Bilangan dan bangun Ruang Oleh: Risnaini,S.Pd.I Guru Matematika MIN 2 Palembang

Ukuran: px
Mulai penontonan dengan halaman:

Download "Bilangan dan bangun Ruang Oleh: Risnaini,S.Pd.I Guru Matematika MIN 2 Palembang"

Transkripsi

1 Oleh: Risii,S.Pd.I Guru Mtemtik MIN Plembg. ALJABAR A. Pegerti Aljbr Aljbr dlh cbg ilmu mtemtik yg mempeljri mslh bilg d opersi perhitugy. B. Bgi-bgi Aljbr. Bilg Bilg dlh sutu ide. Sifty bstrk. Bilg buk symbol tu lmbg d buk pul lmbig bilg. Bilg memberik keterg megei byky ggot sutu himpu. Cotoh: A= {,b,c} B= {*,, } Jeis d Mcm-mcm bilg: Bilg sli dlh bilg-bilg,,3,4,5,. jdi, himpu semu bilg sli dlh: {,,3,4,5,6,..}. Bilg 0, buk bilg sli. d 4 golog bilg sli, yitu: - Bilg gep:,4,6,8, - Bilg gjil:,3,5,7, - Bilg prim:,3,5,7,, - Bilg komposit, misly, 4,6,8,9,0, Bilg sli bisy dilmbgk deg huruf A. Bilg Berpgkt, jik ditulis 4, dibc: du pgkt 4. 4 dlh xxx. Ad empt mcm pgkt sutu bilg, yitu:. Berpgkt bilg bult positif. b. Berpgkt bilg bult egtive. c. Berpgkt bilg pech d. Berpgkt bilg ol.

2 Oleh: Risii,S.Pd.I Guru Mtemtik MIN Plembg 7 3 dibc: tujuh berpgkt tig, tu tujuh pgkt tig. 7 disbut bilg pokok, 3 disebut pgkt. Defiisi. b dlh perkli berulg yg mempuyi b fctor d tip-tip fktory sm deg. Pgkt sem dlh bilg berpgkt yg pgkty sm. cotoh: 5 3,7 3,8 3, d seterusy. Pgkt sejeis dlh bilg berpgkt yg fctor-fktory sm. cotoh: 5,5 3,5 4, A. OPERASI PADA BILANGAN BERPANGKAT BULAT Pd bgi ii dibhs megei pegerti bilg berpgkt d sift-sifty. Bilg berpgkt yitu sutu bilg yg dipgktk deg bilg li. Pgkt dri sutu bilg dpt berup bilg bult tu pech. Diurik pul, semu sift-sift opersi ljbr dri bilg berpgkt d peerpy. I. PANGKAT BILANGAN POSITIF Bisy peulis bilg yg cukup besr k mejdi sederh pbil ditulis dlm betuk perpgkt, misly dpt ditulis sebgi x 0 6. DEFINISI Utuk bilg bult positif d sembrg bilg rel, bilg (dibc: pgkt ) mempuyi rti: (sebyk fktor yg sm) Bilg disebut bsis d bilg disebut pgkt tu ekspoe. CONTOH. 3 = = 8

3 Oleh: Risii,S.Pd.I Guru Mtemtik MIN Plembg Bilg dipgktk 3, rtiy dlh bilg diklik deg diriy sediri sebyk 3 kli.. (-3) = (-3) (-3) = 9 Bilg -3 dipgktk, rtiy dlh bilg -3 diklik deg diriy sediri sebyk kli = - (3 3) = x x x x xxxx 6 3 Sift Opersi Bilg Berpgkt Positif. Jik m d bilg bult positif d bilg rel sembrg, mk m m x. Jik m d bilg bult positif d bilg rel sembrg m deg 0, mk m 3. Jik m d bilg bult positif d bilg rel sembrg, mk ( m ) mx 4. Jik m d bilg bult positif d bilg rel sembrg, mk berlku :. ( xb) xb b. b b,utuk b 0 CONTOH Berikut ii dlh beberp cotoh bilg berpgkt

4 Oleh: Risii,S.Pd.I Guru Mtemtik MIN Plembg (3 ) 3 3 x (-3 4) 5 (-3) (-43) II.PANGKAT BILANGAN NEGATIF DAN NOL Sebelumy, telh dibhs megei perpgkt deg bilg bult positif, yg rtiy perkli ts bsis bilg (sebgi fktor) sebyk pgkt yg dikethui. Bgim sutu bilg berpgkt bilg egtif tu berpgkt ol, seperti 0 - tu 7 0?. Ggs-ggs yg mucul dri sift-sift perpgkt deg pgkt bilg bult positif dpt diguk utuk megugkpk rti pgkt bilg egtif tupu pgkt ol. A. Bilg Berpgkt Nol Utuk memhmi rti bilg 0, perhtik sift perpgkt 0 m = 0+m = m Jik m 0 mk hruslh 0 =, gr kesm 0 m = m dipeuhi. Seljuty deg tmbh syrt utuk bilg, yitu gr m 0 cukup dipilih 0. Perhtik defiisi berikut ii. DEFINISI Utuk bilg rel 0, 0 ( dibc: pgkt 0 ) didefiisik sebgi: 0 = 4

5 Oleh: Risii,S.Pd.I Guru Mtemtik MIN Plembg CONTOH. 0 =. (-3) 0 = 3. ( + b) 0 =, pbil + b 0 B. Bilg Berpgkt Negtif Bgim kit medefiisik bilg pgkt egtif?. Mri kit liht kembli sift perpgkt m m Jik 0 d m = 0, mk didpt : 0 0 Oleh kre itu dibut defiisi bilg berpgkt egtif berikut ii. DEFINISI Utuk bilg rel 0,, didefiisik sebgi: CONTOH

6 Oleh: Risii,S.Pd.I Guru Mtemtik MIN Plembg 3. x x ( ) x x Sekrg kit telh megel bilg berpgkt bilg bult, bik itu berpgkt bult positif, bult egtif, mupu berpgkt 0. CONTOH Sederhklh :. ( 4-8 x -6 ) - ( 5 - x 5 - ) - x Peyelesi :. ( 4-8 x -6 ) - ( 5 - x 5 - ) - = ( ( ) -8 x 6 ) - (5 - x(5 ) - ) - = ( -6 x 6 ) - ( 5 - x5 - ) - = ( - ) - ( 5-4 ) - = - x x x x x Vribel Vribel dlh symbol tu otsi yg di beri td x tu liy pd sutu bilg. Cotoh : perhtik betuk x + 3, deg x merupk peggti pd bilg bult. Jik x dig ti - mk di peroleh Jik x dig ti 0 mk di peroleh Jdi x di sii merupk vribel. 6

7 Oleh: Risii,S.Pd.I Guru Mtemtik MIN Plembg 3. Kostt Artiy bilg tetp tu suku yg tidk megdug peubh. Cotoh : dlm persm x + 3 = 5, 3 d 5 di sebut kostt y = 8, 8 dlh kostt 4. Koofisie Koofisie dlh fctor yg berup kostt. Cotoh : Betuk-betuk ljbr seperti p rtiy x P x P. P dlh betuk ljbr suku tuggl. Fktor-fktor dri P dlh,p,p d P.. GEOMETRI A. Bgu Dtr Bgu dtr ilh bgu yg di but tu di lukis pd permuk dtr. Bgu bersisi empt ii di sebut bgu dtr kre seluruh bgu ii terletk pd bidg dtr. Ad bermcm-mcm bgu dtr ditry: No. Bgu dtr Gmbr bgu dtr Rumus lus bgu dtr. Persegi 7

8 Oleh: Risii,S.Pd.I Guru Mtemtik MIN Plembg. Persegi pjg 3. Ligkr 4. Trpesium 5. Segitig 6. Belh ketupt 7. Lyglyg 8. Jjrgej g B. Bgu Rug Jik sutu bgu tidk seluruhy terletk dlm bidg, mk bgu tersebut di sebut bgu rug. Bgu dtr di betuk oleh derh segi byk yg di sebut sisi. Ad bermcm-mcm bgu rug di try : 8

