NILAI MAKSIMUM DARI KOEFISIEN KORELASI. ABSTRACT 1. PENDAHULUAN

Ukuran: px
Mulai penontonan dengan halaman:

Download "NILAI MAKSIMUM DARI KOEFISIEN KORELASI. hanggamula@yahoo.com ABSTRACT 1. PENDAHULUAN"

Transkripsi

1 NILAI MAKSIMUM DARI KOEFISIEN KORELASI Hagga Mula Kuria *, Firdaus, Sigit Sugiarto Mahasiswa program Studi S Matematika Dose Jurusa Matematika FMIPA-UR Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua Alam Uiversitas Riau Kampus Biawidya Pekabaru (893), Idoesia ABSTRACT The stregth ad depedece betwee variables is a cetral problem that we wat to kow o a lot o research. At the time o perectly correlatio occurs sometimes i some cases the value o size is ot reached. I this article discusses the methods used to obtai the maximum value o the correlatio measure. The method are simple method, usig the Expectatio, ad model o Associatio. Keywords : Aalysis Correlatio, Cotigecy Table, Maximum Value, Techique Correlatio o Cotigecy Coeiciet. PENDAHULUAN Korelasi berarti hubuga timbal balik. Dua buah variabel dikataka berkorelasi apabila setiap perubaha pada satu variabel selalu diikuti dega perubaha variabel lai da masig-masig perubaha terjadi secara proporsioal. Sedagka aalisa korelasi merupaka tekik aalisis yag termasuk dalam salah satu tekik pegukura asosiasi. Kekuata da siat ketergatuga atar variabel merupaka masalah pokok yag igi diketahui pada bayak peelitia. Ideks yag megkuatiikasi hubuga atar variabel disebut ukura asosiasi [6]. Tak ada satu ukura asosiasi pu yag mampu meggambarka suatu model asosiasi dega sempura. Dalam aplikasiya, iterpretasi tetag asosiasi sempura, sedag, da lemah berbeda atara satu ukura asosiasi da ukura asosiasi laiya, sekalipu memiliki persamaa retag ideks (misalya dari 0 sampai dega ). Apabila dikelompokka, tigkata ilai korelasi dapat dilihat pada tabel berikut [4]

2 Hagga Mula Kuria et.al. Nilai Maksimum dari Koeisie Korelasi Tabel. Tigkata ilai koeisie korelasi Iterval ilai r Tigkat hubuga 0 r 0. Sagat redah 0. r 0.4 Redah 0.4 r 0.6 Sedag 0.6 r 0.8 Kuat 0.8 r Sagat kuat Dalam memilih ideks asosiasi perlu dipertimbagka beberapa hal khusus, yaitu jeis data, hipotesis peelitia, serta siat-siat ukura asosiasi. Tidak diajurka utuk meghitug semua ideks asosiasi tetapi kemudia haya melaporka ideks yag memberi gambara hubuga yag palig megesaka. Ukura kekuata hubuga dua variabel berskala omial yag serig dumpai adalah pegembaga dari statistik chi square yag biasa dilambagka dega. Statistik ii sebearya buka merupaka ideks yag akurat utuk megukur hubuga atara variabel [6]. Aka tetapi karea uji idepedesi bayak dipakai sehigga para matematikawa terdorog utuk megembagka ukura asosiasi berdasarka statistik. Utuk memperkecil pegaruh ukura sampel, derajat bebas, da utuk mejaga retag besara ilai koeisie asosiasi tidak melebihi 0 da maka statistik chi square megalami berbagai macam modiikasi. Modiikasi tersebut yaki Koeisie Phi, Koeisie Kotigesi, da Koeisie V Cramer [6].. Tabel Kotigesi. ANALISA KORELASI DAN EKSPEKTASI BERSYARAT Tabel kotigesi merupaka barisa bilaga-bilaga asli dalam betuk matrik yag bilagabilaga tersebut mewakili jumlah atau rekuesi dari data yag diamati [5]. Bayak data hasil pegamata yag dapat digologka ke dalam beberapa aktor, variabel, karakteristik, atau atribut terdiri dari beberapa klasiikasi, kategori, gologa atau mugki tigkata. Berdasarka hasil pegamata terhadap eomea tersebut aka diselidiki megeai asosiasi atau hubuga atara variabel itu. Betuk palig sederhaa dari tabel kotigesi disebut juga dega dikotomi yaki tabel kotigesi yag berukura. Dalam betuk umum, misalka terdapat sampel acak berukura. Pada setiap pegamata diduga terjadi karea adaya dua macam variabel, yaitu variabel A da variabel B. variabel A terbagi atas c tara atau tigkata da demikia juga dega

3 Hagga Mula Kuria et.al. Nilai Maksimum dari Koeisie Korelasi 3 variabel B terbagi atas r tara [5]. Bayakya pegamata yag terjadi karea tara ke i pada variabel A ( i =,,3,.. c ) da tara ke j pada variabel B ( j =,,3,.. r ) aka dimisalka dega. Hasilya dapat diyataka dalam tabel kotigesi berukura r c berikut ii : Variabel B Tabel. Tabel kotigesi berukura Variabel A B B A A A c c c r c Total.. B r r r rc Total... c r. Jumlah dari baris ke i diyataka dega : i. i c j i ic () Jumlah dari kolom ke j diyataka dega : j r i Demikia pula : j rj ().... r c i j r c i. i j (3). Uji Statistik Tekik uji chi square ( chi dibaca kai ) ditemuka oleh helmet pada tahu 990 da pertama kali diperkealka oleh Karl Pearso [7]. Oleh karea itu kebayaka di dalam pegguaaya

