Persamaan Differensial Orde II. EXPERT COURSE #bimbelnyamahasiswa

Ukuran: px
Mulai penontonan dengan halaman:

Download "Persamaan Differensial Orde II. EXPERT COURSE #bimbelnyamahasiswa"

Transkripsi

1 Persamaan Differensial Orde II EXPERT COURSE #bimbelnyamahasiswa

2 PDB ORDE II Bentuk umum : y + p(x)y + g(x)y= r(x) p(x), g(x) disebut koefisien jika r(x) = 0, maka Persamaan Differensial diatas disebut homogen, sebaliknya disebut non homogen. Persamaan Differensial Biasa linier orde dua homogen dengan koefisien konstan, memiliki bentuk umum : y + ay + by= 0 dimana a, b merupakan konstanta sebarang.

3 SOLUSI HOMOGEN Diketahui Misalkan y=e rx y + ay + by = 0 Persamaannya berubah menjadi r 2 + ar + b = 0, sebuah persamaan kuadrat. Jadi kemungkinan akarnya ada 3 yaitu: 1. Akar real berbeda (r 1,r 2 ; dimana r 1 r 2 ) Memiliki solusi basis y 1 = e r1 x dan y 2 = e r2 x dan mempunyai solusi umum y= C1e r1 x + C2e r2 x

4 SOLUSI HOMOGEN 2. Akar real kembar (r 1,r 2 ; dimana r = r 1 =r 2 ) Memiliki solusi basis y 1 = e r x dan y 2 =x e r x dan mempunyai solusi umum y = C 1 e r x + C 2 x e r x 3.Akar kompleks kojugate (r 1 = u + wi, r 2 = u wi) Memiliki solusi basis y 1 = e ux cos wx; dan y 2 = e ux sin wx dan mempunyai solusi umum y = e ux ( C 1 cos wx + C 2 sin wx )

5 Contoh soal 1. y + 5y + 6y = 0 Persamaan karakteristiknya: ( r + 2 ) ( r + 3 ) = 0 r 1 = -2 atau r 2 = -3 C 1 e -2 x + C 2 e -3x maka solusinya : y = 2. y + 6y + 9y = 0 Persamaan karakteristiknya: ( r + 3 ) ( r + 3 ) = 0 r 1 = r 2 = -3 maka solusinya : y = C 1 e -3x + C 2 x e -3x 3. y + 4y = 0 Persamaan karakteristiknya: r = r 12 = 2i 2 maka solusinya : y = C 1 cos 2x + C 2 sin 2x

6 Persamaan Differensial non homogen Bentuk umum: y + p(x)y + g(x)y dengan r(x) 0 = r(x) Solusi total : y = y h + y p Dimana y h = solusi P D homogen y p = solusi P D non homogen Menentukan y p 1. Metode koefisien tak tentu 2. Metode variasi parameter

7 Metode koefisien tak tentu pilihlah y p yang serupa dengan r(x), lalu substitusikan ke dalam persamaan. r(x) = e mx r(x) y p = Ae mx y p r(x) = X n y p = A n X n + A n-1 X n-1 +.+A 1 X + A 0 r(x) = sin wx y p = A cos wx + B sinwx r(x) =cos wx y p = A cos wx + B sinwx r(x) = e ux sin wx y p = e ux (A cos wx + B sin wx ) R(x) =e ux cos wx y p = e ux (A cos wx + B sin wx ) Ctt: Solusi Parsial tidak boleh muncul pada solusi homogennya. Jika hal ini terjadi, kalikan solusi khususnya dengan faktor x atau x 2 sehingga tidak memuat lagi solusi homogennya.

8 Contoh 1. y 3y + 2y = e -x Jawab: Persamaan karakteristiknya: r 2 3 r + 2 = 0 (r 2) (r 1) = 0 Sehingga didapat r 1 = 2 dan r 2 = 1 Jadi solusi homogennya adalah y h = C 1 e 2x + C 2 e x Untuk y p dipilih y p = A e -x y p = - A e -x y p = A e -x Kemudian masukan ke PD di atas: A e -x + 3 A e -x + 2 A e -x = e -x 6 A e -x = e -x A = 1/6 Jadi solusi umum PD di atas adalah y = C 1 e 2x + C 2 e x + 1/6 e -x

9 Contoh 2. y 3y + 2y = cos x Jawab: Persamaan karakteristiknya: r 2 3 r + 2 = 0 (r 2) (r 1) = 0 Sehingga didapat r 1 = 2 dan r 2 = 1 Jadi solusi homogennya adalah y h = C 1 e 2x + C 2 e x Untuk y p dipilih y p = A cos x + B sin x y p = - A sinx + B cos x y p = - A cos x B sin x Kemudian masukan ke PD di atas: (-A cos x B sin x) 3(-A sin x + B cos x)+2(a cos x +B sin x)= cos x (-A-3B+2A) cos x + (-B+3A+2B) sin x= cos x (-3B + A) cos x + (3A+B) sin x= cos x -3B + A = 1 dan 3A+B= 0

10 Contoh (no. 2Lanjutan) Didapat A = 1/10 dan B = -3/10 Jadi solusi umum PD di atas adalah y = C 1 e 2x + C 2 e x + (1/10) cos x (3/10) sin x 3. y 3y + 2y = e -x + cos x Jawab: Dari contoh 1 dan 2 didapat, solusi umumnya adalah y = C 1 e 2x + C 2 e x + (1/6) e -x + (1/10) cos x (3/10) sin x

11 Contoh 4. y 3y + 2y = e x, y(0)=1, y (0)=-1 Jawab: Persamaan karakteristiknya: r 2 3 r + 2 = 0 (r 2) (r 1) = 0 Sehingga didapat r 1 = 2 dan r 2 = 1 Jadi solusi homogennya adalah y h = C 1 e 2x + C 2 e x Untuk y p dipilih y p = A x e x y p = A e x + A x e x y p = 2A e x + A x e x Kemudian masukan ke PD di atas: 2Ae x +Axe x 3 (Ae x + Axe x ) + 2 Axe x = e x -A e x = e x A = -1 Jadi solusi umum PD di atas adalah y = C 1 e 2x + C 2 e x xe x