9 Oleh: Risii,S.Pd.I Guru Mtemtik MIN Plembg Bgu rug dlh bgu mtemtik yg mempuyi isi tupu volume. Bgi-bgi bgu rug :. Sisi bidg pd bgu rug yg membtsi tr bgu rug deg rug di sekitry.. Rusuk pertemu du sis yg berup rus gris pd bgu rug. 3. Titik sudut titik hsil pertemu rusuk yg berjumlh tig tu lebih. KUBUS Kubus merupk bgu rug deg 6 sisi sm besr (kogrue) Kubus mempuyi 6 sisi berbetuk persegi. Kubus mempuyi rusuk yg sm pjg. Kubus mempuyi 8 titik sudut. Jrig-krig kubus berup 6 buh persegi yg kogrue. Rumus Lus Permuk Kubus L r L = 6 x r x r : lus permuk : pjg rusuk Rumus Volume Kubus V r V = r x r x r : Volume : pjg rusuk 9

10 Oleh: Risii,S.Pd.I Guru Mtemtik MIN Plembg BALOK Blok merupk bgu rug yg dibtsi 6 persegi pjg dim 3 persegi pjg kogrue. Blok mempuyi 6 sisi berbetuk persegi pjg. Blok mempuyi 3 psg bidg sisi berhdp yg kogrue. Blok mempuyi rusuk. 4 buh rusuk yg sejjr sm pjg. Blok mempuyi 8 titik sudut. Jrig-jrig blok berup 6 buh persegi pjg. Rumus Lus Permuk Blok L p l t L = x [ (p x l) + (p x t) + (l x t) ] : lus permuk : pjg blok : lebr blok : tiggi blok Rumus Volume Blok V p l t : volume blok : pjg blok : lebr blok : tiggi blok V = p x l x t 0

11 Oleh: Risii,S.Pd.I Guru Mtemtik MIN Plembg PRISMA Prism merupk bgu rug yg ls d tsy kogrue d sejjr. Rusuk prism ls d ts yg berhdp sm d sejjr. Rusuk tegk prism sm d sejjr. Rusuk tegk prism tegk lurus deg ls d ts prism. Rusuk tegk prism disebut jug tiggi prism. Prism terdiri dri prism segitig d prism bertur. Prism segitig mempuyi bidg ls d bidg ts berup segitig yg kogrue. Prism segitig mempuyi 5 sisi. Prism segitig mempuyi 9 rusuk Prism segitig mempuyi 6 titik sudut Jrig-jrig prism segitig berup segitig, d 3 persegi pjg. Rumus Lus Permuk Prism Segitig L t L = Kelilig x t x ( x Lus ) : lus permuk : ls d ts segitig : tiggi prism Volume Prism Segitig V = Lus Als x t V : Volume Lus Als : Lus = ( ½ x t ) t : tiggi prism

12 Oleh: Risii,S.Pd.I Guru Mtemtik MIN Plembg LIMAS Lims dlh bgu rug yg mempuyi bidg ls segi byk d dri bidg ls tersebut dibetuk sutu sisi berbetuk segitig yg k bertemu pd stu titik. Nm lims ditetuk oleh betuk lsy. Lims bertur yitu lims yg lsy berup segi bertur. Tiggi lims dlh gris tegk lurus dri puck lims ke ls lims. Mcm-mcm betuk lims :. Lims segitig lsy berbetuk segitig. Lim segiempt lsy berbetuk segi empt 3. Lims segilim lsy berbetuk segilim 4. Lims segiem lsy berbetuk segiem Nm Lims Sisi Rusuk Titik Sudut Lims Segitig Lims Segiempt Lims Segilim Lims Segiem 7 Rumus Lus Permuk Lims L = lus ls + lus selubug lims Rumus Volume Lims V t V = ⅓ ( lus ls x t ) : volume lims : tiggi lims

13 Oleh: Risii,S.Pd.I Guru Mtemtik MIN Plembg KERUCUT Kerucut merupk bgu rug berbetuk lims yg lsy berup ligkr. Kerucut mempuyi sisi. Kerucut tidk mempuyi rusuk. Kerucut mempuyi titik sudut. Jrig-jrig kerucut terdiri dri ligkr d segi tig. Rumus Lus Kerucut L r d t L = π r + π d x t : lus permuk : jri-jri ligkr ls : dimeter ligkr ls : tiggi kerucut Volume Kerucut V r t V = ⅓ ( π r x t ) : volume : jri-jri ligkr ls : tiggi kerucut TABUNG Tbug merupk bgu rug berup prism tegk deg bidg ls d ts berup ligkr. 3

14 Oleh: Risii,S.Pd.I Guru Mtemtik MIN Plembg Tiggi tbug dlh jrk titik pust bidg ligkr ls deg titik pust ligkr ts. Bidg tegk tbug berup legkug yg disebut selimut tbug. Jrig-jrig tbug tbug berup buh ligkr d persegi pjg. Rumus Lus Permuk Tbug L r d t L = x ( π r ) + π d x t : lus permuk : jri-jri ligkr ls : dimeter ligkr ls : tiggi tbug Rumus Volume Tbug V r t V = ⅓ ( π r x t ) Volume : jri-jri ligkr ls tu ts : tiggi tbug BOLA Bol merupk bgu rug berbetuk setegh ligkr diputr megeliligi gris teghy,. Bol mempuyi sisi d titik pust. Sisi bol disebut didig bol. Bol tidk mempuyi titik sudut d rusuk. Jrk didig ke titik pust bol disebut jri-jri. Jrk didig ke didig d melewti titik pust disebut dimeter. Rumus Lus Permuk Bol 4

15 Oleh: Risii,S.Pd.I Guru Mtemtik MIN Plembg L r L = 4 π r : lus permuk : jri-jri bol Rumus Volume Bol V r V = 4 /3 π r 3 : volume : jri-jri bol C. Bgu Berdimesi Tig Bgu rug jug di sebut berdimesi tig, kre megdug tig usur yitu, pjg, lebr d tiggi. Bgu-bgu seperti kubus, tbug, prism, d sebgiy dlh bgu-bgu tig dimesi. Bgu tig dimesi yg permuky dtr di sebut Polider. Sebgi cotoh liht pembhs bgu rug. D. Trigoometri Trigoometri bersl dri bhs Yui, yg terdiri ts du kt yitu, trigoo d metro. Trigoo rtiy segitig d metro rtiy ukur. Trigoometri merupk sutu uit mtemtik yg sellu berkit deg besry ukur sudut. E. Stu Lus Stu lus dlh lmbig yg di guk dlm ukur lus. Stu stdr itersioly dlh : Kilometer persegi tu Kilometer bujursgkr (Km ) 5

16 Oleh: Risii,S.Pd.I Guru Mtemtik MIN Plembg Km = 00 hektometer persegi (hm ) hm = 00 dekmeter persegi (dm ) dm = 00 meter persegi ( m ) m = 00 desimeter persegi ( dm ) dm = 00 setimeter persegi (cm ) cm = 00 milimeter persegi (mm ) 3. ARITMETIKA Aritmetik dlh cbg ilmu mtemtik yg di sebut jug ilmu hitug. Arimetik tu ilmu hitug di sii byk di guk dlm mslh keug tu dui perdgg. A. Hitug Keug Pegerti Hrg Pembeli, Hrg Pejul, Utug d Rugi. Hrg pejul dlh ili ug sutu brg yg kit jul. Hrg pembeli dlh ili ug sutu brg yg kit beli. Utug d Rugi dlh besry keutug tu kerugi terhdp selisih tr hrg pembeli d hrg pejul. Utug = hrg pejul di kurgi hrg pembeli Rugi = hrg pembeli dikurgi hrg pejul Meghitug hrg pembli Cotoh : Seorg pedgg mejul seped sehrg Rp ,- d i memperoleh keutug dri pejul Rp ,- Berpkh hrg pembeli seped tersebut? Jwb : Hrg pejul = Rp ,- 6

17 Oleh: Risii,S.Pd.I Guru Mtemtik MIN Plembg Keutug = Rp ,- Utug = hrg pejul hrg pembeli Rp ,- = Rp ,- hrg pembeli hrg pembeli = Rp ,- - Rp ,- = Rp ,- Meghitug Hrg Pejul Cotoh : Seorg pedgg membeli seped deg hrg Rp ,-. I igi memperoleh keutug sebesr Rp ,-. Deg hrg berpkh seped itu k di jul? Jwb : Hrg pembeli = Rp ,- Utug = Rp ,- Utug = hrg pejul hrg pembeli = hrg pejul hrg pejul = = ,- jdi hrg pejul Rp ,- Meghitug utug tu Rugi Cotoh : Seseorg membeli brg sehrg Rp ,- I mejul deg hrg Rp ,-. Utug tu rugikh org tersebut? Jwb : Hrg pembeli = Rp ,- Hrg Pejul = Rp ,- hrg pejul lebih besr dri pd hrg pembeli, jdi org tersebut utug. Utug = hrg pejul hrg pembli = 3.500,- 7