4 Hagga Mula Kuria et.al. Nilai Maksimum dari Koeisie Korelasi 4 serig diamaka dega Pearso Chi Square ( ). Uji ii diguaka utuk meguji kebebasa atara dua variabel yag disusu dalam tabel r c atau meguji keselarasa di maa pegujia dilakuka utuk memeriksa ketergatuga da homogeitas dari data sampel yag diambil utuk meujag hipotesis yag meyataka bahwa populasi asal sampel tersebut megikuti distribusi yag telash ditetapka. yaitu [7] :. Ada beberapa hal yag perlu diperhatika dalam pegguaa diguaka utuk megaalisa data yag berbetuk rekuesi, pada tabel kotigesi,. Tidak dapat diguaka utuk meetuka besar atau kecilya korelasi dari variabelvariabel yag diaalisa, 3. Pada dasarya belum dapat meghasilka kesimpula yag memuaska, 4. Cocok diguaka utuk data kategorik,data diskrit atau data omial. Terdapat dua keadaa ketika megambil suatu keputusa yag salah, yaki apabila H 0 bear terjadi kesalaha dega meolak H 0. Keadaa selajutya adalah kesalaha ketika meerima H 0 ketika H 0 salah. Hal ii delaska dala deiisi berikut Deiisi.. [ 5:hal. 78] Tipe kesalaha pertama adalah meolak suatu hipotesis ol yag bear. Deiisi.. [ 5:hal. 78] Tipe kesalaha kedua adalah meerima suatu hipotesis ol yag salah. Utuk meghitug ilai statistik data telebih dahulu diajuka hipotesis utuk megetahui hubuga atara kedua variabel, maka hipotesis yag diuji berdasarka data pada tabel., yaitu : H 0 : tidak terdapat hubuga yag positi atara variabel A da variabel B H : terdapat hubuga positi yag sigiika atara variabel A da variabel B Pegujia secara eksak sulit utuk diguaka, maka aka dilakuka pegujia yag bersiat pedekata. Utuk itu diperluka rekuesi teoretis atau bayakya gejala yag diharapka terjadi ( e ) [6], dega rumus : e i. i. jumlah data pada baris ke i jumlah data pada kolom ke j (4)

5 Hagga Mula Kuria et.al. Nilai Maksimum dari Koeisie Korelasi 5 Nilai i. da diperoleh dega megguaka () da (). Dega demikia misalya didapat ilai teoretis dari masig-masig data, yaitu :.. e.. e e e.... da seterusya jelas bahwa jumlah data pegamata diyataka dega :.. r.... c Selajutya ilai statistik diguaka utuk meguji hipotesis yag diajuka sebelumya berdasarka data tabel kotigesi berukura r c.utuk meetuka kotigesi berukura r c diguaka rumus umum berikut [6] : ht ht r c i j e e Chi Square hitug tabel (5) rekuesi yag diamati e rekuesi yag diperoleh (hasil dari rumus (4)) i,,,r j,,,c Hasil dari peghituga selajutya dibadigka dega tabel dega derajat kebebasa (d) adalah r c lebih besar dari ht sehigga dapat diambil kesimpula. Apabila harga tabel maka hipotesa ol ( ) 0 ( r ( c) ht hitug sama atau H ditolak da hipotesa alterati H ) (

6 Hagga Mula Kuria et.al. Nilai Maksimum dari Koeisie Korelasi 6 diterima. Apabila harga ht lebih kecil dibadigka ditolak [8]..3 Ekspektasi Bersyarat Deiisi.3. Ekspektasi [:hal. 6] tabel maka ( ) 0 ( r ( c) Misalka X adalah variabel radom dega ugsi desitas E dideiisika dega : diotasika dega X E ( X ) x ( x ) jika X diskrit x E ( X ) x ( x) dx jika X kotiu Deiisi.3. Ekspektasi bersyarat [:hal. 80] x H diterima da H ) (, maka ekspektasi dari X yag Misalka X da Y adalah variabel radom distribusi gabuga, maka ekspektasi bersyarat X bila diketahui Y y yag diotasika dega E ( X y) dideiisika dega E( X y) x x y, jika X da Y diskrit E x X y x x ydx Teorema.3.3 [3:hal. 50] x, jika X da Y kotiu Misalka X da Y variabel radom kotiu, (i) Jika a kostata maka E( a) a (ii) Jika a kostata maka E( ax ) ae( X ) Bukti Dari deiisi.4. maka diperoleh (i) E( a) a ( x) dx a ( x) dx a (ii) E( ax ) ax ( x) dx a x ( x) dx ae( X ).4 Tekik Korelasi Koeisie Kotigesi Dalam memilih tekik korelasi perlu diperhatika jeis data yag diteliti karea setiap jeis data berbeda tekik korelasi yag dipakai. Berikut ii pemakaia tekik korelasi berdasarka jeis data yag diteliti

7 Hagga Mula Kuria et.al. Nilai Maksimum dari Koeisie Korelasi 7 Tabel.5 Pemakaia tekik korelasi berdasarka jeis data yag diteliti jeis data Nomial Ordial Iterval/Rasio tekik korelasi tekik korelasi koeisie kotigesi tekik korelasi Spearma Rak tekik korelasi Kedall Tau tekik korelasi Produk mome tekik korelasi Parsial tekik korelasi Gada Keguaa tekik korelasi koeisie kotigesi adalah utuk mecari atau meghitug keerata hubuga atara dua variabel yag mempuyai gejala ordial (kategori), atau palig tidak berjeis omial [7]. Koeisie kotigesi (C) disebut juga koeisie bersyarat. Koeisie kotigesi memiliki pegertia yag sama dega koeisie korelasi. Misalya hasil peelitia dihasilka dalam betuk tabel r c da jika C berilai ol berarti tidak ada hubuga, aka tetapi batas atas C tidak berilai satu tergatug atau sebagai ugsi bayakya kategori (baris atau kolom). Utuk meghitug koeisie kotigesi diguaka rumus : C (6) 3. NILAI MAKSIMUM DARI KOEFISIEN KORELASI Data yag diuji megguaka belum dapat meghasilka kesimpula yag memuaska maka dari itu perlu dilakuka uji lajuta [9]. Hal ii karea pegujia megguaka tidak dapat meetuka besar atau kecilya korelasi dari variabel-variabel yag diaalisa. Maka dari itu dilakuka pegujia dega megguaka pegembaga dari uji yaki koeisie kotigesi. Pada pegujia dega megguaka koeisie kotigesi, betuk yag dipakai megalami modiikasi sehigga dapat disesuaika dega metode yag dibahas pada bab ii. Dega meyederhaaka (5) apabila ditambah dega maka diperoleh e i j i j i. (7)

8 Hagga Mula Kuria et.al. Nilai Maksimum dari Koeisie Korelasi 8 dega mearik akar dari betuk (6) maka diperoleh C (8) kemudia subtitusi (7) ke (8) mejadi C i j i. i j i. (9) i j i. Nagres Abbasi [] megemukaka cara meetuka batas atas miimum dari betuk i j i. (0) Pada skripsi ii dibahas metode yag dikemukaka Nagres Abbasi utuk meetuka batas atas miimum dari betuk (0) pada tabel kotigesi berukura. 3. Model Sederhaa Dalam pegguaa metode sederhaa bisa dilakuka pada tabel kotigesi r c maupu. Dega megguaka metode sederhaa aka ditetuka ilai C dari tabel kotigesi berukura, misalka utuk. Tabel 3. Tabel kotigesi berukura Variabel B Variabel A A A B B Total. Total...

