UN SMA IPA 2010 Matematika

Ukuran: px
Mulai penontonan dengan halaman:

Download "UN SMA IPA 2010 Matematika"

Transkripsi

1 UN SMA IPA 00 Matematika Kode Soal P0 Doc. Name: UNSMAIPA00MATP0 Doc. Version : 0-0 halaman 0. Akar-akar persamaan kuadrat x² + (a - ) x + =0 adalah α dan β. Jika a > 0 maka nilai a =. 8 x 0. Diketahui fungsi, f(x). x x dan g(x) = x² + x +. Nilai komposisi fungsi (g o f) () =. 8 x 0. Diketahui f(x). x - dan f(x) x adalah invers dari f(x). Nilai f ( ) =. 0. Toko A, toko B, dan toko C menjual sepeda. Ketiga toko terseut selalu erelanja di seuah distriutor sepeda yang sama. Toko A harus memayar Rp ,00 untuk pemelian sepeda jenis I dan sepeda jenis II. Toko B harus memayar Rp ,00 untuk pemelian sepeda jenis I dan sepeda jenis II. Jika toko C memeli sepeda jenis dan sepeda jenis II, maka toko C harus memayar seesar. Rp ,00 Rp ,00 Rp ,00 Rp ,00 Rp ,00 Kunci dan pemahasan soal ini isa dilihat di dengan memasukkan kode 9 ke menu search. Copyright 0 Zenius Education

2 UN SMA IPA 00 Matematika, Kode Soal P0 doc. name: UNSMAIPA00MATP0 doc. version : 0-0 halaman 0. Grafik fungsi kuadrat f(x) = x² + x + menyinggung garis y = x +. Nilai yang memenuhi Salah satu persamaan garis singgung lingkaran (x + )² + (y - )² = 8 yang sejajar dengan y - x + = 0 y - x - =0 y + x + =0 -y - x + =0 -y + x + =0 y - x + =0 0. Jika p dan q adalah akar-akar persamaan x - x - = 0. maka persamaan kuadrat aru yang akar-akarnya p + dan q + X² + 0 x + = 0 X² - 0 x + = 0 X² - 0 x + = 0 X² - x + = 0 X² - x - = 0 c 08. Diketahui matriks-matriks A =, 0 a B =, C =, dan 0 D =. Jika A - B = CD, maka dari a + + c = Kunci dan pemahasan soal ini isa dilihat di dengan memasukkan kode 8 ke menu search. Copyright 0 Zenius Education

3 UN SMA IPA 00 Matematika, Kode Soal P0 doc. name: UNSMAIPA00MATP0 doc. version : 0-0 halaman 09. Nilai dari log9 log log. log8 log 0 0. Bentuk sederhana dari a a a a a 9 8. Bentuk sederhana dari (a (a ) ) ( )( Suku anyak x³ + ax² + x + diagi (x + ) sisanya, dan diagi (x - ) sisanya. Nilai a - =. 0 9 Kunci dan pemahasan soal ini isa dilihat di dengan memasukkan kode 8 ke menu search. Copyright 0 Zenius Education

4 UN SMA IPA 00 Matematika, Kode Soal P0 doc. name: UNSMAIPA00MATP0 doc. version : 0-0 halaman. Diketahui segitiga PQR dengan P(,, ), Q (,, ), dan R(,, ). Besar sudut PQR Diketahui segitiga ABC dengan koordinat A (, -, -) B(-,, -): dan C(, 0, -). Proyeksi vektor AB pada AC (i j k) (i j k) (i j k) (i j k) (i j k). Perhatikan gamar fungsi eksponen erikut ini! Persamaan grafik fungsi invers pada gamar Y = -x Y 0 X y = ²log x log x y = log x y = - log x y log x y Kunci dan pemahasan soal ini isa dilihat di dengan memasukkan kode 8 ke menu search. Copyright 0 Zenius Education

5 UN SMA IPA 00 Matematika, Kode Soal P0 doc. name: UNSMAIPA00MATP0 doc. version : 0-0 halaman. Bayangan kurva y = x x + yang ditransformasikan oleh matriks dilanjutkan oleh matriks y = x² + x + y = -x² + x + x = y² - y + x = y² + y + x = -y² + y +. Luas daerah parkir.0 m². Luas rata-rata untuk moil kecil m² dan moil esar 0 m². Daya tampung maksimum hanya 00 kendaraan, iaya parkir moil kecil Rp.000,00/jam dan moil esar Rp.000,00/ jam. Jika dalam satu jam terisi penuh dan tidak ada kendaraan yang pergi dan datang, penghasilan maksimum tempat parkir Rp.000,00 Rp ,00 Rp 0.000,00 Rp ,00 Rp 0.000,00 8. Perhatikan premis-premis erikut! () Jika saya giat maka saya isa meraih juara. () Jika saya isa meraih juara maka saya oleh ikut pertandingan. Ingkaran dari kesimpulan kedua premis di atas Saya giat elajar dan saya tidak oleh ikut ertanding Saya giat elajar atau saya tidak oleh ikut pertandingan Saya giat elajar maka saya isa meraih juara Saya giat elajar dan saya oleh ikut pertandingan Saya ikut ertanding maka saya giat elajar Kunci dan pemahasan soal ini isa dilihat di dengan memasukkan kode 8 ke menu search. Copyright 0 Zenius Education

6 UN SMA IPA 00 Matematika, Kode Soal P0 doc. name: UNSMAIPA00MATP0 doc. version : 0-0 halaman 9. Diketahui arisan aritmatika dengan Un adalah suku ke-n. Jika U + U + U 0 =, maka U 9 = , 8, 0. Tiga uah ilangan mementuk arisan aritmatika dengan eda tiga. Jika suku kedua dikurangi, maka terentuklah arisan geometri dengan jumlah. Rasio arisan terseut -. Diketahui kuus ABCD.EFGH Nilai kosinus sudut antara CH dan idang BDHF. Diketahui kuus ABCD.EFGH dengan panjang rusuk cm. Jarak titik A ke garis CF cm cm cm cm cm A E A E H D H D F B F B G C G C Kunci dan pemahasan soal ini isa dilihat di dengan memasukkan kode 8 ke menu search. Copyright 0 Zenius Education

7 UN SMA IPA 00 Matematika, Kode Soal P0 doc. name: UNSMAIPA00MATP0 doc. version : 0-0 halaman. Luas segi eraturan dengan panjang jarijari lingkaran luar 8 cm 9 cm² cm² cm² 8 cm² cm². Diketahui p dan q adalah sudut lancip dan p - q = 0. Jika cos p. sinq =. Maka nilai dari sin p. cos q =.. Hasil dari cos( sin( a) o a) o cos( sin( a) a) o -. Himpunan penyelesaian persamaan: Cos x - sin x = 0, untuk,,,,,,,,,, Kunci dan pemahasan soal ini isa dilihat di dengan memasukkan kode 8 ke menu search. Copyright 0 Zenius Education

