SUPLEMEN BAB 2 METODE RUNGE-KUTTA

Ukuran: px
Mulai penontonan dengan halaman:

Download "SUPLEMEN BAB 2 METODE RUNGE-KUTTA"

Transkripsi

1 234 SUPLEMEN BAB 2 METODE RUNGE-KUTTA Tujuan Instruksional Setelah epelajari bab ini pebaca diharapkan dapat: 1. Menentukan solusi persaaan gerak haronik sederhana berdasarkan pendekatan analitik. 2. Menentukan solusi persaaan gerak haronik sederhana berdasarkan pendekatan nuerik. 3. enganalisis penggunaan etode nueric (Euler, Euler-Croer dan Runge-Kutta) untuk enyelesaikan kasus gerak haronic. Pendahuluan Pada bagian ini akan dibahas tentang peanfaatan etode nueric untuk enyelesaikan berbagai perasalahan fisika yang secara ateatis dinyatakan dala persaaan differensial. Bagian ini adalah ateri tabahan pada bab dua. Materi dan etode nueric dibahas secara berurutan agar pebaca lebih udah eahai ateri yang disajikan. 1. Osilasi Haronis a. Pendekatan Analitik 1) Gerak Haronik Sederhana Gerak benda yang dipengaruhi oleh gaya yang engikuti huku Hooke disebut gerak haronik sederhana. Hal ini disebabkan karena gaya tersebut adalah gaya peulih yang epunyai fungsi sipangan yang sangat sederhana, yaitu hanya berbanding lurus dengan sipangan, dan arahnya selalu enuju ke titik kesetibangan. Misalnya gaya pada sebuah benda yang diikatkan pada ujung pegas dengan besarnya sipangan benda tersebut dinyatakan dala huku Hooke. Apabila pegas deikian ditarik (diperpanjang) sebanyak Δx, gaya peulih yang dilakukan pegas adalah: F = kx (2.1) Keterangan: F= Gaya yang bekerja pada benda (N) k= Konstanta pegas (N/) x= Sipangan pegas () Hapir seua pegas eenuhi huku Hooke di atas, selaa sipangan x tidak terlalu besar. Tanda negatif enunjukkan bahwa gaya peulih selalu berlawanan dengan arah sipangan. Selanjutnya, enurut huku II Newton: F = kx = a (2.2) a = k x (2.3) Persaaan tersebut dapat diartikan bahwa besarnya percepatan yang dialai balok sebanding dengan besarnya sipangan dari titik kesetibangannya, tetapi arahnya berlawanan dengan arah sipangan. Balok yang terikat pada ujung pegas yang bebas dapat engalai sipangan. Arah sipangannya bertanda positif (arah x positif) bila ditarik ke kanan dan negatif (arah x negatif) bila ditekan ke kiri. Untuk endeskripsikan secara kuantitatif gerak balok yang terikat pada pegas, persaaannya dapat ditulis kebali enjadi:

2 235 d 2 x = k x (2.4) 2 Karena balok bergerak haronik dala arah subu x, aka persaaan geraknya dapat diperoleh dari proyeksi gerak elingkar beraturan pada subu x, yaitu: x(t) = A cos(ωt + δ) (2.5) Keterangan: x = Sipangan Pegas () A = Aplitudo () ω = Kecepatan sudut ( rad/s 2 ) δ = Posisi sudut awal (º) Dari persaaan diatas, kita secara langsung dapat enjabarkan kecepatan dan percepatan sesaat sipangan balok yang terikat pada pegas tersebut, yaitu: Dari persaaan v x = = ωasin ωt + δ (2.6) dan a x = d2 x 2 = ω2 Acos ωt + δ = ω 2 x (2.7) d 2 x = k x (2.8) 2 dan a x = ω 2 x (2.10) Diperoleh ω 2 = k (2.11) Dan dari pesaaan T = 2π, diperoleh ω T = 2π = 2π (2.12) ω k Keterangan: T = Periode (s) ω = Kecepatan sudut ( rad/s 2 ) = assa beban enggantung (kg) k = konstanta pegas (N/) Sipangan gerak haronik sederhana dapat dianggap sebagai proyeksi partikel yang bergerak elingkar beraturan pada diaeter lingkaran. Gabar berikut elukiskan sebuah partikel yang bergerak elingkar beraturan dengan kecepatan sudut ω dan jari jari A. Anggap ula ula partikel berada di titik P. Perhatikan gabar! Setelah selang waktu t partikel berada di titik Q dan sudut yang ditepuh adalah θ = ωt = 2πt. T

3 236 Gabar 2.1. Proyeksi Sipangan Gerak Haronik Sederhana Jika garis proyeksi Q pada subu y disebut y yang erupakan sipangan gerak haronik sederhana, aka diperoleh persaaan berikut: Y = A sin θ = A sin ωt = A sin 2πt (2.13) T Besar sudut dala fungsi sinus (θ) disebut sudut fase. Jika partikel ula ula berada di posisi sudut θ 0, aka persaaanya dapat dituliskan sebagai berikut: Y = A sin θ = A sin ωt + θ 0 = A sin( 2πt + θ T 0) (2.14) Sudut fase getaran haroniknya adalah θ = ωt + θ 0 = 2πt + θ T 0 atau θ = 2π Karena Φ disebut fase, aka fase getaran haronik adalah t T + θ 0 2π = 2πΦ(2.15) Φ = t + θ 0 (2.16) T 2π Apabila sebuah benda bergetar haronik ulai dari t=t 1 hingga t=t 2, aka beda fase benda tersebut adalah ΔΦ = Φ 2 Φ 1 = t 2 t 1 (2.17) T T Beda fase dala getaran haronik dinyatakan dengan nilai ulai dari nol sapai satu. Bilangan bulat dala beda fase dapat dihilangkan, isalnya beda fase 2 ¼ ditulis sebagai beda fase ¼. 2) Gerak Osilasi Tereda Balok yang berisolasi di dala inyak tanah engalai gaya gesek dari inyak tanah sehinga balok tersebut dikatakan sedang berisolasi tereda, lihat gabar berikut: = t

4 237 Gabar 2.2.Pegas Berassa Tereda Besar gaya gesek pada benda yang bergerak di dala zat cair sebanding dengan kecepatan benda (enurut huku Stokes), aka persaaan gerak dari benda yang berisolasi tereda dapat ditulis sebagai: F y = ky bv = a y (2.18) diana: Fy = Gaya yang bekerja di subu y (N) k = Konstanta pegas (N/) y = Perpindahan () b = kontantan kesebandingan v = Kecepatan sesaat benda (/s) = Massa beban enggantung (kg) a y = Percepatan benda pada subu y (/s 2 ) Diana bv adalah besarnya gaya gesek yang dialai balok dala ediu Grafik Sipangan terhadap waktu Gabar 2. 1 Grafik Sipangan Gerak Osilasi Tereda Dengan perhitungan ateatika kita peroleh penyelesaian persaaan sebagai y = Ae bt 2 cos (ωt + δ) (2.19) x