9 Hagga Mula Kuria et.al. Nilai Maksimum dari Koeisie Korelasi 9 Misalka a, b, p, da q.... dari permisala ilai a, b, p, da q terlihat bahwa 0 a, b, p, q Dega meguraika betuk (0) i j i. i j i. i j i. i i i i i i.. i pb q a b q pa p qa b pa.. i j i. dega mesubtitusika ilai yag diperoleh ke betuk (9) maka C i j i. C

10 Hagga Mula Kuria et.al. Nilai Maksimum dari Koeisie Korelasi 0 dega mearik betuk akar dari C diperoleh dua ilai koeisie kotigesi yaki C da C. Data yag diteliti merupaka data yag berkorelasi positi sehigga ilai yag diambil adalah ilai C. Diperoleh koeisie kotigesi utuk tabel 3. C Nilai korelasi ii dikategorika kuat karea ilaiya berada dalam kategori ke empat pada tabel. 0.6 C 0.8. Utuk tabel kotigesi dega ukura tabel r c i j i. r c r c i j i. r i i i i i i.. i.. i.. c ic r c, (0) diuraika mejadi i j i c.... c c ic c c c r r r r rc rc () r. r... r.. c 3. Megguaka Ekspektasi Batas atas miimum dari betuk (0) juga dapat dihitug dega megguaka ekspektasi, yag diyataka dalam betuk i j i. i j i. berdasarka deiisi ekspektasi bersyarat.4. maka dapat diyataka betuk ekspektasi i j i. karea E, sehigga B A A i E B AAi i. j j maka ilai. j i. mejadi

11 Hagga Mula Kuria et.al. Nilai Maksimum dari Koeisie Korelasi E B AAi i. j i i E B AA i ( ),berdasarka teorema.4.3 maka Dega mesubtitusika ilai yag diperoleh ke (9), maka utuk setiap tabel kotigesi berukura ilai maksimum koeisie kotigesiya dapat diyataka dega C () 3.3 Model Asosiasi Nilai miimum dari terjadi ketika dua variabel radom yag diteliti salig bebas da ilai maksimum dari dari kedua variabel berkorelasi sempura. Hal ii dapat dilihat apabila ilai korelasiya medekati satu. Pada kasus ii dua variabel kuatitas terdapat hubuga liier dega peluag sama dega satu. Dua variabel radom dega P Y ax b. Tetuya piliha ilai dari X da Y harus sama. Model asosiasi ii pada aktor kualitas diyataka dega jj jumlah data pada tabel kotigesi ukura tabel kotigesi dega syarat i j atau i. utuk i j,,3,, apabila diuraika (3) mejadi (3). 3 3 (4) utuk i j i. 0 (5)

12 Hagga Mula Kuria et.al. Nilai Maksimum dari Koeisie Korelasi apabila (5) diuraika mejadi (6) Maka ilai maksimum dari (0) dega megguaka model asosiasi adalah. DAFTAR PUSTAKA [] Abbasi, Nagres O Maximum Value o Correlatio Coeiciet. Departmet o Statistics Payame Noor Uiversity. 34, [] Bai, L.J ad Egelhardt, Max. 99. Itroductio to Probability ad matematical Statistics. d ed. Duxbury Press. Belmo, Calioria. [3] Bradlow Thomas, Eric. G.S.Hardie, Bruce & S.ader, Peter. 00. Bayesia Ierece or the Negative Biomial Distributio via Polyomial Expasio. Joural o Computatioal ad Graphical Statistics. Vol.. pp [4] Burhauddi, Muhammad. 0. Koeisie Korelasi, Sigiikasi, da Determiasi. 8 Jui Desember 0. Pk.0.30, [5] Coover, W. J Practical Noparametric Statistic. Joh Wiley & Sos, New York. [6] Everit, B.S. 99. The Aalysis o Cotigecy Tables. Chapma & Hall. Secod Editio, Lodo. [7] Sarah, Mahdia. 0. Pemodela Regresi Noparametrik dega B-Splie da Mars. 3 Desember 0. Pk 09.00, [8] Sudjaa Metoda Statistika. PT Tarsito. Badug. [9] Zuliaa, S.U Metode Statistika Lajut. 4 hal. 3Iic/.Lillieors%6Tabel%50Kategorik.pd?key=dedi968:joural:70&mid= , 8 Jui 0. Pk. 3.0,

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu:

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu: Peaksira Parameter Statistika dibagi mejadi dua yaitu:. Statistika Deskriftif 2. Statistik Iferesial Pearika kesimpula dapat dilakuka dega dua cara yaitu:. Peaksira Parameter 2. Pegujia Hipotesis Peaksira

Lebih terperinci

Yang biasa dinamakan test komposit lawan komposit. c. Hipotesis mengandung pengertian minimum. Perumusan H 0 dan H 1 berbentuk :

Yang biasa dinamakan test komposit lawan komposit. c. Hipotesis mengandung pengertian minimum. Perumusan H 0 dan H 1 berbentuk : PARAMETER PENGJIAN HIPOTESIS MODL PARAMETER PENGJIAN HIPOTESIS. Pedahulua Kalau yag sedag ditest atau diuji itu parameter θ dalam hal ii pegguaaya ati bias rata-rata µ prprsi p, simpaga baku σ da lai-lai,

Lebih terperinci

1 Departemen Statistika FMIPA IPB

1 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351) 1 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Metode Noparametrik Skala Pegukura Metode Noparameterik Uji Hipotesis

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang II. LANDASAN TEORI Defiisi 2.1 Samplig Samplig adalah proses pegambila atau memilih buah eleme dari populasi yag berukura N (Lohr, 1999). Dalam melakuka samplig, terdapat teori dasar yag disebut teori

Lebih terperinci

Modul Kuliah statistika

Modul Kuliah statistika Modul Kuliah statistika Dose: Abdul Jamil, S.Kom., MM SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER MUHAMMADIYAH JAKARTA Bab 2 Populasi da Sampel 2.1 Populasi Populasi merupaka keseluruha pegamata

Lebih terperinci

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu

Lebih terperinci

Uji Keberartian Koefisien Raw Agreement

Uji Keberartian Koefisien Raw Agreement Statistika, Vol. 9 No. 2, 83 88 Nopember 2009 Uji Keberartia Koefisie Raw Agreemet MEGA ANISA RACHIM, TETI SOFIA YANTI, LISNUR WACHIDAH Jurusa Statistika Uiversitas Islam Badug ABSTRAK Dalam kehidupa sehari-hari

Lebih terperinci

Bab 7 Penyelesaian Persamaan Differensial

Bab 7 Penyelesaian Persamaan Differensial Bab 7 Peelesaia Persamaa Differesial Persamaa differesial merupaka persamaa ag meghubugka suatu besara dega perubahaa. Persamaa differesial diataka sebagai persamaa ag megadug suatu besara da differesiala

