MENYELESAIKAN MASALAH SYARAT BATAS PERSAMAAN DIFFERENSIAL POISSON 2D. La Ode Muhammad Umar Reky Rahmad R 1.

Ukuran: px
Mulai penontonan dengan halaman:

Download "MENYELESAIKAN MASALAH SYARAT BATAS PERSAMAAN DIFFERENSIAL POISSON 2D. La Ode Muhammad Umar Reky Rahmad R 1. Email: umarr3@yahoo."

Transkripsi

1 La Ode Mammd Umar Re Ramad R//Paradgma Vol. 5 No. Otober 0 lm MENYELESAIKAN MASALAH SYARAT BATAS PERSAMAAN DIFFERENSIAL POISSON D La Ode Mammad Umar Re Ramad R Jrsan Matemata FMIPA Unverstas Haloleo Kendar 933 Emal: ABSTRAK Termotvas dar sltna menelesaan masala sarat batas persamaan Posson secara nmer maa pada tlsan n dberan beberapa sema nt menelesaaan persamaan dfferensal Posson da dmens dengan sarat batas Nemann Robn dan Drclet pada grd artess dengan doman berbent segempat. Sema-sema tersebt dbangn e dalam sema persamaan Posson berdasaran metode beda ngga dan metode Sccessve Over Relaaton (SOR. Cara n ternata berasl dterapan pada seba conto selntna domentar pla masala eonvergenan dan aras asl nmer tersebt. Kata-ata Knc : Sarat Batas Persamaan Dfferensal Posson Metode Beda Hngga Metode Scessve Over Relaatn (SOR ABSTRACT Motvated b te dffclt n solvng nmercall te bondar condton problems of Posson dfferental eqaton we present some scemes for solvng a two dmensonal Posson dfferental eqaton wt Nemann Robn and Drclet bondar condtons on a Cartesan grd wt rectaglar doman bondares. Tese scemes were developed n te posson eqaton scemes based on te fnte dfference metod and Sccesve Over Relaaton (SOR metod. Te proposed metod was sccessfll mplemented on an eample for wc we present and dscss te convergence and accrac of te nmercal reslt. Kewords: Bondar Condton Posson dfferental eqaton Fnte Dfference Metod Sccesve Over Relaaton (SOR Dterma: 5 Jn 0 Dset nt dpblasan: 0 Agsts 0

2 Menelesaan Masala Sarat Batas Persamaan Dfferensal Posson D 34. PENDAHULUAN Persamaan dfferensal Posson mempna aplas ang las pada bdang reaasa. Persamaan dfferensal n dapat dmpa pada masala eletrostat dnama fldapegas onds panas masala ar tana dan lan-lan []. Pendeatan persamaan dfferensal Posson dan Laplace D menggnaan metode beda ngga mengaslan sstem persamaan lner ang berran besar tetap mempna strtr teratr dan elemenna ebanaan nol sengga penelesaan sstm persamaan lner tersebt serng dpl metode teras []. Metode teras mempna erangan at proses teras dapat tda onvergen metode teras mengaslan proses teras ang onvergen a dan ana a nla egen ang mempna nla mtla terbesar (spectral rads dar matrs tersna bernla rang dar []. Menelesaaan persamaan dfferensal menggnaan metode Metode Beda Hngga (Fnte Dfference Metods mmna menem esltan pada cara memperole sema nmer pada batas-batas doman sesa sarat batas ang dberan. Ole arena t pentng nt menga bagamana menelesaan masala sarat batas persamaan dfferensal Posson D dengan berbaga tpe sarat batasna.. PERSAMAAN DIFFERENSIAL POISSON DAN TIPE SYARAT BATAS Bent persamaan dfferensal (PD Posson D adala ( ( f(. Bent mm sarat batas (tpe Robn adala PQ n G dengan n adala vetor normal satan (vetor tega lrs pada rva batas P dan Q adala blangan onstan ang tda bernla nol secara serenta. Sarat batas Drclet dperole a Q0 sedangan a P0 dperole sarat batas bertpe Nemann. [3]

3 La Ode Mammd Umar Re Ramad R//Paradgma Vol. 5 No. Otober 0 lm SKEMA BEDA HINGGA PADA TITIK DALAM DOMAIN (TITIK INTERIOR Dberan persamaan dfferensal Posson D ( ( ( f ( dengan doman { } q p Ω 0 0 (. Batas-batas doman dapat bertpe Drclet Nemann ata Robn. Penelesaan persamaan ( dengan metode beda ngga dmla dengan memparts doman sepert pada Gambar. [4] Persamaan ( selantna dtls menad f ( (. ( Ja dgnaan rms pendeatan ( Gambar. Doman dan partsna

4 Menelesaan Masala Sarat Batas Persamaan Dfferensal Posson D 36 dan ( maa persamaan ( dapat ddeat dengan sema f ata. f (3 3...I-; 3...J-. 4. SKEMA BEDA HINGGA PADA BATAS DOMAIN Persamaan (3 merpaan sema nt mencar pada tt-tt grd ang terleta pada bagan dalam doman ad berndes 3...I- 3...J-. Adapn nt tttt grd ang terleta pada batas doman dalam al n dengan sala sat ata eda ndesna adala I J dbtan modfas persamaan (3 sesa sarat batas ang dberan (Robn ata Nemann. Pada batas bertpe Drclet nla tela deta sengga tda dbtan sema nmer nt mencar nla pada batas tersebt. [5] Pada sdt batas ang dbent ole da batas bertpe Drclet nla dasmsan sama dengan nla rata-ratana. Ja sdt batas dbent ole batas bertpe Drclet dan batas lanna bertpe Robn ata Nemann maa nla pada sdt batas tersebt dasmsan mengt nla dar batas Drclet. Nla-nla pada batas bertpe Robn ata Nemann belm deta ole arena t dbtan sema nmer nt mencar nla pada batas-batas tersebt.

5 La Ode Mammd Umar Re Ramad R//Paradgma Vol. 5 No. Otober 0 lm Deta bent mm sarat batas merpaan tpe Robn at P ( Q ( n G dengan n adala vetor ara normal satan (vetor satan ang tega lrs pada rva batas. Y n n n n Doman n n n n X Gambar Vetor normal satan Ja sat batas tda bertpe Drclet ( Q 0 maa bent mm sarat batas (Tpe Robn tersebt dapat dnataan sebaga ( n α ( β (4 dengan α P / Q β G / Q. Ja α 0 maa persamaan (4 menad sarat batas bertpe Nemann. Sema nmer nt mencar nla pada sat batas bertpe Robn ata Nemann pada prnspna adala modfas persamaan (3 sesa sarat batasna

6 Menelesaan Masala Sarat Batas Persamaan Dfferensal Posson D 38 sengga sema tersebt tda menggnaan tt-tt dlar doman. Hal n aan dcontoan pada bagan bert. Msalan doman pada Gambar 3 dengan batas batas r doman bertpe Robn ( α 3 ( β 0 0 q (5 3 dengan α 3 β 3 blangan onstan. Y q α β α 3 β 3 α 4 β 4 0 P α β X Gambar 3. Doman dengan sarat batas Robn ata Nemann Persamaan (5 dapat dtls menad Ja dgnaan rms pendeatan α 3 β... J. (6 ( 3 ( maa persamaan (6 dapat ddeat dengan sema

7 La Ode Mammd Umar Re Ramad R//Paradgma Vol. 5 No. Otober 0 lm α β 3 ; ;...J. (7 Ja dgnaan pada sema PD Posson (3 dan persamaan (7 maa aan dmpa 0 dengan...j. Sedangan deta bawa ndes terecl nt adala n berart langsng. 0 adala tt-tt ftf. Ole arena t 0 tda dapat dgnaan secara Persamaan (3 nt dperole Persamaan (7 nt dperole ata 0. f (8 0 α β 3 0 β 3 α 3 3. (9 Persamaan (9 dsbstts pada persamaan (8 dperole β 3. α 3 f. (0

8 Menelesaan Masala Sarat Batas Persamaan Dfferensal Posson D 40 Persamaan (0 merpaan sema nt mencar nt mencar dan ang membent sdt-sdt tersebt. Robnat 3... J-. Sedangan sema J belm dapat dtentan arena melbatan sarat batas lan Msalan doman pada Gambar 3 batas bagan atas doman ga dengan α β blangan onstan. Persamaan ( dapat dtls menad Ja dgnaan rms pendeatan bertpe ( α ( β 0 p q ( ( α β...i J. ( ( maa persamaan ( dapat ddeat dengan ata α β ;...I; J J J β α...i. (3 Sema PD Posson (3 nt J adala J J.J J f J J (4

