Himpunan, Relasi, Fungsi, Proposisi, Poset, Lattice, Aljabar Boolean

Ukuran: px
Mulai penontonan dengan halaman:

Download "Himpunan, Relasi, Fungsi, Proposisi, Poset, Lattice, Aljabar Boolean"

Transkripsi

1 Himpunan, Relasi, Fungsi, Proposisi, Poset, Lattice, Aljabar Boolean Materi Ajar Matematika Informatika FENI ANDRIANI Universitas Gunadarma

2 Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari Produk Cartesius A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh R a R b adalah notasi untuk (a, b) R, yang artinya a tidak dihubungkan oleh b oleh relasi R. Himpunan A disebut daerah asal (domain) dari R, dan himpunan B disebut daerah hasil (range) dari R. 2

3 Contoh Relasi Misalkan P = {2, 3, 4} dan Q = {2, 4, 8, 9, 5}. Jika kita definisikan relasi R dari P ke Q dengan (p, q) R jika p habis membagi q maka kita peroleh R = {(2, 2), (2, 4), (4, 4), (2, 8), (4, 8), (3, 9), (3, 5) } 3

4 Representasi Relasi. Representasi Relasi dengan Diagram Panah A Amir Budi Cecep B IF22 IF25 IF342 IF323 P Q A A

5 2. Representasi Relasi dengan Tabel Kolom pertama tabel menyatakan daerah asal, sedangkan kolom kedua menyatakan daerah hasil. Tabel Tabel 2 Tabel 3 A B P Q A A Amir IF Amir IF Budi IF Budi IF Cecep IF

6 6 3. Representasi Relasi dengan Matriks Misalkan R adalah relasi dari A = {a, a 2,, a m } dan B = {b, b 2,, b n }. Relasi R dapat disajikan dengan matriks M = [m ij ], b b 2 b n M = mn m m n n m m m m m m m m m m a a a yang dalam hal ini R b a R b a m j i j i ij ), (, ), (,

7 4. Representasi Relasi dengan Graf Berarah Relasi pada sebuah himpunan dapat direpresentasikan secara grafis dengan graf berarah (directed graph atau digraph) Graf berarah tidak didefinisikan untuk merepresentasikan relasi dari suatu himpunan ke himpunan lain. Tiap elemen himpunan dinyatakan dengan sebuah titik (disebut juga simpul atau vertex), dan tiap pasangan terurut dinyatakan dengan busur (arc) Jika (a, b) R, maka sebuah busur dibuat dari simpul a ke simpul b. Simpul a disebut simpul asal (initial vertex) dan simpul b disebut simpul tujuan (terminal vertex). 7 Pasangan terurut (a, a) dinyatakan dengan busur dari simpul a ke simpul a sendiri. Busur semacam itu disebut gelang atau kalang (loop).

8 Sifat-sifat Relasi Biner Relasi biner yang didefinisikan pada sebuah himpunan mempunyai beberapa sifat.. Refleksif (reflexive) Relasi R pada himpunan A disebut refleksif jika (a, a) R untuk setiap a A. Relasi R pada himpunan A tidak refleksif jika ada a A sedemikian sehingga (a, a) R. 8

9 9 Relasi yang bersifat refleksif mempunyai matriks yang elemen diagonal utamanya semua bernilai, atau m ii =, untuk i =, 2,, n, Graf berarah dari relasi yang bersifat refleksif dicirikan adanya gelang pada setiap simpulnya.

10 2. Transitif Relasi R pada himpunan A disebut transitif jika (a, b) R dan (b, c) R, maka (a, c) R, untuk a, b, c A.

11 Relasi yang bersifat transitif tidak mempunyai ciri khusus pada matriks representasinya Sifat transitif pada graf berarah ditunjukkan oleh: jika ada busur dari a ke b dan dari b ke c, maka juga terdapat busur berarah dari a ke c.

12 3. Setangkup (symmetric) dan tolak-setangkup (antisymmetric) Relasi R pada himpunan A disebut setangkup jika (a, b) R, maka (b, a) R untuk a, b A. Relasi R pada himpunan A tidak setangkup jika (a, b) R sedemikian sehingga (b, a) R. Relasi R pada himpunan A sedemikian sehingga (a, b) R dan (b, a) R hanya jika a = b untuk a, b A disebut tolaksetangkup. Relasi R pada himpunan A tidak tolak-setangkup jika ada elemen berbeda a dan b sedemikian sehingga (a, b) R dan (b, a) R. 2

13 Relasi yang bersifat setangkup mempunyai matriks yang elemen-elemen di bawah diagonal utama merupakan pencerminan dari elemen-elemen di atas diagonal utama, atau m ij = m ji =, untuk i =, 2,, n : Sedangkan graf berarah dari relasi yang bersifat setangkup dicirikan oleh: jika ada busur dari a ke b, maka juga ada busur dari b ke a. 3

14 Matriks dari relasi tolak-setangkup mempunyai sifat yaitu jika m ij = dengan i j, maka m ji =. Dengan kata lain, matriks dari relasi tolak-setangkup adalah jika salah satu dari m ij = atau m ji = bila i j : Sedangkan graf berarah dari relasi yang bersifat tolaksetangkup dicirikan oleh: jika dan hanya jika tidak pernah ada dua busur dalam arah berlawanan antara dua simpul berbeda. 4

15 Relasi Inversi Misalkan R adalah relasi dari himpunan A ke himpunan B. Invers dari relasi R, dilambangkan dengan R, adalah relasi dari B ke A yang didefinisikan oleh R = {(b, a) (a, b) R } 5

16 Mengkombinasikan Relasi Karena relasi biner merupakan himpunan pasangan terurut, maka operasi himpunan seperti irisan, gabungan, selisih, dan beda setangkup antara dua relasi atau lebih juga berlaku. Jika R dan R 2 masing-masing adalah relasi dari himpuna A ke himpunan B, maka R R 2, R R 2, R R 2, dan R R 2 juga adalah relasi dari A ke B. 6

17 Komposisi Relasi Misalkan R adalah relasi dari himpunan A ke himpunan B, dan S adalah relasi dari himpunan B ke himpunan C. Komposisi R dan S, dinotasikan dengan S R, adalah relasi dari A ke C yang didefinisikan oleh S R = {(a, c) a A, c C, dan untuk beberapa b B, (a, b) R dan (b, c) S } 7

18 Komposisi relasi R dan S lebih jelas jika diperagakan dengan diagram panah: s t u 8

19 Jika relasi R dan R 2 masing-masing dinyatakan dengan matriks M R dan M R2, maka matriks yang menyatakan komposisi dari kedua relasi tersebut adalah M R2 R = M R M R2 yang dalam hal ini operator. sama seperti pada perkalian matriks biasa, tetapi dengan mengganti tanda kali dengan dan tanda tambah dengan. 9

20 Relasi Kesetaraan DEFINISI. Relasi R pada himpunan A disebut relasi kesetaraan (equivalence relation) jika ia refleksif, setangkup dan menghantar. 2

21 Secara intuitif, di dalam relasi kesetaraan, dua benda berhubungan jika keduanya memiliki beberapa sifat yang sama atau memenuhi beberapa persyaratan yang sama. Dua elemen yang dihubungkan dengan relasi kesetaraan dinamakan setara (equivalent). 2 IF25/Relasi dan Fungsi

22 Contoh: A = himpunan mahasiswa, R relasi pada A: (a, b) R jika a satu angkatan dengan b. R refleksif: setiap mahasiswa seangkatan dengan dirinya sendiri R setangkup: jika a seangkatan dengan b, maka b pasti seangkatan dengan a. R menghantar: jika a seangkatan dengan b dan b seangkatan dengan c, maka pastilah a seangkatan dengan c. Dengan demikian, R adalah relasi kesetaraan. 22

23 Relasi Pengurutan Parsial DEFINISI. Relasi R pada himpunan S dikatakan relasi pengurutan parsial (partial ordering relation) jika ia refleksif, tolak-setangkup, dan menghantar. Himpunan S bersama-sama dengan relasi R disebut himpunan terurut secara parsial (partially ordered set, atau poset), dan dilambangkan dengan (S, R). 23