8 UN SMA IPA 00 Matematika, Kode Soal P0 doc. name: UNSMAIPA00MATP0 doc. version : 0-0 halaman 8. Diketahui prisma segitiga tegak ABC.DEF. Panjang rusuk-rusuk alas AB = cm, BC = cm, dan AC = 8 cm. Panjang rusuk tegak 0 cm. Volume prisma terseut D E F A C B 00 cm³ 00 cm³ cm³ 00 cm³ 00 cm³ 8. Jarak yang ditempuh seuah moil dalam waktu t dierikan oleh fungsi s(t) t t t t. Kecepatan maksimum moil terseut akan tercapai pada t =. detik detik detik detik detik 9. Garis singgung kurva y = (x² + )² yang melalui titik (, 9) memotong sumu Y di titik. (0, 8) (0, ) (0, -) (0, -) (0, -) 0. Nilai - lim x o sinx sinx x Kunci dan pemahasan soal ini isa dilihat di dengan memasukkan kode 8 ke menu search. Copyright 0 Zenius Education

9 UN SMA IPA 00 Matematika, Kode Soal P0 doc. name: UNSMAIPA00MATP0 doc. version : 0-0 halaman 9. Nilai x lim x x 8. Volum enda putar yang terjadi ila daerah yang diatasi oleh kurva y = x² dan y = x diputar 0 mengelilingi sumu X satuan volum satuan volum satuan volum satuan volum satuan volum. Luas daerah di kuadran I yang diatasi kurva y = x³ dan y = x, x =0, dan garis x = satuan luas satuan luas satuan luas satuan luas satuan luas. Hasil dari o (x )(x ) dx Kunci dan pemahasan soal ini isa dilihat di dengan memasukkan kode 8 ke menu search. Copyright 0 Zenius Education

10 UN SMA IPA 00 Matematika, Kode Soal P0 doc. name: UNSMAIPA00MATP0 doc. version : 0-0 halaman 0. Nilai dari - 0 cos(x ) dx. Hasil dari ( sin x) dx cos x C sin x C sin x cos x + C sin x C sin x.cos x. Dalam ruang tunggu terdapat tempat duduk seanyak kursi yang akan diduduki oleh pemuda dan pemudi. Banyak cara duduk elajar agar mereka dapat duduk selangseling pemuda dan pemudi dalam satu kelompok adalah Diketahui titik dan tidak ada titik atau leih yang segaris. Banyak segitiga yang dapat dientuk dari titik-titik terseut C Kunci dan pemahasan soal ini isa dilihat di dengan memasukkan kode 8 ke menu search. Copyright 0 Zenius Education

11 UN SMA IPA 00 Matematika, Kode Soal P0 doc. name: UNSMAIPA00MATP0 doc. version : 0-0 halaman 9. Seuah kantong erisi ola merah, ola putih, dan ola hitam. Diamil seuah ola secara acak, peluang teramil ola merah atau hitam Perhatikan tale data erikut! Data Frekuensi 8 Median dari data pada tael 0, +.0 0, , , , +.0 Kunci dan pemahasan soal ini isa dilihat di dengan memasukkan kode 8 ke menu search. Copyright 0 Zenius Education

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPA

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPA PEMBAHASAN UN SMA TAHUN PELAJARAN 009/00 MATEMATIKA PROGRAM STUDI IPA PEMBAHAS :. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si. 3. Marfuah, M.T. 4. Rohmitawati, S.Si. PPPPTK MATEMATIKA 00 . Perhatikan

Lebih terperinci

SOAL UJIAN NASIONAL. PROGRAM STUDI IPA ( kode P 45 ) TAHUN PELAJARAN 2008/2009

SOAL UJIAN NASIONAL. PROGRAM STUDI IPA ( kode P 45 ) TAHUN PELAJARAN 2008/2009 SOAL UJIAN NASIONAL PROGRAM STUDI IPA ( kode P 4 ) TAHUN PELAJARAN 8/9. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh

Lebih terperinci

Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... A. 4

Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... A. 4 1. Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... A. 4 D. (8-2 ) cm B. (4 - ) cm E. (8-4 ) cm C. (4-2 ) cm Jawaban : E Diketahui segitiga sama kaki = AB = AC Misalkan : AB = AC = a

Lebih terperinci

Konstruksi Rangka Batang

Konstruksi Rangka Batang Konstruksi Rangka atang Salah satu sistem konstruksi ringan yang mempunyai kemampuan esar, yaitu erupa suatu Rangka atang. Rangka atang merupakan suatu konstruksi yang terdiri dari sejumlah atang atang

Lebih terperinci

4. Bentuk sederhada dari : 3 2 ... D. E. 5. Bentuk sederhana dari

4. Bentuk sederhada dari : 3 2 ... D. E. 5. Bentuk sederhana dari . Pernyataan yang senilai dengan kalimat Jika Fatah dan Ichwan datang maka semua siswa senang adalah. A. Jika Fatah dan Ichwan tidak datang maka semua siswa tidak senang B. Jika Fatah atau Ichwan tidak

Lebih terperinci

SILABUS INDIKATOR MATERI PEMBELAJARAN KEGIATAN PEMBELAJARAN PENILAIAN KHARAKTER

SILABUS INDIKATOR MATERI PEMBELAJARAN KEGIATAN PEMBELAJARAN PENILAIAN KHARAKTER SILABUS NAMA SEKOLAH : SMK Negeri 1 Surabaya MATA PELAJARAN : MATEMATIKA (Kelompok Teknologi Informasi) KELAS / SEMESTER : X / 1 STANDAR : Memecahkan masalah berkaitan dengan konsep operasi bilangan riil

Lebih terperinci

4. Himpunan penyelesaian dari sistem persamaan linear x + y = 5 dan x - 2y = -4 adalah... A.{ (1, 4) }

4. Himpunan penyelesaian dari sistem persamaan linear x + y = 5 dan x - 2y = -4 adalah... A.{ (1, 4) } 1. Diketahui himpunan P = ( bilangan prima kurang dari 13 ) Banyak himpunan bagian dari P adalah... 5 25 10 32 P = {Bilangan prima kurang dari 13} = {2, 3, 5, 7, 11} n(p) = 5 2. Dari diagram Venn di bawah,

Lebih terperinci

Buku Pendalaman Konsep. Trigonometri. Tingkat SMA Doddy Feryanto

Buku Pendalaman Konsep. Trigonometri. Tingkat SMA Doddy Feryanto Buku Pendalaman Konsep Trigonometri Tingkat SMA Doddy Feryanto Kata Pengantar Trigonometri merupakan salah satu jenis fungsi yang sangat banyak berguna di berbagai bidang. Di bidang matematika sendiri,

Lebih terperinci

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian :

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian : 1. Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm C. 26 cm B. 52 cm D. 13 cm 2. Gambar disamping adalah persegi panjang. Salah satu sifat persegi panjang adalah

Lebih terperinci

BAB VI. PENGGUNAAN INTEGRAL. Departemen Teknik Kimia Universitas Indonesia

BAB VI. PENGGUNAAN INTEGRAL. Departemen Teknik Kimia Universitas Indonesia BAB VI. PENGGUNAAN INTEGRAL Departemen Teknik Kimia Universitas Indonesia BAB VI. PENGGUNAAN INTEGRAL Luas Daerah di Bidang Volume Benda Pejal di Ruang: Metode Cincin Metode Cakram Metode Kulit Tabung

Lebih terperinci

Beberapa Benda Ruang Yang Beraturan

Beberapa Benda Ruang Yang Beraturan Beberapa Benda Ruang Yang Beraturan Kubus Tabung rusuk kubus = a volume = a³ panjang diagonal bidang = a 2 luas = 6a² panjang diagonal ruang = a 3 r = jari-jari t = tinggi volume = π r² t luas = 2πrt Prisma