9 La Ode Mammd Umar Re Ramad R//Paradgma Vol. 5 No. Otober 0 lm Deta ndes terbesar nt adala J. Ha n berart J 3...I adala tttt ang berada dlar doman (tt ftf. Unt mengndar penggnaan tt-ttftf tersebt maa persamaan (3 dsbstts e persamaan (4 dperole J J J.J β α f J (5 3...I-. Sema nt J dan I J ( pada tt sdt doman mas memerlan nformas tambaan dar sarat batas ss ang lan ang membent sdt-sdt tersebt. Deta doman pada Gambar 3 bawa batas r dan batas anan doman bertpe Robn maa sema pada sdt r atas ( dperole dengan mensbstts persamaan (9 dan (3 e persamaan (3 dperole J J J β 3.J β f J α 3 α. (6 Kss nt sdt batas ang dbent ole batas-batas Drclet nla pada sdt dasmsan sama dengan nla rata-ratana. Ja sdt batas dbent ole batas bertpe Drclet dan batas ang lanna bertpe Robn ata Nemann maa nla pada sdt tersebt dasmsan mengt nla dar batas bertpe Drclet. [4]. Setela sema sema beda ngga nt terseda maa nt ang belm deta nlana dberan sebarang nla awal msalan teras menggnaan sema SOR at ( ( 0 v v. ( ω.( selantna dlaan ω (7

10 Menelesaan Masala Sarat Batas Persamaan Dfferensal Posson D 4 dengan v nomor teras (v 3... adala dar sema tt grd pada bagan dalam doman (persamaan (3 dan sema batas Robn ata Nemann. Parameter SOR at ω dpl 0 < ω <.[5] 5. SIMULASI KOMPUTER Dberan persamaan dfferensal ( ( dengan doman Ω {( 0 0 } dan sarat batas ( Gambar 4. Nla-nla pada doman

11 La Ode Mammd Umar Re Ramad R//Paradgma Vol. 5 No. Otober 0 lm Sols nmer bert n dperole dengan melaan teras menggnaan sema beda ngga nt tt nteror (persamaan (3 dan sema beda ngga nt batas doman menggnaan metode teras SOR (Sccesve Over Relaaton. Doman dparts sebana 3 plaan seara smb X (I33 dan 3 plaan seara smb Y (J33. Nlanla ang aan dcar sesa letana pada domandapat dlat pada Gambar 4. Gambar 5. Sols nmer. Gambar 6. Realtas sols nmer sesa letana pada doman.

12 Menelesaan Masala Sarat Batas Persamaan Dfferensal Posson D 44 Realtas sols nmer tersebt dapat dlat pada Gambar 6 dgnaan nt memperlatan bawa sols nmer ang dperole ternata sesa dengan sema nmer ang dgnaan. Sols nmer pada Gambar 5 dan Gambar 6 dperole dengan memparts doman sebana 3 plaan seara smb X (ad I33 lebar grd lebar doman/(i- /3 dan 3 plaan seara smb Y (ad J33 tngg grd tngg doman/(i- /3. Pada ass n fngs f0 ran grd sengga sema tt nteror pada persamaan (3 menad 4 (7 3...I-; 3...J-. Terlat pada Gambar 6 bawa nla-nla pada bagan dalam doman (tt nteror mengt sema persamaan (7 sedangan nla-nla pada masng-masng batas mengt sarat batas ang dberan. Seberapa besar aras dar asl nmer tersebt dapat dlat melal graf tentang error pada gambar bert. X Y Gambar 7. Graf error nmer.

13 La Ode Mammd Umar Re Ramad R//Paradgma Vol. 5 No. Otober 0 lm Besarna error terlat mendeat nol nla absolt error relatf terbesarna adala terad pada oordnat Apabla nla absolt error relatf terbesar dar tap-tap teras dplot sesa nomor terasna maa dperole graf ang memperlatan bawa error fenomena bawa error ang seman ecl serng dengan menngatna mla teras. Terlat pada Gambar 8 bawa nla absolt error relatf terbesar dar tap-tap teras setela setar 0 teras mla mendeat nol. Error seman ecl a mla teras dperbana al n mengndasan bawa proses teras berasl onvergen. Gambar 8. Error man ecl serng menngatna mla teras 6. KESIMPULAN Kesmplan dar cara menelesaan masala sarat batas persamaan dfferensal Posson D pada tlsan adala sebaga bert

14 Menelesaan Masala Sarat Batas Persamaan Dfferensal Posson D 46 Ja batas doman bertpe Drclet maa tda dperlan sema beda ngga pada batas tersebt arena nlana tela deta. Pada batas doman bertpe Nemann ata Robn dperlan sema beda ngga ang merpaan modfas sema beda ngga tt nteror (tt bagan dalam doman sesa leta batas tersebt sedeman sengga sema beda ngga nt batas tersebt tda melbatan tt-tt dlar doman. Pada tt batas doman ang dbent ole ss bertpe Drclet dan ss lanna ban bertpe Drclet maa nla pada tt tersebt mengt tt Drclet. Pada tt batas doman ang dbent ole ss bertpe Drclet dan ss lanna ga bertpe Drclet maa nla pada tt tersebt mengt rata-ratana. Pada tt batas doman ang dbent ole ss bertpe selan Nemann ata Robn dan ss lanna ga bertpe Nemann ata Robn maa nla pada tt tersebt mengt sema nmer ang merpaan perpadan dar eda sema nmer sarat batas tersebt. DAFTAR PUSTAKA [] O brenjj.986 Advanced Pscal Oceanograpc Nmercal Modellng Redel pblsng compan Florda. [] NaamraS99 Appled Nmercal Metods wt Software Prentce- Hall-nc New Yor. [3] Bassarddn T. 994 Metode Beda Hngga nt Persamaan Dfferensal Ele Meda Komptndo Jaarta.

15 La Ode Mammd Umar Re Ramad R//Paradgma Vol. 5 No. Otober 0 lm [4] BaleW. 003 Te SOR algortm & ts Applcaton to Nmercal Solton of Elptc Partal Dfferental Eqaton Dbln Insttte of Tecnolog Ireland. [5] ConstantndesA 987Appled Nmercal Metods wt Personal Compter Graw-HllMc-Inc New Yor.

IMPLEMENTASI MATLAB UNTUK MENYELESAIKAN MASALAH SYARAT BATAS PERSAMAAN DIFFERENSIAL POISSON DAN LAPLACE 2D. La Ode Muhammad Umar RRR 1)

IMPLEMENTASI MATLAB UNTUK MENYELESAIKAN MASALAH SYARAT BATAS PERSAMAAN DIFFERENSIAL POISSON DAN LAPLACE 2D. La Ode Muhammad Umar RRR 1) Paradgma Vol. 4 No. Agsts 00 hlm. 5 70 IMPLEMENTASI MATLAB UNTUK MENYELESAIKAN MASALAH SYARAT BATAS PERSAMAAN DIFFERENSIAL POISSON DAN LAPLACE D La Ode Mhammad Umar RRR ) ) Jrsan Matematka FMIPA Unverstas

Lebih terperinci

Cetakan I, Agustus 2014 Diterbitkan oleh: Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Pattimura

Cetakan I, Agustus 2014 Diterbitkan oleh: Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Pattimura Ha cpta dlndng Undang-Undang Cetaan I, Agsts Dterbtan ole: Faltas Mateata dan Il Pengetaan Ala, Unverstas Pattra ISBN: 97-6-9755-- Desrps alaan sapl : Gabar yang ada pada cover adala plan benda-benda langt

Lebih terperinci

PEMBAGIAN KELAS KULIAH MAHASISWA MENGGUNAKAN ALGORITMA PENGKLASTERAN FUZZY C-MEANS

PEMBAGIAN KELAS KULIAH MAHASISWA MENGGUNAKAN ALGORITMA PENGKLASTERAN FUZZY C-MEANS PEMBAGIA KELAS KULIAH MAHASISWA MEGGUAKA ALGORITMA PEGKLASTERA FUZZY C-MEAS Bd Setyono 1), R. Rzal Isnanto ) Jrsan Ten Eletro Faltas Ten Unverstas Dponegoro 1,) Jl. Prof. H. Sdarto, SH Tembalang Semarang