12 Contoh Kita punya y(0)=1 dan y (0)=-1 y = C 1 e 2x + C 2 e x x e x 1=C 1 +C 2 y = 2C 1 e 2x + C 2 e x e x xe x 0=2C 1 +C 2 Didapat C 1 =-1, dan C 2 = 2 Jadi solusi khusus PD di atas adalah y = e 2x + 2 e x x e x

13 Latihan 1. y 3y -4y=3x y 9y=x+2 3. y 3y 4y=e 2x 4. y + 4y=2 sin x 5. y 3y -4y=e -x 6. y + 4y=2 cos 2x 7. y +2y =3x y 4y + 4y=e 2x 9. y + 3y 4y=3x y + 9y= sin 3x+e 2x 11. y + y =e x + 3x 12. y 4y=4 sin x, y=4, y =0 bila x=0 13. y 5y + 6y=2e x, y=1, y =0 bila x=0 13

14 Metode Variasi Parameter Metode ini digunakan untuk memecahkan persamaanpersamaan yang tidak dapat diselesaikan dengan menggunakan metode koefisien tak tentu. Persamaan Differensial orde dua non homogen y + a y + b y = r(x) memiliki solusi total : y = y h + y p, yh=c1 y1+c2 y2 misal y p = uy 1 + v y 2 dimana u = u(x) ; v = v(x) maka y p = u y 1 + u y 1 + v y 2 + v y 2 pilih u dan v sehingga : u y 1 + v y 2 = 0.(*)

15 Metode Variasi Parameter y p = u y 1 + v y 2 y p = u y 1 + u y 1 + v y 2 + vy 2 Substitusikan y p, y p, y p ke dalam persamaan awal sehingga di dapatkan : u y 1 + u y 1 + v y 2 + vy 2 + a (u y 1 + v y 2 )+ b ( u y 1 + v y 2 ) = r(x) u ( y 1 + a y 1 + b y 1 ) + v ( y 2 + a y 2 + b y 2 ) + u y 1 + v y 2 = r (x) u y 1 + v y 2 = r (x).(**)

16 Metode Variasi Parameter Eleminasi (*) dan (**) di peroleh : u y 1 + v y 2 = 0 u y 1 + v y 2 = r (x) dengan aturan cramer diperoleh u' 0 y 2 r(x) y 2 ' y 1 y 1 ' y 2 y 2 ' y u 2 r(x) dx W v' y 1 0 y 1 ' r(x) y 1 y 2 y 1 ' y 2 ' v y 1 r(x) W dx Keterangan: W y 1 y 2 y 1 ' y 2 '

17 Contoh 1. y + y = tan x Jawab: Persamaan karakteristiknya: r = 0 r = ± i Jadi solusi homogennya adalah y h = C 1 cos x + C 2 sin x Untuk y p dipilih y p = u y 1 + v y 2 dengan y 1 = cos x y 1 = - sin x y 2 = sin x Sehingga diperoleh sin x tan x u 1 y 2 = cos x sin 2 x dx cos x dx W= y y y y = cos 2 x+sin 2 x = 1 1 cos 2 x dx (sec x cos x) dx cos x

18 Contoh (Lanjutan) sec x dx cos x dx ln sec x tan x sin x Sedangkan, v cos x tan x dx 1 sin x dx cos x Jadi solusi non homogen didapat y p ln sec x tan x cosx sin x cos x sin x cos x ln sec x tan x cos x Jadi solusi umum dari persamaan diferensial di atas y C cos x C sin x lnsec x tan x cos x 1 2

19 Contoh 2. y +9y = sec 2 3x Jawab: Persamaan karakteristiknya: r = 0 r = ± 3 i Jadi solusi homogennya adalah y h = C 1 cos 3x + C 2 sin 3x Untuk y p dipilih y p = u y 1 + v y 2 dengan y 1 = cos 3x y 1 = -3 sin 3x y 2 = sin 3x y 2 = 3 cos 3x Sehingga diperoleh sin3xsec u 2 3x dx tan 3x dx 3 W= y y y y = 3 cos 2 x+3 sin 2 x = 3 2 sec 3x 1 dx

20 Contoh (Lanjutan) 1 3 dx 1 3 sec 2 3x dx 1 x 1 tan3x 3 9 Sedangkan, cos 3x sec v 2 3x dx 1 sec 3x dx Jadi solusi non homogen didapat y p ln sec3x tan3x 1 x cos3x 1 tan3x cos3x 1 lnsec3x tan3x sin 3x xcos3x 1 sin3x 1 lnsec3x tan3x sin 3x Jadi solusi umum dari persamaan diferensial di atas y C 1cos 3x C 2 1 sin 3x 1 x cos3x 1 lnsec3x tan3x sin3x 9 3 9

21 Latihan 1. y + y = cosec x cot x 2. y + y = cot x 3. y 3 y + 2y = x e e x 1 e 2x 4. y + 4 y + 4 y = x 2 5. y + 4 y = 3 cosec 2x 6. y + 4 y = 3 cosec x 7. 4 y + y = 2 sec (x/2) 8. y 2y + y = e x 1 x 2

Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika. Persamaan Diferensial Orde II

Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika. Persamaan Diferensial Orde II Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika Persamaan Diferensial Orde II PDB Orde II Bentuk umum : y + p(x)y + g(x)y = r(x) p(x), g(x) disebut koefisien jika r(x) = 0, maka

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Persamaan Diferensial Orde II

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Persamaan Diferensial Orde II Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Persamaan Diferensial Orde II [MA4] PDB Orde II Bentuk umum : y + p(x)y + g(x)y = r(x) p(x), g(x) disebut koefisien jika r(x) = 0, maka Persamaan

Lebih terperinci

Nurdinintya Athari PERSAMAAN DIFFERENSIAL ORDE 2

Nurdinintya Athari PERSAMAAN DIFFERENSIAL ORDE 2 Nurdininta Athari PERSAMAAN DIFFERENSIAL ORDE 2 2 PDB ORDE II Bentuk umum : + p() + g() = r() p(), g() disebut koefisien jika r() = 0, maka Persamaan Differensial diatas disebut homogen, sebalikna disebut

Lebih terperinci

PERSAMAAN DIFERENSIAL LINIER NON HOMOGEN

PERSAMAAN DIFERENSIAL LINIER NON HOMOGEN LINIER NON HOMOGEN Contoh PD linier non homogen orde 2. Bentuk umum persamaan PD Linier Non Homogen Orde 2, adalah sebagai berikut : y + f(x) y + g(x) y = r(x) ( 2-35) Solusi umum y(x) akan didapatkan

Lebih terperinci

Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui.

Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui. 1 Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui. Jika persamaan diferensial memiliki satu peubah tak bebas maka disebut Persamaan Diferensial

Lebih terperinci

BAB IV PERSAMAAN TAKHOMOGEN

BAB IV PERSAMAAN TAKHOMOGEN BAB IV PERSAMAAN TAKHOMOGEN Kompetensi Mahasiswa mampu 1. Menentukan selesaian khusus PD tak homogen dengan metode koefisien tak tentu 2. Menentukan selesaian khusus PD tak homogen dengan metode variasi

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Linier Homogen Tk. 2 (Differential: Linier Homogen Orde 2) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya PD linier homogen orde 2 Bentuk

Lebih terperinci

PERSAMAAN DIFFERENSIAL LINIER

PERSAMAAN DIFFERENSIAL LINIER PERSAMAAN DIFFERENSIAL LINIER Persamaan Differensial Linier Pengertian : Suatu persamaan differensial orde satu dikatakan linier jika persamaan tersebut dapat dituliskan sbb: y + p x y = r(x) (1) linier

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I 1. Pendahuluan Pengertian Persamaan Diferensial Metoda Penyelesaian -contoh Aplikasi 1 1.1. Pengertian Persamaan Differensial Secara Garis Besar Persamaan

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 2 - II

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 2 - II PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE - II.Persamaan Homogen dengan Koefisien Konstan Suatu persamaan linier homogen y + ay + by = 0 (1) mempunyai koefisien a dan b adalah konstan. Persamaan ini mempunyai

Lebih terperinci

BAB 2 PERSAMAAN DIFFERENSIAL BIASA

BAB 2 PERSAMAAN DIFFERENSIAL BIASA BAB 2 BIASA 2.1. KONSEP DASAR Persamaan Diferensial (PD) Biasa adalah persamaan yang mengandung satu atau beberapa penurunan y (varibel terikat) terhadap x (variabel bebas) yang tidak spesifik dan ditentukan

Lebih terperinci

PD Orde 2 Lecture 3. Rudy Dikairono

PD Orde 2 Lecture 3. Rudy Dikairono PD Orde Lecture 3 Rudy Dikairono Today s Outline PD Orde Linear Homogen PD Orde Linear Tak Homogen Metode koefisien tak tentu Metode variasi parameter Beberapa Pengelompokan Persamaan Diferensial Order

Lebih terperinci

Persamaan Di erensial Orde-2

Persamaan Di erensial Orde-2 oki neswan FMIPA-ITB Persamaan Di erensial Orde- Persamaan diferensial orde-n adalah persamaan yang melibatkan x; y; dan turunan-turunan y; dengan yang paling tinggi adalah turunan ke-n: F x; y; y ; y

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Linier Non Homogen Tk. 2 (Differential: Linier Non Homogen Orde 2) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Solusi umum merupakan jumlah

Lebih terperinci

PERSAMAAN DIFFERENSIAL ORDE I. Nurdinintya Athari

PERSAMAAN DIFFERENSIAL ORDE I. Nurdinintya Athari PERSAMAAN DIFFERENSIAL ORDE I Nurdininta Athari Definisi PERSAMAAN DIFERENSIAL Persamaan diferensial adalah suatu persamaan ang memuat satu atau lebih turunan fungsi ang tidak diketahui. Jika persamaan

Lebih terperinci

BAB I PENDAHULUAN. Kompetensi

BAB I PENDAHULUAN. Kompetensi BAB I PENDAHULUAN Kompetensi Mahasiswa diharapkan 1. Memiliki kesadaran tentang manfaat yang diperoleh dalam mempelajari materi kuliah persamaan diferensial. 2. Memahami konsep-konsep penting dalam persamaan

Lebih terperinci

HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL

HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL Dra.Sri Rejeki Dwi Putranti, M.Kes. Fakultas Teknik - Universitaas Yos Soedarso Surabaya Email : riccayusticia@gmail.com Abstrak Hubungan antara Differensial dan

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Linier Homogen & Non Homogen Tk. n (Differential: Linier Homogen & Non Homogen Orde n) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan

Lebih terperinci

BAB I PENDAHULUAN. Kompetensi

BAB I PENDAHULUAN. Kompetensi BAB I PENDAHULUAN Kompetensi Mahasiswa diharapkan 1. Memiliki kesadaran tentang manfaat yang diperoleh dalam mempelajari materi kuliah persamaan diferensial. 2. Memahami konsep-konsep penting dalam persamaan

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang ingkasan Kalkulus 2, Untuk dipakai di ITB 1 Integral Lipat Dua Atas Daerah Persegipanjang Perhatikan fungsi z = f(x, y) pada = {(x, y) : a x b, c y d} Bentuk partisi P atas daerah berupa n buah persegipanjang

Lebih terperinci

BAB PDB Linier Order Satu

BAB PDB Linier Order Satu BAB 1 Konsep Dasar 1 BAB PDB Linier Order Satu BAB 3 Aplikasi PDB Order Satu 3 BAB 4 PDB Linier Order Dua Untuk memulai pembahasan ini terlebih dahulu akan ditinjau beberapa teorema tentang konsep umum

Lebih terperinci

MATEMATIKA TEKNIK 2 S1-TEKNIK ELEKTRO. Mohamad Sidiq

MATEMATIKA TEKNIK 2 S1-TEKNIK ELEKTRO. Mohamad Sidiq MATEMATIKA TEKNIK 2 S1-TEKNIK ELEKTRO REFERENSI E-BOOK REFERENSI ONLINE SOS Mathematics http://www.sosmath.com/diffeq/diffeq.html Wolfram Research Math World http://mathworld.wolfram.com/ordinarydifferentialequation.h