18 Oleh: Risii,S.Pd.I Guru Mtemtik MIN Plembg 4. STATISTIKA Sttistik dlh ilmu pegethu yg mempeljri cr-cr ilmih utuk megumpulk, megolh, meyjik dt, meglisis dt d megmbil kesimpul. A. POPULASI DAN SAMPEL Populsi dlh himpu semu objek yg mejdi ssr peeliti. Cotoh : Jik seorg peeliti igi megethui umur rt-rt k yg bru msuk kels I SMP di sutu kbupte, mk keseluruh k yg bru msuk ke SMP tersebut di sebut populsi. Sedgk smpel dlh beberp objek yg ber-ber kit ctt dt-dty yg mewkili seluruh objek itu. Jdi smpel merupk himpu bgi dri populsi. Cotoh : Jik seorg peeliti igi megethui umur rt-rt k yg bru msuk kels I SMP di sutu kbupte, mk keseluruh k yg bru msuk ke SMP tersebut di sebut populsi. Sedgk himpu dri beberp jumlh k yg k kit ctt umury di sebut smpel. B. RATA-RATA HITUNG ATAU MEAN, MEDIAN, DAN MODUS DARI SUATU DATA Nili rt-rt hitug tu me dlh jumlh semu ukur di bgi byky ukur. Medi dlh ukur tegh dri dt yg sejeis setelh dt itu di urutk. Medi di dpt deg cr megurutk dt dri yg plig kecil ke yg plig besr, kemudi megmbil ukur tegh-teghy. 8

19 Oleh: Risii,S.Pd.I Guru Mtemtik MIN Plembg Modus dlh ukur tu dt yg plig serig mucul. Rt-rt, medi, modus merupk ukur pemust tu ukur tedesi setrl dri sebuh peeliti tu percob rtiy di pki sebgi tolok ukur utuk megdk pemech mslh lebih ljut. Cotoh me, medi d modus.. Setip cturwul di dk 5 kli ulg hri utuk mt peljr mtemtik. Nili yg di peroleh Ik : 68, 78, 50, 84 d 7. Berpkh ili rt-rt Ik? Jwb : Nili rt-rt Ik=. Perhtik dt berikut! I. 6,7,8,9,9 II. 3,4,5,6,7,8 Berp medi dri dt di ts? Jwb : medi I dlh 8 medi II dlh 3. Perhtik dt berikut! 7,5,4,5,5,6,7 Berp modus dri dt tersebut? Jwb : 5 ( mucul 3 kli ) 9

20 Oleh: Risii,S.Pd.I Guru Mtemtik MIN Plembg DAFTAR PUSTAKA 990 Surbkty.BM, Mtemtik Bisis d Ekoomi, Kesit Blc Idh. Negoro.ST dkk, Esiklopedi Mtemtik, Ghli Idoesi. 998 Stoso, Siggih. 00. SPSS Sttistik Multivrit. Jkrt : PT. Elex Medi Kompitudo. 0

BARISAN DAN DERET. Jawaban : D a = 3, b = 2, U 10 = (a + 9b) U 10 = = 21. Jawaban : E a = 2,5 S ~ =

BARISAN DAN DERET. Jawaban : D a = 3, b = 2, U 10 = (a + 9b) U 10 = = 21. Jawaban : E a = 2,5 S ~ = pge of SOAL Jumlh ke-0 dri bris :,, 7, 9,.dlh.. d. e. 7 9 Ebts 99 Sebuh bol jtuh dri ketiggi, meter d memtul deg ketiggi kli tiggi semul. D setip kli memtul berikuty, mecpi ketiggi kli tiggi ptul sebelumy.

Lebih terperinci

SISTEM PERSAMAAN LINEAR. Nurdinintya Athari (NDT)

SISTEM PERSAMAAN LINEAR. Nurdinintya Athari (NDT) SISTEM PERSAMAAN LINEAR Nurdiity Athri (NDT) Sistem Persm Lier (SPL) Sub Pokok Bhs Pedhulu Solusi SPL deg OBE Solusi SPL deg Ivers mtriks d Atur Crmmer SPL Homoge Beberp Apliksi Sistem Persm Lier Rgki

Lebih terperinci

Pangkat Positif. Dari pelajaran sebelumnya kalian sudah memahami bahwa: 3 2 = 3 3 (-2) 3 = (-2) (-2) (-2) 5 4 = = 2 2..

Pangkat Positif. Dari pelajaran sebelumnya kalian sudah memahami bahwa: 3 2 = 3 3 (-2) 3 = (-2) (-2) (-2) 5 4 = = 2 2.. . Ap yg k kmu peljri? Mejelsk pegerti bilg berpgkt deg pgkt positif, egtif d ol Megubh pgkt positif mejdi egtif d sebliky. Megel rti pgkt positif d egtif Megel betuk kr Kt Kuci Pgkt Positif Pgkt Negtif

Lebih terperinci

Sub Pokok Bahasan Bilangan Bulat

Sub Pokok Bahasan Bilangan Bulat MODUL MATERI PELAJARAN MATEMATIKA Sub Pokok Bhs Bilg Bult Kels : VII (tujuh) Seester: 1 (gjil) Kurikulu KTSP Disusu Oleh: Seri Rhwti, S.Pd NIP. 171101 001 001 MTsN SELAT KUALA KAPUAS TAHUN PELAJARAN 010/011

Lebih terperinci

1. bentuk eksplisit suku ke-n 2. ditulis barisannya sejumlah berhingga suku awalnya. 3. bentuk rekursi ...

1. bentuk eksplisit suku ke-n 2. ditulis barisannya sejumlah berhingga suku awalnya. 3. bentuk rekursi ... Bris d Deret Defiisi Bris bilg didefiisik sebgi fugsi deg derh sl merupk bilg sli. Notsi: f: N R f( ) = Fugsi tersebut dikel sebgi bris bilg Rel { } deg dlh suku ke-. Betuk peulis dri bris :. betuk eksplisit

Lebih terperinci

bila nilai parameter sesungguhnya adalah. Jadi, K( ) P( SU jatuh ke dalam WP bila nilai parameter sama dengan )

bila nilai parameter sesungguhnya adalah. Jadi, K( ) P( SU jatuh ke dalam WP bila nilai parameter sama dengan ) Kus Uji d Lem Neym-Perso Kebik sutu uji serig diukur oleh d. Di dlm prktek, bisy ditetpk, d kibty wilyh peolk (WP) mejdi tertetu pul. Kierj sutu uji jug serig diukur oleh p yg disebut kus uji (power of

Lebih terperinci

1. Bilangan Berpangkat Bulat Positif

1. Bilangan Berpangkat Bulat Positif N : Zui Ek Sri Kels : NPM : 800 BILANGAN BERPANGKAT DAN BENTUK AKAR A. Pgkt Bilg Bult. Bilg Berpgkt Bult Positif Dl kehidup sehri-hri kit serig eeui perkli ilg-ilg deg fktor-fktor yg s. Mislk kit teui

Lebih terperinci

SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI. Prasetyo Budi Darmono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo

SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI. Prasetyo Budi Darmono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI Prsetyo Budi Drmoo Jurus Pedidik Mtemtik FKIP Uiversits Muhmmdiyh Purworejo Abstrk Persm lier dlm vribel 1, 2, 3,.. sebgi sebuh persm yg dpt diytk dlm

Lebih terperinci

Catatan Kuliah 1 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks

Catatan Kuliah 1 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks Ctt Kulih Mtemtik Ekoomi Memhmi d Meglis ljbr Mtriks. Mtriks d Vektor Mtriks Mtriks dlh kumpul bilg, prmeter tu vribel tersusu dlm bris d kolom sehigg terbetuk segi empt. Susu ii bisy diletkk dlm td kurug

Lebih terperinci

MA SKS Silabus :

MA SKS Silabus : Aljr Lier Elemeter A SKS Silus : B I triks d Opersiy B II Determi triks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige 7//7

Lebih terperinci

DETERMINAN MATRIKS dan

DETERMINAN MATRIKS dan DETERMINN MTRIKS d TRNSFORMSI ELEMENTER gusti Prdjigsih, M.Si. Jurus Mtemtik FMIP UNEJ tiprdj.mth@gmil.com DEFINISI Utuk setip mtriks bujursgkr berordo x dpt dikitk deg tuggl sutu bilg rel yg dimk determi.