Lebih terperinci

Karakterisasi Matrik Leslie Ordo Tiga

Karakterisasi Matrik Leslie Ordo Tiga Jurnal Graden Vol No Januar 006 : 34-38 Karatersas Matr Lesle Ordo Tga Mudn Smanhuru, Hartanto Jurusan Matemata, Faultas Matemata dan Ilmu Pengetahuan Alam, Unverstas Bengulu, Indonesa Dterma Desember

Lebih terperinci

Misalkan S himpunan bilangan kompleks. Fungsi kompleks f pada S adalah aturan yang

Misalkan S himpunan bilangan kompleks. Fungsi kompleks f pada S adalah aturan yang Fngs Analtk FUNGSI ANALITIK Fngs sebt analtk ttk apabla aa sema ttk paa sat lngkngan Untk mengj keanaltkan sat ngs kompleks w = = + gnakan persamaan Cach Remann Sebelm mempelejar persamaan Cach-Remann

Lebih terperinci

Created by Simpo PDF Creator Pro (unregistered version)

Created by Simpo PDF Creator Pro (unregistered version) Created by Smpo PDF Creator Pro (unregstered verson) http://www.smpopd.com Statst Bsns : BAB IV. UKURA PEMUSATA DATA. Pendahuluan Untu mendapatan gambaran yang lebh jelas tentang seumpulan data mengena

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer Aljabar Linear Elementer MA SKS Silabs : Bab I Matris dan Operasinya Bab II Determinan Matris Bab III Sistem Persamaan Linear Bab IV Vetor di Bidang dan di Rang Bab V Rang Vetor Bab VI Rang Hasil Kali

Lebih terperinci

BAB III UKURAN PEMUSATAN (RATA-RATA)

BAB III UKURAN PEMUSATAN (RATA-RATA) BAB III UKUAN PEMUSATAN (ATA-ATA Salah sat ra mer yag mejelasa cr-cr data yag petg adalah ra pemsata, yat ra yag meja psat seggs data yag telah drta dar yag terecl sampa yag terbesar ata sebalya Ura pemsata

Lebih terperinci

V E K T O R Kompetensi Dasar :

V E K T O R Kompetensi Dasar : MODUL PEMELJRN I V E K T O R Kompetens Dasar : 1. Mahasswa mampu memaham perbedaan besaran vetor dan salar serta memberan contohcontohna dalam ehdupan sehar-har, 2. Mahasswa mampu melauan operas penumlahan

Lebih terperinci

PERSAMAAN DIFERENSIAL (DIFFERENTIAL EQUATION) M E T O D E E U L E R M E T O D E R U N G E - K U T T A

PERSAMAAN DIFERENSIAL (DIFFERENTIAL EQUATION) M E T O D E E U L E R M E T O D E R U N G E - K U T T A PERSAMAAN DIFERENSIAL DIFFERENTIAL EQUATION M E T O D E E U L E R M E T O D E R U N G E - U T T A PERSAMAAN DIFERENSIAL Persamaan palng pentng dalam bdang reaasa palng bsa menjelasan apa ang terjad dalam

Lebih terperinci

U JIAN A KHIR S EMESTER M ATEMATIKA T EKNIK

U JIAN A KHIR S EMESTER M ATEMATIKA T EKNIK Jurusan Ten Spl dan Lngungan FT UGM U JIAN A KHIR S EMESTER M ATEMATIKA T EKNIK SENIN, 4 JANUARI 23 OPEN BOOK WAKTU MENIT PETUNJUK ) Saudara tda boleh menggunaan omputer untu mengerjaan soal- soal ujan

Lebih terperinci

TEKNIK EKSTRAPOLASI RICHARDSON BERULANG PADA MODEL BINOMIAL FLEKSIBEL UNTUK MENENTUKAN HARGA OPSI JUAL AMERIKA

TEKNIK EKSTRAPOLASI RICHARDSON BERULANG PADA MODEL BINOMIAL FLEKSIBEL UNTUK MENENTUKAN HARGA OPSI JUAL AMERIKA IndoMS Journal on Statstcs Vol, No (4), Page 39-49 TEKNIK EKSTRAPOLASI RICHARDSON BERULANG PADA MODEL BINOMIAL FLEKSIBEL UNTUK MENENTUKAN HARGA OPSI JUAL AMERIKA Arum Handn Prmandar, Abdurahman Jurusan

Lebih terperinci

titik tengah kelas ke i k = banyaknya kelas

titik tengah kelas ke i k = banyaknya kelas STATISTIKA Bab 0 UKURAN PEMUSATAN DAN PENYEBARAN. Mea X. a. Data Tuggal... 3 b. Data Kelompo ( dstrbus frewes) f. f. f.... f. 3 3 f f f... f = f. f 3 Ket : tt tegah elas e = bayaya elas f frewes elas e

Lebih terperinci

BAB 2 LANDASAN TEORI. Teori Galton berkembang menjadi analisis regresi yang dapat digunakan sebagai alat

BAB 2 LANDASAN TEORI. Teori Galton berkembang menjadi analisis regresi yang dapat digunakan sebagai alat BAB LANDASAN TEORI. 1 Analsa Regres Regres pertama kal dpergunakan sebaga konsep statstk pada tahun 1877 oleh Sr Francs Galton. Galton melakukan stud tentang kecenderungan tngg badan anak. Teor Galton

Lebih terperinci

BAB III METODE RESPONSE SURFACE DENGAN SIMULASI MONTE CARLO. solusi dari suatu masalah diberikan berdasarkan proses rendomisasi (acak).

BAB III METODE RESPONSE SURFACE DENGAN SIMULASI MONTE CARLO. solusi dari suatu masalah diberikan berdasarkan proses rendomisasi (acak). BAB III METODE RESPONSE SURFACE DENGAN SIMULASI MONTE CARLO 3. Smulas Monte Carlo Smulas Monte Carlo merupaan bentu smulas probablst dmana solus dar suatu masalah dberan berdasaran proses rendomsas (aca).

Lebih terperinci

ANALISIS VARIASI PARAMETER BACKPROPAGATION ARTIFICIAL NEURAL NETWORK TERHADAP PENGENALAN POLA DATA IRIS

ANALISIS VARIASI PARAMETER BACKPROPAGATION ARTIFICIAL NEURAL NETWORK TERHADAP PENGENALAN POLA DATA IRIS ANALISIS VARIASI PARAMETER BACKPROPAGATION ARTIFICIAL NEURAL NETWORK TERHADAP PENGENALAN POLA DATA IRIS Ihwannul Khols, ST. MT. Unverstas 7 Agustus 945 Jaarta hols27@gmal.com Abstra Pengenalan pola data

Lebih terperinci

ROOTS OF NON LINIER EQUATIONS

ROOTS OF NON LINIER EQUATIONS ROOTS OF NON LINIER EQUATIONS Metode Bag da (Bsecton Method) Metode Regla Fals (False Poston Method) Metode Grak Iteras Ttk-Tetap (F Pont Iteraton) Metode Newton-Raphson Metode Secant SOLUSI PERSAMAAN

Lebih terperinci

BAB VIII. Analisa AC Pada Transistor

BAB VIII. Analisa AC Pada Transistor Bab, Analsa A pada Transstot Hal 166 BAB Analsa A Pada Transstor Analsa A atau serngkal dsebut analsa snyal kecl pada penguat adala analsa penguat snyal A, dengan memblok snyal D yatu dengan memberkan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.. Populas dan Sampel Populas adalah eseluruhan unt atau ndvdu dalam ruang lngup yang ngn dtelt. Banyanya pengamatan atau anggota suatu populas dsebut uuran populas, sedangan suatu nla

Lebih terperinci

Implementasi Jaringan Saraf Tiruan Backpropagation Pada Aplikasi Pengenalan Wajah Dengan Jarak Yang Berbeda Menggunakan MATLAB 7.0

Implementasi Jaringan Saraf Tiruan Backpropagation Pada Aplikasi Pengenalan Wajah Dengan Jarak Yang Berbeda Menggunakan MATLAB 7.0 Implementas Jarngan Saraf Truan Bacpropagaton Pada Aplas Pengenalan Waah Dengan Jara Yang Berbeda Menggunaan MATLAB 7.0 Syafe Nur Luthfe Jurusan Ten Informata, Unverstas Gunadarma Jl. Margonda Raya 100,