24 Contoh: Relasi pada himpunan bilangan bulat adalah relasi pengurutan parsial. Alasan: Relasi refleksif, karena a a untuk setiap bilangan bulat a; Relasi tolak-setangkup, karena jika a b dan b a, maka a = b; Relasi menghantar, karena jika a b dan b c maka a c. 24

25 Contoh: Relasi habis membagi pada himpunan bilangan bulat adalah relasi pengurutan parsial. Alasan: relasi habis membagi bersifat refleksif, tolaksetangkup, dan menghantar. 25

26 Secara intuitif, di dalam relasi pengurutan parsial, dua buah benda saling berhubungan jika salah satunya -- lebih kecil (lebih besar) daripada, - atau lebih rendah (lebih tinggi) daripada lainnya menurut sifat atau kriteria tertentu. 26

27 Istilah pengurutan menyatakan bahwa benda-benda di dalam himpunan tersebut dirutkan berdasarkan sifat atau kriteria tersebut. Ada juga kemungkinan dua buah benda di dalam himpunan tidak berhubungan dalam suatu relasi pengurutan parsial. Dalam hal demikian, kita tidak dapat membandingkan keduanya sehingga tidak dapat diidentifikasi mana yang lebih besar atau lebih kecil. Itulah alasan digunakan istilah pengurutan parsial atau pengurutan tak-lengkap 27

28 Fungsi Misalkan A dan B himpunan. Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu elemen di dalam B. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. A disebut daerah asal (domain) dari f dan B disebut daerah hasil (codomain) dari f. Nama lain untuk fungsi adalah pemetaan atau transformasi. 28 Kita menuliskan f(a) = b jika elemen a di dalam A dihubungkan dengan elemen b di dalam B.

29 Jika f(a) = b, maka b dinamakan bayangan (image) dari a dan a dinamakan pra-bayangan (pre-image) dari b. Himpunan yang berisi semua nilai pemetaan f disebut jelajah (range) dari f. Perhatikan bahwa jelajah dari f adalah himpunan bagian (mungkin proper subset) dari B. A B f a b 29

30 Fungsi adalah relasi yang khusus:. Tiap elemen di dalam himpunan A harus digunakan oleh prosedur atau kaidah yang mendefinisikan f. 2. Frasa dihubungkan dengan tepat satu elemen di dalam B berarti bahwa jika (a, b) f dan (a, c) f, maka b = c. 3

31 Fungsi f dikatakan satu-ke-satu (one-to-one) atau injektif (injective) jika tidak ada dua elemen himpunan A yang memiliki bayangan sama. A B a b 2 c 3 d 4 5 3

32 Fungsi f dikatakan dipetakan pada (onto) atau surjektif (surjective) jika setiap elemen himpunan B merupakan bayangan dari satu atau lebih elemen himpunan A. Dengan kata lain seluruh elemen B merupakan jelajah dari f. Fungsi f disebut fungsi pada himpunan B. A B a b 2 c 3 d 32

33 Fungsi f dikatakan berkoresponden satu-ke-satu atau bijeksi (bijection) jika ia fungsi satu-ke-satu dan juga fungsi pada. Contoh f = {(, u), (2, w), (3, v)} dari A = {, 2, 3} ke B = {u, v, w} adalah fungsi yang berkoresponden satu-ke-satu, karena f adalah fungsi satu-ke-satu maupun fungsi pada. 33

34 Jika f adalah fungsi berkoresponden satu-ke-satu dari A ke B, maka kita dapat menemukan balikan (invers) dari f. Balikan fungsi dilambangkan dengan f. Misalkan a adalah anggota himpunan A dan b adalah anggota himpunan B, maka f - (b) = a jika f(a) = b. Fungsi yang berkoresponden satu-ke-satu sering dinamakan juga fungsi yang invertible (dapat dibalikkan), karena kita dapat mendefinisikan fungsi balikannya. Sebuah fungsi dikatakan not invertible (tidak dapat dibalikkan) jika ia bukan fungsi yang berkoresponden satu-ke-satu, karena fungsi balikannya tidak ada. 34

35 Komposisi dari dua buah fungsi. Misalkan g adalah fungsi dari himpunan A ke himpunan B, dan f adalah fungsi dari himpunan B ke himpunan C. Komposisi f dan g, dinotasikan dengan f g, adalah fungsi dari A ke C yang didefinisikan oleh (f g)(a) = f(g(a)) 35

36 Fungsi Rekursif Fungsi f dikatakan fungsi rekursif jika definisi fungsinya mengacu pada dirinya sendiri. Contoh: n! = 2 (n ) n = (n )! n. n! n ( n )!, n, n Fungsi rekursif disusun oleh dua bagian: (a) Basis Bagian yang berisi nilai awal yang tidak mengacu pada dirinya sendiri. Bagian ini juga sekaligus menghentikan definisi rekursif. 36 (b) Rekurens Bagian ini mendefinisikan argumen fungsi dalam terminologi dirinya sendiri. Setiap kali fungsi mengacu pada dirinya sendiri, argumen dari fungsi harus lebih dekat ke nilai awal (basis).

37 Contoh definisi rekursif dari faktorial: (a) basis: n! =, jika n = (b) rekurens: n! = n (n -)!, jika n > 5! dihitung dengan langkah berikut: () 5! = 5 4! (rekurens) (2) 4! = 4 3! (3) 3! = 3 2! (4) 2! = 2! (5)! =! (6)! = 37 Jadi, 5! = 2. (6 )! = (5 )! =! = = (4 ) 2! = 2! = 2 = 2 (3 ) 3! = 3 2! = 3 2 = 6 (2 ) 4! = 4 3! = 4 6 = 24 ( ) 5! = 5 4! = 5 24 = 2

38 Pengertian POSET : Suatu relasi biner R pada himpunan S (R: S S) dikatakan partially order (terurut sebagian) jika relasi tersebut bersifat reflektif, anti simetri dan transitif. Himpunan S bersama relasi R disebut poset. Jadi (S,R) poset jika relasi R pada S reflektif, anti simetri dan transitif.

39 Contoh : Relasi 'kurang dari atau sama dengan', relasi lebih dari atau sama dengan, dan relasi habis membagi pada himpunan bilangan bulat merupakan relasi yang terurut sebagian (partially ordered). Sehingga kita mempunyai poset-poset : (Z,), (Z,) dan (Z,). Secara umum notasi poset ditulis (S, ), relasi untuk mewakili semua relasi partially ordered.

40 Dapat dibuktikan bahwa relasi-relasi,, merupakan relasi yang bersifat reflektif, anti simetri dan transitif. KONSEP-KONSEP DI DALAM POSET: Beberapa konsep atau istilah matematika yang terkait dengan poset adalah: Upper Bound (ub) atau batas atas, supremum atau least upper bound (lub) atau batas atas terkecil, lower bound (lb) atau batas bawah, infimum atau great lower bound (glb) atau batas bawah terbesar.

41 Istilah dalam Poset UPPER BOUND : Misalkan (S, ) poset, H S, unsur S adalah upper bound atau batas atas dari himpunan H bila h untuk setiap h H. LOWER BOUND : Bila (S, ) poset, himpunan K S, unsur S adalah lower bound atau batas bawah dari himpunan K bila k untuk setiap k K.

42 Istilah dalam Poset (2) SUPREMUM : Bila (S, ) poset, H S, S adalah supremum himpunan H jika batas atas terkecil (least upper bound = lub) dari H, atau dengan kata lain : batas atas H, dan tidak ada batas atas lain H sehingga. INFIMUM : Bila (S, ) poset, himpunan K S, S adalah infimum himpunan K jika batas bawah terbesar (greatest lower bound = glb) dari K, atau dengan kata lain : batas bawah K, dan tidak ada batas bawah lain K sehingga.