Lebih terperinci

BAB 4 LIMIT FUNGSI Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah

BAB 4 LIMIT FUNGSI Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah BAB LIMIT FUNGSI Stadar Kompetesi Megguaka kosep it ugsi da turua ugsi dalam pemecaha masalah Kompetesi Dasar. Meghitug it ugsi aljabar sederhaa di suatu titik. Megguaka siat it ugsi utuk meghitug betuk

Lebih terperinci

Biostatistics UJI CHI-SQUARE UJI HIPOTESIS CHI-SQUARE

Biostatistics UJI CHI-SQUARE UJI HIPOTESIS CHI-SQUARE Biostatistics UJI CHI-SQUARE I N T A N Y U S U F H A B I B I E, S. G Z - Ilmu statistik tidak haya membatu kita utuk medeskripsika data secara rigkas, tapi juga dapat diguaka utuk meguji hipotesa. - Hipotesa

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu

Lebih terperinci

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab

Lebih terperinci

SEBARAN t dan SEBARAN F

SEBARAN t dan SEBARAN F SEBARAN t da SEBARAN F 1 Tabel uji t disebut juga tabel t studet. Sebara t pertama kali diperkealka oleh W.S. Gosset pada tahu 1908. Saat itu, Gosset bekerja pada perusahaa bir Irladia yag melarag peerbita

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakag Maajeme risiko merupaka salah satu eleme petig dalam mejalaka bisis perusahaa karea semaki berkembagya duia perusahaa serta meigkatya kompleksitas aktivitas perusahaa

Lebih terperinci

BAB III PROSEDUR PENELITIAN

BAB III PROSEDUR PENELITIAN BAB III PROSEDUR PENELITIAN A. Metode Peelitia Metode peelitia harus disesuaika dega masalah da tujua peelitia, hal ii dilakuka utuk kepetiga peroleha da aalisis data. Megeai pegertia metode peelitia,

Lebih terperinci

REGRESI LINIER GANDA

REGRESI LINIER GANDA REGRESI LINIER GANDA Secara umum, data hasil pegamata Y bisa terjadi karea akibat variabelvariabel bebas,,, k. Aka ditetuka hubuga atara Y da,,, k sehigga didapat regresi Y atas,,, k amu masih meujukka

Lebih terperinci

BAB 6: ESTIMASI PARAMETER (2)

BAB 6: ESTIMASI PARAMETER (2) Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara

Lebih terperinci

METODOLOGI PENELITIAN. penggunaan metode penelitian. Oleh karena itu, metode yang akan digunakan

METODOLOGI PENELITIAN. penggunaan metode penelitian. Oleh karena itu, metode yang akan digunakan 47 III. METODOLOGI PENELITIAN A. Metodelogi Peelitia Keberhasila dalam suatu peelitia sagat ditetuka oleh ketepata pegguaa metode peelitia. Oleh karea itu, metode yag aka diguaka haruslah sesuai dega data

Lebih terperinci

PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart

PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA, Fakultas MIPA, Uiversitas Negeri Yogyakarta, 2 Jui 2012 PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart Adi Setiawa

Lebih terperinci

1. Uji Dua Pihak. mis. Contoh :

1. Uji Dua Pihak. mis. Contoh : . Uji Dua Pihak H 0 H a : : Cotoh : mis : mea kelas Lab mea kelas tapa lab Ho : Tidak ada perbedaa kemampua hasil belajar biologi siswa atara yag belajar melalui media laboratorium dega yag tidak. Ha :

Lebih terperinci

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model.

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model. BAB II LANDASAN TEORI Pada bagia ii aka dibahas tetag teori-teori dasar yag diguaka utuk dalam megestimasi parameter model.. MATRIKS DAN VEKTOR Defiisi : Trace dari matriks bujur sagkar A a adalah pejumlaha

Lebih terperinci

STATISTIKA NON PARAMETRIK

STATISTIKA NON PARAMETRIK . PENDAHULUAN STATISTIKA NON PARAMETRIK Kelebiha Uji No Parametrik: - Perhituga sederhaa da cepat - Data dapat berupa data kualitatif (Nomial atau Ordial) - Distribusi data tidak harus Normal Kelemaha

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Jeis peelitia Peelitia ii merupaka jeis peelitia eksperime. Karea adaya pemberia perlakua pada sampel (siswa yag memiliki self efficacy redah da sagat redah) yaitu berupa layaa

Lebih terperinci

Distribusi Sampel & Statistitik Terurut

Distribusi Sampel & Statistitik Terurut Distribusi Sampel & Statistitik Terurut Sampel Acak, Rataa sampel, X-bar, Variasi sampel, S, Teorema Limit Pusat, Distribusi t,, F Statistik Terurut MA 3181 Teori Peluag 11 November 014 Utriwei Mukhaiyar

Lebih terperinci

Perbandingan Beberapa Metode Pendugaan Parameter AR(1)

Perbandingan Beberapa Metode Pendugaan Parameter AR(1) Jural Vokasi 0, Vol.7. No. 5-3 Perbadiga Beberapa Metode Pedugaa Parameter AR() MUHLASAH NOVITASARI M, NANI SETIANINGSIH & DADAN K Program Studi Matematika Fakultas MIPA Uiversitas Tajugpura Jl. Ahmad

Lebih terperinci

BARISAN FIBONACCI DAN BILANGAN PHI

BARISAN FIBONACCI DAN BILANGAN PHI BARISAN FIBONACCI DAN BILANGAN PHI Fiboacci Matematikawa terbesar pada abad pertegaha adalah Leoardo dari Pisa, Italia (80 0). Ia lebih dikeal dega ama Fibo-acci. Artiya, aak Boaccio. Meara Pisa yag terkeal

Lebih terperinci

III. METODE PENELITIAN. Populasi dalam penelitian ini adalah siswa kelas VIII (delapan) semester ganjil di

III. METODE PENELITIAN. Populasi dalam penelitian ini adalah siswa kelas VIII (delapan) semester ganjil di 4 III. METODE PENELITIAN A. Populasi da Sampel Populasi dalam peelitia ii adalah siswa kelas VIII (delapa) semester gajil di SMP Xaverius 4 Badar Lampug tahu ajara 0/0 yag berjumlah siswa terdiri dari

Lebih terperinci

PENGARUH INFLASI TERHADAP KEMISKINAN DI PROPINSI JAMBI

PENGARUH INFLASI TERHADAP KEMISKINAN DI PROPINSI JAMBI Halama Tulisa Jural (Judul da Abstraksi) Jural Paradigma Ekoomika Vol.1, No.5 April 2012 PENGARUH INFLASI TERHADAP KEMISKINAN DI PROPINSI JAMBI Oleh : Imelia.,SE.MSi Dose Jurusa Ilmu Ekoomi da Studi Pembagua,

Lebih terperinci

PROSIDING ISBN:

PROSIDING ISBN: S-6 Perlukah Cross Validatio dilakuka? Perbadiga atara Mea Square Predictio Error da Mea Square Error sebagai Peaksir Harapa Kuadrat Kekelirua Model Yusep Suparma (yusep.suparma@ upad.ac.id) Uiversitas

Lebih terperinci

BAB III METODE PENELITIAN. penelitian yang tepat dalam sebuah penelitian ditentukan guna menjawab

BAB III METODE PENELITIAN. penelitian yang tepat dalam sebuah penelitian ditentukan guna menjawab BAB III METODE PENELITIAN Metode peelitia merupaka suatu cara atau prosedur utuk megetahui da medapatka data dega tujua tertetu yag megguaka teori da kosep yag bersifat empiris, rasioal da sistematis.