Lebih terperinci

KUMPULAN RUMUS MATEMATIKA UNTUK SMP SESUAI DENGAN STANDAR KOMPETENSI LULUSAN UJIAN NASIONAL TAHUN PELAJARAN 2009/2010

KUMPULAN RUMUS MATEMATIKA UNTUK SMP SESUAI DENGAN STANDAR KOMPETENSI LULUSAN UJIAN NASIONAL TAHUN PELAJARAN 2009/2010 Rumus-rumus Matematika 1 Sesuai SKL UN 2010 KUMPULN RUMUS MTMTIK UNTUK SMP SSUI NGN STNR KOMPTNSI LULUSN UJIN NSIONL THUN PLJRN 2009/2010 SKL Nomor 1 : Menggunakan konsep operasi hitung dan sifat-sifat

Lebih terperinci

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f. Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan

Lebih terperinci

BAB 3 PENYELESAIAN PERSAMAAN NON LINIER

BAB 3 PENYELESAIAN PERSAMAAN NON LINIER BAB 3 PENYELESAIAN PERSAMAAN NON LINIER 3.. Permasalahan Persamaan Non Linier Penyelesaian persamaan non linier adalah penentuan akar-akar persamaan non linier.dimana akar sebuah persamaan f(x =0 adalah

Lebih terperinci

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain BAB III RUANG VEKTOR R DAN R 3 Bab ini membahas pengertian dan operasi ektor-ektor. Selain operasi aljabar dibahas pula operasi hasil kali titik dan hasil kali silang dari ektor-ektor. Tujuan Instruksional

Lebih terperinci

Sumber: Art & Gallery

Sumber: Art & Gallery Sumber: Art & Gallery Standar Kmpetensi 0. Menentukan kedudukan, jarak, dan besar sudut yang melibatkan titik, garis, dan bidang dalam ruang dimensi dua Kmpetensi Dasar 0. Mengidentifikasi sudut 0. Menentukan

Lebih terperinci

Catatan Kuliah KALKULUS II BAB V. INTEGRAL

Catatan Kuliah KALKULUS II BAB V. INTEGRAL BAB V. INTEGRAL Anti-turunan dan Integral TakTentu Persamaan Diferensial Sederhana Notasi Sigma dan Luas Daerah di Bawah Kurva Integral Tentu Teorema Dasar Kalkulus Sifat-sifat Integral Tentu Lebih Lanjut

Lebih terperinci

Ruang Hasil Kali Dalam

Ruang Hasil Kali Dalam Ruang Hasil Kali Dalam Hasil Kali Dalam dan Norm Wono Setya Budhi KKAG FMIPA ITB v 0.1 Maret 2015 Wono Setya Budhi (KKAG FMIPA ITB) Ruang Hasil Kali Dalam v 0.1 Maret 2015 1 / 12 Pada bab ini kita akan

Lebih terperinci

BAB II VEKTOR DAN GERAK DALAM RUANG

BAB II VEKTOR DAN GERAK DALAM RUANG BAB II VEKTOR DAN GERAK DALAM RUANG 1. KOORDINAT CARTESIUS DALAM RUANG DIMENSI TIGA SISTEM TANGAN KANAN SISTEM TANGAN KIRI RUMUS JARAK,,,, 16 Contoh : Carilah jarak antara titik,, dan,,. Solusi :, Persamaan

Lebih terperinci

SOAL BANGUN RUANG. a. 1000 dm 3 b. 600 dm 3 c. 400 dm 3 d. 100 dm 3 e. 10 dm 3

SOAL BANGUN RUANG. a. 1000 dm 3 b. 600 dm 3 c. 400 dm 3 d. 100 dm 3 e. 10 dm 3 SOAL BANGUN RUANG Soal Pilihan Ganda 1. Diketahui kubus dengan panjang diagonal sisi 5 2 meter, luas permukaan kubus tersebut adalah a. 5 m 2 b. 25 m 2 c. 100 m 2 d. 150 m 2 e. 250 m 2 2. Dikeatui bak

Lebih terperinci

EFISIENSI DAN EFEKTIVITAS SIRIP LONGITUDINAL DENGAN PROFIL SIKU EMPAT KEADAAN TAK TUNAK KASUS 2D

EFISIENSI DAN EFEKTIVITAS SIRIP LONGITUDINAL DENGAN PROFIL SIKU EMPAT KEADAAN TAK TUNAK KASUS 2D EFISIENSI DAN EFEKIVIAS SIRIP LONGIUDINAL DENGAN PROFIL SIKU EMPA KEADAAN AK UNAK KASUS 2D PK Purwadi Jurusan eknik Mesin, FS, Universitas Sanata Dharma Yogyakarta Email: pur@mailcity.com ABSRAK Penelitian

Lebih terperinci

UNJUK KERJA MULTI-CODE MULTICARRIER CDMA PADA KANAL MULTIPATH FADING. Intisari

UNJUK KERJA MULTI-CODE MULTICARRIER CDMA PADA KANAL MULTIPATH FADING. Intisari UNJUK KERJA MULTI-CODE MULTICARRIER CDMA PADA KANAL MULTIPATH FADING Eva Yovita Dwi Utami Program Studi Teknik Elektro, Fakultas Teknik UKSW Jalan Diponegoro 52-6, Salatiga 5711 Intisari Sistem yang diteliti

Lebih terperinci

Fungsi, Persamaaan, Pertidaksamaan

Fungsi, Persamaaan, Pertidaksamaan Fungsi, Persamaaan, Pertidaksamaan Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 9 Agustus 004 di PPPG Matematika Oleh: Drs. Markaban, M.Si. Widyaiswara PPPG

Lebih terperinci

MAT. 05. Relasi dan Fungsi

MAT. 05. Relasi dan Fungsi MAT. 05. Relasi dan Fungsi i Kode MAT. 05 Relasi dan fungsi BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN PENDIDIKAN

Lebih terperinci

Macam-macam fungsi. Fungsi Polinomial. Fungsi Linier. Grafik Fungsi Linier. Fungsi

Macam-macam fungsi. Fungsi Polinomial. Fungsi Linier. Grafik Fungsi Linier. Fungsi Fungsi Macam-macam fungsi Polinomial (sampai dengan derajat 2) Akar kuadrat Rasional Ekponensial Logaritma Fungsi Polinomial Bentuk Umum: f (x) = a 0 + a 1 x + a 2 x 2 + + a n x n, dengan a 0, a 1, a 2,

Lebih terperinci

LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memperebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 2011

LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memperebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 2011 LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memerebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 0 PENYISIHAN II PERORANGAN LCCM TINGKAT SMP x. I. x x II. x x x 6 x III. x x 6

Lebih terperinci

Bab III. 3.1.1 Kecepatan relatif dua buah titik pada satu penghubung kaku. Penghubung berputar terhadap satu titik tetap

Bab III. 3.1.1 Kecepatan relatif dua buah titik pada satu penghubung kaku. Penghubung berputar terhadap satu titik tetap Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno ab III KECEPTN RELTIF DN PERCEPTN RELTIF 3.1 KECEPTN RELTIF 3.1.1 Kecepatan relatif dua buah titik pada satu penghubung kaku Penghubung berputar

Lebih terperinci

Suku Banyak. A. Pengertian Suku Banyak B. Menentukan Nilai Suku Banyak C. Pembagian Suku Banyak D. Teorema Sisa E. Teorema Faktor