43 CONTOH : Misalkan poset S = {, 2, 3, 4, 6, 8, 9, 2, 8, 24} dengan relasi 'habis membagi' maka diagram Hasse dari poset tersebut adalah: (Coba gambarkan dan diskusikan!!)

44 Lattice LATTICE: Suatu poset (S, ) sehingga setiap dua unsur S mempunyai lub (least upper bound = supremum) dan glb (greatest lower baund = infimum) yang tunggal disebut lattice. Pada contoh himpunan S = {, 2, 3, 4, 6, 8, 9, 2, 8, 24} dengan relasi 'habis membagi' maka poset ini bukan lattice sebab ada {3, 6} yang memiliki dua lub yaitu 2 dan 8. Latiice S dengan relasi lub dan glb dapat dipandang sebagai suatu sistem (S,, ) dengan =relasi lub & =relasi glb pada setiap dua unsur pada S.

45 Operasi Lattice avb = lub {a,b} dan a^b = glb {a,b} SIFAT-SIFAT Lattice: ~Komutatif avb = bva dan a^b = b^a ~Asosiatif (av b) v c = a v (b vc) dan (a ^ b) ^ c = a ^(b ^ c) ~Absorbsi a v (a ^ b) = a dan a ^(avb) = a ~Idempoten ava = a dan a ^ a = a

46 Macam2 Lattice.bounded lattices 2.distributive lattices 3.complemented lattices Berikan masing-masing contoh.beserta aplikasinya..

47 Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan - dan adalah dua elemen yang berbeda dari B. Tupel (B, +,, ) disebut aljabar Boolean jika untuk setiap a, b, c B berlaku aksioma-aksioma atau postulat Huntington berikut:

48 . Closure: (i) a + b B (ii) a b B 2. Identitas: (i) a + = a (ii) a = a 3. Komutatif: (i) a + b = b + a (ii) a b = b. a 4. Distributif:(i) a (b + c) = (a b) + (a c) (ii) a + (b c) = (a + b) (a + c) 5. Komplemen : (i) a + a = (ii) a a =

49 Untuk mempunyai sebuah aljabar Boolean, harus diperlihatkan:. Elemen-elemen himpunan B, 2. Kaidah operasi untuk operator biner dan operator uner, 3. Memenuhi postulat Huntington.

50 Aljabar Boolean Dua-Nilai Aljabar Boolean dua-nilai: - B = {, } - operator biner, + dan - operator uner, - Kaidah untuk operator biner dan operator uner: a b a b a b a + b a a

51 Cek apakah memenuhi postulat Huntington:. Closure : jelas berlaku 2. Identitas: jelas berlaku karena dari tabel dapat kita lihat bahwa: (i) + = + = (ii) = = 3. Komutatif: jelas berlaku dengan melihat simetri tabel operator biner.

52 4. Distributif: (i) a (b + c) = (a b) + (a c) dapat ditunjukkan benar dari tabel operator biner di atas dengan membentuk tabel kebenaran: b c b + c a (b + c) a b a c (a b) + (a c) a 52

53 (ii) Hukum distributif a + (b c) = (a + b) (a + c) dapat ditunjukkan benar dengan membuat tabel kebenaran dengan cara yang sama seperti (i). 5. Komplemen: jelas berlaku karena Tabel 7.3 memperlihatkan bahwa: (i) a + a =, karena + = + = dan + = + = (ii) a a =, karena = = dan = = Karena kelima postulat Huntington dipenuhi, maka terbukti bahwa B = {, } bersama-sama dengan operator biner + dan operator komplemen merupakan aljabar Boolean.

54 Ekspresi Boolean Misalkan (B, +,, ) adalah sebuah aljabar Boolean. Suatu ekspresi Boolean dalam (B, +,, ) adalah: (i) setiap elemen di dalam B, (ii) setiap peubah, (iii) jika e dan e 2 adalah ekspresi Boolean, maka e + e 2, e e 2, e adalah ekspresi Boolean Contoh: a b a + b a b a (b + c) a b + a b c + b, dan sebagainya

55 Mengevaluasi Ekspresi Boolean Contoh: a (b + c) jika a =, b =, dan c =, maka hasil evaluasi ekspresi: ( + ) = = Dua ekspresi Boolean dikatakan ekivalen (dilambangkan dengan = ) jika keduanya mempunyai nilai yang sama untuk setiap pemberian nilai-nilai kepada n peubah. Contoh: a (b + c) = (a. b) + (a c)

56 Contoh. Perlihatkan bahwa a + a b = a + b. Penyelesaian: a b a a b a + a b a + b Perjanjian: tanda titik () dapat dihilangkan dari penulisan ekspresi Boolean, kecuali jika ada penekanan: (i) a(b + c) = ab + ac (ii) a + bc = (a + b) (a + c) (iii) a, bukan a

57 Prinsip Dualitas Misalkan S adalah kesamaan (identity) di dalam aljabar Boolean yang melibatkan operator +,, dan komplemen, maka jika pernyataan S* diperoleh dengan cara mengganti dengan + + dengan dengan dengan dan membiarkan operator komplemen tetap apa adanya, maka kesamaan S* juga benar. S* disebut sebagai dual dari S. Contoh. (i) (a )( + a ) = dualnya (a + ) + ( a ) = (ii) a(a + b) = ab dualnya a + a b = a + b

58 Hukum-hukum Aljabar Boolean. Hukum identitas: (i) a + = a (ii) a = a 2. Hukum idempoten: (i) a + a = a (ii) a a = a 3. Hukum komplemen: (i) a + a = (ii) aa = 5. Hukum involusi: (i) (a ) = a 7. Hukum komutatif: (i) a + b = b + a (ii) ab = ba 9. Hukum distributif: (i) a + (b c) = (a + b) (a + c) (ii) a (b + c) = a b + a c 4. Hukum dominansi: (i) a = (ii) a + = 6. Hukum penyerapan: (i) a + ab = a (ii) a(a + b) = a 8. Hukum asosiatif: (i) a + (b + c) = (a + b) + c (ii) a (b c) = (a b) c. Hukum De Morgan: (i) (a + b) = a b (ii) (ab) = a + b. Hukum / (i) = (ii) =

59 Contoh 7.3. Buktikan (i) a + a b = a + b dan (ii) a(a + b) = ab Penyelesaian: (i) a + a b = (a + ab) + a b (Penyerapan) = a + (ab + a b) (Asosiatif) = a + (a + a )b (Distributif) = a + b (Komplemen) = a + b (Identitas) (ii) adalah dual dari (i)

60 Fungsi Boolean Fungsi Boolean (disebut juga fungsi biner) adalah pemetaan dari B n ke B melalui ekspresi Boolean, kita menuliskannya sebagai f : B n B yang dalam hal ini B n adalah himpunan yang beranggotakan pasangan terurut ganda-n (ordered n-tuple) di dalam daerah asal B.

61 Setiap ekspresi Boolean tidak lain merupakan fungsi Boolean. Misalkan sebuah fungsi Boolean adalah f(x, y, z) = xyz + x y + y z Fungsi f memetakan nilai-nilai pasangan terurut ganda-3 (x, y, z) ke himpunan {, }. Contohnya, (,, ) yang berarti x =, y =, dan z = sehingga f(,, ) = + + = + + =.

62 Contoh. Contoh-contoh fungsi Boolean yang lain:. f(x) = x 2. f(x, y) = x y + xy + y 3. f(x, y) = x y 4. f(x, y) = (x + y) 5. f(x, y, z) = xyz Setiap peubah di dalam fungsi Boolean, termasuk dalam bentuk komplemennya, disebut literal. Contoh: Fungsi h(x, y, z) = xyz pada contoh di atas terdiri dari 3 buah literal, yaitu x, y, dan z.