Lebih terperinci

PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA

PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA Persamaan Diferensial Biasa 1. PDB Tingkat Satu (PDB) 1.1. Persamaan diferensial 1.2. Metode pemisahan peubah dan PD koefisien fungsi homogen 1.3. Persamaan

Lebih terperinci

Hendra Gunawan. 23 April 2014

Hendra Gunawan. 23 April 2014 MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2013/2014 23 April 2014 Kuliah ang Lalu 13.11 Integral Lipat Dua atas Persegi Panjang 13.2 Integral Berulang 13.3 33Integral Lipat Dua atas Daerah Bukan

Lebih terperinci

Hendra Gunawan. 25 April 2014

Hendra Gunawan. 25 April 2014 MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 5 April 014 Kuliah yang Lalu 15.11 Persamaan Diferensial Linear Orde, Homogen 15. Persamaan Diferensial Linear Orde, Tak Homogen 15.3 Penggunaan Persamaan

Lebih terperinci

BAB III PD LINIER HOMOGEN

BAB III PD LINIER HOMOGEN BAB III PD LINIER HOMOGEN Kompetensi Mahasiswa diharapkan. Mampu menentukan selesaian umum dari PD linier homogen orde dua dengan jenis akarakar karakteristik yang berbeda-beda. Memahami pengertian kebebaslinieran

Lebih terperinci

TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 2016/2017

TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 2016/2017 A. Pengantar Persamaan Diferensial TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 016/017 1. Tentukan hasil turunan dari fungsi sebagai berikut: a. f() = c e b. f() = c cos k + c sin k c.

Lebih terperinci

BAB III PERSAMAAN DIFERENSIAL LINIER

BAB III PERSAMAAN DIFERENSIAL LINIER BAB III PERSAMAAN DIFERENSIAL LINIER Bentuk umum PD orde-n adalah PD yang tidak dapat dinyatakan dalam bentuk di atas dikatakan tidak linier. Contoh: Jika F(x) pada persamaan (3.1) sama dengan nol maka

Lebih terperinci

INTEGRAL TAK TENTU 1

INTEGRAL TAK TENTU 1 INTEGRAL TAK TENTU 1 Rumus umum integral b a f (x) dx F(x) =lambang integral f(x) = integran (fungsi yg diintegralkan) a dan b = batas pengintegralan a = batas bawah b = batas atas dx = faktor pengintegral

Lebih terperinci

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Konsep Dasar dan Pembentukan (Differential : Basic Concepts and Establishment ) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan

Lebih terperinci

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu

Lebih terperinci

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018 Kalkulus 2 Teknik Pengintegralan ke - 1 Tim Pengajar Kalkulus ITK Institut Teknologi Kalimantan Januari 2018 Tim Pengajar Kalkulus ITK (Institut Teknologi Kalimantan) Kalkulus 2 Januari 2018 1 / 36 Daftar

Lebih terperinci

16. INTEGRAL. A. Integral Tak Tentu 1. dx = x + c 2. a dx = a dx = ax + c. 3. x n dx = + c. cos ax + c. 4. sin ax dx = 1 a. 5.

16. INTEGRAL. A. Integral Tak Tentu 1. dx = x + c 2. a dx = a dx = ax + c. 3. x n dx = + c. cos ax + c. 4. sin ax dx = 1 a. 5. 6. INTEGRAL A. Integral Tak Tentu. dx = x + c. a dx = a dx = ax + c. x n dx = n+ x n+ + c. sin ax dx = a cos ax + c 5. cos ax dx = a sin ax + c 6. sec ax dx = a tan ax + c 7. [ f(x) ± g(x) ] dx = f(x)

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Tujuan Instruksional: Mampu memahami definisi Persamaan Diferensial Mampu memahami klasifikasi Persamaan Diferensial Mampu memahami bentuk bentuk solusi Persamaan

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL ORDE SATU

BAB II PERSAMAAN DIFERENSIAL ORDE SATU BAB II PERSAMAAN DIFERENSIAL ORDE SATU Kompetensi Mahasiswa diharapkan: 1. Mengenali bentuk PD orde satu dengan variabel terpisah dan tak terpisah.. Dapat mengubah bentuk PD tak terpisah menjadi terpisah

Lebih terperinci

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL Pendahuluan Persamaan diferensial adalah persamaan yang memuat diferensial Kita akan membahas tentang Persamaan Diferensial Biasa yaitu

Lebih terperinci

Teknik pengintegralan: Integral parsial (Integral by part)

Teknik pengintegralan: Integral parsial (Integral by part) Teknik pengintegralan: Integral parsial (Integral by part) Kalkulus 2 Nanang Susyanto Departemen Matematika FMIPA UGM 06 Februari 2017 NS (FMIPA UGM) Teknik pengintegralan 06/02/2017 1 / 14 Mari mengingat

Lebih terperinci

Persamaan Differensial Biasa

Persamaan Differensial Biasa Bab 7 cakul fi5080 by khbasar; sem1 2010-2011 Persamaan Differensial Biasa Dalam banyak persoalan fisika, suatu topik sering dinyatakan dalam bentuk perubahan (laju perubahan). Telah disinggung sebelumnya

Lebih terperinci

TEKNIK PENGINTEGRALAN

TEKNIK PENGINTEGRALAN TEKNIK PENGINTEGRALAN KALKULUS S- Teknik Industri Outline Integral Parsial Integral Fungsi Trigonometri Substitusi Trigonometri Integral Fungsi Rasional . Integral Parsial Formula Integral Parsial : u

Lebih terperinci

KONSEP DASAR PERSAMAAN DIFERENSIAL

KONSEP DASAR PERSAMAAN DIFERENSIAL KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu fungsi (dasar). Sebagai

Lebih terperinci

INTEGRAL (ANTI DIFERENSIAL) Tito Adi Dewanto S.TP

INTEGRAL (ANTI DIFERENSIAL) Tito Adi Dewanto S.TP A. Soal dan Pembahasan. ( x ) dx... Jawaban : INTEGRAL (ANTI DIFERENSIAL) Tito Adi Dewanto S.TP ( x) dx x dx x C x C x x C. ( x 9) dx... x Jawaban : ( x 9) dx. (x x 9) dx x 9x C x x x. (x )(x + ) dx =.