Lebih terperinci

BILANGAN TETRASI. Sumardyono, M.Pd

BILANGAN TETRASI. Sumardyono, M.Pd BILAGA TETRASI Sumrdyoo, M.Pd Megp Tetrsi? Di dlm ritmetik tu ilmu berhitug, opersi hitug merupk kosep yg mt petig bhk mugki sm petigy deg kosep bilg itu sediri. Tp kehdir opersi hitug, mk tmpky musthil

Lebih terperinci

Matematika Dasar INTEGRAL TENTU . 2. Partisi yang terbentuk merupakan segiempat dengan ukuran x dan f ( x k ) sebagai

Matematika Dasar INTEGRAL TENTU . 2. Partisi yang terbentuk merupakan segiempat dengan ukuran x dan f ( x k ) sebagai Mtemtik Dsr INTEGRAL TENTU Pegerti tu kosep itegrl tetu pertm kli dikelk oleh Newto d Leiiz. Nmu pegerti secr leih moder dikelk oleh Riem. Mteri pemhs terdhulu yki tetg itegrl tk tetu d otsi sigm k kit

Lebih terperinci

BILANGAN BERPANGKAT DAN BENTUK AKAR

BILANGAN BERPANGKAT DAN BENTUK AKAR BILANGAN BERPANGKAT DAN BENTUK AKAR. Sift Opersi Bilg Bult Berpgkt Defiisi Pgkt Bult Positif Jik dlh ilg rel (yt) d dlh ilg sli (ilg ult positif), k... seyk fktor deg = pgkt tu ekspoe = ilg pokok/dsr/sis

Lebih terperinci

Bab. Bentuk Pangkat, Akar, dan Logaritma

Bab. Bentuk Pangkat, Akar, dan Logaritma Bb II Suber: www.jkrt.go.id Betuk Pgkt, Akr, d Logrit Mteri tetg bilg bergkt telh Ad eljri sebeluy di Kels IX. Pd bb ii k dieljri bilg bergkt d dikebgk si deg bilg bergkt bult egtif d ol. Seli itu, k dieljri

Lebih terperinci

Bila kita mempunyai suatu sistem persamaan linier 2x + 3y + 3z = 0 x + y + 3z = 0 x + 2y z = 0

Bila kita mempunyai suatu sistem persamaan linier 2x + 3y + 3z = 0 x + y + 3z = 0 x + 2y z = 0 LJBR MTRIKS Bil kit mempui sutu sistem persm liier + + z = + + z = + z = Mk koefisie tersebut di ts disebut MTRIKS, d secr umum dpt ditulisk sbb : Jjr bilg tersebut di ts disebut MTRIKS, d secr umum dpt

Lebih terperinci

APLIKASI INTEGRAL TENTU

APLIKASI INTEGRAL TENTU APLIKASI INTEGRAL TENTU Apliksi Itegrl Tetu థ Lus ditr 2 kurv థ Volume ed dlm idg (deg metode ckrm d cici) థ Volume ed putr (deg metode kulit tug) థ Lus permuk ed putr థ Mome d pust mss 1 2 1. LUAS DIANTARA

Lebih terperinci

BAB I SISTEM PERSAMAAN LINEAR

BAB I SISTEM PERSAMAAN LINEAR BAB I SISTEM PERSAMAAN LINEAR Sistem persm ditemuk hmpir di semu cg ilmu pegethu Dlm idg ilmu ukur sistem persm diperluk utuk mecri titik potog eerp gris yg seidg, di idg ekoomi tu model regresi sttistik

Lebih terperinci

Kalkulus 2. Deret Pangkat dan Uji Konvergensi. Department of Chemical Engineering Semarang State University. Dhoni Hartanto S.T., M.T., M.Sc.

Kalkulus 2. Deret Pangkat dan Uji Konvergensi. Department of Chemical Engineering Semarang State University. Dhoni Hartanto S.T., M.T., M.Sc. Klkulus Deret Pgkt d Uji Kovergesi Dhoi Hrtto S.T., M.T., M.S. Deprtmet o Chemil Egieerig Semrg Stte Uiversity Eperimetl Deret Pgkt Urut d deret sequees d series). Urut gk merupk rgki gk tk terbts jumlh

Lebih terperinci

BAB 12 METODE SIMPLEX

BAB 12 METODE SIMPLEX METODE ANAISIS PERENCANAAN Mteri 9 : TP 3 SKS Oleh : Ke Mrti Ksikoe BAB METODE SIMPE Metode Simplex dlh metode pemrogrm liier yg mempuyi peubh (vrible) byk, sehigg dimesiy lebih dri 3. Metode simplex dpt

Lebih terperinci

FUNGSI KARAKTERISTIK. penelitian ini akan ditentukan fungsi karakteristik dari distribusi four-parameter

FUNGSI KARAKTERISTIK. penelitian ini akan ditentukan fungsi karakteristik dari distribusi four-parameter IV. FUNGSI KARAKTERISTIK Pd bgi seljuty k dijbrk megei ugsi krkteristik. Pd peeliti ii k ditetuk ugsi krkteristik dri distribusi our-prmeter geerlized t deg megguk deiisi d kemudi k membuktik ugsi krkteristik

Lebih terperinci

Barisan dan Deret Tak Hingga

Barisan dan Deret Tak Hingga Modul Bris d Deret Tk Higg Dr. Spti Whyuigsih, M.Si. M PENDAHULUAN odul ii meyjik kji tetg Bris d Deret Tk Higg. Kji tetg bris d deret memegg per sgt petig kre sebgi dsr utuk pembhs Itegrl Tetu. Bris d

Lebih terperinci

Metode Iterasi Gauss Seidell

Metode Iterasi Gauss Seidell Metode Itersi Guss Seidell Metode itersi Guss-Seidel : metode yg megguk proses itersi higg diperoleh ili-ili yg berubh. Bil dikethui persm liier simult: Berik ili wl dri setip i (i s/d ) kemudi persm liier

Lebih terperinci

Contoh Soal Contoh Soal Contoh Soal Tentukan jumlah deret geometri tak hingga berikut

Contoh Soal Contoh Soal Contoh Soal Tentukan jumlah deret geometri tak hingga berikut Cotoh Sol.7 Tetuk jumlh deret geometri tk higg berikut. + + +... 9 Jwb: Berdsrk deret tersebut dpt Ad kethui d r. Deg demiki, S - r - Jdi, jumlh deret geometri tersebut dlh. Cotoh Sol.8 Suku ke- dri sutu

Lebih terperinci

PENGANTAR TEORI INTEGRAL

PENGANTAR TEORI INTEGRAL BAB 6 PENGANTAR TEORI INTEGRAL Oe c ot uderstd... the uiverslity of lw of ture, the reltioship of thigs, without uderstdig of mthemtics. There is o wy to do it. Richrd P FEYNMAN 6. Pedhul Dlm klkulus sisw

Lebih terperinci

Diijinkan memperbanyak demi kepentingan pendidikan dengan tetap mencantumkan alamat situs

Diijinkan memperbanyak demi kepentingan pendidikan dengan tetap mencantumkan alamat situs Diijik memperyk demi kepetig pedidik deg tetp mectumk lmt situs LATIH UN IPA. 00-00 KATA PENGANTAR Alhmdulillh peulis pjtk kehdirt Allh SWT., Ats limph rhmt, erkh, d hidyh-ny sehigg peulis dpt meyelesik

Lebih terperinci

BAB VI SIFAT-SIFAT LANJUTAN INTEGRAL RIEMANN

BAB VI SIFAT-SIFAT LANJUTAN INTEGRAL RIEMANN BAB VI SIFAT-SIFAT LANJUTAN INTEGAL IEMANN Sift-sift Ljut Itegrl iem Teorem 6.1 Jik f [, ] d f [, ] deg < < mk f [, ]. Leih ljut f x dx f x dx + () f x dx f [, ] d f [, ], mislk () f x dx A 1 d () f x

Lebih terperinci

PENDAHULUAN. 3). Pembatas linear (linear constraints) Fitriani Agustina Jurusan Pendidikan Matematika UPI

PENDAHULUAN. 3). Pembatas linear (linear constraints) Fitriani Agustina Jurusan Pendidikan Matematika UPI PENDAHULUAN A. Pegerti Umum Pegerti progrm lier yg diteremhk dri Lier Progrmmig (LP) dlh sutu cr utuk meyelesik persol pegloksi sumber-sumber yg terbts di tr beberp ktivits yg bersig, deg cr yg terbik

Lebih terperinci

BAB 2 SISTEM BILANGAN DAN KESALAHAN

BAB 2 SISTEM BILANGAN DAN KESALAHAN Metode Numerik Segi Algoritm Komputsi 5 BAB SISTEM BILANGAN DAN KESALAHAN.. Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik : N ( )...... Cotoh : 67. 6. 7.. Bilg

Lebih terperinci

Jarak Titik, Garis dan Bidang dalam Ruang

Jarak Titik, Garis dan Bidang dalam Ruang Pge of Kegitn eljr. Tujun Pembeljrn Setelh mempeljri kegitn beljr, dihrpkn sisw dpt :. Menentukn jrk titik dn gris dlm rung b. Menentukn jrk titik dn bidng dlm rung c. Menentukn jrk ntr du gris dlm rung.