63 Contoh. Diketahui fungsi Booelan f(x, y, z) = xy z, nyatakan h dalam tabel kebenaran. Penyelesaian: x y z f(x, y, z) = xy z

64 Komplemen Fungsi. Cara pertama: menggunakan hukum De Morgan Hukum De Morgan untuk dua buah peubah, x dan x 2, adalah Contoh. Misalkan f(x, y, z) = x(y z + yz), maka f (x, y, z) = (x(y z + yz)) = x + (y z + yz) = x + (y z ) (yz) = x + (y + z) (y + z )

65 2. Cara kedua: menggunakan prinsip dualitas. Tentukan dual dari ekspresi Boolean yang merepresentasikan f, lalu komplemenkan setiap literal di dalam dual tersebut. Contoh. Misalkan f(x, y, z) = x(y z + yz), maka dual dari f: x + (y + z ) (y + z) komplemenkan tiap literalnya: x + (y + z) (y + z ) = f Jadi, f (x, y, z) = x + (y + z)(y + z )

66 Bentuk Kanonik Ada dua macam bentuk kanonik:. Penjumlahan dari hasil kali (sum-of-product atau SOP) 2. Perkalian dari hasil jumlah (product-of-sum atau POS) Contoh:. f(x, y, z) = x y z + xy z + xyz SOP Setiap suku (term) disebut minterm 2. g(x, y, z) = (x + y + z)(x + y + z)(x + y + z ) (x + y + z )(x + y + z) POS Setiap suku (term) disebut maxterm Setiap minterm/maxterm mengandung literal lengkap

67 Minterm Maxterm x y Suku Lambang Suku Lambang x y x y xy x y m m m 2 m 3 x + y x + y x + y x + y M M M 2 M 3

68 Minterm Maxterm x y z Suku Lambang Suku Lambang x y z m x + y + z M x y z x y z x y z x y z x y z x y z x y z m m 2 m 3 m 4 m 5 m 6 m 7 x + y + z x + y +z x + y +z x + y + z x + y + z x + y + z x + y + z M M 2 M 3 M 4 M 5 M 6 M 7 68 Rinaldi Munir/IF25 Mat. Diskrit

69 Rinaldi Munir/IF25 Mat. Diskrit 69 Contoh 7.. Nyatakan tabel kebenaran di bawah ini dalam bentuk kanonik SOP dan POS. Tabel 7. x y z f(x, y, z)

70 Penyelesaian: (a) SOP Kombinasi nilai-nilai peubah yang menghasilkan nilai fungsi sama dengan adalah,, dan, maka fungsi Booleannya dalam bentuk kanonik SOP adalah f(x, y, z) = x y z + xy z + xyz atau (dengan menggunakan lambang minterm), f(x, y, z) = m + m 4 + m 7 = (, 4, 7) 7

71 (b) POS Kombinasi nilai-nilai peubah yang menghasilkan nilai fungsi sama dengan adalah,,,, dan, maka fungsi Booleannya dalam bentuk kanonik POS adalah f(x, y, z) = (x + y + z)(x + y + z)(x + y + z ) (x + y + z )(x + y + z) atau dalam bentuk lain, f(x, y, z) = M M 2 M 3 M 5 M 6 = (, 2, 3, 5, 6) 7 Rinaldi Munir/IF25 Mat. Diskrit

72 Contoh 7.. Nyatakan fungsi Boolean f(x, y, z) = x + y z dalam bentuk kanonik SOP dan POS. Penyelesaian: (a) SOP x = x(y + y ) = xy + xy = xy (z + z ) + xy (z + z ) = xyz + xyz + xy z + xy z y z = y z (x + x ) = xy z + x y z Jadi f(x, y, z) = x + y z = xyz + xyz + xy z + xy z + xy z + x y z = x y z + xy z + xy z + xyz + xyz 72 atau f(x, y, z) = m + m 4 + m 5 + m 6 + m 7 = (,4,5,6,7) Rinaldi Munir/IF25 Mat. Diskrit

73 (b) POS f(x, y, z) = x + y z = (x + y )(x + z) x + y = x + y + zz = (x + y + z)(x + y + z ) x + z = x + z + yy = (x + y + z)(x + y + z) Jadi, f(x, y, z) = (x + y + z)(x + y + z )(x + y + z)(x + y + z) = (x + y + z)(x + y + z)(x + y + z ) atau f(x, y, z) = M M 2 M 3 = (, 2, 3) 73 Rinaldi Munir/IF25 Mat. Diskrit

74 Konversi Antar Bentuk Kanonik Misalkan f(x, y, z) = (, 4, 5, 6, 7) dan f adalah fungsi komplemen dari f, f (x, y, z) = (, 2, 3) = m + m 2 + m 3 Dengan menggunakan hukum De Morgan, kita dapat memperoleh fungsi f dalam bentuk POS: f (x, y, z) = (f (x, y, z)) = (m + m 2 + m 3 ) = m. m 2. m 3 = (x y z ) (x y z ) (x y z) = (x + y + z) (x + y + z) (x + y + z ) = M M 2 M 3 = (,2,3) Jadi, f(x, y, z) = (, 4, 5, 6, 7) = (,2,3). 74 Kesimpulan: m j = M j Rinaldi Munir/IF25 Mat. Diskrit

75 Contoh. Nyatakan f(x, y, z)= (, 2, 4, 5) dan g(w, x, y, z) = (, 2, 5, 6,, 5) dalam bentuk SOP. Penyelesaian: f(x, y, z) = (, 3, 6, 7) g(w, x, y, z)= (, 3, 4, 7, 8, 9,, 2, 3, 4) 75 Rinaldi Munir/IF25 Mat. Diskrit

76 Contoh. Carilah bentuk kanonik SOP dan POS dari f(x, y, z) = y + xy + x yz Penyelesaian: (a) SOP f(x, y, z) = y + xy + x yz = y (x + x ) (z + z ) + xy (z + z ) + x yz = (xy + x y ) (z + z ) + xyz + xyz + x yz = xy z + xy z + x y z + x y z + xyz + xyz + x yz atau f(x, y, z) = m + m + m 2 + m 4 + m 5 + m 6 + m 7 (b) POS f(x, y, z) = M 3 = x + y + z 76 Rinaldi Munir/IF25 Mat. Diskrit

77 Bentuk Baku Tidak harus mengandung literal yang lengkap. Contohnya, f(x, y, z) = y + xy + x yz (bentuk baku SOP f(x, y, z) = x(y + z)(x + y + z ) (bentuk baku POS) 77 Rinaldi Munir/IF25 Mat. Diskrit

78 Aplikasi Aljabar Boolean. Jaringan Pensaklaran (Switching Network) Saklar: objek yang mempunyai dua buah keadaan: buka dan tutup. Tiga bentuk gerbang paling sederhana:. a x b Output b hanya ada jika dan hanya jika x dibuka x 2. a x y b Output b hanya ada jika dan hanya jika x dan y dibuka xy 3. a x b y c 78 Output c hanya ada jika dan hanya jika x atau y dibuka x + y Rinaldi Munir/IF25 Mat. Diskrit

79 Contoh rangkaian pensaklaran pada rangkaian listrik:. Saklar dalam hubungan SERI: logika AND Lampu A B Sumber tegangan 2. Saklar dalam hubungan PARALEL: logika OR A Lampu B Sumber Tegangan 79 Rinaldi Munir/IF25 Mat. Diskrit

80 2. Rangkaian Logika x y xy x y x+ y x x' Gerbang AND Gerbang OR Gerbang NOT (inverter) 8 Rinaldi Munir/IF25 Mat. Diskrit

81 Contoh. Nyatakan fungsi f(x, y, z) = xy + x y ke dalam rangkaian logika. Jawab: (a) Cara pertama x y xy x y x' x'y xy+x'y 8 Rinaldi Munir/IF25 Mat. Diskrit

82 (b) Cara kedua x y xy xy+x 'y x' x'y (c) Cara ketiga x y xy xy+x'y x' x'y 82 Rinaldi Munir/IF25 Mat. Diskrit

83 Gerbang turunan x y (xy)' x y x + y Gerbang NAND Gerbang XOR x y (x+y)' x y (x + y)' Gerbang NOR Gerbang XNOR 83 Rinaldi Munir/IF25 Mat. Diskrit

