUNAKAN METODE SAW BERBASIS WEB SISTEM PENDUKUNG KEPUTUSAN PENILAIAN KINERJA DAN PEMILIHAN MITRA BADAN PUSAT STATISTIK (BPS) KABUPATEN GUNUNGKIDUL MENGGUNAKAN METODE SAW BERBASIS WEB Putr Har Ikhtarn ), Bety Nurltasar 2), Hafdz Alda

Lebih terperinci

BAB II TINJAUAN PUSTAKA. George Boole dalam An Investigation of the Laws of Thought pada tahun

BAB II TINJAUAN PUSTAKA. George Boole dalam An Investigation of the Laws of Thought pada tahun BAB II TINJAUAN PUSTAKA 2.1 Aljabar Boolean Barnett (2011) menyatakan bahwa Aljabar Boolean dpublkaskan oleh George Boole dalam An Investgaton of the Laws of Thought pada tahun 1954. Dalam karya n, Boole

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang dan Permasalahan

BAB I PENDAHULUAN Latar Belakang dan Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan Matematka dbag menjad beberapa kelompok bdang lmu, antara lan analss, aljabar, dan statstka. Ruang barsan merupakan salah satu bagan yang ada d bdang

Lebih terperinci

ANALISIS SENTIMEN PENGGUNA JEJARING SOSIAL MENGGUNAKAN METODE SUPPORT VECTOR MACHINE

ANALISIS SENTIMEN PENGGUNA JEJARING SOSIAL MENGGUNAKAN METODE SUPPORT VECTOR MACHINE ANALISIS SENTIMEN PENGGUNA JEJARING SOSIAL MENGGUNAKAN METODE SUPPORT VECTOR MACHINE M. Fachrurroz, M.T. 1, Nov Yuslan, M.T. 2 1,2 Jurusan Teknk Informatka Fakultas Ilmu Komputer, Unverstas Srwjaya 1 obetsobets@gmal.com,

Lebih terperinci

Bab III Analisis Rantai Markov

Bab III Analisis Rantai Markov Bab III Analss Ranta Markov Sstem Markov (atau proses Markov atau ranta Markov) merupakan suatu sstem dengan satu atau beberapa state atau keadaan, dan dapat berpndah dar satu state ke state yang lan pada

Lebih terperinci

PENDAHULUAN TINJAUAN PUSTAKA

PENDAHULUAN TINJAUAN PUSTAKA Latar Belakang PENDAHULUAN Sejalan dengan semakn populernya penggunaan Internet dan Perpustakaan Dgtal nformas dalam jumlah yang luar basa besar kn bsa dakses secara luas oleh masyarakat suatu hal yang

Lebih terperinci

BAB I PENDAHULUAN. suatu komputer digital [12]. Citra digital tersusun atas sejumlah elemen.

BAB I PENDAHULUAN. suatu komputer digital [12]. Citra digital tersusun atas sejumlah elemen. BAB I PENDAHULUAN 1.1 LATAR BELAKANG Ctra dgtal merupakan ctra hasl dgtalsas yang dapat dolah pada suatu komputer dgtal [12]. Ctra dgtal tersusun atas sejumlah elemen. Elemen-elemen yang menyusun ctra

Lebih terperinci

PENGURUTAN DATA. A. Tujuan

PENGURUTAN DATA. A. Tujuan PENGURUTAN DATA A. Tuuan Pembahasan dalam bab n adalah mengena pengurutan data pada sekumpulan data. Terdapat beberapa metode untuk melakukan pengurutan data yang secara detl akan dbahas ddalam bab n.

Lebih terperinci

Dekomposisi Nilai Singular dan Aplikasinya

Dekomposisi Nilai Singular dan Aplikasinya A : Dekomposs Nla Sngular dan Aplkasnya Gregora Aryant Dekomposs Nla Sngular dan Aplkasnya Oleh : Gregora Aryant Program Stud Penddkan Matematka nverstas Wdya Mandala Madun aryant_gregora@yahoocom Abstrak

Lebih terperinci

IV. PERANCANGAN DAN IMPLEMENTASI SISTEM

IV. PERANCANGAN DAN IMPLEMENTASI SISTEM IV. PERANCANGAN DAN IMPLEMENTASI SISTEM Perancangan Sstem Sstem yang akan dkembangkan adalah berupa sstem yang dapat membantu keputusan pemodal untuk menentukan portofolo saham yang dperdagangkan d Bursa

Lebih terperinci

BAB III METODE KOMPRESI DAN DEKOMPRESI. untuk setiap B X. fraktal. Penjelasan dimulai dengan pengenalan Multiple Reduction Copy

BAB III METODE KOMPRESI DAN DEKOMPRESI. untuk setiap B X. fraktal. Penjelasan dimulai dengan pengenalan Multiple Reduction Copy BAB III METODE KOMPRESI DAN DEKOMPRESI Kompres ctra fraktal memodelkan ctra sebaga lmt dar suatu proses teras. Jka dberkan suatu ctra A X, metode n akan mencar suatu proses W sedemkan sehngga ttk tetap

Lebih terperinci

PERTEMUAN I PENGENALAN STATISTIKA TUJUAN PRAKTIKUM

PERTEMUAN I PENGENALAN STATISTIKA TUJUAN PRAKTIKUM PERTEMUAN I PENGENALAN STATISTIKA TUJUAN PRAKTIKUM 1) Membuat dstrbus frekuens. 2) Mengetahu apa yang dmaksud dengan Medan, Modus dan Mean. 3) Mengetahu cara mencar Nla rata-rata (Mean). TEORI PENUNJANG