Lebih terperinci

Metode Koefisien Tak Tentu untuk Penyelesaian PD Linier Homogen Tak Homogen orde-2 Matematika Teknik I_SIGIT KUSMARYANTO

Metode Koefisien Tak Tentu untuk Penyelesaian PD Linier Homogen Tak Homogen orde-2 Matematika Teknik I_SIGIT KUSMARYANTO Metode Koefisien Tak Tentu untuk Penyelesaian Persamaan Diferensial Linier Tak Homogen orde-2 Solusi PD pada PD Linier Tak Homogen ditentukan dari solusi umum PD Linier Homogen dan PD Linier Tak Homogen.

Lebih terperinci

perpindahan, kita peroleh persamaan differensial berikut :

perpindahan, kita peroleh persamaan differensial berikut : 1.1 Pengertian Persamaan Differensial Banyak sekali masalah terapan (dalam ilmu teknik, ilmu fisika, biologi, kimia, sosial, dan lain-lain), yang telah dirumuskan dengan model matematika dalam bentuk persamaan

Lebih terperinci

BAB I PENGERTIAN DASAR

BAB I PENGERTIAN DASAR BAB I PENGERTIAN DASAR Kompetensi Dasar: Menjelaskan pengertian dan klasifikasi dari persamaan diferensial serta beberapa hal yang terkait. Indikator: a. Menjelaskankan pengertian persamaan diferensial.

Lebih terperinci

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping

Lebih terperinci

Persamaan Diferensial Biasa. Rippi Maya

Persamaan Diferensial Biasa. Rippi Maya Persamaan Diferensial Biasa Rippi Maya Maret 204 ii Contents PENDAHULUAN. Solusi persamaan diferensial..................... 2.. Solusi Implisit dan Solusi Eksplisit............. 2..2 Solusi Umum dan Solusi

Lebih terperinci

Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb

Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Sesi XII Differensial e-mail : zacoeb@ub.ac.id www.zacoeb.lecture.ub.ac.id Hp. 081233978339 PENDAHULUAN Persamaan diferensial

Lebih terperinci

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use INTISARI KALKULUS Penyusun: Drs. Warsoma Djohan M.Si. Program Studi Matematika - FMIPA Institut Teknologi Bandung Januari 010 Pengantar Kalkulus 1 & merupakan matakuliah wajib tingkat pertama bagi semua

Lebih terperinci

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use INTISARI KALKULUS 2 Penyusun: Drs. Warsoma Djohan M.Si. Program Studi Matematika - FMIPA Institut Teknologi Bandung Januari 200 Pengantar Kalkulus & 2 merupakan matakuliah wajib tingkat pertama bagi semua

Lebih terperinci

Persamaan Diferensial Biasa

Persamaan Diferensial Biasa Darmawijoyo Persamaan Diferensial Biasa Suatu Pengantar FKIP-UNSRI Untuk istriku tercinta Nelly Efrina dan anak-anakku tersayang, Yaya, Haris, dan Oji. Pendahuluan Buku Persamaan Diferensial Suatu Pengantar

Lebih terperinci

TRIGONOMETRI. Jika cos x = a, maka inversnya adalah x = arc cos a. Begitu juga perbandingan trigonometri lainnya, inversnya dilambangkan menjadi

TRIGONOMETRI. Jika cos x = a, maka inversnya adalah x = arc cos a. Begitu juga perbandingan trigonometri lainnya, inversnya dilambangkan menjadi Pelatihanosn.com TRIGONOMETRI Konversi Sudut = π putaran= rad = 6 menit 36 8 (6 ) = 36 detik (36") rad = 8 π = π putaran ket : yang didalam kurung merupakan cara penulisan Perbandingan Geometri sin t =

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL ORDE SATU

BAB II PERSAMAAN DIFERENSIAL ORDE SATU BAB II PERSAMAAN DIFERENSIAL ORDE SATU Kompetensi Mahasiswa diharapkan: 1. Mengenali bentuk PD orde satu dengan variabel terpisah dan tak terpisah.. Dapat mengubah bentuk PD tak terpisah menjadi terpisah

Lebih terperinci

15. TURUNAN (DERIVATIF)

15. TURUNAN (DERIVATIF) 5. TURUNAN (DERIVATIF) A. Rumus-Rumus Turunan Fungsi Aljabar dan Trigonometri Untuk u dan v adalah fungsi dari x, dan c adalah konstanta, maka:. y = u + v, y = u + v. y = c u, y = c u. y = u v, y = v u

Lebih terperinci

Persamaan Diferensial Parsial CNH3C3

Persamaan Diferensial Parsial CNH3C3 Persamaan Diferensial Parsial CNH3C3 Week 5: Separasi Variabel untuk Persamaan Panas Orde Satu - Tim Ilmu Komputasi Coordinator contact: Dr. Putu Harry Gunawan phgunawan@telkomuniversity.ac.id 1 Review

Lebih terperinci

BAB I PERSAMAAN DIFERENSIAL LINIER ORDE I

BAB I PERSAMAAN DIFERENSIAL LINIER ORDE I BAB I PERSAMAAN DIFERENSIAL LINIER ORDE I. Pengertian PD, Orde (tingkat), & Derajat (Pangkat) Persamaan diferensial adalah suatu persamaan yang memuat derivatifderivatif (turunan) sekurang-kurangnya derivatif

Lebih terperinci

Teknik Pengintegralan

Teknik Pengintegralan Jurusan Matematika 13 Nopember 2012 Review Rumus-rumus Integral yang Dikenal Pada beberapa subbab sebelumnya telah dijelaskan beberapa integral dari fungsi-fungsi tertentu. Berikut ini diberikan sebuah

Lebih terperinci

Adalah : hubungan antara variabel bebas x, variabel

Adalah : hubungan antara variabel bebas x, variabel Adalah : hubungan antara variabel bebas, variabel Bentuk Umum : bebas dan turunanna. d d F(,,, n d,..., ) n Persamaan differensial (PD) menatakan hubungan dinamik, maksudna hubungan tersebut memuat besaran