84 x y (x + y)' ekivalen dengan x y x + y (x + y)' x' y' x'y' ekivalen dengan x y (x+y)' x' y' x' + y' ekivalen dengan x y (xy)' 84 Rinaldi Munir/IF25 Mat. Diskrit

85 Penyederhanaan Fungsi Boolean Contoh. f(x, y) = x y + xy + y disederhanakan menjadi f(x, y) = x + y Penyederhanaan fungsi Boolean dapat dilakukan dengan 3 cara:. Secara aljabar 2. Menggunakan Peta Karnaugh 3. Menggunakan metode Quine Mc Cluskey (metode Tabulasi) 85 Rinaldi Munir/IF25 Mat. Diskrit

86 . Penyederhanaan Secara Aljabar Contoh:. f(x, y) = x + x y = (x + x )(x + y) = (x + y ) = x + y 2. f(x, y, z) = x y z + x yz + xy = x z(y + y) + xy = x z + xz f(x, y, z) = xy + x z + yz = xy + x z + yz(x + x ) = xy + x z + xyz + x yz Rinaldi Munir/IF25 Mat. Diskrit = xy( + z) + x z( + y) = xy + x z

87 2. Peta Karnaugh a. Peta Karnaugh dengan dua peubah y m m x x y x y m 2 m 3 xy xy b. Peta dengan tiga peubah yz m m m 3 m 2 x x y z x y z x yz x yz m 4 m 5 m 7 m 6 xy z xy z xyz xyz 87 Rinaldi Munir/IF25 Mat. Diskrit

88 Contoh. Diberikan tabel kebenaran, gambarkan Peta Karnaugh. x y z f(x, y, z) yz x 88 Rinaldi Munir/IF25 Mat. Diskrit

89 b. Peta dengan empat peubah yz m m m 3 m 2 wx w x y z w x y z w x yz w x yz m 4 m 5 m 7 m 6 w xy z w xy z w xyz w xyz m 2 m 3 m 5 m 4 wxy z wxy z wxyz wxyz m 8 m 9 m m wx y z wx y z wx yz wx yz 89 Rinaldi Munir/IF25 Mat. Diskrit

90 Contoh. Diberikan tabel kebenaran, gambarkan Peta Karnaugh. w x y z f(w, x, y, z) yz wx 9 Rinaldi Munir/IF25 Mat. Diskrit

91 Teknik Minimisasi Fungsi Boolean dengan Peta Karnaugh. Pasangan: dua buah yang bertetangga yz wx Sebelum disederhanakan: f(w, x, y, z) = wxyz + wxyz Hasil Penyederhanaan: f(w, x, y, z) = wxy Bukti secara aljabar: 9 Rinaldi Munir/IF25 Mat. Diskrit f(w, x, y, z) = wxyz + wxyz = wxy(z + z ) = wxy() = wxy

92 2. Kuad: empat buah yang bertetangga yz wx Sebelum disederhanakan: f(w, x, y, z) = wxy z + wxy z + wxyz + wxyz Hasil penyederhanaan: f(w, x, y, z) = wx 92 Rinaldi Munir/IF25 Mat. Diskrit

93 Bukti secara aljabar: f(w, x, y, z) = wxy + wxy = wx(z + z) = wx() = wx yz wx 93 Rinaldi Munir/IF25 Mat. Diskrit

94 Contoh lain: yz wx Sebelum disederhanakan: f(w, x, y, z) = wxy z + wxy z + wx y z + wx y z Hasil penyederhanaan: f(w, x, y, z) = wy 94 Rinaldi Munir/IF25 Mat. Diskrit

95 3. Oktet: delapan buah yang bertetangga wx yz Sebelum disederhanakan: f(a, b, c, d) = wxy z + wxy z + wxyz + wxyz + wx y z + wx y z + wx yz + wx yz Hasil penyederhanaan: f(w, x, y, z) = w 95 Rinaldi Munir/IF25 Mat. Diskrit

96 Bukti secara aljabar: f(w, x, y, z) = wy + wy = w(y + y) = w yz wx 96 Rinaldi Munir/IF25 Mat. Diskrit

97 Contoh 5.2. Andaikan suatu tabel kebenaran telah diterjemahkan ke dalam Peta Karnaugh. Sederhanakan fungsi Boolean yang bersesuaian sesederhana mungkin. yz wx Jawab: (lihat Peta Karnaugh) f(w, x, y, z) = wy + yz + w x z 97 Rinaldi Munir/IF25 Mat. Diskrit

98 Contoh 5.3. Minimisasi fungsi Boolean yang bersesuaian dengan Peta Karnaugh di bawah ini. yz wx Jawab: (lihat Peta Karnaugh) f(w, x, y, z) = w + xy z 98 Rinaldi Munir/IF25 Mat. Diskrit

99 Jika penyelesaian Contoh 5.3 adalah seperti di bawah ini: yz wx maka fungsi Boolean hasil penyederhanaan adalah f(w, x, y, z) = w + w xy z (jumlah literal = 5) yang ternyata masih belum sederhana dibandingkan f(w, x, y, z) = w + xy z (jumlah literal = 4). 99 Rinaldi Munir/IF25 Mat. Diskrit

100 Contoh 5.4. (Penggulungan/rolling) Sederhanakan fungsi Boolean yang bersesuaian dengan Peta Karnaugh di bawah ini. yz wx Jawab: f(w, x, y, z) = xy z + xyz ==> belum sederhana Rinaldi Munir/IF25 Mat. Diskrit

101 Penyelesaian yang lebih minimal: yz wx f(w, x, y, z) = xz ===> lebih sederhana Rinaldi Munir/IF25 Mat. Diskrit

102 Contoh 5.. Sederhanakan fungsi Boolean f(x, y, z) = x yz + xy z + xyz + xyz. Jawab: Peta Karnaugh untuk fungsi tersebut adalah: yz x Hasil penyederhanaan: f(x, y, z) = yz + xz 2 Rinaldi Munir/IF25 Mat. Diskrit

103 Contoh 5.5: (Kelompok berlebihan) Sederhanakan fungsi Boolean yang bersesuaian dengan Peta Karnaugh di bawah ini. yz wx Jawab: f(w, x, y, z) = xy z + wxz + wyz masih belum sederhana. 3 Rinaldi Munir/IF25 Mat. Diskrit

104 Penyelesaian yang lebih minimal: yz wx f(w, x, y, z) = xy z + wyz ===> lebih sederhana 4 Rinaldi Munir/IF25 Mat. Diskrit

105 Contoh 5.6. Sederhanakan fungsi Boolean yang bersesuaian dengan Peta Karnaugh di bawah ini. cd ab Jawab: (lihat Peta Karnaugh di atas) f(a, b, c, d) = ab + ad + ac + bcd 5 Rinaldi Munir/IF25 Mat. Diskrit

106 Contoh 5.7. Minimisasi fungsi Boolean f(x, y, z) = x z + x y + xy z + yz Jawab: x z = x z(y + y ) = x yz + x y z x y = x y(z + z ) = x yz + x yz yz = yz(x + x ) = xyz + x yz f(x, y, z) = x z + x y + xy z + yz = x yz + x y z + x yz + x yz + xy z + xyz + x yz = x yz + x y z + x yz + xyz + xy z Peta Karnaugh untuk fungsi tersebut adalah: yz x Hasil penyederhanaan: f(x, y, z) = z + x yz 6 Rinaldi Munir/IF25 Mat. Diskrit

107 Peta Karnaugh untuk lima peubah m m m 3 m 2 m 6 m 7 m 5 m 4 m 8 m 9 m m m 4 m 5 m 3 m 2 m 24 m 25 m 27 m 26 m 3 m 3 m 29 m 28 m 6 m 7 m 9 m 8 m 22 m 23 m 2 m 2 Garis pencerminan 7 Rinaldi Munir/IF25 Mat. Diskrit