5 238 Diana frekuensi sudut gerak osilasi tereda adalah ω = k b (2.20) 2 Keterangan: y = sipangan () A = aplitudo () b = konstantaredaan t = waktu berosilasi (s) = assa beban enggantung (kg) ω = Kecepatan sudut ( rad/s 2 ) δ = Posisi sudut awal (º) k = Konstanta pegas (N/) Berdasarkan persaaan (2.19) dapat disipulkan bahwa aplitudo getaran Ae b 2 t tidaklah konstan akan tetapi berkurang enurut faktor e b 2 t sehingga aplitudo getarannya dapat berfluktuasi hingga enjadi nol. Dengan eperhatikan persaaan (32) kita ketahui bahwa nilai ω tidak tetap tetapi tergantung pada nilai b dengan uraian sebagai berikut. a. Jika k = b 2 2 aka akan terjadi redaan kritis (Critical Daped). Pada keadaan redaan kritis ini siste tidak akan berosilasi lagi akan tetapi akan kebali pada posisi kesetibangan tanpa berosilasi ketika diberi sipangan keudian dilepaskan. 2 b. Jika aka akan terjadi redaan kurang (Under Daped) pada kondisi ini k > b 2 aka siste akan berosilasi naun dengan aplitudo yang akan seakin berkurang dengan bertabahnya waktu. 2 c. Jika aka akan terjadi redaan lebih (Over Daped). Pada keadaan ini k < b 2 siste tidak akan berosilasi lagi, naun siste akan kebali pada posisi kesetibangan lebih labat jika dibandingkan dala kasus tereda kritis b. Pendektan Nuerik 1) Euler Berdasarkan definisi bahwa percepatan erupakan turunan kecepatan terhadap waktu d2 x 2 = dv aka persaaan (2.4) dapat disusun kebali enjadi Dengan enggunakan teori euler aka dv 2 = li t 0 dv v t+ t v(t) t = k x (2.21) = k x (2.22) Sehingga Atau v t+ t v t t = k x (2.23)

6 239 v t + t = v t k x(t) t (2.24) Secara uu persaaan diatas dapat dituiskan sebagai v (i+1) = v i k x i t (2.25) Dengan cara yang saa berdasarkan definisi bahwa kecepatan erupakan turunan posisi terhadap waktu = v (2.26) Apabila persaaan diatas diuraikan dengan teori Euler akan diperoleh x t + t = x t v t t (2.27) Secara uu persaaan diatas dapat dinyatakan sebagai x (i+1) = x i + v i t (2.28) Dengan: v = kecepatan linier s k = konstanta pegas( N ) t = selang waktu increent v i = kecepatan linier pada waktu t = t(/s) x (i+1) = posisi linear pada t = t + t() x i = posisi linier pada waktu t = t() v (i+1) = kecepatan linear pada t = t + t (/s) 2) Euler-Croer Metode Euler epunyai ketelitian yang rendah karena galatnya besar (sebanding dengan h). buruknya galat ini dapat dikurangi dengan enggunakan etode euler-croer, yang erupakan perbaikan etode Euler (odifified Euler s ethod ). Untuk enganalisis gerak haronis teredda dengan pendekatan nuerik dengan etode Euler Croer dengan uraian sebagai berikut ini: adalah Berdasarkan definisi bahwa d2 x 2 = dv d 2 x 2 = b k x (2.29) aka dapat dituliskan enjadi dv x (2.30) = v (2.31) Solusi nuerik dengan etode Euler-Croer persaaan (2.) dan (2.31) v i+1 = v i b v i Δt k x i Δt (2.32) x i+1 = x i + v i+1 Δt (2.33) 3) Rungge-Kutta Metode Rungge-Kutta erupakan etode satu langkah yang eberikan ketelitian hasil yang lebih besar dan tidak eerlukan turuanan dari fungsi. Bentuk uu dari etode Runge-Kutta adalah: x i+1 = x i + φ t i, x i, (2.34)

7 240 Dengan φ t i, x i, adalah fungsi pertabahan yang erupakan keiringan rerata pada interval dan digunakan untuk engekstrapolasi dari nilai laa x i ke nilai baru x i+1 sepanjang interval h. Metode Rungge Kutta yang sering digunakan untuk enyelesaikan suatu persaaan differensial adalah etode rungge kutta ode 4. Metode Rungge Kutta orde 4 erupakan etode yang paling teliti dibandingkan dengan etode Rungge-kutt yang berorder dibawahnya. Metode Rungge-Kutta orde 4 epunyai bentuk sebagai berikut: x i+1 = x 1 + w 1 k 1 + w 2 k 2 + w 3 k 3 + w 4 k 4 (2.35) Dengan k 1 = f t i + x i (2.36) k 2 = f t i + a 1, x i + b 1 k 1 (2.37) k 3 = f t i + a 2, x i + b 2 k 1 + b 3 k 2 (2.38) k 4 = f t i + a 3, x i + b 4 k 1 + b 5 k 2 + b 6 k 3 (2.39) Adapun koefesien yang teruat dala persaaan diatas ditentukan sesuai deret Taylor order 4 sehingga diperoleh siste persaaan berikut: b 1 = a 1 (2.40) b 2 + b 3 = a 2 (2.41) b 4 + b 5 + b 6 = a 3 (2.42) w 1 + w 2 + w 3 + w 4 = 1 (2.43) w 1 w 2 a 2 + w 3 a 3 + w 4 a 4 = 1 2 (2.44) w 2 a w 3 a w 4 a 2 4 = 1 3 (2.45) w 2 a w 3 a w 4 a 3 4 = 1 4 (2.46) w 3 a 1 b 3 + w 4 a 1 b 5 + a 2 b 6 = 1 6 (2.47) w 3 a 1 a 2 b 3 + w 4 a 3 a 1 b 5 + a 2 b 6 = 1 8 (2.48) w 3 a 2 1 a 2 b 3 + w 4 a 3 a 2 1 b 5 + a 2 2 b 6 = 1 12 (2.49) w 4 a 1 b 3 b 6 = 1 (2.50) 24 Siste Persaaan di atas euat 11 persaaan dengan 13 variabel yang tidak diketahui. Digunakan dua kondisi tabahan agar siste tersebut dapat diselesaikan yaitu: a 1 = 1, b 2 2 = 0 (2.51) Diperoleh solusi a 2 = 1, a 2 3 = 1, b 3 = 1, b 2 4 = 0, b 4 = 0, b 6 = 1 (2.52) w 1 = 1, w 6 2 = 1, w 3 3 = 1, w 3 4 = 1 (2.53) 6 Nilai pada persaaan (2.50) sapai dengan persaaan (2.52) disubstitusikan pada persaaan (2.35)sehingga diperoleh forula standar etode Rungge-Kutta orde 4 sebagai berikut: x i+1 = x k k k k 12 4 (2.53) Sehingga

8 241 x i+1 = x k k 2 + 2k 3 + k 4 (2.54) Diana k 1 = f t i + x i (2.55) k 2 = f t i + 1 2, x i k 1 (2.56) k 3 = f t i + 1 2, x i k 2 (2.57) k 4 = f t i + 1 2, x i k 3 (2.58) Dengan engingat persaaan getaran pegas tereda yaitu: d2 x = b kx (2.59) 2 apabila kedua ruas persaaan dibagi dengan akan diperoleh d 2 x = b k 2 x (2.60) Metode rungge kutta orde 4 dala penyelesaian persaaan getaran pegas tereda. Persaaan() erupakan persaaan differensial linier order dua. Agar dapat diselesaikan dengan enggunakan etode Rungge Kutta orde 4. Diisalkan bahwa = v (2.61) Sehingga d 2 x 2 = dv Dengan deikian dapat direduksi enjadi persaaan siste persaaan differensial orde satu sebagai berikut: dv = f = (f(t, x, v) (2.62) = g = (g t, x, v = b v k x (2.63) Persaaan diatas selajutnya diselesaikan dengan etode rungge kutta orde 4. Interval waktu [0,T] dipartisi sehingga diperoleh titik-titik t i = t 0 + i untuk i= 1,2,3,...,n dengan waktu akhir T=t n. Sehingga diperoleh k 1 = (f t, x, v = v i (2.64) l 1 = (g t, x, v = b v i k x i (2.65) k 2 = f t i + 1 2, x i k 1 = v i l 1 (2.66) l 2 = f t i + 1 2, x i k 1, v i l 1 l 2 = b v i l 1 k x i l 1 (2.67) k 3 = f t i + 1 2, x i k 2 = v i l 2 (2.68) l 3 = f t i + 1 2, x i k 1, v i l 2 l 3 = b v i l 2 k x i l 2 (2.69) k 4 = f t i + 1 2, x i + k 3 =v i + l 3 (2.70)