Lebih terperinci

PEMBUATAN GRAFIK PENGENDALI BERDASARKAN ANALISIS KOMPONEN UTAMA (PRINCIPAL COMPONENT ANALYSIS)

PEMBUATAN GRAFIK PENGENDALI BERDASARKAN ANALISIS KOMPONEN UTAMA (PRINCIPAL COMPONENT ANALYSIS) PEMBUATAN GRAFIK PENGENDALI BERDASARKAN ANALISIS KOMPONEN UTAMA (PRINCIPAL COMPONENT ANALYSIS) Wrayant ), Ad Setawan ), Bambang Susanto ) ) Mahasswa Program Stud Matematka FSM UKSW Jl. Dponegoro 5-6 Salatga,

Lebih terperinci

ε adalah error random yang diasumsikan independen, m X ) adalah fungsi

ε adalah error random yang diasumsikan independen, m X ) adalah fungsi BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Analss regres merupakan suatu metode yang dgunakan untuk menganalss hubungan antara dua atau lebh varabel. Pada analss regres terdapat dua jens varabel yatu

Lebih terperinci

PENINGKATAN PERFORMANSI SISTEM TEMU BALIK INFORMASI DENGAN METODE PHRASAL TRANSLATION DAN QUERY EXPANSION

PENINGKATAN PERFORMANSI SISTEM TEMU BALIK INFORMASI DENGAN METODE PHRASAL TRANSLATION DAN QUERY EXPANSION PENINGKATAN PERFORMANSI SISTEM TEMU BALIK INFORMASI DENGAN METODE PHRASAL TRANSLATION DAN QUERY EXPANSION Ar Wbowo Teknk Multmeda dan Jarngan, Polteknk Neger Batam wbowo@polbatam.ac.d Abstract Development

Lebih terperinci

Dalam sistem pengendalian berhirarki 2 level, maka optimasi dapat. dilakukan pada level pertama yaitu pengambil keputusan level pertama yang

Dalam sistem pengendalian berhirarki 2 level, maka optimasi dapat. dilakukan pada level pertama yaitu pengambil keputusan level pertama yang LARGE SCALE SYSEM Course by Dr. Ars rwyatno, S, M Dept. of Electrcal Engneerng Dponegoro Unversty BAB V OPIMASI SISEM Dalam sstem pengendalan berhrark level, maka optmas dapat dlakukan pada level pertama

Lebih terperinci

III PEMBAHASAN. merupakan cash flow pada periode i, dan C. berturut-turut menyatakan nilai rata-rata dari V. dan

III PEMBAHASAN. merupakan cash flow pada periode i, dan C. berturut-turut menyatakan nilai rata-rata dari V. dan Pada bab n akan dbahas mengena penyelesaan masalah ops real menggunakan pohon keputusan bnomal. Dalam menentukan penlaan proyek, dapat dgunakan beberapa metode d antaranya dscounted cash flow (DF). DF

Lebih terperinci

BAB 4 METODOLOGI PENELITIAN DAN ANALISIS

BAB 4 METODOLOGI PENELITIAN DAN ANALISIS 28 BAB 4 METODOLOGI PENELITIAN DAN ANALISIS 4.1 Kerangka Pemkran dan Hpotess Dalam proses peneltan n, akan duj beberapa varabel software yang telah dsebutkan pada bab sebelumnya. Sesua dengan tahapan-tahapan

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISA

BAB IV PENGUJIAN DAN ANALISA BAB IV PENGUJIAN DAN ANALISA 4. PENGUJIAN PENGUKURAN KECEPATAN PUTAR BERBASIS REAL TIME LINUX Dalam membuktkan kelayakan dan kehandalan pengukuran kecepatan putar berbass RTLnux n, dlakukan pengujan dalam

Lebih terperinci

BAB II TEORI ALIRAN DAYA

BAB II TEORI ALIRAN DAYA BAB II TEORI ALIRAN DAYA 2.1 UMUM Perhtungan alran daya merupakan suatu alat bantu yang sangat pentng untuk mengetahu konds operas sstem. Perhtungan alran daya pada tegangan, arus dan faktor daya d berbaga

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 2 LNDSN TEORI 2. Teor engamblan Keputusan Menurut Supranto 99 keputusan adalah hasl pemecahan masalah yang dhadapnya dengan tegas. Suatu keputusan merupakan jawaban yang past terhadap suatu pertanyaan.

Lebih terperinci

Bab 1 PENDAHULUAN Latar Belakang

Bab 1 PENDAHULUAN Latar Belakang 11 Bab 1 PENDAHULUAN 1.1. Latar Belakang Perbankan adalah ndustr yang syarat dengan rsko. Mula dar pengumpulan dana sebaga sumber labltas, hngga penyaluran dana pada aktva produktf. Berbaga kegatan jasa

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fska Dasar I (FI-31) Topk har n (mnggu 5) Usaha dan Energ Usaha dan Energ Energ Knetk Teorema Usaha Energ Knetk Energ Potensal Gravtas Usaha dan Energ Potensal Gravtas Gaya Konservatf dan Non-Konservatf

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN Latar elakang Sekolah merupakan salah satu bagan pentng dalam penddkan Oleh karena tu sekolah harus memperhatkan bagan-bagan yang ada d dalamnya Salah satu bagan pentng yang tdak dapat dpsahkan

Lebih terperinci

Kata kunci : daya, bahan bakar, optimasi, ekonomis. pembangkitan yang maksimal dengan biaya pengoperasian unit pembangkit yang minimal.