108 Contoh 5.2. (Contoh penggunaan Peta 5 peubah) Carilah fungsi sederhana dari f(v, w, x, y, z) = (, 2, 4, 6, 9,, 3, 5, 7, 2, 25, 27, 29, 3) Jawab: Peta Karnaugh dari fungsi tersebut adalah: xyz vw Jadi f(v, w, x, y, z) = wz + v w z + vy z 8 Rinaldi Munir/IF25 Mat. Diskrit

109 Rinaldi Munir/IF25 Mat. Diskrit 9 Kondisi Don t care Tabel 5.6 w x y z desimal don t care don t care don t care don t care don t care don t care

110 Rinaldi Munir/IF25 Mat. Diskrit Contoh Diberikan Tabel 5.7. Minimisasi fungsi f sesederhana mungkin. Tabel 5.7 a b c d f(a, b, c, d) X X X X X X X X

111 Jawab: Peta Karnaugh dari fungsi tersebut adalah: ab cd X X X X X X X Hasil penyederhanaan: f(a, b, c, d) = bd + c d + cd Rinaldi Munir/IF25 Mat. Diskrit

112 Contoh Minimisasi fungsi Boolean f(x, y, z) = x yz + x yz + xy z + xy z. Gambarkan rangkaian logikanya. Jawab: Rangkaian logika fungsi f(x, y, z) sebelum diminimisasikan adalah seperti di bawah ini: x y z x'yz x'yz' xy'z' xy'z 2 Rinaldi Munir/IF25 Mat. Diskrit

113 Minimisasi dengan Peta Karnaugh adalah sebagai berikut: yz x Hasil minimisasi adalah f(x, y, z) = x y + xy. 3 Rinaldi Munir/IF25 Mat. Diskrit

114 Rinaldi Munir/IF25 Mat. Diskrit 4 Contoh Berbagai sistem digital menggunakan kode binary coded decimal (BCD). Diberikan Tabel 5.9 untuk konversi BCD ke kode Excess- 3 sebagai berikut: Tabel 5.9 Masukan BCD Keluaran kode Excess-3 w x y z f (w, x, y, z) f 2 (w, x, y,z) f 3 (w, x, y, z) f 4 (w, x, y, z)

115 (a) f (w, x, y, z) yz wx X X X X X X f (w, x, y, z) = w + xz + xy = w + x(y + z) (b) f 2 (w, x, y, z) yz wx X X X X X X f 2 (w, x, y, z) = xy z + x z + x y = xy z + x (y + z) 5 Rinaldi Munir/IF25 Mat. Diskrit

116 (c) f 3 (w, x, y, z) yz wx X X X X X X f 3 (w, x, y, z) = y z + yz (d) f 4 (w, x, y, z) yz wx X X X X X X f 4 (w, x, y, z) = z 6 Rinaldi Munir/IF25 Mat. Diskrit

117 w x y z f4 f3 f2 f 7 Rinaldi Munir/IF25 Mat. Diskrit

118 Contoh 7.43 Minimisasi fungsi Boolean berikut (hasil penyederhanaan dalam bentuk baku SOP dan bentuk baku POS): f(w, x, y, z) = (, 3, 7,, 5) dengan kondisi don t care adalah d(w, x, y, z) = (, 2, 5) 8 Rinaldi Munir/IF25 Mat. Diskrit

119 Penyelesaian: Peta Karnaugh dari fungsi tersebut adalah: yz wx X X X Hasil penyederhanaan dalam bentuk SOP f(w, x, y, z) = yz + w z (SOP) (garis penuh) dan bentuk baku POS adalah f(w, x, y, z) = z (w + y) (POS) (garis putus2) 9 Rinaldi Munir/IF25 Mat. Diskrit

120 Metode Quine-McCluskey Metode Peat Karnaugh tidak mangkus untuk jumlah peubah > 6 (ukuran peta semakin besar). Metode peta Karnaugh lebih sulit diprogram dengan komputer karena diperlukan pengamatan visual untuk mengidentifikasi minterm-minterm yang akan dikelompokkan. Metode alternatif adalah metode Quine-McCluskey. Metode ini mudah diprogram. 2 Rinaldi Munir/IF25 Mat. Diskrit

121 Contoh 7.46 Sederhanakan fungsi Boolean f(w, x, y, z) = (,, 2, 8,,, 4, 5). Penyelesaian: (i) Langkah sampai 5: (a) (b) (c) term w x y z term w x y z term w x y z, -,2,8, - -,2 -,8,2, - -,8-2,,4, , -,4,, , -, -,4-4,5-5 4,5-2 Rinaldi Munir/IF25 Mat. Diskrit

122 (i) Langkah 6 dan 7: minterm Bentuk prima ,,2,8,,,4,5 * * * * * * Bentuk prima yang terpilih adalah:, yang bersesuaian dengan term w x y, 2, 8, yang bersesuaian dengan term x z,, 4, 5 yang bersesuaian dengan term wy Semua bentuk prima di atas sudah mencakup semua minterm dari fungsi Boolean semula. Dengan demikian, fungsi Boolean hasil penyederhanaan adalah f(w, x, y, z) = w x y + x z + wy. 22 Rinaldi Munir/IF25 Mat. Diskrit

123 Contoh 7.47 Sederhanakan fungsi Boolean f(w, x, y, z) = (,4,6,7,8,9,,,5) Penyelesaian: (i) Langkah sampai 5: (a) (b) (c) term w x y z term w x y z term w x y z,9-8,9,, ,6-8,,9, ,9-8, ,7-9, -, - 7 7,5 -,5-5 23

124 (i) Langkah 6 dan 7 minterm Bentuk prima ,9 4,6 6,7 7,5,5 8,9,, * * * * Sampai tahap ini, masih ada dua minterm yang belum tercakup dalam bentuk prima terpilih, yaitu 7 dan 5. Bentuk prima yang tersisa (tidak terpilih) adalah (6,7), (7,5), dan (, 5). Dari ketiga kandidat ini, kita pilih bentuk prima (7,5) karena bentuk prima ini mencakup minterm 7 dan 5 sekaligus. 24

125 minterm Bentuk prima ,9 4,6 6,7 7,5,5 8,9,, * * * * Sekarang, semua minterm sudah tercakup dalam bentuk prima terpilih. Bentuk prima yang terpilih adalah:,9 yang bersesuaian dengan term x y z 4,6 yang bersesuaian dengan term w xz 7,5 yang bersesuaian dengan term xyz 8,9,, yang bersesuaian dengan term wx Dengan demikian, fungsi Boolean hasil penyederhanaan adalah f(w, x, y, z) = x y z + w xz + xyz + wx. 25

126 Referensi Rinaldi munir

Definisi Aljabar Boolean

Definisi Aljabar Boolean Aljabar Boolean Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan - dan adalah dua elemen yang berbeda

Lebih terperinci

Aljabar Boolean. Rinaldi Munir/IF2151 Mat. Diskrit 1

Aljabar Boolean. Rinaldi Munir/IF2151 Mat. Diskrit 1 Aljabar Boolean Rinaldi Munir/IF25 Mat. Diskrit Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan -

Lebih terperinci

Aljabar Boolean. Matematika Diskrit

Aljabar Boolean. Matematika Diskrit Aljabar Boolean Matematika Diskrit Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan - dan adalah dua

Lebih terperinci

Aljabar Boolean. Bahan Kuliah Matematika Diskrit

Aljabar Boolean. Bahan Kuliah Matematika Diskrit Aljabar Boolean Bahan Kuliah Matematika Diskrit Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan -

Lebih terperinci

ebook PRINSIP & PERANCANGAN LOGIKA Fakultas Teknologi Industri Universitas Gunadarma 2013

ebook PRINSIP & PERANCANGAN LOGIKA Fakultas Teknologi Industri Universitas Gunadarma 2013 Penyusun :. Imam Purwanto, S.Kom, MMSI 2. Ega Hegarini, S.Kom., MM 3. Rifki Amalia, S.Kom., MMSI 4. Arie Kusumawati, S.Kom ebook PRINSIP & PERANCANGAN LOGIKA Fakultas Teknologi Industri Universitas Gunadarma

Lebih terperinci

2. Gambarkan gerbang logika yang dinyatakan dengan ekspresi Boole di bawah, kemudian sederhanakan dan gambarkan bentuk sederhananya.