9 242 Sehingga l 4 = f t i +, x i + k 1, v i + l 3 l 4 = b v i + l 3 k x i + l 2 (2.71) x i+1 = x k 1 + 2k 2 + 2k 3 + k 4 (2.72) v i+1 = v l 1 + 2l 2 + 2l 3 + l 4 (2.73) Contoh soal Suatu benda seberat 1 kg ditopang oleh sebuah pegas dengan konstanta 8 N/. Dan sebuah dashpot dengan redaan 10N./s. Benda tadi epunyai perpindahan awal 2 eter dengan kecepatan awal sebesar 0,6 /s. Gabarkanlah grafik sipangan benda tersebut terhadap waktu! analisislah kasus ini dengan enggunakan etode analitik, Euler dan Runge-Kutta jika terjadi redaan lebih. Penyelesaian apabila kita nyatakan variabel kasus tersebut dapat kita nyatakan dala tabel berikut. Tabel 2.1 Variabel-Variabel Besaran Nilai Satuan 1 kg A 2.00 k 8 N/ b s v /s ω rad/s γ 5 ω ϛ Ϛ α β A

10 Sipangan 243 B apabila kita kerjakan dengan etode di atas, akan kita peroleh hasil yang dinyatakan dala tabel berikut Tabel 3.2 Hasil Koputasi t analitik Euler RK4 Eror euler Eror RK apabila tabel 3.2 diplot enjadi grafik akan kita dapatkan grafik berikut waktu analitik euler RK4 grafik 3.1 Hubungan Sipangan terhadap Waktu

11 berdasarkan tabel dan grafik di atas dapat kita sipulkan bahwa etode nueric yang paling cocok digunakan adalah etode Runge-Kutta. Error dengan etode Rungge- Kutta akin laa seakin kecil seiring dengan bertabahnya waktu, sedangkan error dengan etode Euler tidak stabil. 244

Getaran adalah gerakan bolak-balik dalam suatu interval waktu tertentu. Getaran berhubungan dengan gerak osilasi benda dan gaya yang berhubungan

Getaran adalah gerakan bolak-balik dalam suatu interval waktu tertentu. Getaran berhubungan dengan gerak osilasi benda dan gaya yang berhubungan 2.1.2. Pengertian Getaran Getaran adalah gerakan bolak-balik dala suatu interval waktu tertentu. Getaran berhubungan dengan gerak osilasi benda dan gaya yang berhubungan dengan gerak tersebut. Seua benda

Lebih terperinci

GETARAN PEGAS SERI-PARALEL

GETARAN PEGAS SERI-PARALEL 1 GETARAN PEGAS SERI-PARALEL I. Tujuan Percobaan 1. Menentukan konstanta pegas seri, paralel dan seri-paralel (gabungan). 2. Mebuktikan Huku Hooke. 3. Mengetahui hubungan antara periode pegas dan assa

Lebih terperinci

Gerak Harmonik Sederhana Pada Ayunan

Gerak Harmonik Sederhana Pada Ayunan Gerak Haronik Sederhana Pada Ayunan Setiap gerak yang terjadi secara berulang dala selang waktu yang saa disebut gerak periodik. Karena gerak ini terjadi secara teratur aka disebut juga sebagai gerak haronik/haronis.

Lebih terperinci

REVIEW GERAK HARMONIS SEDERHANA

REVIEW GERAK HARMONIS SEDERHANA REVIEW GERAK HARMONIS SEDERHANA Di sekitar kita banyak benda yang bergetar atau berosilasi, isalnya assa yang terikat di ujung pegas, garpu tala, gerigi pada ja ekanis, penggaris elastis yang salah satu

Lebih terperinci

Solusi Treefy Tryout OSK 2018

Solusi Treefy Tryout OSK 2018 Solusi Treefy Tryout OSK 218 Bagian 1a Misalkan ketika kelereng encapai detektor bawah untuk pertaa kalinya, kecepatan subu vertikalnya adalah v 1y. Maka syarat agar kelereng encapai titik tertinggi (ketika

Lebih terperinci

PENGGUNAAN METODE HOMOTOPI PADA MASALAH PERAMBATAN GELOMBANG INTERFACIAL

PENGGUNAAN METODE HOMOTOPI PADA MASALAH PERAMBATAN GELOMBANG INTERFACIAL PENGGUNAAN METODE HOMOTOPI PADA MASALAH PERAMBATAN GELOMBANG INTERFACIAL JAHARUDDIN Departeen Mateatika Fakultas Mateatika Ilu Pengetahuan Ala Institut Pertanian Bogor Jl Meranti, Kapus IPB Daraga, Bogor

Lebih terperinci

GETARAN DAN GELOMBANG

GETARAN DAN GELOMBANG GEARAN DAN GELOMBANG Getaran dapat diartikan sebagai gerak bolak balik sebuah benda terhadap titik kesetimbangan dalam selang waktu yang periodik. Dua besaran yang penting dalam getaran yaitu periode getaran

Lebih terperinci

III HASIL DAN PEMBAHASAN

III HASIL DAN PEMBAHASAN 7 III HASIL DAN PEMBAHASAN 3. Analisis Metode Dala penelitian ini akan digunakan etode hootopi untuk enyelesaikan persaaan Whitha-Broer-Koup (WBK), yaitu persaaan gerak bagi perabatan gelobang pada perairan

Lebih terperinci

Karakteristik Gerak Harmonik Sederhana

Karakteristik Gerak Harmonik Sederhana Pertemuan GEARAN HARMONIK Kelas XI IPA Karakteristik Gerak Harmonik Sederhana Rasdiana Riang, (5B0809), Pendidikan Fisika PPS UNM Makassar 06 Beberapa parameter yang menentukan karaktersitik getaran: Amplitudo

Lebih terperinci

KARAKTERISTIK GERAK HARMONIK SEDERHANA

KARAKTERISTIK GERAK HARMONIK SEDERHANA KARAKTERISTIK GERAK HARMONIK SEDERHANA Pertemuan 2 GETARAN HARMONIK Kelas XI IPA Karakteristik Gerak Harmonik Sederhana Rasdiana Riang, (15B08019), Pendidikan Fisika PPS UNM Makassar 2016 Beberapa parameter

Lebih terperinci

Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi

Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi Catatan Kuliah FI111 Fisika Dasar IA Pekan #8: Osilasi Agus Suroso update: 4 November 17 Osilasi atau getaran adalah gerak bolak-balik suatu benda melalui titik kesetimbangan. Gerak bolak-balik tersebut

Lebih terperinci

GERAK SATU DIMENSI. Sugiyanto, Wahyu Hardyanto, Isa Akhlis

GERAK SATU DIMENSI. Sugiyanto, Wahyu Hardyanto, Isa Akhlis GERAK SATU DIMENSI Sugiyanto, Wahyu Hardyanto, Isa Akhlis Bahan Ajar Mata Kuliah Koputasi Fisika A. Gerak Jatuh Bebas Tanpa Habatan Sebuah benda dijatuhkan dari ketinggian tertentu dengan besar kecepatan

Lebih terperinci

6. OPTIKA FOURIER 6.1. ANALISIS FOURIER

6. OPTIKA FOURIER 6.1. ANALISIS FOURIER 6. OPTIKA FOURIER 6.1. ANALISIS FOURIER Dala intererensi, diraksi, terjadi superposisi dua buah gelobang bahkan lebih. Seringkali superposisi terjadi antara gelobang yang eiliki aplitudo, panjang gelobang

Lebih terperinci

BAB III PEMODELAN SISTEM DINAMIK PLANT. terbuat dari acrylic tembus pandang. Saluran masukan udara panas ditandai dengan

BAB III PEMODELAN SISTEM DINAMIK PLANT. terbuat dari acrylic tembus pandang. Saluran masukan udara panas ditandai dengan BAB III PEMODELAN SISTEM DINAMIK PLANT 31 Kriteria rancangan plant Diensi plant yang dirancang berukuran 40cx60cx50c, dinding terbuat dari acrylic tebus pandang Saluran asukan udara panas ditandai dengan