Suku Banyak. A. Pengertian Suku Banyak B. Menentukan Nilai Suku Banyak C. Pembagian Suku Banyak D. Teorema Sisa E. Teorema Faktor Bab 5 Sumber: www.in.gr Setelah mempelajari bab ini, Anda harus mampu menggunakan konsep, sifat, dan aturan fungsi komposisi dalam pemecahan masalah; menggunakan konsep, sifat, dan aturan fungsi invers

Lebih terperinci

3 OPERASI HITUNG BENTUK ALJABAR

3 OPERASI HITUNG BENTUK ALJABAR OPERASI HITUNG BENTUK ALJABAR Pada arena balap mobil, sebuah mobil balap mampu melaju dengan kecepatan (x + 10) km/jam selama 0,5 jam. Berapakah kecepatannya jika jarak yang ditempuh mobil tersebut 00

Lebih terperinci

MAT. 06. Geometri Dimensi Tiga

MAT. 06. Geometri Dimensi Tiga MAT. 06. Geometri Dimensi Tiga i Kode MAT. 06 Geometri Dimensi Tiga BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN

Lebih terperinci

BAB I VEKTOR DALAM BIDANG

BAB I VEKTOR DALAM BIDANG BAB I VEKTOR DALAM BIDANG I. KURVA BIDANG : Penyajian secara parameter Suatu kurva bidang ditentukan oleh sepasang persamaan parameter. ; dalam I dan kontinue pada selang I, yang pada umumnya sebuah selang

Lebih terperinci

Bab. Kesebangunan dan Kekongruenan Bangun Datar. A. Kesebangunan Bangun Datar B. Kekongruenan Bangun Datar

Bab. Kesebangunan dan Kekongruenan Bangun Datar. A. Kesebangunan Bangun Datar B. Kekongruenan Bangun Datar ab 1 umber: Image Kesebangunan dan Kekongruenan angun atar i Kelas VII, kamu telah mempelajari bangun datar segitiga dan segiempat, seperti persegipanjang, persegi, jajargenjang, belah ketupat, layang-layang,

Lebih terperinci

17. SOAL-SOAL PROGRAM LINEAR

17. SOAL-SOAL PROGRAM LINEAR 17. SOAL-SOAL PROGRAM LINEAR EBTANAS2000 1. Himpunan penelesaian sistem pertidaksamaan 5x + 10 2x + 8 2 x = 2 titik (2,0 titk potong dengan sumbu jika x = 0 = 10 titik (0,10 daerah 5x + 10 berada pada

Lebih terperinci

Nur Laila Indah Sari. Asyiknya Belajar Bangun Ruang Sisi Datar

Nur Laila Indah Sari. Asyiknya Belajar Bangun Ruang Sisi Datar Nur Laila Indah Sari syiknya elajar angun Ruang Sisi atar syiknya elajar angun Ruang Sisi atar NUR LIL INH SRI yiknya elajar angun Ruang dan Sisi atar iterbitkan oleh Percetakan dan Penerbitan PT alai

Lebih terperinci

BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI

BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI LAMPIRAN 5 BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI Laporan 2 Pelaksanaan OSN-PERTAMINA 2012 69 Olimpiade Sains Nasional Pertamina 2012 Petunjuk : 1. Tuliskan secara lengkap Nama, Nomor

Lebih terperinci

Bab 15. Interaksi antar dua spesies (Model Kerjasama)

Bab 15. Interaksi antar dua spesies (Model Kerjasama) Bab 15. Interaksi antar dua spesies (Model Kerjasama) Dalam hal ini diberikan dua spesies yang hidup bersama dalam suatu habitat tertutup. Kita ketahui bahwa terdapat beberapa jenis hubungan interaksi

Lebih terperinci

Matematika Lanjut 1. Sistem Persamaan Linier Transformasi Linier. Matriks Invers. Ruang Vektor Matriks. Determinan. Vektor

Matematika Lanjut 1. Sistem Persamaan Linier Transformasi Linier. Matriks Invers. Ruang Vektor Matriks. Determinan. Vektor Matematika Lanjut 1 Vektor Ruang Vektor Matriks Determinan Matriks Invers Sistem Persamaan Linier Transformasi Linier 1 Dra. D. L. Crispina Pardede, DE. Referensi [1]. Yusuf Yahya, D. Suryadi. H.S., gus

Lebih terperinci

BAB 2 ANALISIS VEKTOR

BAB 2 ANALISIS VEKTOR BAB ANALISIS VEKTOR A. Tujuan Umum Mahasiswa memahami pengertian vektor, operasi vektor, penjumlahan, pengurangan, perkalian dan kaedah aljabar vektor. B. Tujuan Khusus Mahasiswa dapat memahami konsep

Lebih terperinci

Jenis Jenis--jenis jenis fungsi dan fungsi linier Hafidh Munawir

Jenis Jenis--jenis jenis fungsi dan fungsi linier Hafidh Munawir Jenis-jenis fungsi dan fungsi linier Hafidh Munawir Diskripsi Mata Kuliah Memperkenalkan unsur-unsur fungsi ialah variabel bebas dan variabel terikat, koefisien, dan konstanta, yang saling berkaitan satu

Lebih terperinci

F U N G S I A. PENGERTIAN DAN UNSUR-UNSUR FUNGSI

F U N G S I A. PENGERTIAN DAN UNSUR-UNSUR FUNGSI F U N G S I A. PENGERTIAN DAN UNSUR-UNSUR FUNGSI Fungsi Fungsi ialah suatu bentuk hubungan matematis yang menyatakan hubungan ketergantungan (hubungan fungsional) antara satu variabel dengan variabel lain.

Lebih terperinci

DIMENSI TIGA. 5. Tabung. Luas = 2 r ( r + t ) Vol = r 2 t. 6. Kerucut. Luas = r (r+s) ( s = pjg sisi miring ) Vol = 1/3. luas alas. tinggi. 7.

DIMENSI TIGA. 5. Tabung. Luas = 2 r ( r + t ) Vol = r 2 t. 6. Kerucut. Luas = r (r+s) ( s = pjg sisi miring ) Vol = 1/3. luas alas. tinggi. 7. INI IG endahuluan: ab imensi iga ini merupakan kelanjutan dari materi pelajaran bangun ruang sewaktu di dulu. aat di, hal yang dibahas adalah luas permukaan dan volume bangun ruang, sedangkan di ditambahkan

Lebih terperinci

Nama Peserta : No Peserta : Asal Sekolah : Asal Daerah :

Nama Peserta : No Peserta : Asal Sekolah : Asal Daerah : 1. Terdapat sebuah fungsi H yang memetakan dari himpunan bilangan asli ke bilangan asli lainnya dengan ketentuan sebagai berikut. Misalkan akan dicari nilai fungsi H jika x=38. 38 terdiri dari 3 puluhan

Lebih terperinci

PREDIKSI DAN LATIHAN SOAL UJIAN AKHIR NASIONAL KUMPULAN SOAL DAN PEMBAHASAN SOAL UAN 2004-2009

PREDIKSI DAN LATIHAN SOAL UJIAN AKHIR NASIONAL KUMPULAN SOAL DAN PEMBAHASAN SOAL UAN 2004-2009 PREDIKSI DAN LATIHAN SOAL UJIAN AKHIR NASIONAL KUMPULAN SOAL DAN PEMBAHASAN SOAL UAN 2004-2009 MATEMATIKA Untuk SMP / MTS Copyright soal-unas.blogspot.com Artikel ini boleh dicopy, dikutip, di cetak dalam