2. Gambarkan gerbang logika yang dinyatakan dengan ekspresi Boole di bawah, kemudian sederhanakan dan gambarkan bentuk sederhananya. Tugas! (Materi Aljabar Boolean). Gambarkan jaringan switching yang dinyatakan dengan polinominal Boole di bawah, kemudian sederhanakan dan gambarkan bentuk sederhananya, kapan jaringan tsb on atau off.

Lebih terperinci

DEFINISI ALJABAR BOOLEAN

DEFINISI ALJABAR BOOLEAN ALJABAR BOOLEAN DEFINISI ALJABAR BOOLEAN Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan - dan adalah dua elemen yang berbeda

Lebih terperinci

TI 2013 IE-204 Elektronika Industri & Otomasi UKM

TI 2013 IE-204 Elektronika Industri & Otomasi UKM TI 23 IE-24 Elektronika Industri & Otomasi UKM Lampiran C Aljabar Boolean Tupel Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan ang didefinisikan pada operaror +,,

Lebih terperinci

Matematika informatika 1 ALJABAR BOOLEAN

Matematika informatika 1 ALJABAR BOOLEAN Matematika informatika 1 ALJABAR BOOLEAN ALJABAR BOOLEAN Matematika yang digunakan untuk menganalisis dan menyederhanakan Gerbang Logika pada Rangkaian-rangkaian Digital Elektronika. Boolean pada dasarnya

Lebih terperinci

Review Sistem Digital : Aljabar Boole

Review Sistem Digital : Aljabar Boole JURUSAN PENDIDIKAN TEKNIK ELEKTRONIKA FAKULTAS TEKNIK UNY Sem 5 9/ Review Sistem Digital : Aljabar Boole S dan D3 Mata Kuliah : Elektronika Industri 2 x 5 Lembar Kerja Dalam Aljabar Boole, Misalkan terdapat

Lebih terperinci

Aljabar Boolean. IF2120 Matematika Diskrit. Oleh: Rinaldi Munir Program Studi Informatika, STEI-ITB. Rinaldi Munir - IF2120 Matematika Diskrit

Aljabar Boolean. IF2120 Matematika Diskrit. Oleh: Rinaldi Munir Program Studi Informatika, STEI-ITB. Rinaldi Munir - IF2120 Matematika Diskrit Aljabar Boolean IF22 Matematika Diskrit Oleh: Rinaldi Munir Program Studi Informatika, STEI-ITB Rinaldi Munir - IF22 Matematika Diskrit Pengantar Aljabar Boolean ditemukan oleh George Boole, pada tahun

Lebih terperinci

ALJABAR BOOLEAN. Misalkan terdapat. Definisi:

ALJABAR BOOLEAN. Misalkan terdapat. Definisi: ALJABAR BOOLEAN Definisi: Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada opeartor +,, dan - dan adalah dua elemen yang berbeda dari B. Tupel

Lebih terperinci

RELASI DAN FUNGSI. /Nurain Suryadinata, M.Pd

RELASI DAN FUNGSI. /Nurain Suryadinata, M.Pd RELASI DAN FUNGSI Nama Mata Kuliah Kode Mata Kuliah/SKS Program Studi Semester Dosen Pengampu : Matematika Diskrit : MAT-365/ 3 sks : Pendidikan Matematika : VI (Enam) : Nego Linuhung, M.Pd /Nurain Suryadinata,

Lebih terperinci

Definisi Aljabar Boolean

Definisi Aljabar Boolean Aljabar Boolean 1 Definisi Aljabar Boolean Aljabar boolean merupakan aljabar yang berhubungan dengan variabel-variabel biner dan operasi-operasi logik. Variabel-variabel diperlihatkan dengan huruf-huruf

Lebih terperinci

Aljabar Boolean. Adri Priadana

Aljabar Boolean. Adri Priadana Aljabar Boolean Adri Priadana Pengantar Aljabar Boolean ditemukan oleh George Boole, pada tahun 854. Boole melihat bahwa himpunan dan logika proposisi mempunyai sifat-sifat yang serupa (kemiripan hukum-hukum

Lebih terperinci

Definisi Aljabar Boolean

Definisi Aljabar Boolean 1 UNTUK DOWNLOAD LEBIH BANYAK EBOOKS TENTANG KOMPUTER KUNJUNGI http://wirednotes.blogspot.com Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner: - B : himpunan

Lebih terperinci

Relasi. Oleh Cipta Wahyudi

Relasi. Oleh Cipta Wahyudi Relasi Oleh Cipta Wahyudi Definisi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh

Lebih terperinci

Relasi dan Fungsi. Program Studi Teknik Informatika FTI-ITP

Relasi dan Fungsi. Program Studi Teknik Informatika FTI-ITP Relasi dan Fungsi Program Studi Teknik Informatika FTI-ITP 2 Matriks Matriks adalah adalah susunan skalar elemen-elemen dalam bentuk baris dan kolom. Matriks A yang berukuran dari m baris dan n kolom (m

Lebih terperinci

Penyederhanaan Fungsi Boolean

Penyederhanaan Fungsi Boolean Penyederhanaan Fungsi Boolean Contoh. f(x, y) = x y + xy + y disederhanakan menjadi f(x, y) = x + y Penyederhanaan fungsi Boolean dapat dilakukan dengan 3 cara:. Secara aljabar 2. Menggunakan Peta Karnaugh

Lebih terperinci

yang paling umum adalah dengan menspesifikasikan unsur unsur pembentuknya (Definisi 2.1 Menurut Lipschutz, Seymour & Marc Lars Lipson dalam

yang paling umum adalah dengan menspesifikasikan unsur unsur pembentuknya (Definisi 2.1 Menurut Lipschutz, Seymour & Marc Lars Lipson dalam 2.1 Definisi Aljabar Boolean Aljabar Boolean dapat didefinisikan secara abstrak dalam beberapa cara. Cara yang paling umum adalah dengan menspesifikasikan unsur unsur pembentuknya dan operasi operasi yang

Lebih terperinci

RELASI DAN FUNGSI. Nur Hasanah, M.Cs

RELASI DAN FUNGSI. Nur Hasanah, M.Cs RELASI DAN FUNGSI Nur Hasanah, M.Cs Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan

Lebih terperinci

Kode MK/ Nama MK. Cakupan 8/29/2014. Himpunan, Relasi dan fungsi Kombinatorial. Teori graf. Pohon (Tree) dan pewarnaan graf. Matematika Diskrit

Kode MK/ Nama MK. Cakupan 8/29/2014. Himpunan, Relasi dan fungsi Kombinatorial. Teori graf. Pohon (Tree) dan pewarnaan graf. Matematika Diskrit 8/29/24 Kode MK/ Nama MK Matematika Diskrit 8/29/24 Cakupan Himpunan, Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 2 8/29/24 8/29/24 Relasi dan Fungsi Tujuan Mahasiswa memahami

Lebih terperinci

Matriks, Relasi, dan Fungsi

Matriks, Relasi, dan Fungsi Matriks, Relasi, dan Fungsi 2 Matriks Matriks adalah adalah susunan skalar elemen-elemen dalam bentuk baris dan kolom. Matriks A yang berukuran dari m baris dan n kolom (m n) adalah: mn m m n n a a a a

Lebih terperinci

R = {(Amir, IF251), (Amir, IF323), (Budi, IF221), (Budi, IF251), (Cecep, IF323) }

R = {(Amir, IF251), (Amir, IF323), (Budi, IF221), (Budi, IF251), (Cecep, IF323) } Pertemuan 9 Relasi Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh R a R b

Lebih terperinci

BAB II RELASI DAN FUNGSI

BAB II RELASI DAN FUNGSI 9 BAB II RELASI DAN FUNGSI Dalam kehidupan nyata, senantiasa ada hubungan (relasi) antara dua hal atau unsur-unsur dalam suatu kelompok. Misalkan, hubungan antara suatu urusan dengan nomor telepon, antara

Lebih terperinci

MATEMATIKA DISKRIT RELASI

MATEMATIKA DISKRIT RELASI MATEMATIKA DISKRIT RELASI Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh

Lebih terperinci

Matriks. Matriks adalah adalah susunan skalar elemen-elemen dalam bentuk baris dan kolom.