Kata kunci : daya, bahan bakar, optimasi, ekonomis. pembangkitan yang maksimal dengan biaya pengoperasian unit pembangkit yang minimal. Makalah Semnar Tugas Akhr MENGOPTIMALKAN PEMBAGIAN BEBAN PADA UNIT PEMBANGKIT PLTGU TAMBAK LOROK DENGAN METODE LAGRANGE MULTIPLIER Oleh : Marno Sswanto, LF 303 514 Abstrak Pertumbuhan ndustr pada suatu

Lebih terperinci

Fisika Dasar I (FI-321) Usaha dan Energi

Fisika Dasar I (FI-321) Usaha dan Energi Fska Dasar I (FI-31) Topk har n (mnggu 5) Usaha dan Energ Usaha Menyatakan hubungan antara gaya dan energ Energ menyatakan kemampuan melakukan usaha Usaha,,, yang dlakukan oleh gaya konstan pada sebuah

Lebih terperinci

BAB III METODE PENELITIAN. yang digunakan meliputi: (1) PDRB Kota Dumai (tahun ) dan PDRB

BAB III METODE PENELITIAN. yang digunakan meliputi: (1) PDRB Kota Dumai (tahun ) dan PDRB BAB III METODE PENELITIAN 3.1 Jens dan Sumber Data Jens data yang dgunakan dalam peneltan n adalah data sekunder. Data yang dgunakan melput: (1) PDRB Kota Duma (tahun 2000-2010) dan PDRB kabupaten/kota

Lebih terperinci

BAB 1 PENDAHULUAN. Pertumbuhan dan kestabilan ekonomi, adalah dua syarat penting bagi kemakmuran

BAB 1 PENDAHULUAN. Pertumbuhan dan kestabilan ekonomi, adalah dua syarat penting bagi kemakmuran BAB 1 PENDAHULUAN 1.1. Latar Belakang Pertumbuhan dan kestablan ekonom, adalah dua syarat pentng bag kemakmuran dan kesejahteraan suatu bangsa. Dengan pertumbuhan yang cukup, negara dapat melanjutkan pembangunan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Penjadwalan Baker (1974) mendefnskan penjadwalan sebaga proses pengalokasan sumber-sumber dalam jangka waktu tertentu untuk melakukan sejumlah pekerjaan. Menurut Morton dan

Lebih terperinci

PEMILIHAN VARIABEL YANG RELEVAN PADA ATURAN FUZZY MENGGUNAKAN JARINGAN SYARAF

PEMILIHAN VARIABEL YANG RELEVAN PADA ATURAN FUZZY MENGGUNAKAN JARINGAN SYARAF PEMILIHAN VARIABEL YANG RELEVAN PADA ATURAN FUZZY MENGGUNAKAN JARINGAN YARAF r Kusumadew Jurusan Teknk Informatka, Fakultas Teknolog Industr Unverstas Islam Indonesa Yogyakarya emal: cce@ft.u.ac.d Abstrak

Lebih terperinci

Nama : Crishadi Juliantoro NPM :

Nama : Crishadi Juliantoro NPM : ANALISIS INVESTASI PADA PERUSAHAAN YANG MASUK DALAM PERHITUNGAN INDEX LQ-45 MENGGUNAKAN PORTOFOLIO DENGAN METODE SINGLE INDEX MODEL. Nama : Crshad Julantoro NPM : 110630 Latar Belakang Pemlhan saham yang

Lebih terperinci

BAB 1 PENDAHULUAN. dependen (y) untuk n pengamatan berpasangan i i i. x : variabel prediktor; f x ) ). Bentuk kurva regresi f( x i

BAB 1 PENDAHULUAN. dependen (y) untuk n pengamatan berpasangan i i i. x : variabel prediktor; f x ) ). Bentuk kurva regresi f( x i BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Analss regres merupakan analss statstk yang dgunakan untuk memodelkan hubungan antara varabel ndependen (x) dengan varabel ( x, y ) n dependen (y) untuk n pengamatan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2 Masalah Transportas Jong Jek Sang (20) menelaskan bahwa masalah transportas merupakan masalah yang serng dhadap dalam pendstrbusan barang Msalkan ada m buah gudang (sumber) yang

Lebih terperinci

APLIKASI METODE SINGULAR VALUE DECOMPOSITION(SVD) PADA SISTEM PERSAMAAN LINIER KOMPLEKS

APLIKASI METODE SINGULAR VALUE DECOMPOSITION(SVD) PADA SISTEM PERSAMAAN LINIER KOMPLEKS Vol No Jurnal Sans Teknolog Industr APLIKASI METODE SINGULAR VALUE DECOMPOSITION(SVD) PADA SISTEM PERSAMAAN LINIER KOMPLEKS Ftr Aryan Dew Yulant Jurusan Matematka Fakultas Sans Teknolog UIN SUSKA Rau Emal:

Lebih terperinci

BAB IV PEMBAHASAN MODEL

BAB IV PEMBAHASAN MODEL BAB IV PEMBAHASAN MODEL Pada bab IV n akan dlakukan pembuatan model dengan melakukan analss perhtungan untuk permasalahan proses pengadaan model persedaan mult tem dengan baya produks cekung dan jont setup

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Fuzzy Set Pada tahun 1965, Zadeh memodfkas teor hmpunan dmana setap anggotanya memlk derajat keanggotaan yang bernla kontnu antara 0 sampa 1. Hmpunan n dsebut dengan hmpunaan