Lebih terperinci

KUNCI JAWABAN SOAL TEORI FISIKA OLIMPIADE SAINS NASIONAL Ketinggian maksimum yang dicapai beban dihitung dari permukaan tanah (y t ) 1 mv

KUNCI JAWABAN SOAL TEORI FISIKA OLIMPIADE SAINS NASIONAL Ketinggian maksimum yang dicapai beban dihitung dari permukaan tanah (y t ) 1 mv KUNI JWBN SO EOI FISIK OIMPIDE SINS NSION 00. a. Dhtung dahulu watu yang derluan dar beban dleas sama e etnggan masmum yatu t. v 0 at 0 0t t =0, seon. Ketnggan masmum yang dcaa beban dhtung dar ermuaan

Lebih terperinci

PEMBUATAN GRAFIK PENGENDALI BERDASARKAN ANALISIS KOMPONEN UTAMA (PRINCIPAL COMPONENT ANALYSIS)

PEMBUATAN GRAFIK PENGENDALI BERDASARKAN ANALISIS KOMPONEN UTAMA (PRINCIPAL COMPONENT ANALYSIS) PEMBUATAN GRAFIK PENGENDALI BERDASARKAN ANALISIS KOMPONEN UTAMA (PRINCIPAL COMPONENT ANALYSIS) Wrayant ), Ad Setawan ), Bambang Susanto ) ) Mahasswa Program Stud Matematka FSM UKSW Jl. Dponegoro 5-6 Salatga,

Lebih terperinci

STATISTICAL STUDENT OF IST AKPRIND

STATISTICAL STUDENT OF IST AKPRIND E-mal : statstkasta@yahoo.com Blog : Analss Regres SederhanaMenggunakan MS Excel 2007 Lsens Dokumen: Copyrght 2010 sssta.wordpress.com Seluruh dokumen d sssta.wordpress.com dapat dgunakan dan dsebarkan

Lebih terperinci

NAMA : KELAS : theresiaveni.wordpress.com

NAMA : KELAS : theresiaveni.wordpress.com 1 NAMA : KELAS : teresiaeni.wordpress.com TURUNAN/DIFERENSIAL Deinisi : Laj perbaan nilai teradap ariabelnya adala : y dy d ' = = d d merpakan ngsi bar disebt trnan ngsi ata perbandingan dierensial, proses

Lebih terperinci

Tinjauan Ulang Konsep Mekanika Klasik

Tinjauan Ulang Konsep Mekanika Klasik Modul 1 Tnauan Ulang Konsep Meana Klas Paen Pandangan, S.S., M.S. P PENDAHULUAN ada Buu Mater Poo (BMP) Meana, Anda sudah mempelaar tentang neta dan dnama suatu sstem ba melalu huum-huum Newton, Lagrange,

Lebih terperinci

Dekomposisi Nilai Singular dan Aplikasinya

Dekomposisi Nilai Singular dan Aplikasinya A : Dekomposs Nla Sngular dan Aplkasnya Gregora Aryant Dekomposs Nla Sngular dan Aplkasnya Oleh : Gregora Aryant Program Stud Penddkan Matematka nverstas Wdya Mandala Madun aryant_gregora@yahoocom Abstrak

Lebih terperinci

ANALISIS REGRESI KOMPONEN UTAMA UNTUK MENGATASI MASALAH MULTIKOLINIERITAS DALAM ANALISIS REGRESI LINIER BERGANDA

ANALISIS REGRESI KOMPONEN UTAMA UNTUK MENGATASI MASALAH MULTIKOLINIERITAS DALAM ANALISIS REGRESI LINIER BERGANDA ANALISIS REGRESI KOMPONEN UTAMA UNTUK MENGATASI MASALAH MULTIKOLINIERITAS DALAM ANALISIS REGRESI LINIER BERGANDA Hars Bhat Prasetyo, Dan Handayan, Wdyant Rahayu JURUSAN MATEMATIKA FMIPA-UNIVERSITAS NEGERI

Lebih terperinci

Probabilitas dan Statistika Distribusi Peluang Diskrit 1. Adam Hendra Brata

Probabilitas dan Statistika Distribusi Peluang Diskrit 1. Adam Hendra Brata Probabltas dan Statsta Dsrt Adam Hendra Brata Unform Bernoull Multnomal Setap perstwa aan mempunya peluangnya masng-masng, dan peluang terjadnya perstwa tu aan mempunya penyebaran yang mengut suatu pola

Lebih terperinci

PENGENDALIAN OPTIMAL PADA MODEL KEMOPROFILAKSIS DAN PENANGANAN TUBERKULOSIS

PENGENDALIAN OPTIMAL PADA MODEL KEMOPROFILAKSIS DAN PENANGANAN TUBERKULOSIS PENGENDALIAN OPTIMAL PADA MODEL KEMOPROFILAKSIS DAN PENANGANAN TUBERKULOSIS Ole: Citra Dewi Ksma P. 106 100 007 Dosen pembimbing: DR. Sbiono, MSc. Latar Belakang PENDAHULUAN Penyakit Tberklosis TB adala

Lebih terperinci

PENGELOMPOKAN PRESTASI MATEMATIKA SISWA INDONESIA BERDASARKAN HASIL SURVEY TIMSS MENGGUNAKAN ANALISIS LOGISTIK KELAS LATEN Riswan

PENGELOMPOKAN PRESTASI MATEMATIKA SISWA INDONESIA BERDASARKAN HASIL SURVEY TIMSS MENGGUNAKAN ANALISIS LOGISTIK KELAS LATEN Riswan PENGELOMPOAN PRESTASI MATEMATIA SISWA INDONESIA BERDASARAN HASIL SURVEY TIMSS MENGGUNAAN ANALISIS LOGISTI ELAS LATEN Rswan Abstract ; Conventonal metods of clusterng become wea wen meet measured objects

Lebih terperinci

APLIKASI INTEGRAL TENTU

APLIKASI INTEGRAL TENTU APLIKASI INTEGRAL TENTU Aplkas Integral Tentu థ Luas dantara kurva థ Volume benda dalam bdang (dengan metode cakram dan cncn) థ Volume benda putar (dengan metode kult tabung) థ Luas permukaan benda putar

Lebih terperinci

Perbandingan Metode Partial Least Square (PLS) dengan Regresi Komponen Utama untuk Mengatasi Multikolinearitas

Perbandingan Metode Partial Least Square (PLS) dengan Regresi Komponen Utama untuk Mengatasi Multikolinearitas Statstka, Vol. No., 33 4 Me 0 Perbandngan Metode Partal Least Square (PLS) dengan Regres Komponen Utama untuk Mengatas Multkolneartas Nurasana, Muammad Subanto, Rka Ftran Jurusan Matematka FMIPA UNSYIAH

Lebih terperinci

Integral Lipat Dua (Double Integral)

Integral Lipat Dua (Double Integral) Peteman- & 9 Integal Lpat Da Doble Integal Fngs: Menghtng s benda padat mbl bdang o o, pada poos. Penampang antaa benda dan o mempna las L bdang as Jka ada bdang dsampng maka las bdang: b a f d lm n Δ

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PEDAHULUA. Latar Belakang Rsko ddentfkaskan dengan ketdakpastan. Dalam mengambl keputusan nvestas para nvestor mengharapkan hasl yang maksmal dengan rsko tertentu atau hasl tertentu dengan rsko yang

Lebih terperinci

PERTEMUAN I PENGENALAN STATISTIKA TUJUAN PRAKTIKUM

PERTEMUAN I PENGENALAN STATISTIKA TUJUAN PRAKTIKUM PERTEMUAN I PENGENALAN STATISTIKA TUJUAN PRAKTIKUM 1) Membuat dstrbus frekuens. 2) Mengetahu apa yang dmaksud dengan Medan, Modus dan Mean. 3) Mengetahu cara mencar Nla rata-rata (Mean). TEORI PENUNJANG

Lebih terperinci

BAB II KONDUKSI ALIRAN STEDI SATU DIMENSI

BAB II KONDUKSI ALIRAN STEDI SATU DIMENSI BB II KONDUKSI LIRN SEDI SU DIMENSI Dndng Datar Persamaan alr : (5- Harga ndutvtas termal dasumsan nstan, tebal dndng, dan dan adalah temperatur permuaan dndng. Ja ndutvtas termal bervaras arena temperatur