Lebih terperinci

Barisan Aritmetika dan deret aritmetika

Barisan Aritmetika dan deret aritmetika BARISAN DAN DERET BILANGAN Peyusu: Atmii Dhoruri, MS Kode: Jejag: SMP T/P: / A. Kompetesi yag diharapka. Meetuka suku ke- barisa aritmatika da barisa geometri. Meetuka jumlah suku pertama deret aritmatika

Lebih terperinci

KEKONVERGENAN MODEL BINOMIAL UNTUK PENENTUAN HARGA OPSI EROPA. Fitriani Agustina, Math, UPI

KEKONVERGENAN MODEL BINOMIAL UNTUK PENENTUAN HARGA OPSI EROPA. Fitriani Agustina, Math, UPI KEKONVERGENAN MODEL BINOMIAL UNTUK PENENTUAN HARGA OPSI EROPA Fitriai Agustia, Math, UPI 1 Fiacial Derivative Opsi Mafaat Opsi Opsi Eropa Peetua Harga Opsi Kekovergea Model Biomial Fitriai Agustia, Math,

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1 Lokasi da Waktu peelitia Peelitia dilakuka pada budidaya jamur tiram putih yag dimiliki oleh usaha Yayasa Paguyuba Ikhlas yag berada di Jl. Thamri No 1 Desa Cibeig, Kecamata Pamijaha,

Lebih terperinci

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015 RESPONSI STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 015 A. PENYAJIAN DAN PERINGKASAN DATA 1. PENYAJIAN DATA a. Sebutka tekik peyajia data utuk data kualitatif! Diagram kueh, diagram batag, distribusi

Lebih terperinci

Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya PENS. Probability and Random Process. Topik 10. Regresi

Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya PENS. Probability and Random Process. Topik 10. Regresi Program Pasca Sarjaa Terapa Politekik Elektroika Negeri Surabaya Probability ad Radom Process Topik 10. Regresi Prima Kristalia Jui 015 1 Outlie 1. Kosep Regresi Sederhaa. Persamaa Regresi Sederhaa 3.

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN Secara umum metode peelitia diartika sebagai cara ilmiah utuk medapatka data dega tujua da keguaa tertetu. Cara ilmiah berarti kegiata peelitia itu didasarka pada ciri-ciri keilmua,

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu

Lebih terperinci

Distribusi Sampling (Distribusi Penarikan Sampel)

Distribusi Sampling (Distribusi Penarikan Sampel) Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan Selag Kepercayaa (Cofidece Iterval) Pegatar Peduga titik (poit estimator) telah dibahas pada kuliah-kuliah sebelumya. Walau statistikawa telah berusaha memperoleh peduga titik yag baik, amu hampir bisa

Lebih terperinci

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data IV METODE PENELITIAN 4.1 Lokasi da waktu Peelitia ii dilakuka di PD Pacet Segar milik Alm Bapak H. Mastur Fuad yag beralamat di Jala Raya Ciherag o 48 Kecamata Cipaas, Kabupate Ciajur, Propisi Jawa Barat.

Lebih terperinci

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel)

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel) DISTRIBUSI SAMPLING (Distribusi Pearika Sampel) I. PENDAHULUAN Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

PEMILIHAN UJI NONPARAMETRIK TERBAIK UNTUK DUA SAMPEL BEBAS MELALUI METODE SIMULASI

PEMILIHAN UJI NONPARAMETRIK TERBAIK UNTUK DUA SAMPEL BEBAS MELALUI METODE SIMULASI PEMILIHAN UJI NONPARAMETRIK TERBAIK UNTUK DUA SAMPEL BEBAS MELALUI METODE SIMULASI Sugiyato 1, Etik Zukhroah 2 1,2 Jurusa Matematika FMIPA-UNS, e-mail : 1 Sugiy@yahoo.co.id, 2 etikzukhroah@yahoo.co.id

Lebih terperinci

REGRESI DAN KORELASI SEDERHANA

REGRESI DAN KORELASI SEDERHANA REGRESI DAN KORELASI SEDERHANA Apa yag disebut Regresi? Korelasi? Aalisa regresi da korelasi sederhaa membahas tetag keterkaita atara sebuah variabel (variabel terikat/depede) dega (sebuah) variabel lai

Lebih terperinci

STATISTIKA ANALISIS REGRESI DAN KORELASI LINIER SEDERHANA

STATISTIKA ANALISIS REGRESI DAN KORELASI LINIER SEDERHANA STATISTIKA ANALISIS REGRESI DAN KORELASI LINIER SEDERHANA OUTLINE LANJUTAN Peetua garis duga regresi dega Metode OLS kostata a da koefisie b Aalisis Varias komposisi variasi sekitar garis r da r Stadard

Lebih terperinci

BAB II CICILAN DAN BUNGA MAJEMUK

BAB II CICILAN DAN BUNGA MAJEMUK BAB II CICILAN DAN BUNGA MAJEMUK 2.1. Buga Majemuk Ada sedikit perbedaa atara suku buga tuggal da suku buga majemuk. Pada suku buga tuggal, besarya buga B = Mp tidak perah digabugka dega modal M. Sebalikya

Lebih terperinci

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas.