Lebih terperinci

Bab III Analisis dan Rancangan Sistem Kompresi Kalimat

Bab III Analisis dan Rancangan Sistem Kompresi Kalimat Bab III Analss dan Rancangan Sstem Kompres Kalmat Bab n bers penjelasan dan analss terhadap sstem kompres kalmat yang dkembangkan d dalam tess n. Peneltan n menggunakan pendekatan statstcal translaton

Lebih terperinci

BAB III METODE PENELITIAN. sebuah fenomena atau suatu kejadian yang diteliti. Ciri-ciri metode deskriptif menurut Surakhmad W (1998:140) adalah

BAB III METODE PENELITIAN. sebuah fenomena atau suatu kejadian yang diteliti. Ciri-ciri metode deskriptif menurut Surakhmad W (1998:140) adalah BAB III METODE PENELITIAN 3.1 Metode Peneltan Metode yang dgunakan dalam peneltan n adalah metode deskrptf. Peneltan deskrptf merupakan peneltan yang dlakukan untuk menggambarkan sebuah fenomena atau suatu

Lebih terperinci

II. TEORI DASAR. Definisi 1. Transformasi Laplace didefinisikan sebagai

II. TEORI DASAR. Definisi 1. Transformasi Laplace didefinisikan sebagai II. TEORI DASAR.1 Transormas Laplace Ogata (1984) mengemukakan bahwa transormas Laplace adalah suatu metode operasonal ang dapat dgunakan untuk menelesakan persamaan derensal lnear. Dengan menggunakan

Lebih terperinci

Algoritma Umum Pencarian Informasi Dalam Sistem Temu Kembali Informasi Berbasis Metode Vektorisasi Kata dan Dokumen

Algoritma Umum Pencarian Informasi Dalam Sistem Temu Kembali Informasi Berbasis Metode Vektorisasi Kata dan Dokumen Algortma Umum Pecara Iformas Dalam Sstem Temu Kembal Iformas Berbass Metode Vektorsas Kata da Dokume Hedra Buyam Jurusa Tekk Iformatka Fakultas Tekolog Iformas Uverstas Krste Maraatha Jl. Prof. drg. Sura

Lebih terperinci

SISTEM LINEAR MAX-PLUS KABUR WAKTU INVARIANT AUTONOMOUS

SISTEM LINEAR MAX-PLUS KABUR WAKTU INVARIANT AUTONOMOUS SISTEM LINEAR MAX-PLUS KABUR WAKTU INVARIANT AUTONOMOUS A8 M. Andy Rudhto 1 1 Program Stud Penddkan Matematka FKIP Unverstas Sanata Dharma Kampus III USD Pangan Maguwoharjo Yogyakarta 1 e-mal: arudhto@yahoo.co.d

Lebih terperinci

ANALISIS ALGORITMA BAYESIAN TERHADAP BASIS KASUS UNTUK KERUSAKAN PERSONAL COMPUTER (PC)

ANALISIS ALGORITMA BAYESIAN TERHADAP BASIS KASUS UNTUK KERUSAKAN PERSONAL COMPUTER (PC) ANALISIS ALGORITMA BAYESIAN TERHADAP BASIS KASUS UNTUK KERUSAKAN PERSONAL COMPUTER (PC) Dna Maulna Sstem Informas STMIK AMIKOM Yogyakarta emal : dna.m@amkom.ac.d Abstract Personal Computer ( PC ) s a set

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1 Tnjauan Pustaka Dar peneltan yang dlakukan Her Sulstyo (2010) telah dbuat suatu sstem perangkat lunak untuk mendukung dalam pengamblan keputusan menggunakan

Lebih terperinci

PROTOTYPE APLIKASI UNTUK MENGUKUR KEMATANGAN BUAH APEL BERDASAR KEMIRIPAN WARNA

PROTOTYPE APLIKASI UNTUK MENGUKUR KEMATANGAN BUAH APEL BERDASAR KEMIRIPAN WARNA PROTOTYPE APLIKASI UNTUK MENGUKUR KEMATANGAN BUAH APEL BERDASAR KEMIRIPAN WARNA Catur Iswahyud Program Stud Teknk Informatka, Fakultas Teknolog Industr Insttut Sans & Teknolog AKPRIND Yogyakarta Emal :

Lebih terperinci

ANALISIS DATA KATEGORIK (STK351)

ANALISIS DATA KATEGORIK (STK351) Suplemen Respons Pertemuan ANALISIS DATA KATEGORIK (STK351) 7 Departemen Statstka FMIPA IPB Pokok Bahasan Sub Pokok Bahasan Referens Waktu Korelas Perngkat (Rank Correlaton) Bag. 1 Koefsen Korelas Perngkat

Lebih terperinci

P n e j n a j d a u d a u l a a l n a n O pt p im i a m l a l P e P m e b m a b n a g n k g i k t Oleh Z r u iman

P n e j n a j d a u d a u l a a l n a n O pt p im i a m l a l P e P m e b m a b n a g n k g i k t Oleh Z r u iman OTIMISASI enjadualan Optmal embangkt Oleh : Zurman Anthony, ST. MT Optmas pengrman daya lstrk Dmaksudkan untuk memperkecl jumlah keseluruhan baya operas dengan memperhtungkan rug-rug daya nyata pada saluran

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Di dalam matematika mulai dari SD, SMP, SMA, dan Perguruan Tinggi