Lebih terperinci

dy = f(x,y) = p(x) q(y), dx dy = p(x) dx,

dy = f(x,y) = p(x) q(y), dx dy = p(x) dx, 5. Persamaan Diferensian Dengan Variabel Terpisah Persamaan diferensial berbentuk y = f(), dengan f suatu fungsi kontinu pada suatu interval real, dapat dicari penyelesaiannya dengan cara mengintegralkan

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL BIASA(PDB) ORDE SATU

BAB II PERSAMAAN DIFERENSIAL BIASA(PDB) ORDE SATU BAB II PERSAMAAN DIFERENSIAL BIASA(PDB) ORDE SATU PDB orde satu dapat dinyatakan dalam: atau dalam bentuk: = f(x, y) M(x, y) + N(x, y) = 0 Penyelesaian PDB orde satu dengan integrasi secara langsung Jika

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial Orde Satu Jurusan Matematika FMIPA-Unud Senin, 18 Desember 2017 Orde Satu Daftar Isi 1 Pendahuluan 2 Orde Satu Apakah Itu? Solusi Pemisahan Variabel Masalah Gerak 3 4 Orde Satu Pendahuluan Dalam subbab

Lebih terperinci

Pecahan Parsial (Partial Fractions)

Pecahan Parsial (Partial Fractions) oki neswan (fmipa-itb) Pecahan Parsial (Partial Fractions) Diberikan fungsi rasional f (x) p(x) q(x) f (x) r(x) : Jika deg p deg q; maka r (x) ^p (x) q(x) ; dengan deg r < deg q: p (x) q (x) r (x) ^p (x)

Lebih terperinci

PERSAMAAN DIFERENSIAL (PD)

PERSAMAAN DIFERENSIAL (PD) PERSAMAAN DIFERENSIAL (PD) A. PENGERTIAN Persamaan yang mengandung variabel dan beberapa fungsi turunan terhadap variabel tersebut. CONTOH : + 5 5 0 disebut PD orde I + 6 + 7 0 disebut PD orde II B. PEMBENTUKAN

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

Bab 16. LIMIT dan TURUNAN. Motivasi. Limit Fungsi. Fungsi Turunan. Matematika SMK, Bab 16: Limit dan Turunan 1/35

Bab 16. LIMIT dan TURUNAN. Motivasi. Limit Fungsi. Fungsi Turunan. Matematika SMK, Bab 16: Limit dan Turunan 1/35 Bab 16 Grafik LIMIT dan TURUNAN Matematika SMK, Bab 16: Limit dan 1/35 Grafik Pada dasarnya, konsep limit dikembangkan untuk mengerjakan perhitungan matematis yang melibatkan: nilai sangat kecil; Matematika

Lebih terperinci

I. Sistem Persamaan Diferensial Linier Orde 1 (Review)

I. Sistem Persamaan Diferensial Linier Orde 1 (Review) I. Sistem Persamaan Diferensial Linier Orde (Review) November 0 () I. Sistem Persamaan Diferensial Linier Orde (Review) November 0 / 6 Teori Umum Bentuk umum sistem persamaan diferensial linier orde satu

Lebih terperinci

BAB 2 PDB Linier Order Satu 2.1 PDB Linier Order Satu Homogen PDB order satu dapat dinyatakan dalam atau dalam bentuk derivatif = f(x y) dx M(x y)dx +

BAB 2 PDB Linier Order Satu 2.1 PDB Linier Order Satu Homogen PDB order satu dapat dinyatakan dalam atau dalam bentuk derivatif = f(x y) dx M(x y)dx + BAB 1 Konsep Dasar 1 BAB 2 PDB Linier Order Satu 2.1 PDB Linier Order Satu Homogen PDB order satu dapat dinyatakan dalam atau dalam bentuk derivatif = f(x y) dx M(x y)dx + N(x y) = 0 (2.1) 2.1.1 PDB Eksak

Lebih terperinci

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit

Lebih terperinci

PEMBAHASAN SOAL SESUAI KISI-KISI UAS

PEMBAHASAN SOAL SESUAI KISI-KISI UAS PEMBAHASAN SOAL SESUAI KISI-KISI UAS MATEMATIKA PEMINATAN XI - IPA SOAL Perhatikan segitiga di bawah ini! Tentukan nilai sec cosec cot INGAT definisi: sin depan miring cosec sin miring depan cos samping

Lebih terperinci

BAB 1 Konsep Dasar 1

BAB 1 Konsep Dasar 1 BAB 1 Konsep Dasar 1 BAB Solusi Persamaan Fungsi Polinomial BAB 3 Interpolasi dan Aproksimasi Polinomial 3 BAB 4 Metoda Numeris untuk Sistem Nonlinier 4 BAB 5 Metoda Numeris Untuk Masalah Nilai Awal 5

Lebih terperinci

BAB VI PENYELESAIAN DERET UNTUK PERSAMAAN DIFERENSIAL

BAB VI PENYELESAIAN DERET UNTUK PERSAMAAN DIFERENSIAL BAB VI PENYELESAIAN DERET UNTUK PERSAMAAN DIFERENSIAL Bila persamaan diferensial linear homogen memiliki koefisien constant maka persamaan tersebut dapat diselesaikan dengan metoda aljabar (seperti yang

Lebih terperinci

SOLUSI PERSAMAAN DIFFERENSIAL

SOLUSI PERSAMAAN DIFFERENSIAL SOLUSI PERSAMAAN DIFFERENSIAL PENGERTIAN SOLUSI. Solusi dari suatu persamaan differensial adalah persamaan yang memuat variabelvariabel dari persamaan differensial dan memenuhi persamaan differensial yang

Lebih terperinci

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A PENGANTAR MATEMATIKA TEKNIK 1 By : Suthami A MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK Matematika sebagai ilmu dasar yang digunakan sebagai alat pemecahan masalah di bidang keteknikan

Lebih terperinci

BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Persamaan linear tingkat tinggi menarik untuk dibahas dengan 2 alasan :

BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Persamaan linear tingkat tinggi menarik untuk dibahas dengan 2 alasan : BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Bentuk Persamaan Linear Tingkat Tinggi : ( ) Diasumsikan adalah kontinu (menerus) pada interval I. Persamaan linear tingkat tinggi