Lebih terperinci

syarat tertentu yang diberikan. Atau bisa juga diartikan sebagai lintasan dari sebuah

syarat tertentu yang diberikan. Atau bisa juga diartikan sebagai lintasan dari sebuah 2 Tempat Kedudukan dan Persamaan 2.1. Tempat Kedudukan Tempat kedudukan (locus) adalah himpunan titik-titik yang memenuhi suatu syarat tertentu yang diberikan. Atau bisa juga diartikan sebagai lintasan

Lebih terperinci

PEMBELAJARAN BANGUN-BANGUN DATAR (1)

PEMBELAJARAN BANGUN-BANGUN DATAR (1) H. Sufyani Prabawanto, M. Ed. Bahan Belajar Mandiri 3 PEMBELAJARAN BANGUN-BANGUN DATAR (1) Pendahuluan Bahan belajar mandiri ini menyajikan pembelajaran bangun-bangun datar yang dibagi menjadi dua kegiatan

Lebih terperinci

Geometri Dimensi Dua. Bab 4

Geometri Dimensi Dua. Bab 4 ab 4 Sumber: www.swissworld.org Geometri imensi ua Pada bab ini, nda akan diajak untuk memecahkan masalah yang berhubungan dengan menentukan kedudukan, jarak, dan bidang, di antaranya, dapat menggunakan

Lebih terperinci

GEOMETRI DALAM RUANG DIMENSI TIGA

GEOMETRI DALAM RUANG DIMENSI TIGA OMI LM UN IMNSI I (l. rismanto, M.Sc.) I. UUN II, IS, N IN. II, IS N IN itik merupakan unsur ruan yan palin sederana, tidak didefinisikan, tetapi setiap pembaca diarapkan dapat memaaminya. Yan dimaksud

Lebih terperinci

Bahan ajar On The Job Training. Penggunaan Alat Total Station

Bahan ajar On The Job Training. Penggunaan Alat Total Station Bahan ajar On The Job Training Penggunaan Alat Total Station Direktorat Pengukuran Dasar Deputi Bidang Survei, Pengukuran dan Pemetaan Badan Pertanahan Nasional Republik Indonesia 2011 Pengukuran Poligon

Lebih terperinci

9 Menghitung Besar Sudut di Titik Sudut

9 Menghitung Besar Sudut di Titik Sudut 9 Menghitung Besar Sudut di Titik Sudut Besar sudut di setiap titik sudut pada segi-banyak relatif mudah dihitung. Pada segi-n beraturan, besar sudut di setiap titik sudutnya sama dengan 180 o 360 o /n.

Lebih terperinci

Pertemuan ke 11. Segiempat Segiempat adalah bidang datar yang dibatasi oleh empat potong garis yang saling bertemu dan menutup D C

Pertemuan ke 11. Segiempat Segiempat adalah bidang datar yang dibatasi oleh empat potong garis yang saling bertemu dan menutup D C Pertemuan ke Segiempat Segiempat adalah bidang datar yang dibatasi oleh empat potong garis yang saling bertemu dan menutup D C B Empat persegi panjang d D E a c C B b B = CD dan B // CD D = BC dan D //

Lebih terperinci

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN 2008 MATEMATIKA NON-TEKNOLOGI SESI 1 (PILIHAN GANDA DAN ISIAN SINGKAT) WAKTU : 120 MENIT

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN 2008 MATEMATIKA NON-TEKNOLOGI SESI 1 (PILIHAN GANDA DAN ISIAN SINGKAT) WAKTU : 120 MENIT OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN 2008 MATEMATIKA NON-TEKNOLOGI SESI (PILIHAN GANDA DAN ISIAN SINGKAT) WAKTU : 20 MENIT I. Soal Pilihan Ganda, ada 0 soal dalam test ini. Petunjuk

Lebih terperinci

TKS-4101: Fisika. KULIAH 3: Gerakan dua dan tiga dimensi J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA

TKS-4101: Fisika. KULIAH 3: Gerakan dua dan tiga dimensi J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA TKS-4101: Fisika KULIAH 3: Gerakan dua dan tiga dimensi Dosen: Tim Dosen Fisika Jurusan Teknik Sipil FT-UB 1 Gerak 2 dimensi lintasan berada dalam

Lebih terperinci

MAT. 04. Geometri Dimensi Dua

MAT. 04. Geometri Dimensi Dua MAT. 04. Geometri Dimensi Dua i Kode MAT. 04 Geometri Dimensi Dua BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN

Lebih terperinci

DIKTAT MEKANIKA KEKUATAN MATERIAL

DIKTAT MEKANIKA KEKUATAN MATERIAL 1 DIKTAT MEKANIKA KEKUATAN MATERIAL Disusun oleh: Asyari Darami Yunus Teknik Mesin Universitas Darma Persada Jakarta 010 KATA PENGANTAR Untuk memenuhi buku pegangan dalam perkuliahan, terutama yang menggunakan

Lebih terperinci

EDISI REVISI 2014 MATEMATIKA. SMA/MA SMK/MAK Kelas. Semester 1

EDISI REVISI 2014 MATEMATIKA. SMA/MA SMK/MAK Kelas. Semester 1 EDISI REVISI 04 MATEMATIKA SMA/MA SMK/MAK Kelas X Semester Hak Cipta 04 pada Kementerian Pendidikan dan Kebudayaan Dilindungi Undang-Undang MILIK NEGARA TIDAK DIPERDAGANGKAN Disklaimer: Buku ini merupakan

Lebih terperinci

FUNGSI. 1. Definisi Fungsi 2. Jenis-jenis Fungsi 3. Pembatasan dan Perluasan Fungsi 4. Operasi yang Merupakan Fungsi. Cece Kustiawan, FPMIPA, UPI

FUNGSI. 1. Definisi Fungsi 2. Jenis-jenis Fungsi 3. Pembatasan dan Perluasan Fungsi 4. Operasi yang Merupakan Fungsi. Cece Kustiawan, FPMIPA, UPI FUNGSI 1. Definisi Fungsi 2. Jenis-jenis Fungsi 3. Pembatasan dan Perluasan Fungsi 4. Operasi yang Merupakan Fungsi Definisi Fungsi Suatu fungsi f atau pemetaan f dari himpunan A ke himpunan B adalah suatu

Lebih terperinci

20. Jumlah n suku pertama deret aritmetika dinyatakan dengan 2 4. Suku ke-9 dari deret aritmetika tersebut adalah... A. 30 B. 34 C. 38 D. 42 E.

20. Jumlah n suku pertama deret aritmetika dinyatakan dengan 2 4. Suku ke-9 dari deret aritmetika tersebut adalah... A. 30 B. 34 C. 38 D. 42 E. Program Studi : IPA PAKET : A63 - IPA 0. Jumlah n suku pertama deret aritmetika dinyatakan dengan 4. Suku ke-9 dari deret aritmetika tersebut adalah... A. 30 B. 34 C. 38 D. 4 E. 46 4 9 49.81 36 16 36 198

Lebih terperinci

Pengenalan Bangun Datar dan Sifat-sifatnya di SD

Pengenalan Bangun Datar dan Sifat-sifatnya di SD gus Suharjana SD PKET FSILITSI PEMERDYN KKG/MGMP MTEMTIK Pengenalan angun Datar dan Sifat-sifatnya di SD Penulis: Drs. gus Suharjana, M.Pd. Penilai: Dra. Pujiati, M.Ed. Editor: Sri Purnama Surya, S.Pd.,

Lebih terperinci

POLINOM (SUKU BANYAK) Menggunakan aturan suku banyak dalam penyelesaian masalah.