Lebih terperinci

Daerah D dibatasi kurva y = f (x) dengan f (x) 0, garis x = a, garis x = b, dan sumbu x. D = {(x,y) a x b, 0 y f (x)} Luas daerah D adalah  Ú.

Daerah D dibatasi kurva y = f (x) dengan f (x) 0, garis x = a, garis x = b, dan sumbu x. D = {(x,y) a x b, 0 y f (x)} Luas daerah D adalah  Ú. x x g x x erh ditsi kurv = (x) deg (x), gris x =, gris x =, d sumu x. = {(x,) x, (x)} Lus derh dlh. L = lim x x = x erh ditsi kurv = (x), kurv = g(x), deg (x) g(x), gris x =, d gris x =. = {(x,) x, g(x)

Lebih terperinci

Sistem Bilangan dan Kesalahan. Metode Numerik

Sistem Bilangan dan Kesalahan. Metode Numerik Sistem Bilg d Keslh Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Cotoh : 673 * 3 6* 7* 3* Bilg ult deg ilg dsr c didefiisik segi : ( )... c N c

Lebih terperinci

Pertemuan ke-5 Persamaan Linier Simultan. 11 Oktober Dr.Eng. Agus S. Muntohar Department of Civil Engineering

Pertemuan ke-5 Persamaan Linier Simultan. 11 Oktober Dr.Eng. Agus S. Muntohar Department of Civil Engineering Pertemu ke-5 Persm Liier Simult Oktober Metode Elimisi Guss (Gussi Elimitio) Metode Elimisi Gus Sutu metode utuk meyelesik persm liier simult dri [A][X][C] Du lgkh peyelesi peyelesi:: Elimisi mju (Forwrd

Lebih terperinci

BAB III LIMIT FUNGSI DAN KEKONTINUAN

BAB III LIMIT FUNGSI DAN KEKONTINUAN BAB III LIMIT FUNGSI DAN KEKONTINUAN 3. Pedhulu Seelu hs liit fugsi di sutu titik terleih dhulu kit k egti perilku sutu fugsi f il peuh edekti sutu ilg ril tertetu. Misl terdpt sutu fugsi f() = + 4. Utuk

Lebih terperinci

BAB V INTEGRAL DARBOUX

BAB V INTEGRAL DARBOUX Itegrl Droux BAB V INTEGRAL DARBOUX Pd thu 1875, mtemtikw I.G. Droux secr kostruktif memodifiksi defiisi itegrl Riem deg terleih dhulu medefiisik jumlh Droux ts (upper Droux sum) d jumlh Droux wh (lower

Lebih terperinci

Saintek Vol 5. No 3 Tahun Penyelesaian Analitik dan Pemodelan Fungsi Bessel

Saintek Vol 5. No 3 Tahun Penyelesaian Analitik dan Pemodelan Fungsi Bessel Sitek Vol 5. No 3 Thu 1 Peyelesi Alitik d Peodel Fugsi Bessel Lily Yhy Jurus Mtetik Fkults MIPA Uiersits Negeri Gorotlo bstrk Dl klh ii k dilkuk peyelesi litik d peodel pers diferesil Bessel sert eujukk

Lebih terperinci

1. SISTEM PERSAMAAN LINEAR DAN MATRIKS

1. SISTEM PERSAMAAN LINEAR DAN MATRIKS Diktt Aljr Lier Sistem Persm Lier d Mtriks. SISTEM PERSAMAAN LINEAR DAN MATRIKS.. PENGANTAR DEFINISI. : PERSAMAAN LINEAR Sutu persm lier deg peuh x, x 2,, x dpt diytk dlm etuk : x + 2 x 2 + + x = (.) dim,

Lebih terperinci

DERET PANGKAT TAK HINGGA

DERET PANGKAT TAK HINGGA DERET PANGKAT TAK HINGGA DERET PANGKAT Defiisi deret pgkt : C ( ) c c ( ) c ( ) c ( )... o dim dlh vribel c d dlh kostt Perhtik bhw dlm otsi deret pgkt telh segj memilih ideks ol utuk meytk suku pertm

Lebih terperinci

Titik Biasa dan Titik Singular Misalkan ada suatu persamaan diferensial orde dua h(x)y + p(x)y + q(x)y = 0 (3)

Titik Biasa dan Titik Singular Misalkan ada suatu persamaan diferensial orde dua h(x)y + p(x)y + q(x)y = 0 (3) PERSAMAAN LEGENDRE Fugi Rel Alitik Sutu fugi f( diktk litik pd jik fugi itu dpt diytk dl deret pgkt deg rdiu kovergei poitif. f ( ( + ( + ( + ( +... dl elg kovergeiy diperoleh f ( ( f '( f "(. f '''(......

Lebih terperinci

TEKNIK BARU MENYELESAIKAN SISTEM PERSAMAAN DIFERENSIAL LINEAR ORDE SATU NONHOMOGEN

TEKNIK BARU MENYELESAIKAN SISTEM PERSAMAAN DIFERENSIAL LINEAR ORDE SATU NONHOMOGEN TEKNIK BARU MENYELESAIKAN SISTEM PERSAMAAN DIFERENSIAL LINEAR ORDE SATU NONHOMOGEN Yo Hedri 1* Asmr Krm Musrii 1 Mhsisw Progrm S1 Mtemtik Dose JurusMtemtik Fkults Mtemtik d Ilmu Pegethu Alm Uiversits Riu

Lebih terperinci

Soal Latihan dan Pembahasan Dimensi Tiga

Soal Latihan dan Pembahasan Dimensi Tiga Sol Ltihn dn embhsn imensi ig i susun Oleh : Yuyun Somntri http://bimbingnbeljr.net/ i dukung oleh : ortl eduksi rtis Indonesi Open Knowledge nd duction http://oke.or.id utoril ini diperbolehkn untuk di

Lebih terperinci

Dia yang menjadikan matahari dan bulan bercahaya, serta mengaturnya pada beberapa tempat, supaya kamu mengetahui bilangan tahun dan perhitunganya

Dia yang menjadikan matahari dan bulan bercahaya, serta mengaturnya pada beberapa tempat, supaya kamu mengetahui bilangan tahun dan perhitunganya Pemeljr M t e m t i k... Di g mejdik mthri d ul erch, sert megtur pd eerp tempt, sup kmu megethui ilg thu d perhitug (QS Yuus:5 ) Pedhulu us Sift : - us derh rt dlh ilg riil tk egtif - persegipjg=pjg ler

Lebih terperinci

DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN

DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN I TU URI HANDAY AN TW DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN 009 Bilg Rel GY A Y O M AT E M A T AK A R Mrkb, M.Si. DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENINGKATAN MUTU

Lebih terperinci

Ringkasan Limit Fungsi Kelas XI IPS 1 NAMA : KELAS : theresiaveni.wordpress.com

Ringkasan Limit Fungsi Kelas XI IPS 1 NAMA : KELAS : theresiaveni.wordpress.com Riks Limit Fusi Kels XI IPS NAMA : KELAS : theresivei.wordpress.com Riks Limit Fusi Kels XI IPS LIMIT FUNGSI Limit dlm kt-kt sehri-hri: Medekti hmpir, sedikit li, tu hr bts, sesutu y dekt tetpi tidk dpt

Lebih terperinci

1 B. Mengkonversi dari pecahan ke persen. 1 Operasi bilangan berpangkat. 2. Menyederhanakan bilangan berpangkat bentuk:

1 B. Mengkonversi dari pecahan ke persen. 1 Operasi bilangan berpangkat. 2. Menyederhanakan bilangan berpangkat bentuk: KISI KISI SOAL UJI COBA UJIAN NASIONAL MATA PELAJARAN MATEMATIKA TAHUN 009 / 00 MGMP MATEMATIKA SMK TEKNIK KABUPATEN KLATEN Bhn/ X / Opersi bilngn rel. Sisw dpt: A. Mengkonversi dri desiml ke persen B.