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas. 4 D E R E T Kosep deret merupaka kosep matematika yag cukup populer da aplikatif khusuya dalam kasus-kasus yag meyagkut perkembaga da pertumbuha suatu gejala tertetu. Apabila perkembaga atau pertumbuha

Lebih terperinci

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin DISTRIBUSI SAMPLING Oleh : Dewi Rachmati Distribusi Rata-rata Misalka sebuah populasi berukura higga N dega parameter rata-rata µ da simpaga baku. Dari populasi ii diambil sampel acak berukura, jika tapa

Lebih terperinci

TEORI PENAKSIRAN. Bab 8. A. Pendahuluan. Kompetensi Mampu menjelaskan dan menganalisis teori penaksiran

TEORI PENAKSIRAN. Bab 8. A. Pendahuluan. Kompetensi Mampu menjelaskan dan menganalisis teori penaksiran Bab 8 TEORI PENAKSIRAN Kompetesi Mampu mejelaska da megaalisis teori peaksira Idikator 1. Mejelaska da megaalisis data dega megguaka peaksira titik 2. Mejelaska da megaalisis data dega megguaka peaksira

Lebih terperinci

ANALISIS SISTEM ANTRIAN PELAYANAN NASABAH DI PT. BANK NEGARA INDONESIA (PERSERO) TBK KANTOR CABANG UTAMA USU

ANALISIS SISTEM ANTRIAN PELAYANAN NASABAH DI PT. BANK NEGARA INDONESIA (PERSERO) TBK KANTOR CABANG UTAMA USU Saitia Matematika ISSN: 2337-9197 Vol. 02, No. 03 (2014), pp. 277 287. ANALISIS SISTEM ANTRIAN PELAYANAN NASABAH DI PT. BANK NEGARA INDONESIA (PERSERO) TBK KANTOR CABANG UTAMA USU Siti Aria R. Harahap

Lebih terperinci

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand TEKIK SAMPLIG PCA SEDERHAA Hazmira Yozza Izzati Rahmi HG Jurusa Matematika FMIPA Uad Defiisi : Jika suatu cotoh berukura diambil dari suatu populasi berukura sedemikia rupa sehigga setiap kemugkia cotoh

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakag Dalam keadaa dimaa meghadapi persoala program liier yag besar, maka aka berusaha utuk mecari peyelesaia optimal dega megguaka algoritma komputasi, seperti algoritma

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah:

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah: BAB III METODOLOGI PENELITIAN 3. Variabel da Defiisi Operasioal Variabel-variabel yag diguaka pada peelitia ii adalah: a. Teaga kerja, yaitu kotribusi terhadap aktivitas produksi yag diberika oleh para

Lebih terperinci

PENYELESAIAN PERSAMAAN GELOMBANG DENGAN METODE D ALEMBERT

PENYELESAIAN PERSAMAAN GELOMBANG DENGAN METODE D ALEMBERT Buleti Ilmiah Math. Stat. da Terapaya (Bimaster) Volume 02, No. 1(2013), hal 1-6. PENYELESAIAN PERSAMAAN GELOMBANG DENGAN METODE D ALEMBERT Demag, Helmi, Evi Noviai INTISARI Permasalaha di bidag tekik

Lebih terperinci

BAB 7 HIPOTESA 7.1 Pendahuluan

BAB 7 HIPOTESA 7.1 Pendahuluan BAB 7 HIPOTESA 7.1 Pedahulua Hipotesa statistik merupaka suatu peryataa probabilitas dari satu atau lebih parameter populasi yag mugki bear atau mugki salah (wibisoo, 009). Hipotesa adalah asumsi atau

Lebih terperinci

ESTIMASI TITIK DAN INTERVAL KEPERCAYAAN

ESTIMASI TITIK DAN INTERVAL KEPERCAYAAN 8/8/0 IE 305 tatistika Idustri LOGO ETIMAI TITIK DAN INTERVAL KEPERCAYAAN Elty arvia, T.,MT. Fakultas Tekik Jurusa Tekik Idustri Uiversitas Kriste Maraatha Badug LT arvia/esi Tujua 3 4 5 6 Medefiisika

Lebih terperinci

III. METODE PENELITIAN. Pembangunan Daerah (BAPPEDA) Provinsi NTB, BPS pusat, dan instansi lain

III. METODE PENELITIAN. Pembangunan Daerah (BAPPEDA) Provinsi NTB, BPS pusat, dan instansi lain III. METODE PENELITIAN 3.1 Jeis da Sumber Data Data yag diguaka pada peelitia ii merupaka data sekuder yag diperoleh dari Bada Pusat Statistik (BPS) Provisi NTB, Bada Perecaaa Pembagua Daerah (BAPPEDA)

Lebih terperinci

Chapter 7 Student Lecture Notes 7-1

Chapter 7 Student Lecture Notes 7-1 Chapter 7 Studet Lecture Notes 7-1 DASAR-DASAR UJI Hipotesis: Hipo (di bawah) da Tesis (peryataa yag telah diuji) Hipotesis Statistik:suatu proposisi atau aggapa megeai parameter populasi yag dapat diuji

Lebih terperinci

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari.

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari. Selag Kepercayaa Cotoh Besar Jika ukura cotoh (sample size) besar, maka meurut Teorema Limit Pusat, bayak statistik megikuti/mempuyai sebara yag medekati ormal (dapat diaggap ormal). Artiya jika adalah

Lebih terperinci

MENENTUKAN KOEFISIEN DETERMINASI ANTARA ESTIMASI M DENGAN TYPE WELSCH DENGAN LEAST TRIMMED SQUARE DALAM DATA YANG MEMPUNYAI PENCILAN

MENENTUKAN KOEFISIEN DETERMINASI ANTARA ESTIMASI M DENGAN TYPE WELSCH DENGAN LEAST TRIMMED SQUARE DALAM DATA YANG MEMPUNYAI PENCILAN Saitia Matematika ISSN: 337-9197 Vol. 0, No. 03 (014), pp. 5 35. MENENTUKAN KOEFISIEN DETERMINASI ANTARA ESTIMASI M DENGAN TYPE WELSCH DENGAN LEAST TRIMMED SQUARE DALAM DATA YANG MEMPUNYAI PENCILAN Sabam

Lebih terperinci

PEMBUKTIAN TEOREMA HUKUM LEMAH BILANGAN BESAR DENGAN MENGGUNAKAN FUNGSI KARAKTERISTIK

PEMBUKTIAN TEOREMA HUKUM LEMAH BILANGAN BESAR DENGAN MENGGUNAKAN FUNGSI KARAKTERISTIK Jural Matematika UNAND Vol. 2 No. 2 Hal. 71 75 ISSN : 2303 2910 c Jurusa Matematika FMIPA UNAND PEMBUKTIAN TEOREMA HUKUM LEMAH BILANGAN BESAR DENGAN MENGGUNAKAN FUNGSI KARAKTERISTIK SUCI SARI WAHYUNI,

Lebih terperinci

Solusi Numerik PDP. ( Metode Beda Hingga ) December 9, 2013. Solusi Numerik PDP

Solusi Numerik PDP. ( Metode Beda Hingga ) December 9, 2013. Solusi Numerik PDP ( Metode Beda Higga ) December 9, 2013 Sebuah persamaa differesial apabila didiskritisasi dega metode beda higga aka mejadi sebuah persamaa beda. Jika persamaa differesial parsial mempuyai solusi eksak