POLINOM (SUKU BANYAK) Menggunakan aturan suku banyak dalam penyelesaian masalah. POLINOM (SUKU BANYAK) Standar Kompetensi: Menggunakan aturan suku banyak dalam penyelesaian masalah. Kompetensi Dasar: 1. Menggunakan algoritma pembagian suku banyak untuk menentukan hasil bagi dan sisa

Lebih terperinci

Pengintegralan Fungsi Rasional

Pengintegralan Fungsi Rasional Pengintegralan Fungsi Rasional Ahmad Kamsyakawuni, M.Kom Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember 25 Maret 2014 Pengintegralan Fungsi Rasional 1 Pengintegralan Fungsi Rasional 2

Lebih terperinci

K L P Q 1 2 10 2 2 4 13 4 3 8 18 8. Gambar 4.10 Gambar 4.11

K L P Q 1 2 10 2 2 4 13 4 3 8 18 8. Gambar 4.10 Gambar 4.11 B. Relasi Sebelum mendefinisikan produk Cartesius, terlebih dahulu Anda perlu mengenal pengertian pasangan terurut. Dalam sistem koordinat Cartesius dengan sumbu x dan sumbu y, kita mengetahui bahwa titik

Lebih terperinci

BAB V TRANSFORMASI 2D

BAB V TRANSFORMASI 2D BAB V TRANSFORMASI 2D OBJEKTIF : Pada Bab ini mahasiswa mempelajari tentang : Transformasi Dasar 2D 1. Translasi 2. Rotasi 3. Scalling Transformasi Lain 1. Refleksi 2. Shear TUJUAN DAN SASARAN: Setelah

Lebih terperinci

II. Penggunaan Alat Peraga. segitiga, kemudian guru bertanya Berapakah alasnya? (7) Berapakah tingginya? (2), Bagaimanakah cara mendapatkannya?

II. Penggunaan Alat Peraga. segitiga, kemudian guru bertanya Berapakah alasnya? (7) Berapakah tingginya? (2), Bagaimanakah cara mendapatkannya? rumus luas layang-layang dengan pendekaan luas segiiga 1. Memahami konsep luas segiiga 2. Memahami layang-layang dan unsur-unsurnya (pengerian layanglayang dan diagonal-diagonalnya) Langkah 1 Gb. 11.2

Lebih terperinci

GEOMETRI DATAR DAN RUANG. Oleh: Drs. Agus Suharjana, M.Pd.

GEOMETRI DATAR DAN RUANG. Oleh: Drs. Agus Suharjana, M.Pd. OMTRI TR N RUN Oleh: rs. gus Suharjana, M.Pd. 1 TR ISI Kata pengantar ii aftar isi iii ab I Pendahuluan. 1. Latar elakang 1. Tujuan...... 1. Ruang Lingkup.... 2 ab II KONSP NUN TR 3. Segiempat dan Lingkaran....

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Mata Pelajaran : Matematika Kelas/ Semester: XI Program IPA/ Alokasi Waktu: jam Pelajaran (3 Pertemuan) A. Standar Kompetensi Menggunakan konsep limit ungsi dan turunan

Lebih terperinci

FUNGSI DAN GRAFIKNYA KULIAH-4. Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan PERTIDAKSAMAAN

FUNGSI DAN GRAFIKNYA KULIAH-4. Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan PERTIDAKSAMAAN KULIAH-4 Modul Pembelajaran Matematika Kelas X semester 1 Modul Pembelajaran Matematika Kelas X semester 1 FUNGSI DAN GRAFIKNYA PERTIDAKSAMAAN Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan

Lebih terperinci

Daftar Isi Kata Sambutan... iii Panduan Membaca Buku Ini... iv Kata Pengantar... vi Semester 1 Bab 1 Bilangan Bulat... 1 A. Operasi Hitung Campuran dan Sifat-Sifat Operasi Hitung pada Bilangan Bulat...

Lebih terperinci

v adalah kecepatan bola A: v = ωr. Dengan menggunakan I = 2 5 mr2, dan menyelesaikan persamaanpersamaan di atas, kita akan peroleh: ω =

v adalah kecepatan bola A: v = ωr. Dengan menggunakan I = 2 5 mr2, dan menyelesaikan persamaanpersamaan di atas, kita akan peroleh: ω = v adalah kecepatan bola A: v = ωr. ω adalah kecepatan sudut bola A terhadap sumbunya (sebenarnya v dapat juga ditulis sebagai v = d θ dt ( + r), tetapi hubungan ini tidak akan kita gunakan). Hukum kekekalan

Lebih terperinci

INTEGRAL RANGKAP DUA. diberikan daerah di bidang XOY yang berbentuk persegi panjang, {( )

INTEGRAL RANGKAP DUA. diberikan daerah di bidang XOY yang berbentuk persegi panjang, {( ) Matematika asar Misal INTEGAL ANGKAP UA diberikan daerah di bidang XO yang berbentuk persegi panjang, {( ) } =, y a b, y d dan fungsi dua peubah z = f (,y ) >. Maka untuk menghitung volume benda ruang

Lebih terperinci

PENGUKURAN, LUAS DAN VOLUME

PENGUKURAN, LUAS DAN VOLUME PENGUKURAN, LUAS DAN VOLUME Pengukuran merupakan kegiatan membandingkan suatu besaran yang diukur dengan alat ukur yang digunakan sebagai satuan. Sesuatu yang dapat diukur dan dapat dinyatakan dengan angka

Lebih terperinci

PEMBELAJARAN BANGUN RUANG (1)

PEMBELAJARAN BANGUN RUANG (1) H. SufyaniPrabawant, M. Ed. Bahan Belajar Mandiri 5 PEMBELAJARAN BANGUN RUANG (1) Pendahuluan Bahan belajar mandiri ini menyajikan pembelajaran bangun-bangun ruang dan dibagi menjadi dua kegiatan belajar.

Lebih terperinci

3. Berdasarkan gambar soal nomor 2, alas balok tersebut berbentuk bangun datar... A. Persegi B. Persegi panjang C. Belah ketupat D.