Lebih terperinci

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2013 TINGKAT PROPINSI

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2013 TINGKAT PROPINSI SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 013 TINGKAT PROPINSI FISIKA Waktu : 3,5 ja KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN MENENGAH DIREKTORAT PEMBINAAN SEKOLAH

Lebih terperinci

MODUL PERTEMUAN KE 6 MATA KULIAH : FISIKA TERAPAN

MODUL PERTEMUAN KE 6 MATA KULIAH : FISIKA TERAPAN 43 MODUL PERTEMUAN KE 6 MATA KULIAH : MATERI KULIAH: Mekanika klasik, Huku Newton I, Gaya, Siste Satuan Mekanika, Berat dan assa, Cara statik engukur gaya.. POKOK BAHASAN: DINAMIKA PARTIKEL 6.1 MEKANIKA

Lebih terperinci

Kajian Fisis pada Gerak Osilasi Harmonis

Kajian Fisis pada Gerak Osilasi Harmonis p-issn: 461-0933 e-issn: 461-1433 Halaan 59 Naskah diterbitkan: 30 Deseber 015 DOI: doi.org/10.1009/1.0110 Kajian Fisis pada Gerak Osilasi Haronis Esar Budi Progra Studi Pendidikan Fisika, Fakultas Mateatika

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

GERAK HARMONIK SEDERHANA

GERAK HARMONIK SEDERHANA GERAK HARMONIK SEDERHANA Gerak harmonik sederhana adalah gerak bolak-balik benda melalui suatu titik kesetimbangan tertentu dengan banyaknya getaran benda dalam setiap sekon selalu konstan. Gerak harmonik

Lebih terperinci

Kajian Fisis pada Gerak Osilasi Harmonis

Kajian Fisis pada Gerak Osilasi Harmonis p-issn: 461-0933 e-issn: 461-1433 Halaan 59 Kajian Fisis pada Gerak Osilasi Haronis Esar Budi Progra Studi Pendidikan Fisika, Fakultas Mateatika dan Ilu Pengetahuan Ala Universitas Negeri Jakarta, Jl.

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-31) Topik hari ini Getaran dan Gelombang Getaran 1. Getaran dan Besaran-besarannya. Gerak harmonik sederhana 3. Tipe-tipe getaran (1) Getaran dan besaran-besarannya besarannya Getaran

Lebih terperinci

GERAK HARMONIK. Pembahasan Persamaan Gerak. untuk Osilator Harmonik Sederhana

GERAK HARMONIK. Pembahasan Persamaan Gerak. untuk Osilator Harmonik Sederhana GERAK HARMONIK Pembahasan Persamaan Gerak untuk Osilator Harmonik Sederhana Ilustrasi Pegas posisi setimbang, F = 0 Pegas teregang, F = - k.x Pegas tertekan, F = k.x Persamaan tsb mengandung turunan terhadap

Lebih terperinci

dy dx B. Tujuan Adapun tujuan dari praktikum ini adalah

dy dx B. Tujuan Adapun tujuan dari praktikum ini adalah BAB I PENDAHULUAN 1. Latar Belakang Persamaan diferensial berperang penting di alam, sebab kebanyakan fenomena alam dirumuskan dalam bentuk diferensial. Persamaan diferensial sering digunakan sebagai model

Lebih terperinci

Soal Latihan Mekanika I. (3-11 November 2011)

Soal Latihan Mekanika I. (3-11 November 2011) Soal Latihan (3-11 Noveber 2011) Kerjakan soal-soal berikut selaa 1 inggu untuk elatih keapuan Anda. Kerjakan 2-3 soal per hari. Sebelu engerjakan soal-soal tersebut, sebaiknya Anda engerjakan soalsoal

Lebih terperinci

Gambar 1. Bentuk sebuah tali yang direnggangkan (a) pada t = 0 (b) pada x=vt.

Gambar 1. Bentuk sebuah tali yang direnggangkan (a) pada t = 0 (b) pada x=vt. 1. Pengertian Gelombang Berjalan Gelombang berjalan adalah gelombang yang amplitudonya tetap. Pada sebuah tali yang panjang diregangkan di dalam arah x di mana sebuah gelombang transversal sedang berjalan.

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 2014 TIM OLIMPIADE FISIKA INDONESIA 2015

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 2014 TIM OLIMPIADE FISIKA INDONESIA 2015 SEEKSI OIMPIDE TINGKT KBUPTEN/KOT 14 TIM OIMPIDE FISIK INDONESI 15 Bidang Fisika Waktu : 18 enit KEMENTRIN PENDIDIKN DN KEBUDYN DIREKTORT JENDER PENDIDIKN DSR DN MENENGH DIREKTORT PEMBINN SEKOH MENENGH

Lebih terperinci

Soal Seleksi Provinsi 2009 Bidang studi Fisika Waktu: 3 jam

Soal Seleksi Provinsi 2009 Bidang studi Fisika Waktu: 3 jam Soal Seleksi Provinsi 2009 Bidang studi Fisika Waktu: 3 ja 1 (Nilai 15) Sebuah bola pada ketinggian h dari perukaan lantai, ditebakkan secara horizontal dengan kecepatan v 0. Bola engenai lantai dan eantul

Lebih terperinci

ANTIREMED KELAS 11 FISIKA

ANTIREMED KELAS 11 FISIKA ANTIREED KELAS 11 FISIKA UTS Fisika Latihan Doc. Nae: AR11FIS01UTS Version : 014-10 halaan 1 01. erak sebuah benda eiliki persaaan posisi r = (-6-3t)i + (8 + 4t) Seua besaran enggunakan satuan dasar SI.

Lebih terperinci

Dinamika 3 TIM FISIKA FTP UB. Fisika-TEP FTP UB 10/16/2013. Contoh PUSAT MASSA. Titik pusat massa / centroid suatu benda ditentukan dengan rumus

Dinamika 3 TIM FISIKA FTP UB. Fisika-TEP FTP UB 10/16/2013. Contoh PUSAT MASSA. Titik pusat massa / centroid suatu benda ditentukan dengan rumus Fisika-TEP FTP UB /6/3 Dinaika 3 TIM FISIKA FTP UB PUSAT MASSA Titik pusat assa / centroid suatu benda ditentukan dengan ruus ~ x x ~ y y ~ z z Diana: x, y, z adalah koordinat titik pusat assa benda koposit.

Lebih terperinci

BENTUK GELOMBANG AC SINUSOIDAL

BENTUK GELOMBANG AC SINUSOIDAL BENTUK GELOMBANG AC SINUSOIDAL. PENDAHULUAN Pada bab sebelunya telah dibahas rangkaian resistif dengan tegangan dan arus dc. Bab ini akan eperkenalkan analisis rangkaian ac diana isyarat listriknya berubah

Lebih terperinci

Bab III S, TORUS, Sebelum mempelajari perbedaan pada grup fundamental., dan figure eight terlebih dahulu akan dipelajari sifat dari grup

Bab III S, TORUS, Sebelum mempelajari perbedaan pada grup fundamental., dan figure eight terlebih dahulu akan dipelajari sifat dari grup GRUP FUNDAMENTAL PADA Bab III S, TORUS, P dan FIGURE EIGHT Sebelu epelajari perbedaan pada grup fundaental S, Torus, P, dan figure eight terlebih dahulu akan dipelajari sifat dari grup fundaental asing-asing

Lebih terperinci

SOAL OLIMPIADE SAINS NASIONAL (OSN) 2007 Bidang studi : FISIKA Tingkat : SMA Waktu : 4 jam

SOAL OLIMPIADE SAINS NASIONAL (OSN) 2007 Bidang studi : FISIKA Tingkat : SMA Waktu : 4 jam Dapatkan soal-soal lainnya di http://foru.pelatihan-osn.co SOAL OLIPIADE SAINS NASIONAL (OSN) 007 Bidang studi : FISIKA Tingkat : SA Waktu : 4 ja 1. (nilai 0) A. Sebuah obil bergerak enuruni suatu jalan

Lebih terperinci

Gelombang FIS 3 A. PENDAHULUAN C. GELOMBANG BERJALAN B. ISTILAH GELOMBANG. θ = 2π ( t T + x λ ) Δφ = x GELOMBANG. materi78.co.nr

Gelombang FIS 3 A. PENDAHULUAN C. GELOMBANG BERJALAN B. ISTILAH GELOMBANG. θ = 2π ( t T + x λ ) Δφ = x GELOMBANG. materi78.co.nr Gelombang A. PENDAHULUAN Gelombang adalah getaran yang merambat. Gelombang merambat getaran tanpa memindahkan partikel. Partikel hanya bergerak di sekitar titik kesetimbangan. Gelombang berdasarkan medium

Lebih terperinci

Osilasi Harmonis Sederhana: Beban Massa pada Pegas

Osilasi Harmonis Sederhana: Beban Massa pada Pegas OSILASI Osilasi Osilasi terjadi bila sebuah sistem diganggu dari posisi kesetimbangannya. Karakteristik gerak osilasi yang paling dikenal adalah gerak tersebut bersifat periodik, yaitu berulang-ulang.