BAB I PENDAHULUAN. 1.1 Latar Belakang. Di dalam matematika mulai dari SD, SMP, SMA, dan Perguruan Tinggi Daftar Is Daftar Is... Kata pengantar... BAB I...1 PENDAHULUAN...1 1.1 Latar Belakang...1 1.2 Rumusan Masalah...2 1.3 Tujuan...2 BAB II...3 TINJAUAN TEORITIS...3 2.1 Landasan Teor...4 BAB III...5 PEMBAHASAN...5

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Hpotess Peneltan Berkatan dengan manusa masalah d atas maka penuls menyusun hpotess sebaga acuan dalam penulsan hpotess penuls yatu Terdapat hubungan postf antara penddkan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi Game Theory

BAB II DASAR TEORI. 2.1 Definisi Game Theory BAB II DASAR TEORI Perkembangan zaman telah membuat hubungan manusa semakn kompleks. Interaks antar kelompok-kelompok yang mempunya kepentngan berbeda kemudan melahrkan konflk untuk mempertahankan kepentngan

Lebih terperinci

Matematika Eigenface Menggunakan Metrik Euclidean

Matematika Eigenface Menggunakan Metrik Euclidean Matematka Egenface Menggunakan Metrk Eucldean 6 Ben Utomo Sekolah ngg eknolog Bontang, Indonesa Abstract Salah satu sstem pengenalan wajah (face recognton) adalah metode egenface. Metode n bekerja dengan

Lebih terperinci

RANGKAIAN SERI. 1. Pendahuluan

RANGKAIAN SERI. 1. Pendahuluan . Pendahuluan ANGKAIAN SEI Dua elemen dkatakan terhubung ser jka : a. Kedua elemen hanya mempunya satu termnal bersama. b. Ttk bersama antara elemen tdak terhubung ke elemen yang lan. Pada Gambar resstor

Lebih terperinci

III PEMODELAN MATEMATIS SISTEM FISIK

III PEMODELAN MATEMATIS SISTEM FISIK 34 III PEMODELN MTEMTIS SISTEM FISIK Deskrps : Bab n memberkan gambaran tentang pemodelan matemats, fungs alh, dagram blok, grafk alran snyal yang berguna dalam pemodelan sstem kendal. Objektf : Memaham

Lebih terperinci

Teori Himpunan. Modul 1 PENDAHULUAN. impunan sebagai koleksi (pengelompokan) dari objek-objek yang

Teori Himpunan. Modul 1 PENDAHULUAN. impunan sebagai koleksi (pengelompokan) dari objek-objek yang Modul 1 Teor Hmpunan PENDAHULUAN Prof SM Nababan, PhD Drs Warsto, MPd mpunan sebaga koleks (pengelompokan) dar objek-objek yang H dnyatakan dengan jelas, banyak dgunakan dan djumpa dberbaga bdang bukan

Lebih terperinci

Bab 2 Tinjauan Pustaka 2.1 Penelitian Terdahulu

Bab 2 Tinjauan Pustaka 2.1 Penelitian Terdahulu Bab 2 Tnjauan Pustaka 2.1 Peneltan Terdahulu Pemlhan stud pustaka tentang sstem nformas penlaan knerja karyawan n juga ddasar pada peneltan sebelumnya yang berjudul Penerapan Metode TOPSIS untuk Pemberan

Lebih terperinci

BAB III SKEMA NUMERIK

BAB III SKEMA NUMERIK BAB III SKEMA NUMERIK Pada bab n, akan dbahas penusunan skema numerk dengan menggunakan metoda beda hngga Forward-Tme dan Centre-Space. Pertama kta elaskan operator beda hngga dan memberkan beberapa sfatna,

Lebih terperinci

BAB II ESSAY GRADING METODE LSA DAN LATENT SEMANTIC ANALYSIS (LSA)

BAB II ESSAY GRADING METODE LSA DAN LATENT SEMANTIC ANALYSIS (LSA) BAB II ESSAY GRADING METODE LSA DAN LATENT SEMANTIC ANALYSIS (LSA) 2.. ESSAY GRADING METODE LSA Ada beberapa metode essay gradng yang saat n tengah dkembangkan bak untuk kebutuhan rset ataupun komersal.

Lebih terperinci

UJI SENSITIVITAS METODE WP, SAW DAN TOPSIS DALAM MENENTUKAN TITIK LOKASI REPEATER INTERNET WIRELESS

UJI SENSITIVITAS METODE WP, SAW DAN TOPSIS DALAM MENENTUKAN TITIK LOKASI REPEATER INTERNET WIRELESS UJI SENSITIVITAS METODE WP, SAW DAN TOPSIS DALAM MENENTUKAN TITIK LOKASI REPEATER INTERNET WIRELESS Davd Ahmad Effendy 1), Rony Her Irawan 2) 1) Sekolah Tngg Agama Islam Kedr (STAIN Kedr) 2) Unverstas

Lebih terperinci

BAB III METODE PENELITIAN. Metode penelitian yang digunakan dalam penelitian ini adalah metode

BAB III METODE PENELITIAN. Metode penelitian yang digunakan dalam penelitian ini adalah metode BAB III METODE PENELITIAN Desan Peneltan Metode peneltan yang dgunakan dalam peneltan n adalah metode deskrptf analts dengan jens pendekatan stud kasus yatu dengan melhat fenomena permasalahan yang ada