3. Berdasarkan gambar soal nomor 2, alas balok tersebut berbentuk bangun datar... A. Persegi B. Persegi panjang C. Belah ketupat D. Bangun Ruang (1)_soal Kelas 4 SD 1. Jumlah titik sudut bangun ruang kubus ada.... A. 4 B. 8 C. 12 D. 16 2. Perhatikan gambar berikut! Rusuk yang sama panjang dengan AB adalah.... A. CD B. BC C. BF D. EH

Lebih terperinci

MA1201 KALKULUS 2A (Kelas 10) Bab 8: Bentuk Tak Tentu d

MA1201 KALKULUS 2A (Kelas 10) Bab 8: Bentuk Tak Tentu d MA1201 KALKULUS 2A (Kelas 10) Bab 8: dan Do maths and you see the world ? Pengantar Bentuk tak tentu? Bentuk apa? Bentuk tak tentu yang dimaksud adalah bentuk limit dengan nilai seolah-olah : 0 0 ; ; 0

Lebih terperinci

CHAPTER 6. Ruang Hasil Kali Dalam

CHAPTER 6. Ruang Hasil Kali Dalam CHAPTER 6. Ruang Hasil Kali Dalam Hasil Kali Dalam Sudut dan Ortogonal dalam Ruang Hasil Kali Dalam Orthonormal Bases; Gram-Schmidt Process; QR-Decomposition Best Approximation; Least Squares Orthogonal

Lebih terperinci

Pertemuan IX, X, XI IV. Elemen-Elemen Struktur Kayu. Gambar 4.1 Batang tarik

Pertemuan IX, X, XI IV. Elemen-Elemen Struktur Kayu. Gambar 4.1 Batang tarik Perteman IX, X, XI IV. Elemen-Elemen Strktr Kay IV.1 Batang Tarik Gamar 4.1 Batang tarik Elemen strktr kay erpa atang tarik ditemi pada konstrksi kdakda. Batang tarik merpakan sat elemen strktr yang menerima

Lebih terperinci

Konsep Deret & Jenis-jenis Galat

Konsep Deret & Jenis-jenis Galat Metode Numerik (IT 402) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana Bagian 2 Konsep Deret & Jenis-jenis Galat ALZ DANNY WOWOR 1. Pengatar Dalam Kalkulus, deret sering digunakan untuk

Lebih terperinci

Penulis: Drs. Agus Suharjana, M.Pd. Penilai: Drs. Marsudi Rahardjo, M.Sc. Editor: Titik Sutanti, S.Pd.Si. Ilustrator Cahyo Sasongko, S.Sn.

Penulis: Drs. Agus Suharjana, M.Pd. Penilai: Drs. Marsudi Rahardjo, M.Sc. Editor: Titik Sutanti, S.Pd.Si. Ilustrator Cahyo Sasongko, S.Sn. PAKET FASILITASI PEMBERDAYAAN KKG/MGMP MATEMATIKA Mengenal Bangun Ruang dan Sifat-Sifatnya Penulis: Drs. Agus Suharjana, M.Pd. Penilai: Drs. Marsudi Rahardjo, M.Sc. Editor: Titik Sutanti, S.Pd.Si. Ilustrator

Lebih terperinci

MENUNJUKKAN SIFAT SIFAT AFFINITAS PERSPEKTIF DENGAN MENGGUNAKAN PROGRAM CABRI. Oleh Sugiyono Jurusan Pendidikan Matematika FMIPA UNY ABSTRAK

MENUNJUKKAN SIFAT SIFAT AFFINITAS PERSPEKTIF DENGAN MENGGUNAKAN PROGRAM CABRI. Oleh Sugiyono Jurusan Pendidikan Matematika FMIPA UNY ABSTRAK MENUNJUKKAN SIFAT SIFAT AFFINITAS PERSPEKTIF DENGAN MENGGUNAKAN PROGRAM CABRI Oleh Sugiyono Jurusan Pendidikan Matematika FMIPA UNY ABSTRAK Misalkan s suatu garis dalam bidang (Euclides), α menyatakan

Lebih terperinci

SEGITIGA BOLA DAN ARAH KIBLAT

SEGITIGA BOLA DAN ARAH KIBLAT SEGITIGA BOLA DAN ARAH KIBLAT Pengetahuan tentang arah kiblat yang benar sangat penting bagi ummat Islam. Ketika ummat Islam malaksanakan ibadah shalat, terdapat sebuah kewajiban untuk menghadap kiblat

Lebih terperinci

B C D E... 2h g. =v 2h g T AB. B, y. = 2 v' =2e v 2h T BC

B C D E... 2h g. =v 2h g T AB. B, y. = 2 v' =2e v 2h T BC 1. Gerak benda di antara tubukan erupakan erak parabola. Sebut posisi ula-ula benda adalah titik A, posisi terjadinya tubukan pertaa kali adalah titik B, posisi terjadi tubukan kedua kalinya adalah titik

Lebih terperinci

SOAL-SOAL MEKANIKA DALAM OLIMPIADE FISIKA. Jaan Kalda. Diterjemahkan oleh Zainal Abidin

SOAL-SOAL MEKANIKA DALAM OLIMPIADE FISIKA. Jaan Kalda. Diterjemahkan oleh Zainal Abidin SOAL-SOAL MEKANIKA DALAM OLIMPIADE FISIKA Jaan Kalda Diterjemahkan oleh Zainal Abidin 0 Daftar Isi Daftar Isi 1 Bagian A: Kinematika 2 Soal-soal pada Kinematika 3 Pendahuluan 3 Kinematika 3 Jawaban 17

Lebih terperinci

dengan lintasan melingkar dan kecepatan sudut (ω) di setiap titik pada benda tersebut besarnya

dengan lintasan melingkar dan kecepatan sudut (ω) di setiap titik pada benda tersebut besarnya Setelah proses pembelajaran, diharapkan siswa dapat: 1. Menganalisis gerak melingkar tidak beraturan 2. Membedakan gerak melingkar beraturan, dan gerak melingkar berubah beraturan 3. Merumuskan gerak melingkar

Lebih terperinci

Operasi-Operasi Dasar pada Pengolahan Citra. Bertalya Universitas Gunadarma

Operasi-Operasi Dasar pada Pengolahan Citra. Bertalya Universitas Gunadarma Operasi-Operasi Dasar pada Pengolahan Citra Bertalya Universitas Gunadarma 1 Operasi2 Dasar Merupakan manipulasi elemen matriks : elemen tunggal (piksel), sekumpulan elemen yang berdekatan, keseluruhan

Lebih terperinci

ILMU UKUR TANAH. Oleh: IDI SUTARDI

ILMU UKUR TANAH. Oleh: IDI SUTARDI ILMU UKUR TANAH Oleh: IDI SUTARDI BANDUNG 2007 1 KATA PENGANTAR Ilmu Ukur Tanah ini disajikan untuk Para Mahasiswa Program Pendidikan Diploma DIII, Jurusan Geologi, Jurusan Tambang mengingat tugas-tugasnya

Lebih terperinci

KISI-KSI SOAL UJI KOMPETENSI AWAL SERTIFIKASI GURU TAHUN 2012

KISI-KSI SOAL UJI KOMPETENSI AWAL SERTIFIKASI GURU TAHUN 2012 Mata Pelajaran : Matematika Jenjang : SMP/SMA/SMK MTS/MA/MAK Kompetensi Pedagogik (Didaktik Matematika) KISI-KSI SOAL UJI KOMPETENSI AWAL SERTIFIKASI GURU TAHUN 2012 Kompetensi Inti Guru (Standar Kompetensi)

Lebih terperinci

BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN

BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN Kode FIS.05 v, t s BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN PENDIDIKAN NASIONAL 004 i Kode FIS.05 Penyusun

Lebih terperinci

2 a 3 GM. = 4 π ( ) 3/ 2 3/ 2 3/ 2 3/ a R. = 1 dengan kata lain periodanya tidak berubah.