Lebih terperinci

12 A 13 D 14 D. Dit. h maks =? h maks = h + y maks = 9,2 + 1,8 = 11 m 15 B. A = B P.C Q dimensinya L.T -2 = (L 2.T 1 ) P.(L.

12 A 13 D 14 D. Dit. h maks =? h maks = h + y maks = 9,2 + 1,8 = 11 m 15 B. A = B P.C Q dimensinya L.T -2 = (L 2.T 1 ) P.(L. PEMBAHASAN PROBEM SET FISIKA SUPERINTENSIF 07 D 4 E keepatan perpindaha n s AB = 5 k v salan = 54 k/ja v uar = 36 k/ja Jika keepatan - sebuah benda saa dengan nol, aka perpindahan benda saa dengan nol.

Lebih terperinci

BAB II PENYEARAH DAYA

BAB II PENYEARAH DAYA BAB II PENYEARAH DAYA KOMPETENSI DASAR Setelah engikuti ateri ini diharapkan ahasiswa eiliki kopetensi: Menguasai karakteristik penyearah setengah-gelobang dan gelobang-penuh satu fasa dan tiga fasa Menguasai

Lebih terperinci

BAHAN KUIS PRA-UTS MEKANIKA, Oktober 2011

BAHAN KUIS PRA-UTS MEKANIKA, Oktober 2011 tosi-ipb.blogspot.co ekanika I BAHAN KUIS PRA-UTS EKANIKA, 3-4 Oktober 0 Untuk kalangan sendiri Tidak diperjualbelikan Silakan kerjakan soal-soal berikut, pahai dengan baik. Soal Kuis akan diabil dari

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Tinjauan Pustaka 1. Modul Fisika a. Hakikat Fisika Fisika merupakan salah satu cabang dalam Ilmu Pengetahuan Alam (IPA). IPA/sains merupakan suatu kumpulan pengetahuan yang diperoleh

Lebih terperinci

ANALISIS HOMOTOPI DALAM PENYELESAIAN SUATU MASALAH TAKLINEAR

ANALISIS HOMOTOPI DALAM PENYELESAIAN SUATU MASALAH TAKLINEAR ANALISIS HOMOTOPI DALAM PENYELESAIAN SUATU MASALAH TAKLINEAR JAHARUDDIN Departeen Mateatika, Fakultas Mateatika dan Iu Pengetahuan Ala, Institut Pertanian Bogor Jln. Meranti, Kapus IPB Draaga, Bogor 1668,

Lebih terperinci

3.11 Menganalisis besaran-besaran fisis gelombang stasioner dan gelombang berjalan pada berbagai kasus nyata. Persamaan Gelombang.

3.11 Menganalisis besaran-besaran fisis gelombang stasioner dan gelombang berjalan pada berbagai kasus nyata. Persamaan Gelombang. KOMPETENSI DASAR 3.11 Menganalisis besaran-besaran fisis gelombang stasioner dan gelombang berjalan pada berbagai kasus nyata INDIKATOR 3.11.1. Mendeskripsikan gejala gelombang mekanik 3.11.2. Mengidentidikasi

Lebih terperinci

= mv Momentum akhir setelah tumbukan pertama:

= mv Momentum akhir setelah tumbukan pertama: 1.79. Sebuah bola baja berassa = 50 g jatuh dari ketinggian h = 1,0 pada perukaan horisontal sebuah papan tebal. Tentukan oentu total yang diberikan bola pada papan setelah terpental beberapa kali, bila

Lebih terperinci

Mata Kuliah GELOMBANG OPTIK TOPIK I OSILASI. andhysetiawan

Mata Kuliah GELOMBANG OPTIK TOPIK I OSILASI. andhysetiawan Mata Kuliah GELOMBANG OPTIK TOPIK I OSILASI HARMONIK PENDAHULUAN Gerak dapat dikelompokan menjadi: Gerak di sekitar suatu tempat contoh: ayunan bandul, getaran senar dll. Gerak yang berpindah tempat contoh:

Lebih terperinci

menganalisis suatu gerak periodik tertentu

menganalisis suatu gerak periodik tertentu Gerak Harmonik Sederhana GETARAN Gerak harmonik sederhana Gerak periodik adalah gerak berulang/berosilasi melalui titik setimbang dalam interval waktu tetap. Gerak harmonik sederhana (GHS) adalah gerak

Lebih terperinci

PETUNJUK UMUM Pengerjaan Soal Tahap Final Diponegoro Physics Competititon Tingkat SMA

PETUNJUK UMUM Pengerjaan Soal Tahap Final Diponegoro Physics Competititon Tingkat SMA PETUNJUK UMUM Pengerjaan Soal Tahap Final Diponegoro Physics Copetititon Tingkat SMA 1. Ujian Eksperien berupa Naskah soal beserta lebar jawaban dan kertas grafik. 2. Waktu keseluruhan dala eksperien dan

Lebih terperinci

GETARAN DAN GELOMBANG

GETARAN DAN GELOMBANG 1/19 Kuliah Fisika Dasar Teknik Sipil 2007 GETARAN DAN GELOMBANG Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id GETARAN Getaran adalah salah satu bentuk

Lebih terperinci

I. PENDAHULUAN. Konsep teori graf diperkenalkan pertama kali oleh seorang matematikawan Swiss,

I. PENDAHULUAN. Konsep teori graf diperkenalkan pertama kali oleh seorang matematikawan Swiss, I. PENDAHULUAN. Latar Belakang Konsep teori graf diperkenalkan pertaa kali oleh seorang ateatikawan Swiss, Leonard Euler pada tahun 736, dala perasalahan jebatan Konigsberg. Teori graf erupakan salah satu

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA. Definisi Gelombang dan klasifikasinya. Gelombang adalah suatu gangguan menjalar dalam suatu medium ataupun tanpa medium. Dalam klasifikasinya gelombang terbagi menjadi yaitu :. Gelombang

Lebih terperinci

BAB 3 ANALISIS DAN SIMULASI MODEL HODGKIN-HUXLEY

BAB 3 ANALISIS DAN SIMULASI MODEL HODGKIN-HUXLEY BAB 3 ANALISIS DAN SIMULASI MODEL HODGKIN-HUXLEY 3.1 Analisis Dinaika Model Hodgkin Huxley Persaaan Hodgkin-Huxley berisi epat persaaan ODE terkopel dengan derajat nonlinear yang tinggi dan sangat sulit

Lebih terperinci

BAB IV ANALISIS HASIL PENGUKURAN

BAB IV ANALISIS HASIL PENGUKURAN 35 BAB IV ANALISIS HASIL PENGUKURAN Skripsi ini bertujuan untuk elihat perbedaan hasil pengukuran yang didapat dengan enjulahkan hasil pengukuran enggunakan kwh-eter satu fasa pada jalur fasa-fasa dengan

Lebih terperinci

II LANDASAN TEORI. Besaran merupakan frekuensi sudut, merupakan amplitudo, merupakan konstanta fase, dan, merupakan konstanta sembarang.