Lebih terperinci

BAB I PENDAHULUAN. pembangunan dalam sektor energi wajib dilaksanakan secara sebaik-baiknya. Jika

BAB I PENDAHULUAN. pembangunan dalam sektor energi wajib dilaksanakan secara sebaik-baiknya. Jika BAB I PENDAHULUAN 1.1.Latar Belakang Energ sangat berperan pentng bag masyarakat dalam menjalan kehdupan seharhar dan sangat berperan dalam proses pembangunan. Oleh sebab tu penngkatan serta pembangunan

Lebih terperinci

Pertemuan ke-4 Analisa Terapan: Metode Numerik. 4 Oktober 2012

Pertemuan ke-4 Analisa Terapan: Metode Numerik. 4 Oktober 2012 Pertemuan ke-4 Analsa Terapan: Metode Numerk 4 Oktober Persamaan Non Non--Lner: Metode NewtonNewton-Raphson Dr.Eng. Agus S. Muntohar Metode Newton Newton--Raphson f( f( f( + [, f(] + = α + + f( f ( Gambar

Lebih terperinci

ANALISIS MODEL PERSEDIAAN BARANG EOQ DENGAN MEMPERTIMBANGKAN FAKTOR KADALUARSA DAN FAKTOR ALL UNIT DISCOUNT

ANALISIS MODEL PERSEDIAAN BARANG EOQ DENGAN MEMPERTIMBANGKAN FAKTOR KADALUARSA DAN FAKTOR ALL UNIT DISCOUNT LAORAN HASIL ENELITIAN ANALISIS MOEL ERSEIAAN BARANG EO ENGAN MEMERTIMBANGKAN FAKTOR KAALUARSA AN FAKTOR ALL UNIT ISOUNT Tauf Lmansyah LEMBAGA ENELITIAN AN ENGABIAN KEAA MASYARAKAT UNIVERSITAS KATOLIK

Lebih terperinci

Implementasi Algoritma Filtering Derivatif Dalam Mengolah Citra Satelit Pada Software Envi

Implementasi Algoritma Filtering Derivatif Dalam Mengolah Citra Satelit Pada Software Envi Jurnal Graden Vol. No. Jul 5 : 8-86 Implementas Algortma Flterng Dervat Dalam Mengolah Ctra Satelt Pada Sotware Env Yulan Fauz Jurusan Matematka Fakultas Matematka dan Ilmu Pengetahuan Alam Unverstas Bengkulu

Lebih terperinci

KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH. Ariyanto* ABSTRACT

KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH. Ariyanto* ABSTRACT Aryato, Kaja Sfat Keompaa pada Ruag Baah KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH Aryato* ABSTRACT The propertes of ompatess Baah spaes ths paper s a geeralzato of a ompat uderstadg the system o the real

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD SUMBER BELAJAR PENUNJANG PLPG 0 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD BAB V STATISTIKA Dra.Hj.Rosdah Salam, M.Pd. Dra. Nurfazah, M.Hum. Drs. Latr S, S.Pd., M.Pd. Prof.Dr.H. Pattabundu, M.Ed. Wdya

Lebih terperinci

PERANCANGAN PROGRAM APLIKASI PERAMALAN BANJIR KANAL BARAT JAKARTA MENGGUNAKAN AUTOREGRESI MULTIVARIANT

PERANCANGAN PROGRAM APLIKASI PERAMALAN BANJIR KANAL BARAT JAKARTA MENGGUNAKAN AUTOREGRESI MULTIVARIANT PERANCANGAN PROGRAM APLIKASI PERAMALAN BANJIR KANAL BARAT JAKARTA MENGGUNAKAN AUTOREGRESI MULTIVARIANT Ngarap Im Man Jurusan Matemata FST BINUS Unversty, Jln.Kebon Jeru Raya no.27 Jaarta Barat 11480, Indonesa

Lebih terperinci

PENERAPAN METODE PEMULUSAN KERNEL PADA PENDUGAAN AREA KECIL (Studi Kasus Pendugaan Pengeluaran Per Kapita di Kota Bogor Tahun 2005) Abstrak

PENERAPAN METODE PEMULUSAN KERNEL PADA PENDUGAAN AREA KECIL (Studi Kasus Pendugaan Pengeluaran Per Kapita di Kota Bogor Tahun 2005) Abstrak PENERAPAN METODE PEMULUSAN KERNEL PADA PENDUGAAN AREA KECIL (Std Kass Pendgaan Pengelaran Per Kapta d Kota Bogor Tan 005) Indawat 1, Utam Dya Syaftr 1, Renta Skma Mayasar 1 Dosen Departemen Statstka FMIPA

Lebih terperinci

PENENTUAN LOKASI PEMANCAR TELEVISI MENGGUNAKAN FUZZY MULTI CRITERIA DECISION MAKING

PENENTUAN LOKASI PEMANCAR TELEVISI MENGGUNAKAN FUZZY MULTI CRITERIA DECISION MAKING Meda Informatka, Vol. 2, No. 2, Desember 2004, 57-64 ISSN: 0854-4743 PENENTUAN LOKASI PEMANCAR TELEVISI MENGGUNAKAN FUZZY MULTI CRITERIA DECISION MAKING Sr Kusumadew Jurusan Teknk Informatka, Fakultas

Lebih terperinci

BAB X RUANG HASIL KALI DALAM

BAB X RUANG HASIL KALI DALAM BAB X RUANG HASIL KALI DALAM 0. Hasl Kal Dalam Defns. Hasl kal dalam adalah fungs yang mengatkan setap pasangan vektor d ruang vektor V (msalkan pasangan u dan v, dnotaskan dengan u, v ) dengan blangan

Lebih terperinci

Analisis Variasi Parameter Backpropagation Artificial Neural Network dan Principal Component Analysis Terhadap Sistem Pengenalan Wajah

Analisis Variasi Parameter Backpropagation Artificial Neural Network dan Principal Component Analysis Terhadap Sistem Pengenalan Wajah ELECTRANS, Jurnal Ten Eletro, Komputer dan Informata http://eournal.up.edu/ndex.php/electrans Analss aras Parameter Bacpropagaton Artfcal Neural Networ dan Prncpal Component Analyss Terhadap Sstem Pengenalan

Lebih terperinci

BAB III MODUL INJEKTIF

BAB III MODUL INJEKTIF BAB III ODUL INJEKTIF Bab n adalah bab yang palng pentng arena bab n bers mula dar hal-hal dasar mengena modul njet sampa sat-sat stmewanya yang tda dml oleh modul lan yang tda njet, yang merupaan ous

Lebih terperinci

KWARTIL, DESIL DAN PERSENTIL

KWARTIL, DESIL DAN PERSENTIL KWARTIL, DESIL DAN PERSENTIL 1. KWARTIL Kwartl merupakan nla yang membag frekuens dstrbus data menjad empat kelompok yang sama besar. Dengan kata lan kwartl merupakan nla yang membag tap-tap 25% frekuens

Lebih terperinci

TEOREMA TITIK TETAP BANACH UNTUK MENDAPATKAN SYARAT KEKONVERGENAN METODE JACOBY

TEOREMA TITIK TETAP BANACH UNTUK MENDAPATKAN SYARAT KEKONVERGENAN METODE JACOBY La Ode Muhammd Umar Reky Rahmad R, et al.// Paradigma, Vol. 17 No. 1, April 2013, hlm. 51-60 TEOREMA TITIK TETAP BANACH UNTUK MENDAPATKAN SYARAT KEKONVERGENAN METODE JACOBY La Ode Muhammad Umar Reky Rahmad

Lebih terperinci

Histogram Citra. Bab Membuat Histogram

Histogram Citra. Bab Membuat Histogram Bab 6 Hstogram Ctra I nformas pentng mengena s ctra dgtal dapat dketahu dengan membuat hstogram ctra. Hstogram ctra adalah grafk yang menggambarkan penyebaran nla-nla ntenstas pxel dar suatu ctra atau

Lebih terperinci

HASIL KALI TITIK DAN PROYEKSI ORTOGONAL SUATU VEKTOR (Aljabar Linear) Oleh: H. Karso FPMIPA UPI

HASIL KALI TITIK DAN PROYEKSI ORTOGONAL SUATU VEKTOR (Aljabar Linear) Oleh: H. Karso FPMIPA UPI HASIL KALI TITIK DAN PROYEKSI ORTOGONAL SUATU VEKTOR (Aljabar Linear) Oleh: H. Karso FPMIPA UPI A. Hasil Kali Titik (Hasil Kali Skalar) Da Vektor. Hasil Kali Skalar Da Vektor di R Perkalian diantara da

Lebih terperinci

Ensambel Statistik Distribusi Binomial Nilai Rata-rata Sistem Spin Distribusi Probabilitas Kontinu

Ensambel Statistik Distribusi Binomial Nilai Rata-rata Sistem Spin Distribusi Probabilitas Kontinu BAB 3 Penganta Metode Statstk Ensambel Statstk Dstbs Bnomal la Rata-ata Sstem Spn Dstbs Pobabltas Kontn Rvew Bab : Konsep pobabltas sangat pentng dgnakan ntk memaham sstem makoskopk Penggnaan Konsep Pobabltas:.