2 a 3 GM. = 4 π ( ) 3/ 2 3/ 2 3/ 2 3/ a R. = 1 dengan kata lain periodanya tidak berubah. 1.109. Anggap kita memuat suatu model sistem tata suya dengan peandingan skala η. Anggap keapatan mateial planet dan matahai tidak euah. Apakah peioda evolusi planet ikut euah? Jawa: Menuut hukum Kepple

Lebih terperinci

MENENTUKAN BESARAN PADA GERAK LURUS DAN PENERAPANNYA

MENENTUKAN BESARAN PADA GERAK LURUS DAN PENERAPANNYA MENENTUKAN BESARAN PADA GERAK LURUS DAN PENERAPANNYA Identitas Mata Pelajaran Sekolah : SMP N 8 Padang Kelas : VIII Semester : 1 Pelajaran / Materi : IPA / Gerak Lurus Alokasi Waktu : 2 x 40 menit KELOMPOK

Lebih terperinci

BAB 5 PENGGUNAAN TURUNAN

BAB 5 PENGGUNAAN TURUNAN Diktat Kuliah TK Matematika BAB 5 PENGGUNAAN TURUNAN 5. Nilai Ekstrim Fungsi Nilai ekstrim fungsi adalah nilai yang berkaitan dengan maksimum atau minimum fungsi tersebut. Ada dua jenis nilai ekstrim,

Lebih terperinci

Problem A. Raja yang Bijak

Problem A. Raja yang Bijak Problem A Raja yang Bijak Wacat adalah seorang pangeran yang baru saja diangkat menjadi raja menggantikan ayahnya, Hubu, seorang raja yang terkenal bijaksana. Hubu mampu mengambil segala keputusan yang

Lebih terperinci

Gambar 5.27. Penentuan sudut dalam pada poligon tertutup tak. terikat titik tetap P 3 P 2 P 5 P 6 P 7

Gambar 5.27. Penentuan sudut dalam pada poligon tertutup tak. terikat titik tetap P 3 P 2 P 5 P 6 P 7 A Δ P P 3 3 4 P4 P Δ 5 P 5 6 8 P 6 P 8 7 Gambar 5.7. Penentuan sudut dalam pada poligon tertutup tak terikat titik tetap P 7 3 P 3 P 4 4 P P P 5 5 P 6 P 8 6 8 P 7 Gambar 5.8. Penentuan sudut luar pada

Lebih terperinci

16. BARISAN FUNGSI. 16.1 Barisan Fungsi dan Kekonvergenan Titik Demi Titik

16. BARISAN FUNGSI. 16.1 Barisan Fungsi dan Kekonvergenan Titik Demi Titik 16. BARISAN FUNGSI 16.1 Barisan Fungsi dan Kekonvergenan Titik Demi Titik Bila pada bab-bab sebelumnya kita membahas fungsi sebagai sebuah objek individual, maka pada bab ini dan selanjutnya kita akan

Lebih terperinci

BAB VI LIMIT FUNGSI. 6.1 Definisi. A R. Titik c R adalah titik limit dari A, jika untuk setiap persekitaran-δ dari c,

BAB VI LIMIT FUNGSI. 6.1 Definisi. A R. Titik c R adalah titik limit dari A, jika untuk setiap persekitaran-δ dari c, BAB VI LIMIT FUNGSI Sesungguhnya yang dimaksud dengan fungsi f mempunyai limit L di c adalah nilai f mendekati L, untuk x mendekati c. Dengan demikian dapat diartikan bahwa f(x) terletak pada sembarang

Lebih terperinci

STRUKTUR ALJABAR 1. Winita Sulandari FMIPA UNS

STRUKTUR ALJABAR 1. Winita Sulandari FMIPA UNS STRUKTUR ALJABAR 1 Winita Sulandari FMIPA UNS Pengantar Struktur Aljabar Sistem Matematika terdiri dari Satu atau beberapa himpunan Satu atau beberapa operasi yg bekerja pada himpunan di atas Operasi-operasi

Lebih terperinci

V. Medan Magnet. Ditemukan sebuah kota di Asia Kecil (bernama Magnesia) lebih dahulu dari listrik

V. Medan Magnet. Ditemukan sebuah kota di Asia Kecil (bernama Magnesia) lebih dahulu dari listrik V. Medan Magnet Ditemukan sebuah kota di Asia Kecil (bernama Magnesia) lebih dahulu dari listrik Di tempat tersebut ada batu-batu yang saling tarik menarik. Magnet besar Bumi [sudah dari dahulu dimanfaatkan

Lebih terperinci

BAB III. Universitas Sumatera Utara MULAI PENGISIAN MINYAK PELUMAS PENGUJIAN SELESAI STUDI LITERATUR MINYAK PELUMAS SAEE 20 / 0 SAE 15W/40 TIDAK

BAB III. Universitas Sumatera Utara MULAI PENGISIAN MINYAK PELUMAS PENGUJIAN SELESAI STUDI LITERATUR MINYAK PELUMAS SAEE 20 / 0 SAE 15W/40 TIDAK BAB III METODE PENGUJIAN 3.1. Diagram Alir Penelitian MULAI STUDI LITERATUR PERSIAPAN BAHAN PENGUJIAN MINYAK PELUMAS SAE 15W/40 MINYAK PELUMAS SAEE 20 / 0 TIDAK PENGUJIAN KEKENTALAN MINYAK PELUMAS PENGISIAN

Lebih terperinci

BAHAN AJAR MATA PELAJARAN FISIKA 3. 1. Menerapkan konsep dan prinsip gejala gelombang dalam menyelesaikan masalah

BAHAN AJAR MATA PELAJARAN FISIKA 3. 1. Menerapkan konsep dan prinsip gejala gelombang dalam menyelesaikan masalah BAHAN AJAR MATA PELAJARAN FISIKA 3 Standar Kompetensi 1. Menerapkan konsep dan prinsip gejala gelombang dalam menyelesaikan masalah Kompetensi Dasar: 1.1 Mendeskripsikan gejala dan ciri-ciri gelombang

Lebih terperinci

BAB 3 : INVERS MATRIKS

BAB 3 : INVERS MATRIKS BAB 3 : INVERS MATRIKS PEMBAGIAN MATRIKS DAN INVERS MATRIKS Pada aljabar biasa, bila terdapat hubungan antara 2 besaran a dengan x sedemikian sehingga ax1, maka dikatakan x adalah kebalikan dari a dan

Lebih terperinci

SILABUS MATA PELAJARAN MATEMATIKA KELAS VIII SEKOLAH MENENGAH PERTAMA/MADRASAH TSANAWIYAH KURIKULUM 2013

SILABUS MATA PELAJARAN MATEMATIKA KELAS VIII SEKOLAH MENENGAH PERTAMA/MADRASAH TSANAWIYAH KURIKULUM 2013 SILABUS MATA PELAJARAN MATEMATIKA KELAS VIII SEKOLAH MENENGAH PERTAMA/MADRASAH TSANAWIYAH KURIKULUM 2013 SILABUS MATA PELAJARAN MATEMATIKA SEKOLAH MENENGAH PERTAMA/ MADRASAH TSANAWIYAH KELAS VII KURIKULUM

Lebih terperinci

PD Orde 2 Lecture 3. Rudy Dikairono

PD Orde 2 Lecture 3. Rudy Dikairono PD Orde Lecture 3 Rudy Dikairono Today s Outline PD Orde Linear Homogen PD Orde Linear Tak Homogen Metode koefisien tak tentu Metode variasi parameter Beberapa Pengelompokan Persamaan Diferensial Order

Lebih terperinci