II LANDASAN TEORI. Besaran merupakan frekuensi sudut, merupakan amplitudo, merupakan konstanta fase, dan, merupakan konstanta sembarang. 2 II LANDASAN TEORI Pada bagian ini akan dibahas teori-teori yang digunakan dalam penyusunan karya ilmiah ini. Teori-teori tersebut meliputi osilasi harmonik sederhana yang disarikan dari [Halliday,1987],

Lebih terperinci

DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L)

DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L) DERET FOURIER Bila f adalah fungsi periodic yang berperioda p, maka f adalah fungsi periodic. Berperiode n, dimana n adalah bilangan asli positif (+). Untuk setiap bilangan asli positif fungsi yang didefinisikan

Lebih terperinci

SASARAN PEMBELAJARAN

SASARAN PEMBELAJARAN OSILASI SASARAN PEMBELAJARAN Mahasiswa mengenal persamaan matematik osilasi harmonik sederhana. Mahasiswa mampu mencari besaranbesaran osilasi antara lain amplitudo, frekuensi, fasa awal. Syarat Kelulusan

Lebih terperinci

BAB III APLIKASI METODE EULER PADA KAJIAN TENTANG GERAK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1.

BAB III APLIKASI METODE EULER PADA KAJIAN TENTANG GERAK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. BAB III APLIKASI METODE EULER PADA KAJIAN TENTANG GERAK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menentukan solusi persamaan gerak jatuh bebas berdasarkan pendekatan

Lebih terperinci

BAB GELOMBANG ELEKTROMAGNETIK

BAB GELOMBANG ELEKTROMAGNETIK BAB GLOMBANG LKTROMAGNTIK Contoh. Hubungan dan B dari gelobang bidang elektroagnetik Suatu gelobang bidang elektroagnetik sinusoidal dengan frekuensi 5 MHz berjalan di angkasa dala arah X, seperti ditunjukkan

Lebih terperinci

Perhitungan Tahanan Kapal dengan Metode Froude

Perhitungan Tahanan Kapal dengan Metode Froude 9/0/0 Perhitungan Tahanan Kapal dengan etode Froude Froude enganggap bahwa tahanan suatu kapal atau odel dapat dipisahkan ke dala dua bagian: () tahanan gesek dan () tahanan sisa. Tahanan sisa ini disebabkan

Lebih terperinci

Surya Darma, M.Sc Departemen Fisika Universitas Indonesia. Pendahuluan

Surya Darma, M.Sc Departemen Fisika Universitas Indonesia. Pendahuluan Surya Dara, M.Sc Departeen Fisika Universitas Indonesia Pendahuluan Potensial listrik yang uncul sebagai dapak dari perubahan edan agnet dala area tertentu disebut ggl induksi. Arus yang terjadi pada kawat

Lebih terperinci

PENGARUH POSISI BEBAN DAN MOMEN INERSIA TERHADAP PUTARAN KRITIS PADA MODEL POROS MESIN KAPAL

PENGARUH POSISI BEBAN DAN MOMEN INERSIA TERHADAP PUTARAN KRITIS PADA MODEL POROS MESIN KAPAL PENGARUH POSISI BEBAN DAN MOMEN INERSIA TERHADAP PUTARAN KRITIS PADA MODEL POROS MESIN KAPAL Waris Wibowo Staf Pengajar Akadei Mariti Yogyakarta (AMY) ABSTRAK Penelitian ini bertujuan untuk endapatkan

Lebih terperinci

BAB I PENDAHULUAN. dalam skala prioritas pembangunan nasional dan daerah di Indonesia

BAB I PENDAHULUAN. dalam skala prioritas pembangunan nasional dan daerah di Indonesia BAB I PENDAHULUAN A. Latar Belakang Masalah Pebangunan ekonoi erupakan asalah penting bagi suatu negara, untuk itu sejak awal pebangunan ekonoi endapat tepat penting dala skala prioritas pebangunan nasional

Lebih terperinci

Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi

Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Getaran dan Gelombang Hukum Hooke F s = - k x F s adalah gaya pegas k adalah konstanta pegas Konstanta pegas adalah ukuran kekakuan dari

Lebih terperinci

dimana p = massa jenis zat (kg/m 3 ) m= massa zat (kg) V= Volume zat (m 3 ) Satuan massa jenis berdasarkan Sistem Internasional(SI) adalah kg/m 3

dimana p = massa jenis zat (kg/m 3 ) m= massa zat (kg) V= Volume zat (m 3 ) Satuan massa jenis berdasarkan Sistem Internasional(SI) adalah kg/m 3 Zat dan Wujudnya Massa Jenis Jika kau elihat kapas yang berassa 1 kg dan batu berassa 1 kg, apa ada di benaku? Massa Jenis adalah perbandingan antara assa benda dengan volue benda Massa jenis zat tidak

Lebih terperinci

BAB 4 KAJI PARAMETRIK

BAB 4 KAJI PARAMETRIK Bab 4 Kaji Paraetrik BAB 4 Kaji paraetrik ini dilakukan untuk endapatkan suatu grafik yang dapat digunakan dala enentukan ukuran geoetri tabung bujursangkar yang dibutuhkan, sehingga didapatkan harga P

Lebih terperinci

GERAK HARMONIK SEDERHANA. Program Studi Teknik Pertambangan

GERAK HARMONIK SEDERHANA. Program Studi Teknik Pertambangan GERAK HARMONIK SEDERHANA Program Studi Teknik Pertambangan GERAK HARMONIK SEDERHANA Dalam mempelajari masalah gerak pada gelombang atau gerak harmonik, kita mengenal yang namanya PERIODE, FREKUENSI DAN

Lebih terperinci

KATA PENGANTAR. Semarang, 28 Mei Penyusun

KATA PENGANTAR. Semarang, 28 Mei Penyusun KATA PENGANTAR Segala puji syukur kami panjatkan ke hadirat Tuhan Yang MahaEsa. Berkat rahmat dan karunia-nya, kami bisa menyelesaikan makalah ini. Dalam penulisan makalah ini, penyusun menyadari masih

Lebih terperinci

Hukum II Newton. Untuk SMA kelas X. (Modul ini telah disesuaikan dengan KTSP)

Hukum II Newton. Untuk SMA kelas X. (Modul ini telah disesuaikan dengan KTSP) Huku II Newton Untuk SMA kelas X (Modul ini telah disesuaikan dengan KTSP) Lisensi Dokuen: Copyright 008 009 GuruMuda.Co Seluruh dokuen di GuruMuda.Co dapat digunakan dan disebarkan secara bebas untuk

Lebih terperinci

SOAL OLIMPIADE SAINS NASIONAL (OSN) 2007 Bidang studi : FISIKA Tingkat : SMA Waktu : 4 jam

SOAL OLIMPIADE SAINS NASIONAL (OSN) 2007 Bidang studi : FISIKA Tingkat : SMA Waktu : 4 jam SOAL OLIMPIADE SAINS NASIONAL (OSN) 007 Bidang studi : FISIKA Tingkat : SMA Waktu : 4 ja 1. (nilai 0) A. Sebuah obil bergerak enuruni suatu jalan yang iring (dengan sudut θ terhadap bidang horizontal)

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG

SUMBER BELAJAR PENUNJANG PLPG SUMER ELJR PENUNJNG PLPG 06 MT PELJRN/PKET KEHLIN FISIK VIII MOMENTUM DN IMPULS Prof. Dr. Susilo, M.S KEMENTERIN PENDIDIKN DN KEUDYN DIREKTORT JENDERL GURU DN TENG KEPENDIDIKN 06 .8 Materi Pokok: Moentu

Lebih terperinci

Persamaan Schrödinger dalam Matriks dan Uraian Fungsi Basis

Persamaan Schrödinger dalam Matriks dan Uraian Fungsi Basis Bab 2 Persaaan Schrödinger dala Matriks dan Uraian Fungsi Basis 2.1 Matriks Hailtonian dan Fungsi Basis Tingkat-tingkat energi yang diizinkan untuk sebuah elektron dala pengaruh operator Hailtonian Ĥ dapat