Lebih terperinci

BAB IV PERSAMAAN DAN PERTIDAKSAMAAN

BAB IV PERSAMAAN DAN PERTIDAKSAMAAN BAB IV PERSAMAAN DAN PERTIDAKSAMAAN A. Beberp Kosep Persm d Pertidksm Model mtemtik dri permslh sehri-hri serigkli berbetuk persm tu pertidksm. Kosep persm d pertidksm ii didsri oleh kosep kesm d ketidksm

Lebih terperinci

Matematika SKALU Tahun 1978

Matematika SKALU Tahun 1978 Mtemtik SKALU Thun 978 MA-78-0 Persmn c + b + = 0, mempunyi kr-kr dn, mk berlku A. + = b B. + = c C. = c = c = c MA-78-0 Akr dri persmn 5 - = 7 + dlh A. B. C. 4 5 MA-78-0 Hrg dri log b. b log c. c log

Lebih terperinci

SISTEM PERSAMAAN LINEAR

SISTEM PERSAMAAN LINEAR http://istirto.stff.ugm..id SISTEM PERSAMAAN LINEAR Systems of Lier Algebri Equtios Sistem Persm Lier http://istirto.stff.ugm..id Au Chpr, S.C., Cle R.P., 99, Numeril Methods for Egieers, d Ed., MGrw-Hill

Lebih terperinci

iv Prkt Selmt, kli telh ik ke kels XII Progrm Ilmu Pegethu Sosil (IPS). Tetuy hl ii mejdi kebgg tersediri bgi kli. Semog kli terpcu utuk berpikir lebih dews lgi. Meskipu sudh ik ke kels XII, kli tidk boleh

Lebih terperinci

iv Prkt Selmt, kli telh ik ke kels XII Progrm Ilmu Pegethu Sosil (IPS). Tetuy hl ii mejdi kebgg tersediri bgi kli. Semog kli terpcu utuk berpikir lebih dews lgi. Meskipu sudh ik ke kels XII, kli tidk boleh

Lebih terperinci

Diijinkan memperbanyak demi kepentingan pendidikan dengan tetap mencantumkan alamat situs

Diijinkan memperbanyak demi kepentingan pendidikan dengan tetap mencantumkan alamat situs Diijik memperyk demi kepetig pedidik deg tetp metumk lmt situs LATIH UN IPS. 008 00 KATA PENGANTAR Alhmdulillh peulis pjtk kehdirt Allh SWT., Ats limph rhmt, erkh, d hidyh-ny sehigg peulis dpt meyelesik

Lebih terperinci

Aljabar Linear. Pertemuan 12_14 Aljabar Vektor (Perkalian vektor)

Aljabar Linear. Pertemuan 12_14 Aljabar Vektor (Perkalian vektor) Aljbr Liner Pertemun 12_14 Aljbr Vektor (Perklin vektor) Pembhsn Perklin vektor dengn sklr Rung vektor Perklin Vektor dengn Vektor: Dot Product - Model dot product - Sift dot product Pendhulun Penmbhn

Lebih terperinci

Pangkat Tak Sebenarnya

Pangkat Tak Sebenarnya B Pgkt Tk Seery Sumer: www6.fheerswlde.de Pd ii, kmu k dijk utuk memhmi sift-sift ilg erpgkt d etuk kr sert pegguy dlm pemech mslh sederh deg cr megidetifiksi siftsift ilg erpgkt d etuk kr, melkuk opersi

Lebih terperinci

BAB 1 BENTUK PANGKAT, AKAR, DAN LOGARITMA

BAB 1 BENTUK PANGKAT, AKAR, DAN LOGARITMA BAB BENTUK PANGKAT, AKAR, DAN LOGARITMA A RINGKASAN MATERI. Sift-sift Ekspoe Misly d ilg rel ( 0, 0) sert d ilg rsiol, k erlku huug segi erikut. =... fktor = + = ( ) = ( ) =. Betuk Akr Jik d ilg rsiol

Lebih terperinci

BAB IV INTEGRAL RIEMANN

BAB IV INTEGRAL RIEMANN Itegrl Rie BAB IV INTEGRAL RIEMANN Utuk epeljri leih ljut tetg kosep itegrl Rie, k leih ik jik pec ehi eerp hl erikut. A. Prtisi Defiisi 4.1 Dierik itervl tertutup [, ], hipu terurut d erhigg P = { = x

Lebih terperinci

RUANG DEMENSI TIGA. C Sumbu Afinitas

RUANG DEMENSI TIGA. C Sumbu Afinitas RUNG EMENSI TIG b. IRISN NGUN RUNG Yng dimksud dengn irisn sutu bidng dengn bngun rung dlh derh yng dibtsi oleh gris potong-gris potong ntr bidng tersebut dengn semu sisi bngun rung yng terpotong oleh

Lebih terperinci

Bentuk Kanonik Persamaan Ruang Keadaan. Institut Teknologi Sepuluh Nopember

Bentuk Kanonik Persamaan Ruang Keadaan. Institut Teknologi Sepuluh Nopember Betuk Koik Persm Rug Ked Istitut Tekologi Sepuluh Nopember Pegtr Mteri Betuk Koik Observble Betuk Koik Jord Cotoh Sol Rigks Ltih Asesme Pegtr Mteri Cotoh Sol Ltih Rigks Pd bgi ii k dibhs megei Persm Ked

Lebih terperinci

UN SMA IPA 2004 Matematika

UN SMA IPA 2004 Matematika UN SMA IPA Mtemtik Kode Sol P Doc. Version : - hlmn. Persmn kudrt ng kr-krn dn - dlh... ² + + = ² - + = ² + + = ² + - = ² - - =. Tinggi h meter dri sebuh peluru ng ditembkkn ke ts setelh t detik dintkn

Lebih terperinci

PANGKAT & AKAR (INDICES & SURDS)

PANGKAT & AKAR (INDICES & SURDS) PANGKAT & AKAR (INDICES & SURDS) Ksus Hituglh? A PANGKAT (EKSPONEN) Ksus Perhtik hw x x Terliht hw d tig uh gk yg diklik d jik d gk seyk uh, k seyk Secr uu, disipulk Igt keli ruus pert Secr uu disipulk

Lebih terperinci

Representasi Matriks Graf Cut-Set Dan Sirkuit

Representasi Matriks Graf Cut-Set Dan Sirkuit PROSIDING ISBN : 978 979 65 6 Represetsi Mtriks Grf Cut-Set D Sirkuit A 5 Pdri Ferdis, Wmili Mhsisw S Mtemtik Jurus Mtemtik FMIPA UGM Dose Uiersits PGRI Yogykrt emil : pferdis@gmil.com Dose Jurus Mtemtik

Lebih terperinci

F 2 (c,0) yang berarti F 1 (-c, 0) dan F 2 (c, 0), b 2 =a 2 c 2 atau a 2 = b 2 +c 2 dan p (x,y) terletak ada elips. 4cx = 4a 2 2 2

F 2 (c,0) yang berarti F 1 (-c, 0) dan F 2 (c, 0), b 2 =a 2 c 2 atau a 2 = b 2 +c 2 dan p (x,y) terletak ada elips. 4cx = 4a 2 2 2 B III : Ligkr 7 5.. DEFINISI Ellips dlh tept keduduk titik g julh jrk terhdp du titik tertetu tetp hrg. F (titik tetp) erupk erks gris g diseut direkstriks, F (-,) F (,) diseut eksetrisits (e). e = AB

Lebih terperinci

NOTASI SIGMA, BARISAN, DERET DAN INDUKSI MATEMATIKA

NOTASI SIGMA, BARISAN, DERET DAN INDUKSI MATEMATIKA NOTASI SIGMA, BARISAN, DERET DAN INDKSI MATEMATIKA 4. K i K i Notsi Sigm : 5. ( ± V i i i V i i ± dlh otsi sigm, digu utu meyt ejumlh beuut di sutu bilg yg sudh beol. meu huuf citl S dlm bjd Yui dlh huuf

Lebih terperinci

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A.