Lebih terperinci

PERBANDINGAN METODE SAW DAN TOPSIS PADA KASUS UMKM

PERBANDINGAN METODE SAW DAN TOPSIS PADA KASUS UMKM PERBANINGAN METOE SAW AN TOPSIS PAA KASUS UMKM Muh. Alyazd Mude al.mude@yahoo.com Teknk Informatka Unverstas Muslm Indonesa Abstrak alam pengamblan keputusan terhadap masalah berdasarkan sebuah analsa

Lebih terperinci

BAB 4 PERHITUNGAN NUMERIK

BAB 4 PERHITUNGAN NUMERIK Mata kulah KOMPUTASI ELEKTRO BAB PERHITUNGAN NUMERIK. Kesalahan error Pada Penelesaan Numerk Penelesaan secara numers dar suatu persamaan matemats kadang-kadang hana memberkan nla perkraan ang mendekat

Lebih terperinci

PEMILIHAN LAHAN TERBAIK UNTUK TANAMAN KELAPA SAWIT MENGGUNAKAN METODE SIMPLE ADDITIVE WEIGHTING

PEMILIHAN LAHAN TERBAIK UNTUK TANAMAN KELAPA SAWIT MENGGUNAKAN METODE SIMPLE ADDITIVE WEIGHTING Semnar Nasonal Inovas Dan Aplkas Teknolog D Industr 2017 ISSN 2085-4218 ITN Malang, 4 Pebruar 2017 PEMILIHAN LAHAN TERBAIK UNTUK TANAMAN KELAPA SAWIT MENGGUNAKAN METODE SIMPLE ADDITIVE WEIGHTING Helza

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN. Latar Belakang Matematka sebaga bahasa smbol yang bersfat unversal memegang peranan pentng dalam perkembangan suatu teknolog. Matematka sangat erat hubungannya dengan kehdupan nyata.

Lebih terperinci

IV HASIL DAN PEMBAHASAN

IV HASIL DAN PEMBAHASAN 7 IV HASIL DAN PEMBAHASAN 4. Pengumpulan Data Data yang dgunakan dalam peneltan n data sekunder yang dperoleh dar rujukan utama jurnal Fuzzy Condtonal Probablty elatons and ther Applcatons n Fuzzy Informaton

Lebih terperinci

METODE OPTIMASI 11/13/2015. Capaian Pembelajaran

METODE OPTIMASI 11/13/2015. Capaian Pembelajaran 2 Capaan Pembelajaran METODE OPTIMASI N. Tr Suswanto Saptad Mahasswa dapat memaham dan mampu mengaplkaskan beberapa metode untuk menyelesakan masalah dengan alternatfalternatf dalam jumlah yang relatf

Lebih terperinci

Pendeteksian Data Pencilan dan Pengamatan Berpengaruh pada Beberapa Kasus Data Menggunakan Metode Diagnostik

Pendeteksian Data Pencilan dan Pengamatan Berpengaruh pada Beberapa Kasus Data Menggunakan Metode Diagnostik Pendeteksan Data Penclan dan Pengamatan Berpengaruh pada Beberapa Kasus Data Menggunakan Metode Dagnostk Sally Indra 1, Dod Vonanda, Rry Srnngsh 3 1 Student of Mathematcs Department State Unversty of Padang,

Lebih terperinci

BAB 2 KAJIAN PUSTAKA

BAB 2 KAJIAN PUSTAKA BAB 2 KAJIAN PUSTAKA 2.1 Negosas Negosas dapat dkategorkan dengan banyak cara, yatu berdasarkan sesuatu yang dnegosaskan, karakter dar orang yang melakukan negosas, protokol negosas, karakterstk dar nformas,

Lebih terperinci

BAB III METODE PENELITIAN. Pada penelitian ini, penulis memilih lokasi di SMA Negeri 1 Boliyohuto khususnya

BAB III METODE PENELITIAN. Pada penelitian ini, penulis memilih lokasi di SMA Negeri 1 Boliyohuto khususnya BAB III METODE PENELITIAN 3.1 Tempat dan Waktu Peneltan 3.1.1 Tempat Peneltan Pada peneltan n, penuls memlh lokas d SMA Neger 1 Bolyohuto khususnya pada sswa kelas X, karena penuls menganggap bahwa lokas

Lebih terperinci

MODEL OPTIMAL SISTEM TRANSPORTASI ANGKUTAN KOTA

MODEL OPTIMAL SISTEM TRANSPORTASI ANGKUTAN KOTA ODEL OPTIAL SISTE TRANSPORTASI ANGKUTAN KOTA PRAPTO TRI SUPRIYO Departemen atematka Fakultas atematka dan Ilmu Pengetahuan Alam Insttut Pertanan Bogor Jl erant, Kampus IPB Darmaga, Bogor 16680 Indonesa

Lebih terperinci

BAB III METODE PENELITIAN. Sebelum dilakukan penelitian, langkah pertama yang harus dilakukan oleh

BAB III METODE PENELITIAN. Sebelum dilakukan penelitian, langkah pertama yang harus dilakukan oleh BAB III METODE PENELITIAN 3.1 Desan Peneltan Sebelum dlakukan peneltan, langkah pertama yang harus dlakukan oleh penelt adalah menentukan terlebh dahulu metode apa yang akan dgunakan dalam peneltan. Desan

Lebih terperinci

PENERAPAN METODE LINIEAR DISCRIMINANT ANALYSIS PADA PENGENALAN WAJAH BERBASIS KAMERA

PENERAPAN METODE LINIEAR DISCRIMINANT ANALYSIS PADA PENGENALAN WAJAH BERBASIS KAMERA PENERAPAN MEODE LINIEAR DISCRIMINAN ANALYSIS PADA PENGENALAN AJAH ERASIS KAMERA Asep Sholahuddn 1, Rustam E. Sregar 2,Ipng Suprana 3,Setawan Had 4 1 Mahasswa S3 FMIPA Unverstas Padjadjaran e-mal: asep_sholahuddn@yahoo.com