Lebih terperinci

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1 BARISAN DAN DERET 05//06 Matematika Tekik BARISAN Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 05//06 Matematika Tekik Barisa Tak Higga Secara sederhaa, barisa merupaka

Lebih terperinci

Statistika Inferensia (Bahan Non Parametrik utk MKM) Oleh Bambang Juanda. Pengujian Hipotesis Untuk Data Kategori

Statistika Inferensia (Bahan Non Parametrik utk MKM) Oleh Bambang Juanda. Pengujian Hipotesis Untuk Data Kategori Statistika Iferesia (Baha No Parametrik utk MKM) Oleh Bambag Juada Pegujia Hipotesis Utuk Data Kategori Topik Pertemua 3&4 Uji-Z utk Perbedaa Dua Proporsi (Dua Cotoh Bebas) Uji c utk Perbedaa Dua Proporsi

Lebih terperinci

Hubungan Antara Panjang Antrian Kendaraan dengan Aktifitas Samping Jalan

Hubungan Antara Panjang Antrian Kendaraan dengan Aktifitas Samping Jalan Hubuga Atara Pajag Atria Kedaraa dega Aktifitas Sampig Jala Frasiscus Mitar Ferry Sihotag Jurusa Tekik Sipil Fakultas Desai da Tekik Perecaaa Uiversitas Pelita Harapa. fmitarfs@yahoo.com, fmitarfs@uph.edu

Lebih terperinci

TEKNIK SAMPLING PCA SISTEMATIK. Hazmira Yozza Izzati Rahmi HG. Jurusan Matematika FMIPA - Unand

TEKNIK SAMPLING PCA SISTEMATIK. Hazmira Yozza Izzati Rahmi HG. Jurusan Matematika FMIPA - Unand Hazmira Yozza Izzati Rahmi HG TEKNIK SAMPLING PCA SISTEMATIK Jurusa Matematika FMIPA - Uad Defiisi Samplig sistematik adalah metode pearika cotoh yag dilakuka dega cara memilih secara acak satu eleme dari

Lebih terperinci

BARISAN DAN DERET. Nurdinintya Athari (NDT)

BARISAN DAN DERET. Nurdinintya Athari (NDT) BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga

Lebih terperinci

Penyelesaian Persamaan Non Linier

Penyelesaian Persamaan Non Linier Peyelesaia Persamaa No Liier Metode Iterasi Sederhaa Metode Newto Raphso Permasalaha Titik Kritis pada Newto Raphso Metode Secat Metode Numerik Iterasi/NewtoRaphso/Secat - Metode Iterasi Sederhaa- Metode

Lebih terperinci

PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA

PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA Cara Peyajia Data dega Tabel Distribusi Frekuesi Distribusi Frekuesi adalah data yag disusu dalam betuk kelompok baris berdasarka

Lebih terperinci

Proses Pendugaan. 95% yakin bahwa diantara 40 & 60. Mean X = 50. Mean,, tdk diketahui. Contoh Prentice-Hall, Inc. Chap. 7-1

Proses Pendugaan. 95% yakin bahwa diantara 40 & 60. Mean X = 50. Mean,, tdk diketahui. Contoh Prentice-Hall, Inc. Chap. 7-1 Proses Pedugaa Populasi Mea,, tdk diketahui Cotoh Acak Mea = 50 95% yaki bahwa diatara 40 & 60. Cotoh 1999 Pretice-Hall, Ic. Chap. 7-1 Pedugaa Parameter Populasi Meduga Parameter Populasi... Mea dg Statistik

Lebih terperinci

1 n MODUL 5. Peubah Acak Diskret Khusus

1 n MODUL 5. Peubah Acak Diskret Khusus ODUL 5 Peubah Acak Diskret Khusus Terdapat beberapa peubah acak diskret khusus yag serig mucul dalam aplikasi. Peubah Acak Seragam ( Uiform) Bila X suatu peubah acak diskret dimaa setiap eleme dari X mempuyai

Lebih terperinci

STATISTIKA DAN PELUANG BAB III STATISTIKA

STATISTIKA DAN PELUANG BAB III STATISTIKA Matematika Kelas IX Semester BAB Statistika STATISTIKA DAN PELUANG BAB III STATISTIKA A. Statistika Pegertia Statistika Statistika adalah ilmu yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 3, , Desember 2003, ISSN : INTERVAL SELISIH RATA-RATA DENGAN METODE BOOTSTRAP PERSENTIL

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 3, , Desember 2003, ISSN : INTERVAL SELISIH RATA-RATA DENGAN METODE BOOTSTRAP PERSENTIL JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 3, 118-70, Desember 003, ISSN : 1410-8518 INTERVAL SELISIH RATA-RATA DENGAN METODE BOOTSTRAP PERSENTIL Akhmad Fauzy Statistika FMIPA UII Yogyakarta & siswa Ph.D

Lebih terperinci

BAB VII DISTRIBUSI SAMPLING DAN DESKRIPSI DATA

BAB VII DISTRIBUSI SAMPLING DAN DESKRIPSI DATA BAB VII DITRIBUI AMPLING DAN DEKRIPI DATA 7. Distribusi amplig (samplig distributio) amplig distributio adalah distribusi probabilitas dari suatu statistik. amplig distributio tergatug dari ukura populasi,

Lebih terperinci

Barisan Dan Deret Arimatika

Barisan Dan Deret Arimatika Barisa Da Deret Arimatika A. Barisa Aritmatika Niko etera memiliki sebuah peggaris ukura 0 cm. Ia megamati bilaga-bilaga pada peggarisya ii. Bilaga-bilaga tersebut beruruta 0, 1,, 3,, 0. etiap bilaga beruruta

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 41-48, April 2003, ISSN : MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 41-48, April 2003, ISSN : MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No., 4-48, April 00, ISSN : 40-858 MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA Suryoto Jurusa Matematika F-MIPA Uiversas Dipoegoro Semarag Abstrak Suatu matriks tak

Lebih terperinci

FORECASTING (Peramalan)

FORECASTING (Peramalan) FORECASTING (Peramala) PENDAHULUAN Forecastig adalah ramala tetag apa yag aka terjadi dimasa yag aka datag. Forecast Demad atau peramala permitaa mejadi dasar yag sagat petig dalam perecaaa suatu keputusa

Lebih terperinci

BAB IV PEMECAHAN MASALAH

BAB IV PEMECAHAN MASALAH BAB IV PEMECAHAN MASALAH 4.1 Metodologi Pemecaha Masalah Dalam ragka peigkata keakurata rekomedasi yag aka diberika kepada ivestor, maka dicoba diguaka Movig Average Mometum Oscillator (MAMO). MAMO ii