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A. Bb DETERMINAN MATRIKS Determinn sutu mtriks dlh sutu fungsi sklr dengn domin mtriks bujur sngkr. Dengn kt lin, determinn merupkn pemetn dengn domin berup mtriks bujur sngkr, sementr kodomin berup sutu

Lebih terperinci

SOAL DAN SOLUSI MATEMATIKA IPA UJIAN NASIONAL DIMENSI TIGA

SOAL DAN SOLUSI MATEMATIKA IPA UJIAN NASIONAL DIMENSI TIGA SOL N SOLUSI MTMTIK I UJIN NSIONL 0 0 IMNSI TI. UN 0 ikethui kubus. dengn pnjng rusuk cm. Jrk titik dn gris dlh.... cm. cm. cm. cm. cm Solusi: [] 9 Jdi, jrk titik dn gris dlh cm.. UN 0 Kubus. memiliki

Lebih terperinci

BAB 3. DIFFERENSIAL. lim. Motivasi:

BAB 3. DIFFERENSIAL. lim. Motivasi: BAB. DIFFERENSIAL Motivsi: bim meetuk rdie ris siu sutu kurv di sutu titik pd kurv bim meetuk kecept sest sutu bed bererk sepj ris lurus Deiisi: mislk dl usi terdeiisi pd sel buk memut. Turu usi di diotsik

Lebih terperinci

Tidak diperjualbelikan

Tidak diperjualbelikan Pdu Mteri Mtemtik SMA/MA (IPA) MATEMATIKA PROGRAM STUDI IPA Tidk dierjulbelik Pdu Mteri Mtemtik SMA/MA (IPA) KATA PENGANTAR Keutus Meteri Pedidik Nsiol No. 5/U/00, tggl Oktober 00, tetg Uji Akhir Nsiol

Lebih terperinci

v Prkt Selmt, kli telh ik ke kels XII Progrm Bhs. Tetuy hl ii mejdi kebgg tersediri bgi kli. Semog kli terpcu utuk berpikir lebih dews lgi. Meskipu sudh ik ke kels XII, kli tidk boleh legh d bersti-sti.

Lebih terperinci

24/02/2014. Sistem Persamaan Linear (SPL) Beberapa Aplikasi Sistem Persamaan Linear Rangkaian listrik Jaringan Komputer Model Ekonomi dan lain-lain.

24/02/2014. Sistem Persamaan Linear (SPL) Beberapa Aplikasi Sistem Persamaan Linear Rangkaian listrik Jaringan Komputer Model Ekonomi dan lain-lain. // Alj Lie Elemete MUGE SKS Silus : B I Mtiks d Oesi B II Detemi Mtiks B III Sistem Pesm Lie B IV Vekto di Bidg d di Rug B V Rug Vekto B VI Rug Hsil Kli Dlm B VII Tsfomsi Lie B VIII Rug Eige // :8 MUGE

Lebih terperinci

Bilangan. Bilangan Nol. Bilangan Bulat (Z )

Bilangan. Bilangan Nol. Bilangan Bulat (Z ) Bilngn Bilngn Asli (N) (,2,, ) Bilngn Nol (0) Bilngn Negtif (,, 2, ) Bilngn Bult (Z ) Bilngn Pechn ( 2 ; 5 ; 5%; 6,82; ) 7 A. Bilngn Asli (N) Bilngn Asli dlh himpunn bilngn bult positif (nol tidk termsuk).

Lebih terperinci

Eksponen dan Logaritma

Eksponen dan Logaritma Bb Ekspoe d Logrit A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kopetesi Dsr Setelh egikuti pebeljr ekspoe d logrit sisw pu:. eghyti pol hidup disipli, kritis, bertggugjwb, kosiste d jujur sert eerpky dl

Lebih terperinci

VEKTOR. Adri Priadana. ilkomadri.com

VEKTOR. Adri Priadana. ilkomadri.com VEKTOR Adri Pridn ilkomdri.com Pengertin Dlm Fisik dikenl du buh besrn, yitu 1. Besrn Sklr. Besrn Vektor Pengertin Besrn Sklr dlh sutu besrn yng hny mempunyi nili dn dinytkn dengn sutu bilngn tunggl diserti

Lebih terperinci

Pendahuluan Aljabar Vektor Matrik

Pendahuluan Aljabar Vektor Matrik Pedhulu Aljr Vektor trik Defiisi: trik A erukur x ilh sutu susu gk dl ersegi et ukur x, segi erikut: = A tu A = ( ij ) Utuk eytk elee trik A yg ke (i,j), yitu ij, diguk otsi (A) ij. Ii errti ij = (A) ij.

Lebih terperinci

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1)

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1) BAB: PENERAPAN INTEGRAL Topik: Volume Bend Putr (Khusus Klkulus ) Kompetensi yng diukur dlh kemmpun mhsisw menghitung volume bend putr dengn metode cincin, metode ckrm, tu metode kulit tbung.. UAS Klkulus,

Lebih terperinci

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1 Pge of 8 Kegitn eljr 5. Tujun Pembeljrn Setelh mempeljri kegitn beljr 5, dihrpkn sisw dpt. Menentukn unsur-unsur segitig dengn turn sinus b. Menentukn unsur-unsur segitig dengn turn kosinus. Menghitung

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bb berikut ini kn disjikn mteri pendukung yng dpt membntu penulis untuk menyelesikn permslhn yng kn dibhs pd bb selnjutny. Adpun mteri pendukungny dlh pengertin mtriks, jenis-jenis

Lebih terperinci

MENGHITUNG DETERMINAN SUATU MATRIKS DENGAN MENGGUNAKAN METODE CORNICE

MENGHITUNG DETERMINAN SUATU MATRIKS DENGAN MENGGUNAKAN METODE CORNICE ENGHITUNG DETERINN SUTU TRIKS DENGN ENGGUNKN ETDE RNIE Gusrisyh Sri Gemwti sli Sirit ci_ry@yhoo.co.id hsisw Progrm S temtik Dose Jurus temtik Fkults temtik d Ilmu Pegethu lm Uiversits Riu Kmpus Biwidy

Lebih terperinci

PERSAMAAN KUADRAT. ac 0 p dan q sama tanda. 2. dg. Melengkapkan bentuk kuadrat ( kuadrat sempurna ) :

PERSAMAAN KUADRAT. ac 0 p dan q sama tanda. 2. dg. Melengkapkan bentuk kuadrat ( kuadrat sempurna ) : PERSAMAAN KUADRAT Bb. Bentuk Umum : b c,,, b, c Re l Menyelesikn ersmn kudrt :. dg. Memfktorkn : b c ( )( q) q q = ( q) dimn : b = + q dn c, Jik c dn q berbed tnd c dn q sm tnd. dg. Melengkkn bentuk kudrt

Lebih terperinci

TUGAS KELOMPOK TURUNAN DAN INTEGRAL

TUGAS KELOMPOK TURUNAN DAN INTEGRAL Mtemtik TUGAS KELOMPOK TURUNAN DAN INTEGRAL DISUSUN OLEH NAMA. LUKMANUDIN D79. YUYU YUMIARSIH D799. SERLI WIJAYA D798 PROGRAM STUDY MATA KULIAH DOSEN : PEND. MATEMATIKA : ANALISA VEKTOR : ABDUL KARIM,

Lebih terperinci

IRISAN KERUCUT. 1. Persamaan lingkaran dengan pusat (0,0) dan jari-jari r. Persamaan = TK titik T = =

IRISAN KERUCUT. 1. Persamaan lingkaran dengan pusat (0,0) dan jari-jari r. Persamaan = TK titik T = = IRISAN KERUCUT Bb 9 A. LINGKARAN. Persmn lingkrn dengn pust (0,0) dn jri-jri r 0 r T(x,y) X Persmn = TK titik T = { T / OT r } = = {( x, y) / r } {( x, y) / r }. Persmn lingkrn dengn pust (,b) dengn jri-jri

Lebih terperinci

Aplikasi Sistem Persamaan Lanjar pada Kontrol Agen Perusahan Industri

Aplikasi Sistem Persamaan Lanjar pada Kontrol Agen Perusahan Industri Apliksi Sistem Persm Ljr pd Kotrol Age Perush Idustri Aretth Septiez 9 Progrm Studi Tekik Iformtik Sekolh Tekik Elektro d Iformtik Istitut Tekologi Bdug, Jl Gesh Bdug, Idoesi 9@itbcid Abstrct Sistem persm

Lebih terperinci

2. Paman mempunyai sebidang tanah yang luasnya 5 hektar. Tanah itu dibagikan kepada 3. Luas tanah yang diterima oleh mereka masing-masing = 5 :3 1

2. Paman mempunyai sebidang tanah yang luasnya 5 hektar. Tanah itu dibagikan kepada 3. Luas tanah yang diterima oleh mereka masing-masing = 5 :3 1 . Hitunglh 7 5. : b. 5 : c. 8 : 6 d. 8 9 7 7 7 5 77 77 77. : c. 8 : 6 : 6 6 9 9 9 6 54 8 40 7 b. 5: 5 d. 4: 4: 4 6 8 7 95 Husein Tmpoms, Rumus-rumus Dsr Mtemtik 4 :. Pmn mempunyi sebidng tnh yng lusny

Lebih terperinci

METODE NUMERIK. Sistem Persamaan Linier (SPL) (1) Pertemuan ke 5. Rinci Kembang Hapsari, S.Si, M.Kom

METODE NUMERIK. Sistem Persamaan Linier (SPL) (1) Pertemuan ke 5. Rinci Kembang Hapsari, S.Si, M.Kom METODE NUMERIK Pertemu ke 5 Sistem Persm Liier (SPL) () Rici Kemg Hpsri, S.Si, M.Kom www.rkhcdemy.com/wp Represetsi SPL Betuk umum persm lier deg peuh Dim :,, : koefisie dri persm, d,,..., merupk peuh.