Lebih terperinci

BAB V ANALISA PEMECAHAN MASALAH

BAB V ANALISA PEMECAHAN MASALAH BAB V ANALISA PEMECAHAN MASALAH 5.1 Analsa Pemlhan Model Tme Seres Forecastng Pemlhan model forecastng terbak dlakukan secara statstk, dmana alat statstk yang dgunakan adalah MAD, MAPE dan TS. Perbandngan

Lebih terperinci

3 METODE HEURISTIK UNTUK VRPTW

3 METODE HEURISTIK UNTUK VRPTW 12 3 METODE HEURISTIK UNTUK VRPTW 3.1 Metode Heurstk Metode heurstk merupakan salah satu metode penentuan solus optmal dar permasalahan optmas kombnatoral. Berbeda dengan solus eksak yang menentukan nla

Lebih terperinci

Model SPK. Model optimasi (2) Model optimasi (1) Metode-metode Optimasi dengan Alternatif Terbatas 4/30/2017. Tujuan.

Model SPK. Model optimasi (2) Model optimasi (1) Metode-metode Optimasi dengan Alternatif Terbatas 4/30/2017. Tujuan. 4/0/207 Tujuan Metode-metode Optmas dengan Alternatf Terbatas N O V R I N A Mahasswa dapat memaham dan mampu mengaplkaskan beberapa metode untuk menyelesakan masalah dengan alternatf-alternatf dalam jumlah

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar belakang

BAB 1 PENDAHULUAN. 1.1 Latar belakang BAB 1 PENDAHULUAN 1.1 Latar belakang Dalam memlh sesuatu, mula yang memlh yang sederhana sampa ke hal yang sangat rumt yang dbutuhkan bukanlah berpkr yang rumt, tetap bagaman berpkr secara sederhana. AHP

Lebih terperinci

BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER

BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER 5.1 Pembelajaran Dengan Fuzzy Program Lner. Salah satu model program lnear klask, adalah : Maksmumkan : T f ( x) = c x Dengan batasan : Ax b x 0 n m mxn Dengan

Lebih terperinci

Pendahuluan. 0 Dengan kata lain jika fungsi tersebut diplotkan, grafik yang dihasilkan akan mendekati pasanganpasangan

Pendahuluan. 0 Dengan kata lain jika fungsi tersebut diplotkan, grafik yang dihasilkan akan mendekati pasanganpasangan Pendahuluan 0 Data-data ang bersfat dskrt dapat dbuat contnuum melalu proses curve-fttng. 0 Curve-fttng merupakan proses data-smoothng, akn proses pendekatan terhadap kecenderungan data-data dalam bentuk

Lebih terperinci

TINJAUAN PUSTAKA. Node. Edge. Gambar 1 Directed Acyclic Graph

TINJAUAN PUSTAKA. Node. Edge. Gambar 1 Directed Acyclic Graph TINJAUAN PUSTAKA Bayesan Networks BNs dapat memberkan nformas yang sederhana dan padat mengena nformas peluang. Berdasarkan komponennya BNs terdr dar Bayesan Structure (Bs) dan Bayesan Parameter (Bp) (Cooper

Lebih terperinci

BAB II DASAR TEORI DAN METODE

BAB II DASAR TEORI DAN METODE BAB II DASAR TEORI DAN METODE 2.1 Teknk Pengukuran Teknolog yang dapat dgunakan untuk mengukur konsentras sedmen tersuspens yatu mekank (trap sampler, bottle sampler), optk (optcal beam transmssometer,

Lebih terperinci

PENGEMBANGAN MODEL PERSEDIAAN DENGAN MEMPERTIMBANGKAN WAKTU KADALUARSA BAHAN DAN FAKTOR INCREMENTAL DISCOUNT

PENGEMBANGAN MODEL PERSEDIAAN DENGAN MEMPERTIMBANGKAN WAKTU KADALUARSA BAHAN DAN FAKTOR INCREMENTAL DISCOUNT PENGEMBANGAN MODEL PERSEDIAAN DENGAN MEMPERTIMBANGKAN WAKTU KADALUARSA BAHAN DAN FAKTOR INCREMENTAL DISCOUNT Har Prasetyo Jurusan Teknk Industr Unverstas Muhammadyah Surakarta Jl. A. Yan Tromol Pos Pabelan

Lebih terperinci

BAB II METODOLOGI PENELITIAN. Jenis penelitian yang digunakan dalam penelitian ini adalah penelitian. variable independen dengan variabel dependen.