Lebih terperinci

BAB 2 LANDASAN TEORI. diteliti. Banyaknya pengamatan atau anggota suatu populasi disebut ukuran populasi,

BAB 2 LANDASAN TEORI. diteliti. Banyaknya pengamatan atau anggota suatu populasi disebut ukuran populasi, BAB LANDASAN TEORI.1 Populas dan Sampel Populas adalah keseluruhan unt atau ndvdu dalam ruang lngkup yang ngn dtelt. Banyaknya pengamatan atau anggota suatu populas dsebut ukuran populas, sedangkan suatu

Lebih terperinci

b) Sebaliknya : interaksi kalor antara sistem dan lingkungan yang harus berlangsung kuasistatik dan disertai kenaikan suhu,

b) Sebaliknya : interaksi kalor antara sistem dan lingkungan yang harus berlangsung kuasistatik dan disertai kenaikan suhu, I. KALOR DAN HKM KE-1 1.1 Kalor Dketahu ua sstem paa suhu berbea. Apabla kontakkan satu engan yang lan melalu nng atermk, ketahu bahwa suhu keua sstem akan berubah seemkan rupa sehngga akhrnya menja sama.

Lebih terperinci

BAB III MODEL - MODEL KEAUSAN

BAB III MODEL - MODEL KEAUSAN BAB III MODEL - MODEL KEAUSAN 3.1 Model keausan Archard [15] Archard 1953 mengusulkan suatu model pendekatan untuk mendeskrpskan keausan sldng. Da berasums bahwa parameter krts dalam keausan sldng adalah

Lebih terperinci

KOLINEARITAS GANDA (MULTICOLLINEARITY) Oleh Bambang Juanda

KOLINEARITAS GANDA (MULTICOLLINEARITY) Oleh Bambang Juanda KOLINEARITAS GANDA MULTICOLLINEARIT Oleh Bambang Juanda Model: = X + X + + X + ε. Hubungan Lnear Sempurna esa, Ja C X 0 C onstanta yg td semuanya 0. Mudah detahu rn td ada dugaan parameter oef dgn OLS,

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 59-70, Agustus 2003, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 59-70, Agustus 2003, ISSN : JURNA MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 59-70, Agustus 2003, ISSN : 1410-8518 MASAAH RUTE TERPENDEK PADA JARINGAN JAAN MENGGUNAKAN AMPU AU-INTAS Stud Kasus: Rute Peralanan Ngesrep Smpang ma Eko Bud

Lebih terperinci

Regresi. Bahan Kuliah IF4058 Topik Khusus Informatika I. Oleh; Rinaldi Munir(IF-STEI ITB)

Regresi. Bahan Kuliah IF4058 Topik Khusus Informatika I. Oleh; Rinaldi Munir(IF-STEI ITB) Regres Bahan Kulah IF4058 Topk Khusus Informatka I Oleh; Rnald Munr(IF-STEI ITB) 1 Pendahuluan Regresadalahteknkpencocokankurvauntukdata ang berketeltanrendah. Contohdata ang berketeltanrendahdata haslpengamatan,

Lebih terperinci

Bab III Analisis Rantai Markov

Bab III Analisis Rantai Markov Bab III Analss Ranta Markov Sstem Markov (atau proses Markov atau ranta Markov) merupakan suatu sstem dengan satu atau beberapa state atau keadaan, dan dapat berpndah dar satu state ke state yang lan pada

Lebih terperinci

DISTRIBUSI FREKUENSI

DISTRIBUSI FREKUENSI BAB DISTRIBUSI FREKUENSI Kompetens Mampu membuat penyajan data dalam dstrbus frekuens Indkator 1. Menjelaskan dstrbus frekuens. Membuat dstrbus frekuens 3. Menjelaskan macam-macam dstrbus frekuens 4. Membuat

Lebih terperinci

BAB V INTEGRAL KOMPLEKS

BAB V INTEGRAL KOMPLEKS 6 BAB V INTEGRAL KOMPLEKS 5.. INTEGRAL LINTASAN Msal suatu lntasan yang dnyatakan dengan : (t) = x(t) + y(t) dengan t rl dan a t b. Lntasan dsebut lntasan tutup bla (a) = (b). Lntasan tutup dsebut lntasan

Lebih terperinci

FINITE DIFFERENCE AND PDE. Haryo Tomo

FINITE DIFFERENCE AND PDE. Haryo Tomo FINIE DIFFERENCE AND PDE Haryo omo Numercal methods: propertes Fnte derences - tme-dependent PDEs -> robust, smple concept, easy to parallelze, regular grds, eplct method Fnte elements - statc and tme-dependent

Lebih terperinci

REGRESI DAN KORELASI LINEAR SEDERHANA. Regresi Linear

REGRESI DAN KORELASI LINEAR SEDERHANA. Regresi Linear REGRESI DAN KORELASI LINEAR SEDERHANA Regres Lnear Tujuan Pembelajaran Menjelaskan regres dan korelas Menghtung dar persamaan regres dan standard error dar estmas-estmas untuk analss regres lner sederhana

Lebih terperinci

Kata kunci: system fuzzy, inflasi

Kata kunci: system fuzzy, inflasi Pemodean Tngat Infas d Indonesa dengan -- gus aman bad & uhson PEODEL TIGKT IFLSI DI IDOESI DEG EGGUK SISTE FUZZY Oeh: gus aman bad Staf pengajar d FIP Unverstas eger Yogaarta uhson Staf Pengajar Fautas

Lebih terperinci

adalah nilai-nilai yang mungkin diambil oleh parameter jika H

adalah nilai-nilai yang mungkin diambil oleh parameter jika H Uj Nsbah Kemuga Lema Neyma-Pearso dapat dguaa utu meemua uj palg uasa bag hpotess sederhaa bla sebara dataya haya dtetua oleh satu parameter yag tda detahu. Lema tersebut juga adaalaya dapat dguaa utu

Lebih terperinci

berasal dari pembawa muatan hasil generasi termal, sehingga secara kuat

berasal dari pembawa muatan hasil generasi termal, sehingga secara kuat 10 KARAKTRISTIK TRANSISTOR 10.1 Dasar Pengoperasan JT Pada bab sebelumnya telah dbahas dasar pengoperasan JT, utamannya untuk kasus saat sambungan kolektor-bass berpanjar mundur dan sambungan emtor-bass

Lebih terperinci

Pemodelan Persentase Kriminalitas Dan Faktor- Faktor Yang Mempengaruhi Di Jawa Timur Dengan Pendekatan Geographically Weighted Regression (GWR)

Pemodelan Persentase Kriminalitas Dan Faktor- Faktor Yang Mempengaruhi Di Jawa Timur Dengan Pendekatan Geographically Weighted Regression (GWR) JURNAL SAINS DAN SENI POMITS Vol., No.1, (014 7-50 (01-98X Prnt D-18 Pemodelan Persentase Krmnaltas Dan Fator- Fator ang Mempengaruh D Jaa Tmur Dengan Pendeatan Geographcally Weghted Regresson (GWR Pan

Lebih terperinci

APROKSIMASI NON-UNIFORM SPASIAL PERSAMAAN PANAS 1D DENGAN FINITE POINTSET METHOD

APROKSIMASI NON-UNIFORM SPASIAL PERSAMAAN PANAS 1D DENGAN FINITE POINTSET METHOD Indonesan Sysmphosum on Computng 05 ISSN : 406-395 APROKSIMASI NON-UNIFORM SPASIA PERSAMAAN PANAS D DENGAN FINITE POINTSET METHOD Putu Harry Gunawan, Frska Frstella Industral and Fnancal Mathematcs Research