Lebih terperinci

PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK. Sutikno

PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK. Sutikno sutiko PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK Sutiko Program Studi Tekik Iformatika Fakultas Sais da Matematika UNDIP tik@udip.ac.id

Lebih terperinci

BAB II KEADAAN FERMI DIRAC

BAB II KEADAAN FERMI DIRAC BAB II KEADAAN FERMI DIRAC A. Keadaa Makro da Mikro Masalah utama yag dihadapi dalam mekaika statistic adalah meetuka sebara yag mugki dari partikel-partikel kedalam tigkattigkat eergi da keadaa-keadaa

Lebih terperinci

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA. Langkah Langkah Dalam Pengolahan Data

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA. Langkah Langkah Dalam Pengolahan Data BAB IV PENGUMPULAN DAN PENGOLAHAN DATA 4.1 Metode Pegolaha Data Lagkah Lagkah Dalam Pegolaha Data Dalam melakuka pegolaha data yag diperoleh, maka diguaka alat batu statistik yag terdapat pada Statistical

Lebih terperinci

Pendiferensialan. Modul 1 PENDAHULUAN

Pendiferensialan. Modul 1 PENDAHULUAN Modul Pediferesiala Prof R Soematri D PENDAHULUAN alam modul ii dibahas fugsi berilai real yag didefiisika pada suatu iterval Defiisi derivatif suatu fugsi dimulai dega derivatif di suatu titik, kemudia

Lebih terperinci

Bab IV. Penderetan Fungsi Kompleks

Bab IV. Penderetan Fungsi Kompleks Bab IV Pedereta Fugsi Kompleks Sebagaimaa pada fugsi real, fugsi kompleks juga dapat dideretka pada daerah kovergesiya. Semua watak kajia kovergesi pada fugsi real berlaku pula pada fugsi kompleks. Secara

Lebih terperinci

= Keterkaitan langsung ke belakang sektor j = Unsur matriks koefisien teknik

= Keterkaitan langsung ke belakang sektor j = Unsur matriks koefisien teknik Aalisis Sektor Kuci Dimaa : KLBj aij = Keterkaita lagsug ke belakag sektor j = Usur matriks koefisie tekik (b). Keterkaita Ke Depa (Forward Ligkage) Forward ligkage meujukka peraa suatu sektor tertetu

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan Istitut Tekologi Sepuluh Nopember Surabaya Model Sistem dalam Persamaa Keadaa Pegatar Materi Cotoh Soal Rigkasa Latiha Pegatar Materi Cotoh Soal Rigkasa Istilah-istilah Dalam Persamaa Keadaa Aalisis Sistem

Lebih terperinci

PENGEMBANGAN MODEL ANALISIS SENSITIVITAS PETA KENDALI TRIPLE SAMPLING MENGGUNAKAN UTILITY FUNCTION METHOD

PENGEMBANGAN MODEL ANALISIS SENSITIVITAS PETA KENDALI TRIPLE SAMPLING MENGGUNAKAN UTILITY FUNCTION METHOD Semiar Nasioal Iformatika 5 (semasif 5) ISSN: 979-8 UPN Vetera Yogyakarta, 4 November 5 PENGEMBANGAN MODE ANAISIS SENSITIVITAS PETA KENDAI TRIPE SAMPING MENGGUNAKAN UTIITY FUNCTION METHOD Juwairiah ),

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

ANALISIS TENTANG GRAF PERFECT

ANALISIS TENTANG GRAF PERFECT Aalisis Tetag Graf Perfect ANALISIS TENTANG GRAF PERFET Nurul Imamah AH Fakultas Matematika da Ilmu Pegetahua Alam Uiversitas Pesatre Tiggi Darul Ulum Jombag urul.imamah86@gmail.com Abstrak Seirig perkembaga

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

Statistika Inferensial

Statistika Inferensial Cofidece Iterval Ara Fariza Statistika Iferesial Populasi Sampel Simpulka (estimasi) tetag parameter Medapatka statistik Estimasi: estimasi titik, estimasi iterval, uji hipotesa 2 1 Proses Estimasi Populasi

Lebih terperinci

PERTEMUAN 1-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK

PERTEMUAN 1-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK PERTEMUAN 1-MPC PRAKTIK Oleh: Adhi Kuriawa SEKOLAH TINGGI ILMU STATISTIK Utuk meigkatka presisi (meguragi varias samplig), desai samplig serig memafaatka auxiliarry variable yag mempuyai hubuga yag erat

Lebih terperinci

Kekeliruan dalam Perhitungan Numerik dan Selisih Terhingga Biasa

Kekeliruan dalam Perhitungan Numerik dan Selisih Terhingga Biasa Modul 1 Kekelirua dalam Perhituga Numerik da Selisih Terhigga Biasa D PENDAHULUAN Dr. Wahyudi, M.Pd. i dalam pemakaia praktis, peyelesaia akhir yag diigika dari solusi suatu permasalaha (soal) dalam matematika

Lebih terperinci

RING MATRIKS ATAS RING KOMUTATIF. Achmad Abdurrazzaq, Ari Wardayani, Suroto Universitas Jenderal Soedirman

RING MATRIKS ATAS RING KOMUTATIF. Achmad Abdurrazzaq, Ari Wardayani, Suroto Universitas Jenderal Soedirman JMP : Volume 7 Nomor 1, Jui 2015, hal 11-18 RING MATRIKS ATAS RING KOMUTATIF Achmad Abdurrazzaq, Ari Wardayai, Suroto razzaqgaesha@gmailcom Uiversitas Jederal Soedirma ABSTRACT This paper discusses a matrices

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

Deret Fourier. Modul 1 PENDAHULUAN

Deret Fourier. Modul 1 PENDAHULUAN Modul Deret Fourier Prof. Dr. Bambag Soedijoo P PENDAHULUAN ada modul ii dibahas masalah ekspasi deret Fourier Sius osius utuk suatu fugsi periodik ataupu yag diaggap periodik, da dibahas pula trasformasi

Lebih terperinci

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA BAB VI BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { },,,,, adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila,,,..,

Lebih terperinci

Model Pertumbuhan BenefitAsuransi Jiwa Berjangka Menggunakan Deret Matematika

Model Pertumbuhan BenefitAsuransi Jiwa Berjangka Menggunakan Deret Matematika Prosidig Semirata FMIPA Uiversitas Lampug, 0 Model Pertumbuha BeefitAsurasi Jiwa Berjagka Megguaka Deret Matematika Edag Sri Kresawati Jurusa Matematika FMIPA Uiversitas Sriwijaya edagsrikresawati@yahoocoid

Lebih terperinci