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - II

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - II PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - II c. Metoda Persamaan Differensial Pasti (Exact) Pada kalkulus bahwa jika suatu fungsi u(x,y) mempunyai turunan parsial yang sifatnya kontinyu, turunan pasti

Lebih terperinci

Turunan. Ayundyah Kesumawati. January 8, Prodi Statistika FMIPA-UII. Ayundyah Kesumawati (UII) Turunan January 8, / 15

Turunan. Ayundyah Kesumawati. January 8, Prodi Statistika FMIPA-UII. Ayundyah Kesumawati (UII) Turunan January 8, / 15 Turunan Ayundyah Kesumawati Prodi Statistika FMIPA-UII January 8, 2015 Ayundyah Kesumawati (UII) Turunan January 8, 2015 1 / 15 Sub Materi Turunan : a. Turunan Fungsi b. Turunan Tingkat Tinggi c. Teorema

Lebih terperinci

TEKNIK PENGINTEGRALAN

TEKNIK PENGINTEGRALAN TEKNIK PENGINTEGRALAN Departemen Matematika FMIPA IPB Bogor, 202 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 202 / 2 Topik Bahasan Pendahuluan 2 Manipulasi Integran 3 Integral Parsial 4 Dekomposisi

Lebih terperinci

METODE RUNGE-KUTTA DAN BLOK RASIONAL UNTUK MENYELESAIKAN MASALAH NILAI AWAL

METODE RUNGE-KUTTA DAN BLOK RASIONAL UNTUK MENYELESAIKAN MASALAH NILAI AWAL METODE RUNGE-KUTTA DAN BLOK RASIONAL UNTUK MENYELESAIKAN MASALAH NILAI AWAL Tugas Akhir Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Sains Program Studi Matematika Oleh : Agung Christian

Lebih terperinci

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( )

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( ) II. TINJAUAN PUSTAKA 2.1 Definisi Turunan Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada sebarang bilangan c adalah asalkan limit ini ada. Jika limit ini memang ada, maka dikatakan

Lebih terperinci

AB = c, AC = b dan BC = a, maka PQ =. 1

AB = c, AC = b dan BC = a, maka PQ =. 1 Soal-Soal dan Pembahasan Matematika IPA SNMPTN 9. Jika a, b, maka pernyataan di bawah ini yang benar adalah A. B. a b ab C. ab b a D. ab ab E. ab ab ab b a karena pada jawaban terdapat ab maka selesaikan

Lebih terperinci

II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan

II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Differential Equation Fungsi mendeskripsikan bahwa nilai variabel y ditentukan oleh nilai variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi

Lebih terperinci

Pertemuan Kesatu. Matematika III. Oleh Mohammad Edy Nurtamam, S.Pd., M.Si. Page 1.

Pertemuan Kesatu. Matematika III. Oleh Mohammad Edy Nurtamam, S.Pd., M.Si. Page 1. Pertemuan Kesatu Matematika III Oleh Mohammad Edy Nurtamam, S.Pd., M.Si Page 1 Materi 1. Persamaan Diferensial Orde I Pengenalan bentuk dasar Pers. Diff. Orde I. Definisi Derajat,Orde. Konsep Pemisahan

Lebih terperinci

Solusi: [Jawaban E] Solusi: [Jawaban D]

Solusi: [Jawaban E] Solusi: [Jawaban D] SOLUSI SMA/MA MATEMATIKA Program Studi IPA Kerjasama UNIVERSITAS GUNADARMA dengan Dinas Pendidikan Provinsi DKI Jakarta, Kota/Kabupaten BODETABEK, Tangerang Selatan, Karawang, Serang, Pandeglang, dan Cilegon

Lebih terperinci

4. Dibawah ini persamaan diferensial ordo dua berderajat satu adalah

4. Dibawah ini persamaan diferensial ordo dua berderajat satu adalah Pilihlah jawaban yang benar dengan cara mencakra huruf didepan jawaban yang saudara anggap benar pada lembar jawaban 1. Dibawah ini bentuk persamaan diferensial biasa linier homogen adalah a. y + xy =

Lebih terperinci

Soal dan Pembahasan UN Matematika SMA IPA Tahun 2013

Soal dan Pembahasan UN Matematika SMA IPA Tahun 2013 Soal dan Pembahasan UN Matematika SMA IPA Tahun 013 LOGIKA MATEMATIKA p siswa rajin belajar ; q mendapat nilai yang baik r siswa tidak mengikuti kegiatan remedial ~ r siswa mengikut kegiatan remedial Premis

Lebih terperinci

MASALAH SYARAT BATAS (MSB)

MASALAH SYARAT BATAS (MSB) Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo PENDAHULUAN MODEL KABEL MENGGANTUNG DEFINISI MSB Persamaan diferensial (PD) dikatakan berdimensi 1 jika domainnya berupa himpunan bagian pada R 1.

Lebih terperinci

log2 PEMBAHASAN SOAL TRY OUT = = 2 1 = 27 8 = 19 Jawaban : C = = = 2( 15 10) Jawaban : B . 4. log3 1 2 (1) .

log2 PEMBAHASAN SOAL TRY OUT = = 2 1 = 27 8 = 19 Jawaban : C = = = 2( 15 10) Jawaban : B . 4. log3 1 2 (1) . TRY OUT AKBAR UN SMA 08 PEMBAHASAN SOAL TRY OUT. 9 6 4 8 7 Jawaban : C 4 4 = = = 7 8 4 = 9. 5 + = 0 5 = 0 5 = 5 0 = ( 5 0). log5 5 log8 log6 4 log log4 = log5 5 4 log log log6 log4 =. log5 5. 4. log log

Lebih terperinci

digunakan untuk menyelesaikan integral seperti 3

digunakan untuk menyelesaikan integral seperti 3 Bab Teknik Pengintegralan BAB TEKNIK PENGINTEGRALAN Rumus-rumus dasar integral tak tertentu yang diberikan pada bab hanya dapat digunakan untuk mengevaluasi integral dari fungsi sederhana dan tidak dapat