Lebih terperinci

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013 Soal-Jawab Fisika Teori OSN 0 andung, 4 September 0. (7 poin) Dua manik-manik masing-masing bermassa m dan dianggap benda titik terletak di atas lingkaran kawat licin bermassa M dan berjari-jari. Kawat

Lebih terperinci

Getaran Mekanik. Getaran Bebas Tak Teredam. Muchammad Chusnan Aprianto

Getaran Mekanik. Getaran Bebas Tak Teredam. Muchammad Chusnan Aprianto Getaran Mekanik Getaran Bebas Tak Teredam Muchammad Chusnan Aprianto Getaran Bebas Getaran bebas adalah gerak osilasi di sekitar titik kesetimbangan dimana gerak ini tidak dipengaruhi oleh gaya luar (gaya

Lebih terperinci

BAB I PENDAHULUAN. History Analysis), metode respon spektrum (Response Spectrum Method), dangaya

BAB I PENDAHULUAN. History Analysis), metode respon spektrum (Response Spectrum Method), dangaya BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Gepa dapat terjadi sewaktu waktu akibat gelobang yang terjadi pada sekitar kita dan erabat ke segala arah.gepa bui dala hubungannya dengan suatu wilayah berkaitan

Lebih terperinci

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu A. TEORI SINGKAT A.1. TEORI SINGKAT OSILASI Osilasi adalah gerakan bolak balik di sekitar suatu titik kesetimbangan. Ada osilasi yang memenuhi hubungan sederhana dan dinamakan gerak harmonik sederhana.

Lebih terperinci

INSTANTON. Casmika Saputra Institut Teknologi Bandung

INSTANTON. Casmika Saputra Institut Teknologi Bandung INSTANTON Casika Saputra 02200 Institut Teknologi Bandung Abstrak. Solusi klasik pada kasus Double Well Potential dala ekanika kuantu dala iaginary tie Euclidian eberikan dua buah solusi yaitu solusi trivial

Lebih terperinci

(x- x 1. Contoh soal: jawab: x 2 + y 2 = 2 2 x 2 + y 2 = 4. x 2 + y 2 = 4. jawab: (x 5) 2 + (y 2) 2 = 4 2

(x- x 1. Contoh soal: jawab: x 2 + y 2 = 2 2 x 2 + y 2 = 4. x 2 + y 2 = 4. jawab: (x 5) 2 + (y 2) 2 = 4 2 LINGKRN (x- x ) (x- x ) + (y- y ) (y- y ) = 0 Contoh soal: Pengertian : Lingkaran adalah tepat kedudukan titik-titik yang berjarak konstan/saa terhadap sebuah titik tertentu. Sebuah titik tertentu itu

Lebih terperinci

PERHITUNGAN INTEGRAL FUNGSI REAL MENGGUNAKAN TEKNIK RESIDU

PERHITUNGAN INTEGRAL FUNGSI REAL MENGGUNAKAN TEKNIK RESIDU PERHITUNGAN INTEGRAL FUNGSI REAL MENGGUNAKAN TEKNIK RESIDU Warsito (warsito@ail.ut.ac.id) Universitas Terbuka ABSTRAT A function f ( x) ( is bounded and continuous in (, ), so the iproper integral of rational

Lebih terperinci

Dinamika 3 TIM FISIKA FTP UB. Fisika-TEP FTP UB 10/23/2013. Contoh PUSAT MASSA. Titik pusat massa / centroid suatu benda ditentukan dengan rumus

Dinamika 3 TIM FISIKA FTP UB. Fisika-TEP FTP UB 10/23/2013. Contoh PUSAT MASSA. Titik pusat massa / centroid suatu benda ditentukan dengan rumus Fisika-TEP FTP UB /3/3 Dinaika 3 TIM FISIKA FTP UB PUSAT MASSA Titik usat assa / centroid suatu benda ditentukan dengan ruus ~ x x ~ y y ~ z z Diana: x, y, z adalah koordinat titik usat assa benda koosit.

Lebih terperinci

Integral yang berhubungan dengan kepentingan fisika

Integral yang berhubungan dengan kepentingan fisika Integral yang berhubungan dengan kepentingan fisika 14.1 APLIKASI INTEGRAL A. Usaha Dan Energi Hampir semua ilmu mekanika ditemukan oleh Issac newton kecuali konsep energi. Energi dapat muncul dalam berbagai

Lebih terperinci

Fisika Umum Suyoso Kinematika MEKANIKA

Fisika Umum Suyoso Kinematika MEKANIKA GERAK LURUS MEKANIKA A. Kecepatan rata-rata dan Kecepatan sesaat Suatu benda dikatan bergerak lurus jika lintasan gerak benda itu merupakan garis lurus. Perhatikan gambar di bawah: Δx A B O x x t t v v

Lebih terperinci

Analisis Fisika Mekanis Sederhana pada Permainan Billiard

Analisis Fisika Mekanis Sederhana pada Permainan Billiard Analisis Fisika Mekanis Sederhana pada Permainan Billiard Iko Saptinus (08/270108/PA/12213) Abstract Permainan Billiard tidak bisa lepas dari konsep-konsep fisika. Ketika bola utama (bola putih) dipukul

Lebih terperinci

FISIKA. Sesi GELOMBANG CAHAYA A. INTERFERENSI

FISIKA. Sesi GELOMBANG CAHAYA A. INTERFERENSI FISIKA KELAS XII IPA - KURIKULUM GABUNGAN 03 Sesi NGAN GELOMBANG CAHAYA Cahaya erupakan energi radiasi berbentuk gelobang elektroagnetik yang dapat dideteksi oleh ata anusia serta bersifat sebagai gelobang

Lebih terperinci

BAB I PENDAHULUAN. pembangunan di bidang-bidang lain, seperti sosial, politik, dan budaya. perbedaan antara yang kaya dengan yang miskin.

BAB I PENDAHULUAN. pembangunan di bidang-bidang lain, seperti sosial, politik, dan budaya. perbedaan antara yang kaya dengan yang miskin. BAB I PENDAHULUAN A. Latar Belakang Masalah Pebangunan ekonoi erupakan asalah penting bagi suatu negara, untuk itu sejak awal pebangunan ekonoi endapat tepat penting dala skala prioritas pebangunan nasional

Lebih terperinci

HAND OUT FISIKA DASAR I/GELOMBANG/GERAK HARMONIK SEDERHANA

HAND OUT FISIKA DASAR I/GELOMBANG/GERAK HARMONIK SEDERHANA GELOMBAG : Gerak Harmonik Sederhana M. Ishaq Pendahuluan Gerak harmonik adalah sebuah kajian yang penting terutama jika anda bergelut dalam bidang teknik, elektronika, geofisika dan lain-lain. Banyak gejala

Lebih terperinci

FAMILI BARU DARI METODE ITERASI ORDE TIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR DENGAN AKAR GANDA ABSTRACT

FAMILI BARU DARI METODE ITERASI ORDE TIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR DENGAN AKAR GANDA ABSTRACT FAMILI BARU DARI METODE ITERASI ORDE TIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR DENGAN AKAR GANDA Elvi Syahriah 1, Khozin Mu taar 2 1,2 Progra Studi S1 Mateatika Jurusan Mateatika Fakultas Mateatika

Lebih terperinci

PENJUMLAHAN MOMENTUM SUDUT

PENJUMLAHAN MOMENTUM SUDUT PENJUMAHAN MOMENTUM SUDUT A. Penjulahan Moentu Sudut = + Gabar.9. Penjulahan oentu angular secara klasik. Dua vektor oentu angular dan dijulahkan enghasilkan Jika oentu angular elektron pertaa adalah dan

Lebih terperinci

(x- x 1. Contoh soal: jawab: x 2 + y 2 = 2 2 x 2 + y 2 = 4. x 2 + y 2 = 4. jawab: (x 5) 2 + (y 2) 2 = 4 2