BAB II METODOLOGI PENELITIAN. Jenis penelitian yang digunakan dalam penelitian ini adalah penelitian. variable independen dengan variabel dependen. BAB II METODOLOGI PENELITIAN A. Bentuk Peneltan Jens peneltan yang dgunakan dalam peneltan n adalah peneltan deskrptf dengan analsa kuanttatf, dengan maksud untuk mencar pengaruh antara varable ndependen

Lebih terperinci

BAB I PENDAHULUAN. Semakin tinggi penerimaan Pajak di Indonesia, semakin tinggi pula kualitas

BAB I PENDAHULUAN. Semakin tinggi penerimaan Pajak di Indonesia, semakin tinggi pula kualitas BAB I PENDAHULUAN A. LATAR BELAKANG Pajak merupakan sumber penermaan terpentng d Indonesa. Oleh karena tu Pemerntah selalu mengupayakan bagamana cara menngkatkan penermaan Pajak. Semakn tngg penermaan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PEDAHULUA. Latar Belakang Rsko ddentfkaskan dengan ketdakpastan. Dalam mengambl keputusan nvestas para nvestor mengharapkan hasl yang maksmal dengan rsko tertentu atau hasl tertentu dengan rsko yang

Lebih terperinci

PENDAHULUAN. Latar Belakang

PENDAHULUAN. Latar Belakang 1 Latar Belakang PENDAHULUAN Beberapa stus berta d Indonesa sepert Kompas, Okezone, Tempo, Antara dan lan sebaganya telah menggunakan SS dalam menyakan sndkas berta. Jumlah berta yang dsndkaskan oleh stus

Lebih terperinci

BAB 5 HASIL DAN PEMBAHASAN. Sampel yang digunakan dalam penelitian ini adalah data pengujian pada

BAB 5 HASIL DAN PEMBAHASAN. Sampel yang digunakan dalam penelitian ini adalah data pengujian pada BAB 5 ASIL DAN PEMBAASAN 5. asl Peneltan asl peneltan akan membahas secara lebh lengkap mengena penyajan data peneltan dan analss data. 5.. Penyajan Data Peneltan Sampel yang dgunakan dalam peneltan n

Lebih terperinci

Histogram Citra. Bab Membuat Histogram

Histogram Citra. Bab Membuat Histogram Bab 6 Hstogram Ctra I nformas pentng mengena s ctra dgtal dapat dketahu dengan membuat hstogram ctra. Hstogram ctra adalah grafk yang menggambarkan penyebaran nla-nla ntenstas pxel dar suatu ctra atau

Lebih terperinci

PENERAPAN METODE MAMDANI DALAM MENGHITUNG TINGKAT INFLASI BERDASARKAN KELOMPOK KOMODITI (Studi Kasus pada Data Inflasi Indonesia)

PENERAPAN METODE MAMDANI DALAM MENGHITUNG TINGKAT INFLASI BERDASARKAN KELOMPOK KOMODITI (Studi Kasus pada Data Inflasi Indonesia) PENERAPAN METODE MAMDANI DALAM MENGHITUNG TINGKAT INFLASI BERDASARKAN KELOMPOK KOMODITI (Stud Kasus pada Data Inflas Indonesa) Putr Noorwan Effendy, Amar Sumarsa, Embay Rohaet Program Stud Matematka Fakultas

Lebih terperinci

Peramalan Produksi Sayuran Di Kota Pekanbaru Menggunakan Metode Forcasting

Peramalan Produksi Sayuran Di Kota Pekanbaru Menggunakan Metode Forcasting Peramalan Produks Sayuran D Kota Pekanbaru Menggunakan Metode Forcastng Esrska 1 dan M. M. Nzam 2 1,2 Jurusan Matematka, Fakultas Sans dan Teknolog, UIN Sultan Syarf Kasm Rau Jl. HR. Soebrantas No. 155

Lebih terperinci

Model Potensial Gravitasi Hansen untuk Menentukan Pertumbuhan Populasi Daerah

Model Potensial Gravitasi Hansen untuk Menentukan Pertumbuhan Populasi Daerah Performa (2004) Vol. 3, No.1: 28-32 Model Potensal Gravtas Hansen untuk Menentukan Pertumbuhan Populas Daerah Bambang Suhard Jurusan Teknk Industr, Unverstas Sebelas Maret, Surakarta Abstract Gravtaton

Lebih terperinci

BAB III METODE PENELITIAN. menghasilkan Lembar Kegiatan Siswa (LKS) pada materi Geometri dengan

BAB III METODE PENELITIAN. menghasilkan Lembar Kegiatan Siswa (LKS) pada materi Geometri dengan BAB III METODE PENELITIAN A. Jens Peneltan Peneltan n merupakan peneltan pengembangan yang bertujuan untuk menghaslkan Lembar Kegatan Sswa (LKS) pada mater Geometr dengan pendekatan pembelajaran berbass

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. Deskrps Data Hasl Peneltan Satelah melakukan peneltan, penelt melakukan stud lapangan untuk memperoleh data nla post test dar hasl tes setelah dkena perlakuan.

Lebih terperinci

Hukum Termodinamika ik ke-2. Hukum Termodinamika ke-1. Prinsip Carnot & Mesin Carnot. FI-1101: Termodinamika, Hal 1

Hukum Termodinamika ik ke-2. Hukum Termodinamika ke-1. Prinsip Carnot & Mesin Carnot. FI-1101: Termodinamika, Hal 1 ERMODINAMIKA Hukum ermodnamka ke-0 Hukum ermodnamka ke-1 Hukum ermodnamka k ke-2 Mesn Kalor Prnsp Carnot & Mesn Carnot FI-1101: ermodnamka, Hal 1 Kesetmbangan ermal & Hukum ermodnamka ke-0 Jka dua buah

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LINEAR KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI QR TUGAS AKHIR

PENYELESAIAN SISTEM PERSAMAAN LINEAR KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI QR TUGAS AKHIR PENYELESAIAN SISTEM PERSAMAAN LINEAR KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI QR TUGAS AKHIR Dajukan sebaga Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sans pada Jurusan Matematka Oleh : IIS ERIANTI

Lebih terperinci