Lebih terperinci

Kalkulus Diferensial week 09. W. Rofianto, ST, MSi

Kalkulus Diferensial week 09. W. Rofianto, ST, MSi Kalkulus Diferensial week 09 W. Rofianto, ST, MSi Tingkat Perubahan Rata-rata Jakarta Km 0 jam Bandung Km 140 Kecepatan rata-rata s t 140Km jam 70Km / jam Konsep Diferensiasi Bentuk y/ disebut difference

Lebih terperinci

Matematika Teknik I. Prasyarat : Kalkulus I, Kalkulus II, Aljabar Vektor & Kompleks

Matematika Teknik I. Prasyarat : Kalkulus I, Kalkulus II, Aljabar Vektor & Kompleks Kode Mata Kuliah : TE 318 SKS : 3 Matematika Teknik I Prasarat : Kalkulus I, Kalkulus II, Aljabar Vektor & Kompleks Tujuan : Mahasiswa memahami permasalahan teknik dalam bentuk PD atau integral, serta

Lebih terperinci

MACLAURIN S SERIES. Ghifari Eka

MACLAURIN S SERIES. Ghifari Eka MACLAURIN S SERIES Ghifari Eka Taylor Series Sebelum membahas mengenai Maclaurin s series alangkah lebih baiknya apabila kita mengetahui terlebih dahulu mengenai Taylor series. Misalkan terdapat fungsi

Lebih terperinci

Kalkulus 2. Teknik Pengintegralan ke - 2. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018

Kalkulus 2. Teknik Pengintegralan ke - 2. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018 Kalkulus 2 Teknik Pengintegralan ke - 2 Tim Pengajar Kalkulus ITK Institut Teknologi Kalimantan Januari 2018 Tim Pengajar Kalkulus ITK (Institut Teknologi Kalimantan) Kalkulus 2 Januari 2018 1 / 24 Daftar

Lebih terperinci

SOAL DAN PEMBAHASAN TRIGONOMETRI SUDUT BERELASI KUADRAN I

SOAL DAN PEMBAHASAN TRIGONOMETRI SUDUT BERELASI KUADRAN I SOAL DAN PEMBAHASAN TRIGONOMETRI SUDUT BERELASI KUADRAN I Trigonometri umumnya terdiri dari beberapa bab yang dibahas secara bertahap sesuai dengan tingkatannya. untuk kelas X, biasanya pelajaran trigonometri

Lebih terperinci

SMA/MA MATEMATIKA FISIKA KIMIA BIOLOGI BAHASA INDONESIA BAHASA INGGRIS

SMA/MA MATEMATIKA FISIKA KIMIA BIOLOGI BAHASA INDONESIA BAHASA INGGRIS PREDIKSI UJIAN NASIONAL SMA/MA MATEMATIKA FISIKA KIMIA BIOLOGI BAHASA INDONESIA BAHASA INGGRIS SEMOGA SUKSES PAKET PREDIKSI UJIAN NASIONAL SMA/MA Mata Pelajaran : MATEMATIKA Tanggal : - Waktu : MENIT PETUNJUK

Lebih terperinci

Siap UAN Matematika. Oleh. Arwan Hapsan. Portal Pendidikan Gratis Indonesia.

Siap UAN Matematika. Oleh. Arwan Hapsan. Portal Pendidikan Gratis Indonesia. Siap UAN Matematika Oleh Arwan Hapsan Portal Pendidikan Gratis Indonesia Http://okor.id Copyright okor.id Artikel ini boleh dicopy,diubah, dikutip, di cetak dalam media kertas atau yang lain, dipublikasikan

Lebih terperinci

Teknik pengintegralan: Integral fungsi pecah rasional (bagian 1)

Teknik pengintegralan: Integral fungsi pecah rasional (bagian 1) Teknik pengintegralan: Integral fungsi pecah rasional (bagian 1) Kalkulus 2 Nanang Susyanto Departemen Matematika FMIPA UGM 07 Februari 2017 NS (FMIPA UGM) Teknik pengintegralan 07/02/2017 1 / 8 Pemeran-pemeran

Lebih terperinci

1. Dengan merasionalkan penyebut, bentuk sederhana dari adalah... D E

1. Dengan merasionalkan penyebut, bentuk sederhana dari adalah... D E 1. Dengan merasionalkan penyebut, bentuk sederhana dari adalah... A. 3-3 + 21-7 21-21 + 7 2. Persamaan (2m - 4)x² + 5x + 2 = 0 mempunyai akar-akar real berkebalikan, maka nilai m adalah... A. -3-3 6 Kunci

Lebih terperinci

TRIGONOMETRI III GRAFIK, IDENTITAS DAN PERSAMAAN TRIGONOMETRI

TRIGONOMETRI III GRAFIK, IDENTITAS DAN PERSAMAAN TRIGONOMETRI TRIGONOMETRI III GRAFIK, IDENTITAS DAN PERSAMAAN TRIGONOMETRI. Identitas a. Sekolah : SMAN 78 Jakarta b. Nama Mata Pelajaran : Matematika X (Wajib) c. Semester : II / Genap d. Kompetensi Dasar :.0 Menjelaskan

Lebih terperinci

SEKOLAH MENENGAH KEJURUAN NEGERI 1 TEMON

SEKOLAH MENENGAH KEJURUAN NEGERI 1 TEMON TUGAS MANDIRI TIDAK TERSTUKTUR LIMIT DAN TURUNAN Disusun oleh : RADITYA AMARA BOJA 1037 SEKOLAH MENENGAH KEJURUAN NEGERI 1 TEMON 1 KULON PROGO OKTOBER 2015 Kata Pengantar Puji syukur saya panjatkan kepada

Lebih terperinci

MATEMATIKA TURUNAN FUNGSI

MATEMATIKA TURUNAN FUNGSI MATEMATIKA TURUNAN FUNGSI lim h 0 f ( x h) f( x) h KELAS : XI MIA SEMESTER : (DUA) SMA Santa Angela Bandung Tahun Pelajaran 06-07 XI MIA Semester Tahun Pelajaran 06 07 PENGANTAR : TURUNAN FUNGSI Modul

Lebih terperinci