(x- x 1. Contoh soal: jawab: x 2 + y 2 = 2 2 x 2 + y 2 = 4. x 2 + y 2 = 4. jawab: (x 5) 2 + (y 2) 2 = 4 2 BB XI. LINGKRN (x- x ) (x- x ) + (y- y ) (y- y ) = 0 Contoh soal: Pengertian : Lingkaran adalah tepat kedudukan titik-titik yang berjarak konstan/saa terhadap sebuah titik tertentu. Sebuah titik tertentu

Lebih terperinci

Sistem Linear Max-Plus Interval Waktu Invariant

Sistem Linear Max-Plus Interval Waktu Invariant Siste Linear Max-Plus Interval Waktu Invariant A 11 M. Andy udhito Progra Studi Pendidikan Mateatika FKIP Universitas Sanata Dhara Paingan Maguwoharjo Yogyakarta eail: arudhito@yahoo.co.id Abstrak elah

Lebih terperinci

Kumpulan soal-soal level Olimpiade Sains Nasional: solusi:

Kumpulan soal-soal level Olimpiade Sains Nasional: solusi: Kumpulan soal-soal level Olimpiade Sains Nasional: 1. Sebuah batang uniform bermassa dan panjang l, digantung pada sebuah titik A. Sebuah peluru bermassa bermassa m menumbuk ujung batang bawah, sehingga

Lebih terperinci

PENGGUNAAN LOGGER PRO UNTUK ANALISIS GERAK HARMONIK SEDERHANA PADA SISTEM PEGAS MASSA

PENGGUNAAN LOGGER PRO UNTUK ANALISIS GERAK HARMONIK SEDERHANA PADA SISTEM PEGAS MASSA PENGGUNAAN LOGGER PRO UNTUK ANALISIS GERAK HARMONIK SEDERHANA PADA SISTEM PEGAS MASSA DANDAN LUHUR SARASWATI dandanluhur09@gmail.com Program Studi Pendidikan Fisika Fakultas Teknik, Matematika dan Ilmu

Lebih terperinci

II LANDASAN TEORI 2.1 Persamaan Dasar Fluida

II LANDASAN TEORI 2.1 Persamaan Dasar Fluida 4 II LANDASAN TEORI Dala bab ini akan diberikan eori-eori yang berkaian dengan peneliian ini. Teori-eori ersebu elipui persaaan dasar fluida yang akan disarikan dari Billingha dan King [7], dan Wiha [8].

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Ilmu fisika merupakan ilmu yang mempelajari berbagai macam fenomena alam dan berperan penting dalam kehidupan sehari-hari. Salah satu peran ilmu fisika

Lebih terperinci

Satuan Pendidikan. : XI (sebelas) Program Keahlian

Satuan Pendidikan. : XI (sebelas) Program Keahlian Satuan Pendidikan Kelas Semester Program Keahlian Mata Pelajaran : SMA : XI (sebelas) : 1 (satu) : IPA : Fisika 1. Bacalah do a sebelum mengerjakan Lembar Kerja Siswa (LKS) ini. 2. Pelajari materi secara

Lebih terperinci

III PEMBAHASAN. Berdasarkan persamaan (2.15) dan persamaan (2.16), fungsi kontinu dan masing-masing sebagai berikut : dan = 3

III PEMBAHASAN. Berdasarkan persamaan (2.15) dan persamaan (2.16), fungsi kontinu dan masing-masing sebagai berikut : dan = 3 8 III PEMBAHASAN Pada bagian ini akan dibahas penggunaan metode iterasi variasi untuk menyelesaikan suatu persamaan diferensial integral Volterra orde satu yang terdapat pada masalah osilasi berpasangan.

Lebih terperinci

1. Penyearah 1 Fasa Gelombang Penuh Terkontrol Beban R...1

1. Penyearah 1 Fasa Gelombang Penuh Terkontrol Beban R...1 DAFTA ISI. Penyearah Fasa Gelobang Penuh Terkontrol Beban..... Cara Kerja angkaian..... Siulasi Matlab...7.3. Hasil Siulasi.... Penyearah Gelobang Penuh Terkontrol Beban -L..... Cara Kerja angkaian.....

Lebih terperinci

Teori & Soal GGB Getaran - Set 08

Teori & Soal GGB Getaran - Set 08 Xpedia Fisika Teori & Soal GGB Getaran - Set 08 Doc Name : XPFIS0108 Version : 2013-02 halaman 1 01. Menurut Hukum Hooke untuk getaran suatu benda bermassa pada pegas ideal, panjang peregangan yang dijadikan

Lebih terperinci

Impuls dan Momentum By. Aan S. Arcadie

Impuls dan Momentum By. Aan S. Arcadie Iuls dan Moentu y. Aan S. Arcadie A. Iuls (I ---- Ns) ada saat Anda enendang bola, gaya yang diberikan kaki aada bola teradi dala waktu yang sangat singkat. Gaya seerti ini disebut sebagai gaya iulsif.

Lebih terperinci

B C D E... 2h g. =v 2h g T AB. B, y. = 2 v' =2e v 2h T BC

B C D E... 2h g. =v 2h g T AB. B, y. = 2 v' =2e v 2h T BC 1. Gerak benda di antara tubukan erupakan erak parabola. Sebut posisi ula-ula benda adalah titik A, posisi terjadinya tubukan pertaa kali adalah titik B, posisi terjadi tubukan kedua kalinya adalah titik

Lebih terperinci

OLIMPIADE FISIKA TEORI DAN LATIHAN OLIMPIADE FISIKA MENGHADAPI MASA DEPAN FB : Basyir Al Banjari WA : ID Line : mechtermlighlismfism

OLIMPIADE FISIKA TEORI DAN LATIHAN OLIMPIADE FISIKA MENGHADAPI MASA DEPAN FB : Basyir Al Banjari WA : ID Line : mechtermlighlismfism TEORI DAN LATIHAN ENGHADAPI ASA DEPAN OSILASI SISTE BALOK-PEGAS-KATROL Sebuah balok bermassa digantungkan ke langit-langit melalui sistem dua katrol, dua pegas, dan seutas tali seperti gambar di samping.

Lebih terperinci

matematika K-13 PEMBAGIAN HORNER DAN TEOREMA SISA K e l a s

matematika K-13 PEMBAGIAN HORNER DAN TEOREMA SISA K e l a s i K- ateatika K e l a s XI PEMBAGIAN HORNER DAN TEOREMA SISA Tujuan Peelajaran Setelah epelajari ateri ini, kau diharapkan eiliki keapuan erikut.. Menguasai konsep peagian suku anyak dengan etode Horner..

Lebih terperinci

ENERGI POTENSIAL. dapat dimunculkan dan diubah sepenuhnya menjadi tenaga kinetik. Tenaga

ENERGI POTENSIAL. dapat dimunculkan dan diubah sepenuhnya menjadi tenaga kinetik. Tenaga ENERGI POTENSIAL 1. Pendahuluan Energi potensial merupakan suatu bentuk energi yang tersimpan, yang dapat dimunculkan dan diubah sepenuhnya menjadi tenaga kinetik. Tenaga potensial tidak dapat dikaitkan

Lebih terperinci

(x- x 1. Contoh soal: jawab: x 2 + y 2 = 2 2 x 2 + y 2 = 4. x 2 + y 2 = 4. jawab: (x 5) 2 + (y 2) 2 = 4 2

(x- x 1. Contoh soal: jawab: x 2 + y 2 = 2 2 x 2 + y 2 = 4. x 2 + y 2 = 4. jawab: (x 5) 2 + (y 2) 2 = 4 2 BB XI. LINGKRN (x- x ) (x- x ) + (y- y ) (y- y ) 0 Contoh soal: Pengertian : Lingkaran adalah tepat kedudukan titik-titik yang berjarak konstan/saa terhadap sebuah titik tertentu. Sebuah titik tertentu

Lebih terperinci