Lebih terperinci

Computation Process using Scilab

Computation Process using Scilab Computaton Process usng Sclab Komputas Proses. Pengenalan Sclab. Bahasa pemrograman dengan Sclab 3. Metoda Numer 4. Aplas Komputas Proses dengan Sclab Introducton Phscal & Mathematcal MODELS Smplfed pcture

Lebih terperinci

Penerapan Metode Runge-Kutta Orde 4 dalam Analisis Rangkaian RLC

Penerapan Metode Runge-Kutta Orde 4 dalam Analisis Rangkaian RLC Penerapan Metode Runge-Kutta Orde 4 dalam Analss Rangkaan RLC Rka Favora Gusa JurusanTeknk Elektro,Fakultas Teknk,Unverstas Bangka Beltung rka_favora@yahoo.com ABSTRACT The exstence of nductor and capactor

Lebih terperinci

Session 18 Heat Transfer in Steam Turbine. PT. Dian Swastatika Sentosa

Session 18 Heat Transfer in Steam Turbine. PT. Dian Swastatika Sentosa Session 8 Heat Transfer in Steam Trbine PT. Dian Sastatika Sentosa DSS Head Offie, 3 Oktober 008 Otline. Pendahlan. Skema keepatan, gaya tangensial. 3. Daya yang dihasilkan trbin, panas jath. 4. Trbin

Lebih terperinci

KLASTERISASI SINYAL SUARA MENGGUNAKAN METODE PARTICLE SWARM OPTIMIZATION PADA PENGEMBANGAN SISTEM PENGENALAN INDIVIDU BERBASIS SUARA UCAPAN

KLASTERISASI SINYAL SUARA MENGGUNAKAN METODE PARTICLE SWARM OPTIMIZATION PADA PENGEMBANGAN SISTEM PENGENALAN INDIVIDU BERBASIS SUARA UCAPAN KLASTERISASI SINYAL SUARA MENGGUNAKAN METODE PARTICLE SWARM OPTIMIZATION PADA PENGEMBANGAN SISTEM PENGENALAN INDIVIDU BERBASIS SUARA UCAPAN Abstra Nama: Moh. Bagus Had S (Nrp 1205 100 037) Dosen Pembmbng:

Lebih terperinci

4.2. Vektor dalam Ruang Dimensi Tiga

4.2. Vektor dalam Ruang Dimensi Tiga 4.. Vetor dlm Rng Dmens Tg Seenrny pengertn etor pd dng dmens d sm hlny pengertn etor dlm rng dmens tg, etor pd sng mempny d omponen, m etor dlm rng mempny tg omponen. Yt ;,,,, Dmn merpn etor stn t etor

Lebih terperinci

PROPOSAL SKRIPSI JUDUL:

PROPOSAL SKRIPSI JUDUL: PROPOSAL SKRIPSI JUDUL: 1.1. Latar Belakang Masalah SDM kn makn berperan besar bag kesuksesan suatu organsas. Banyak organsas menyadar bahwa unsur manusa dalam suatu organsas dapat memberkan keunggulan

Lebih terperinci

UKURAN-UKURAN DESKRIPTIF DATA

UKURAN-UKURAN DESKRIPTIF DATA UKURAN-UKURAN DESKRIPTIF DATA Hazmra Yozza Izzat Rahm HG Jurusan Matenatka FMIPA Unand LOGO Kompetens Khusus Menghtung ukuran pemusatan data Menghtung ukuran keragaman data 3 4 Menghtung ukuran poss data

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 33-40, April 2001, ISSN : KLASIFIKASI INTERAKSI GELOMBANG PERMUKAAN BERTIPE DUA SOLITON

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 33-40, April 2001, ISSN : KLASIFIKASI INTERAKSI GELOMBANG PERMUKAAN BERTIPE DUA SOLITON JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No., 33-40, Aprl 00, ISSN : 40-858 KLASIFIKASI INTERAKSI GELOMBANG PERMUKAAN BERTIPE DUA SOLITON Sutmn dan Agus Rusgyono Jurusan Matematka FMIPA UNDIP Abstrak Pada

Lebih terperinci

Bab 1 Ruang Vektor. R. Leni Murzaini/0906577381

Bab 1 Ruang Vektor. R. Leni Murzaini/0906577381 Bab 1 Ruang Vektor Defns Msalkan F adalah feld, yang elemen-elemennya dnyatakansebaga skalar. Ruang vektor atas F adalah hmpunan tak kosong V, yang elemen-elemennya merupakan vektor, bersama dengan dua

Lebih terperinci

VLE dari Korelasi nilai K

VLE dari Korelasi nilai K VLE dar orelas nla Penggunaan utama hubungan kesetmbangan fasa, yatu dalam perancangan proses pemsahan yang bergantung pada kecenderungan zat-zat kma yang dberkan untuk mendstrbuskan dr, terutama dalam

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilakukan di MTs Negeri 2 Bandar Lampung dengan populasi siswa

III. METODE PENELITIAN. Penelitian ini dilakukan di MTs Negeri 2 Bandar Lampung dengan populasi siswa III. METODE PENELITIAN A. Populas dan Sampel Peneltan n dlakukan d MTs Neger Bandar Lampung dengan populas sswa kelas VII yang terdr dar 0 kelas yatu kelas unggulan, unggulan, dan kelas A sampa dengan

Lebih terperinci

Pelabelan Total Sisi Ajaib Pada Subkelas Pohon

Pelabelan Total Sisi Ajaib Pada Subkelas Pohon Pelabelan Total Ss Ajab Pada Subkelas Pohon Hlda Rzky Nngtyas, Dr Daraj, SS, MT [] Jurusan Mateatka, Fakultas MIPA, Insttut Teknolog Sepuluh Nopeber (ITS Jl Aref Rahan Hak, Surabaya 60 E-al: daraj@ateatkatsacd

Lebih terperinci

APLIKASI PERKONGRUENAN DALAM MENYELESAIKAN SISTEM PERSAMAAN LINEAR DUA PEUBAH. Yuni Yulida dan Muhammad Ahsar K

APLIKASI PERKONGRUENAN DALAM MENYELESAIKAN SISTEM PERSAMAAN LINEAR DUA PEUBAH. Yuni Yulida dan Muhammad Ahsar K Jurnal Matematka Murn dan Terapan Vol. 3 No. Desember 009: 4-6 APLIKASI PERKONGRUENAN DALAM MENYELESAIKAN SISTEM PERSAMAAN LINEAR DUA PEUBAH Yun Yulda dan Muhammad Ahsar K Program Stud Matematka Unverstas

Lebih terperinci

Created by Simpo PDF Creator Pro (unregistered version)

Created by Simpo PDF Creator Pro (unregistered version) Created by Smpo PDF Creator Pro (uregstered verso) http://www.smpopdf.com Statst Bss : BAB V. UKURA PEYEBARA DATA.1 Peyebara Uura peyebara data adalah uura statst yag meggambara bagamaa berpecarya data

Lebih terperinci

BAB VB PERSEPTRON & CONTOH

BAB VB PERSEPTRON & CONTOH BAB VB PERSEPTRON & CONTOH Model JST perseptron dtemukan oleh Rosenblatt (1962) dan Mnsky Papert (1969). Model n merupakan model yang memlk aplkas dan pelathan yang lebh bak pada era tersebut. 5B.1 Arstektur

Lebih terperinci

RANCANGAN PETAK TERALUR

RANCANGAN PETAK TERALUR RANCANGAN PETAK TERALUR oleh MUNAWAR KHOLIL NIM M0103041 SKRIPSI dtuls dan dauan untu memenuh sebagan persaratan memperoleh gelar Sarana Sans Matemata FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS

Lebih terperinci

KOMBINASI PENAKSIR RASIO-PRODUK PROPORSI EKSPONENSIAL UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA., R. Efendi 2, H.