Lebih terperinci

MODUL 1 BILANGAN REAL

MODUL 1 BILANGAN REAL MODUL BILANGAN REAL Disusu oleh: Ai Ismyi S.Pd KATA PENGANTAR Tidk dpt dipugkiri kemmpu berhitug ritmtik byk diperluk d diguk dlm ktivits kehidup kit sehri-hri. Kosep Opersi Bilg Rel dlh slh stu kompetesi

Lebih terperinci

1. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II)

1. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II) MATA KULIAH KODE MK Dosen : FISIKA DASAR II : EL-22 : Dr. Budi Mulynti, MSi Pertemun ke-6 CAKUPAN MATERI. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II) SUMBER-SUMBER:.

Lebih terperinci

MATEMATIKA IPA PAKET A KUNCI JAWABAN

MATEMATIKA IPA PAKET A KUNCI JAWABAN MATEMATIKA IPA PAKET A KUNCI JAWABAN. Jwbn : A Mislkn : p : Msyrkt membung smph pd temptny. q: Kesehtn msyrkt terjg. Diperoleh: Premis : ~q ~p p q Premis : p Kesimpuln : q Jdi, kesimpuln dri premis-premis

Lebih terperinci

BAB III SIFAT-SIFAT INTEGRAL RIEMANN-STIELTJES. 3.1 Integral Riemann-Stieltjes dari Fungsi Bernilai Real

BAB III SIFAT-SIFAT INTEGRAL RIEMANN-STIELTJES. 3.1 Integral Riemann-Stieltjes dari Fungsi Bernilai Real BAB III SIFAT-SIFAT INTEGRAL RIEMANN-STIELTJES 3.1 Itegrl Riem-Stieltjes dri Fugsi Berili Rel Pd seelumy telh dihs megei eerp kosep dsr, dim kosep-kosep ii merupk slh stu teori pedukug yg tiy k erper segi

Lebih terperinci

Bab 3. Penyelesaian Sistem Persamaan Linier (SPL)

Bab 3. Penyelesaian Sistem Persamaan Linier (SPL) Bb. Peelesi Sistem Persm Liier (SPL) Yuli Setiowti Politekik Elektroik Negeri Surb 7 Topik Defiisi SPL Betuk Mtrik SPL Augmeted Mtrik Peelesi SPL Opersi-opersi Dsr (Elemetr Opertios) Sistem equivlet Opersi

Lebih terperinci

tema 1 diri sendiri liburan ke kota

tema 1 diri sendiri liburan ke kota tem 1 diri sendiri liburn ke kot ku nik ke kels 2 selm liburn ku dijk ke kot ku berlibur ke rumh kkek di kot bnyk kendrn d bus tksi dn sebginy ku meliht bus bernomor 105 d pul tksi bernomor 153 ku bis

Lebih terperinci

LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memperebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 2011

LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memperebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 2011 LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Mempereutkn Pil Guernur Sumter Seltn Mei 0 PENYISIHAN I PERORANGAN LCCM TINGKAT SMA. Dikethui kuus ABCD.EFGH dengn rusuk 6 cm. Jik

Lebih terperinci

INVERS MATRIKS. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

INVERS MATRIKS. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ NVES MTS gusti Prdjigsih, M.Si. Jurus Mtemti FMP UNEJ gusti.fmip@uej.c.id Defiisi : NVES Ji mtris bujursgr, d ji dpt dicri mtris B sehigg B = B =, M dit ivertible d B dim ivers iverse dri. [B= - ] etuggl

Lebih terperinci

Rumus Luas Daerah Segi Empat Sembarang? Oleh: Al Jupri Dosen Jurusan Pendidikan Matematika Universitas Pendidikan Indonesia

Rumus Luas Daerah Segi Empat Sembarang? Oleh: Al Jupri Dosen Jurusan Pendidikan Matematika Universitas Pendidikan Indonesia Rumus Lus Derh Segi Empt Sembrng? Oleh: Al Jupri Dosen Jurusn Pendidikn Mtemtik Universits Pendidikn Indonesi Kit bisny lebih menyuki brng yng siftny serb gun dn efektif, stu brng untuk berbgi jenis keperlun.

Lebih terperinci

BAB III MATRIKS

BAB III MATRIKS BB III MTRIKS PENGERTIN MTRIKS Pengertin Mtriks Mtriks dlh susunn bilngn-bilngn ng berbentuk persegi tu persegi pnjng ng ditur dlm bris dn kolom Bentuk Umum Mtriks : i m i m i m j j j ij mj n n n in mn

Lebih terperinci

BAB 1 PERSAMAAN DAN PERTIDAKSAMAAN. Standar Kompetensi Mahasiswa memahami konsep dasar sistem bilangan real (R)

BAB 1 PERSAMAAN DAN PERTIDAKSAMAAN. Standar Kompetensi Mahasiswa memahami konsep dasar sistem bilangan real (R) BAB PERSAMAAN DAN PERTIDAKSAMAAN Stndr Kompetensi Mhsisw memhmi konsep dsr sistem bilngn rel (R) sebgi semest untuk menentukn selesin persmn dn pertidksmn, dpt mengembngkn bentuk persmn dn pertidksmn yng

Lebih terperinci

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini: ) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut

Lebih terperinci

Bagian 5 Integrasi. 5.1 Konsep Anti Turunan

Bagian 5 Integrasi. 5.1 Konsep Anti Turunan Bgi 5 Itegrsi Dlm gi 5 Itegrsi, kit k mempeljri kosep dsr itegrsi, tekik-tekik dsr itegrsi, d itegrl tertetu. Ad delp tekik dsr yg k dipeljri, yitu metode u-sustitusi, itegrl gi, itegrl si d cos erpgkt,

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB IV PERSAMAAN DAN PERTIDAKSAMAAN

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB IV PERSAMAAN DAN PERTIDAKSAMAAN SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB IV PERSAMAAN DAN PERTIDAKSAMAAN Dr. Djdir, M.Pd. Dr. Ilhm Minggi, M.Si J fruddin,s.pd.,m.pd. Ahmd Zki, S.Si.,M.Si Shln Sidjr,

Lebih terperinci

BAB XXI. TRANSFORMASI GEOMETRI

BAB XXI. TRANSFORMASI GEOMETRI BAB XXI. TRANSFORMASI GEOMETRI Trnsformsi digunn untu untu memindhn sutu titi tu ngun pd sutu idng. Trnsformsi geometri dlh gin dri geometri ng memhs tentng peruhn (let,entu, penjin ng didsrn dengn gmr

Lebih terperinci

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 2015

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 2015 SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 0 Pket Pilihlh jwbn yng pling tept!. Diberikn premis-premis berikut! Premis : Jik vektor dn b sling tegk lurus, mk besr sudut ntr vektor dn b dlh 90 o. Premis

Lebih terperinci

FUNGSI EKSPONENSIAL DAN FUNGSI LOGARITMIK

FUNGSI EKSPONENSIAL DAN FUNGSI LOGARITMIK M AT E M AT I K A E K O N O M I FUNGSI EKSPONENSIAL DAN FUNGSI LOGARITMIK TO N I BAKHTIAR I N S TITUT P ERTA N I A N BOGOR 2 0 2 Pgkt Jik sutu bilg diklik diri sdiri sbk kli mk ditulis Bilg disbut kspo

Lebih terperinci

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN DFTR ISI BB I. MTRIKS BB II. DETERMINN BB III. INVERS MTRIKS BB IV. PENYELESIN PERSMN LINER SIMULTN BB I. MTRIKS Mtriks erup sekelompok ilngn yng disusun empt persegi dn ditsi tnd terdiri dri ris dn kolom

Lebih terperinci