KOMBINASI PENAKSIR RASIO-PRODUK PROPORSI EKSPONENSIAL UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA., R. Efendi 2, H. KOMBINASI PENAKSIR RASIO-PRODUK PROPORSI EKSPONENSIAL UNTUK RATA-RATA POPULASI PADA SAMPLING AAK SEDERHANA A. F. Indraan *, R. Efend, H. Srat Mahasswa Program S Matematka Dosen Jurusan Matematka Fakultas

Lebih terperinci

BAB 18. ARUS LISTRIK

BAB 18. ARUS LISTRIK DFTR ISI DFTR ISI...1 BB 18. RUS LISTRIK... 18.1 Sumber-Sumber rus Lstrk... 18. Hukum Ohm...4 18. Hambatan Jens Bahan...5 18.4 Daya Lstrk...6 18.5 rus Bolak-Balk...7 18.6 Qus 18...8 1 BB 18. RUS LISTRIK

Lebih terperinci

Statistika. Bab. Mean (rata-rata) Ukuran Pemusatan Ukuran Letak Median Modus Kuartil Desil A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR

Statistika. Bab. Mean (rata-rata) Ukuran Pemusatan Ukuran Letak Median Modus Kuartil Desil A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Bab Statsta A KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetens Dasar Melalu proses pembelajaran statsta, sswa mampu menghayat pola hdup dspln, rts, bertanggungjawab, onssten, dan jujur serta menerapannya

Lebih terperinci

APLIKASI METODE SINGULAR VALUE DECOMPOSITION(SVD) PADA SISTEM PERSAMAAN LINIER KOMPLEKS

APLIKASI METODE SINGULAR VALUE DECOMPOSITION(SVD) PADA SISTEM PERSAMAAN LINIER KOMPLEKS Vol No Jurnal Sans Teknolog Industr APLIKASI METODE SINGULAR VALUE DECOMPOSITION(SVD) PADA SISTEM PERSAMAAN LINIER KOMPLEKS Ftr Aryan Dew Yulant Jurusan Matematka Fakultas Sans Teknolog UIN SUSKA Rau Emal:

Lebih terperinci

BAB V TEOREMA RANGKAIAN

BAB V TEOREMA RANGKAIAN 9 angkaan strk TEOEM NGKIN Pada bab n akan dbahas penyelesaan persoalan yang muncul pada angkaan strk dengan menggunakan suatu teorema tertentu. Dengan pengertan bahwa suatu persoalan angkaan strk bukan

Lebih terperinci

Vektor-vektor Yang Tegak Lurus dan Vektor-vektor Yang Paralel

Vektor-vektor Yang Tegak Lurus dan Vektor-vektor Yang Paralel Ruang Vetor Vetor-vetor Yang Tega Lurus dan Vetor-vetor Yang Paralel - Dua vetor dan saling tega lurus atau (aitu cos θ 0), ia o 0 atau ia : + + 0 - Dua vetor dan saling paralel ia omponen-omponenna sebanding

Lebih terperinci

Hasil Kali Titik. Dua Operasi Vektor. Sifat-sifat Hasil Kali Titik. oki neswan (fmipa-itb)

Hasil Kali Titik. Dua Operasi Vektor. Sifat-sifat Hasil Kali Titik. oki neswan (fmipa-itb) oki neswan (fmipa-itb) Da Operasi Vektor Hasil Kali Titik Misalkan OAB adalah sebah segitiga, O (0; 0) ; A (a 1 ; a ) ; dan B (b 1 ; b ) : Maka panjang sisi OA; OB; dan AB maing-masing adalah q joaj =

Lebih terperinci

Desain Kontrol Fuzzy Berbasis Performansi H dengan Batasan Input-Output untuk Sistem Pendulum-Kereta

Desain Kontrol Fuzzy Berbasis Performansi H dengan Batasan Input-Output untuk Sistem Pendulum-Kereta Poceedng Semna gas Ah Jana Desan Kontol Fy ebass Pefomans H atasan Inpt-Otpt nt Sstem Pendlm-Keeta to Febaanto, hastt Agstnah, Achmad Jade Jsan en Eleto FI-IS, Sabaya 6, e-mal : e_de@elect-eng.ts.ac.d

Lebih terperinci

OPTIMASI MASALAH PENUGASAN. Siti Maslihah

OPTIMASI MASALAH PENUGASAN. Siti Maslihah JPM IIN ntasar Vol. 01 No. 2 Januar Jun 2014, h. 95-106 OPTIMSI MSLH PNUGSN St Maslhah bstrak Pemrograman lner merupakan salah satu lmu matematka terapan yang bertuuan untuk mencar nla optmum dar suatu

Lebih terperinci

FAKTOR-FAKTOR YANG MEMPENGARUHI INDEKS PRESTASI MAHASISWA FSM UNIVERSITAS DIPONEGORO SEMASTER PERTAMA DENGAN MOTODE REGRESI LOGISTIK BINER

FAKTOR-FAKTOR YANG MEMPENGARUHI INDEKS PRESTASI MAHASISWA FSM UNIVERSITAS DIPONEGORO SEMASTER PERTAMA DENGAN MOTODE REGRESI LOGISTIK BINER UNIVERSITAS DIPONEGORO 013 ISBN: 978-60-14387-0-1 FAKTOR-FAKTOR YANG MEMPENGARUHI INDEKS PRESTASI MAHASISWA FSM UNIVERSITAS DIPONEGORO SEMASTER PERTAMA DENGAN MOTODE REGRESI LOGISTIK BINER Saftr Daruyan

Lebih terperinci

URUNAN PARSIAL. Definisi Jika f fungsi dua variable (x dan y) maka: atau f x (x,y), didefinisikan sebagai

URUNAN PARSIAL. Definisi Jika f fungsi dua variable (x dan y) maka: atau f x (x,y), didefinisikan sebagai 6 URUNAN PARSIAL Deinisi Jika ngsi da ariable maka: i Trnan parsial terhadap dinotasikan dengan ata dideinisikan sebagai ii Trnan parsial terhadap dinotasikan dengan ata dideinisikan sebagai Tentkan trnan

Lebih terperinci

Perbaikan Unjuk Kerja Sistem Orde Satu PERBAIKAN UNJUK KERJA SISTEM ORDE SATU DENGAN ALAT KENDALI INTEGRAL MENGGUNAKAN JARINGAN SIMULATOR MATLAB

Perbaikan Unjuk Kerja Sistem Orde Satu PERBAIKAN UNJUK KERJA SISTEM ORDE SATU DENGAN ALAT KENDALI INTEGRAL MENGGUNAKAN JARINGAN SIMULATOR MATLAB Perbakan Unjuk Kerja Sstem Orde Satu PERBAIKAN UNJUK KERJA SISTEM ORDE SATU DENGAN ALAT KENDALI INTEGRAL MENGGUNAKAN JARINGAN SIMULATOR MATLAB Endryansyah Penddkan Teknk Elektro, Jurusan Teknk Elektro,

Lebih terperinci

Simulasi Dispersi Gas Polutan dari Cerobong ke Lingkungan dengan Pendekatan Computational Fluid Dynamics ( CFD )

Simulasi Dispersi Gas Polutan dari Cerobong ke Lingkungan dengan Pendekatan Computational Fluid Dynamics ( CFD ) PROSIDING SEMINAR NASIONAL HIMPUNAN INFORMATIKA PERTANIAN INDONESIA 009 Smlas Dspers Gas Poltan dar Cerobong ke Lngkngan dengan Pendekatan Comptatonal Fld Dnamcs ( CFD ) Ags Ghatsn Nam a), Kdang Boro Semnar

Lebih terperinci

MODEL MATEMATIKA WAKTU PENGOSONGAN TANGKI AIR

MODEL MATEMATIKA WAKTU PENGOSONGAN TANGKI AIR Prosiding Seinar Nasional Penelitian, Pendidikan dan Penerapan MIPA Fakltas MIPA, Universitas Negeri Yogakarta, 6 Mei 9 MODEL MATEMATIKA WAKTU PENGOSONGAN TANGKI AIR Irawati, Kntjoro Adji Sidarto. Gr SMA

Lebih terperinci

Dengan derajat bebas (pu-1) =(p-1)+(pu-p) (pu-1)=(p-1)+p(u-1) Sebagai contoh kita ambil p=4 dan u=6 maka tabulasi datanya sebagai berikut:

Dengan derajat bebas (pu-1) =(p-1)+(pu-p) (pu-1)=(p-1)+p(u-1) Sebagai contoh kita ambil p=4 dan u=6 maka tabulasi datanya sebagai berikut: X. ANALISIS RAGAM SEDERANA Jka erlakan yang ngn dj/dbandngkan lebh dar da(p>) dan ragam tdak dketah maka kta bsa melakkan j t dengan jalan mengj erlakan seasang dem seasang. Banyaknya asangan hotess yang

Lebih terperinci