Matriks. Matriks adalah adalah susunan skalar elemen-elemen dalam bentuk baris dan kolom. Matriks Matriks adalah adalah susunan skalar elemen-elemen dalam bentuk baris dan kolom. Matriks A yang berukuran dari m baris dan n kolom (m n) adalah: Matriks bujursangkar adalah matriks yang berukuran

Lebih terperinci

Bahan Kuliah. Priode UTS-UAS DADANG MULYANA. dadang mulyana 2012 ALJABAR BOOLEAN. dadang mulyana 2012

Bahan Kuliah. Priode UTS-UAS DADANG MULYANA. dadang mulyana 2012 ALJABAR BOOLEAN. dadang mulyana 2012 Bahan Kuliah LOGIKA Aljabar MATEMATIKA- Boolean Priode UTS-UAS DADANG MULYANA dadang mulana 22 ALJABAR BOOLEAN dadang mulana 22 Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan -

Lebih terperinci

DEFINISI. Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B).

DEFINISI. Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). BAB 3 RELASI DEFINISI Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh R a R b adalah

Lebih terperinci

Matematika Diskret (Relasi dan Fungsi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

Matematika Diskret (Relasi dan Fungsi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Matematika Diskret (Relasi dan Fungsi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi

Lebih terperinci

Relasi. Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B).

Relasi. Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh R a R b adalah notasi untuk

Lebih terperinci

Matriks. Contoh matriks simetri. Matriks zero-one (0/1) adalah matriks yang setiap elemennya hanya bernilai 0 atau 1. Contoh matriks 0/1:

Matriks. Contoh matriks simetri. Matriks zero-one (0/1) adalah matriks yang setiap elemennya hanya bernilai 0 atau 1. Contoh matriks 0/1: MATRIKS & RELASI Matriks Matriks adalah adalah susunan skalar elemenelemen dalam bentuk baris dan kolom. Matriks A yang berukuran dari m baris dan n kolom (m n) adalah: A a a a 2 m a a a 2 22 m2 a a a

Lebih terperinci

Review Sistem Digital : Logika Kombinasional

Review Sistem Digital : Logika Kombinasional JURUSAN PENDIDIKAN TEKNIK ELEKTRONIKA FAKULTAS TEKNIK UNY Sem 5 9/ Review Sistem Digital : Logika Kombinasional S dan D3 Mata Kuliah : Elektronika Industri 2 5 Lembar Kerja 2. Jaringan Pensaklaran (Switching

Lebih terperinci

Output b akan ada aliran arus dari a jika saklar x ditutup dan sebaliknya Output b tidak aliran arus dari a jika saklar x dibuka.

Output b akan ada aliran arus dari a jika saklar x ditutup dan sebaliknya Output b tidak aliran arus dari a jika saklar x dibuka. A. TUJUAN : FAKULTAS TEKNIK Semester 5 LOGIKA KOMBINASIONAL 2 4 5 No. LST/EKA/PTE23 Revisi : Tgl : 7-2-2 Hal dari 22 Setelah selesai pembelajaran diharapkan mahasiswa dapat. Menjelaskan kembali prinsip-prinsip

Lebih terperinci

FPMIPA UPI ILMU KOMPUTER I. TEORI HIMPUNAN

FPMIPA UPI ILMU KOMPUTER I. TEORI HIMPUNAN I. TEORI HIMPUNAN 1. Definisi Himpunan hingga dan Tak hingga 2. Notasi himpuanan 3. Cara penulisan 4. Macam-macam Himpunan 5. Operasi Himpunan 6. Hukum pada Operasi Himpunan 7. Perkalian Himpunan (Product

Lebih terperinci

Mata Kuliah Arsitektur Komputer Program Studi Sistem Informasi 2013/2014 STMIK Dumai -- Materi 08 --

Mata Kuliah Arsitektur Komputer Program Studi Sistem Informasi 2013/2014 STMIK Dumai -- Materi 08 -- Mata Kuliah Arsitektur Komputer Program Studi Sistem Informasi 23/24 STMIK Dumai -- Materi 8 -- Digital Principles and Applications, Leach-Malvino, McGraw-Hill Adhi Yuniarto L.Y. Boolean Algebra. Fasilkom

Lebih terperinci

Materi 3: Relasi dan Fungsi

Materi 3: Relasi dan Fungsi Materi 3: Relasi dan Fungsi I Nyoman Kusuma Wardana STMIK STIKOM Bali Definisi Relasi & Fungsi Representasi Relasi Relasi biner Sifat-sifat relasi biner Relasi inversi Mengkombinasikan relasi Komposisi

Lebih terperinci

Aljabar Boolean. Rudi Susanto

Aljabar Boolean. Rudi Susanto Aljabar Boolean Rudi Susanto Tujuan Pembelajaran Bisa menghasilkan suatu realisasi rangkaian elektronika digital dari suatu persamaan logika matematika Persamaan logika matematika tersebut dimodifikasi

Lebih terperinci

BAB 4. Aljabar Boolean

BAB 4. Aljabar Boolean BAB 4 Aljabar Boolean 1. PENDAHULUAN Aljabar Boolean merupakan lanjutan dari matakuliah logika matematika. Definisi aljabar boolean adalah suatu jenis manipulasi nilai-nilai logika secara aljabar. Contoh

Lebih terperinci

Matriks. Contoh matriks simetri. Matriks zero-one (0/1) adalah matriks yang setiap elemennya hanya bernilai 0 atau 1. Contoh matriks 0/1:

Matriks. Contoh matriks simetri. Matriks zero-one (0/1) adalah matriks yang setiap elemennya hanya bernilai 0 atau 1. Contoh matriks 0/1: MATRIKS & RELASI Matriks Matriks adalah adalah susunan skalar elemenelemen dalam bentuk baris dan kolom. Matriks A yang berukuran dari m baris dan n kolom (m n) adalah: A = a a M a 2 m a a a 2 22 M m 2

Lebih terperinci

Matematika Logika Aljabar Boolean

Matematika Logika Aljabar Boolean Pertemuan ke-3 Matematika Logika Aljabar Boolean Oleh : Mellia Liyanthy TEKNIK INFORMATIKA UNIVERSITAS PASUNDAN TAHUN AJARAN 2011/2012 Definisi Aljabar Boolean merupakan aljabar yang terdiri atas : suatu

Lebih terperinci

Relasi Adalah hubungan antara elemen himpunan dengan elemen himpunan yang lain. Cara paling mudah untuk menyatakan hubungan antara elemen 2 himpunan

Relasi Adalah hubungan antara elemen himpunan dengan elemen himpunan yang lain. Cara paling mudah untuk menyatakan hubungan antara elemen 2 himpunan Relasi dan Fungsi Relasi Adalah hubungan antara elemen himpunan dengan elemen himpunan yang lain. Cara paling mudah untuk menyatakan hubungan antara elemen 2 himpunan adalah dengan himpunan pasangan terurut.

Lebih terperinci

KALKULUS (Relasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

KALKULUS (Relasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. KALKULUS (Relasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang

Lebih terperinci

0.(0.1)=(0.0).1 0.0=0.1 0=0

0.(0.1)=(0.0).1 0.0=0.1 0=0 Latihan : 1. Diketahui himpunan B dengan tiga buah nilai (0,1,2) dan dua buah operator, + dan. kaidah operasi dengan operator + dan didefinisikan pada tabel di bawah ini : + 0 1 2 0 0 0 0 1 0 1 1 2 0 1

Lebih terperinci

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. Pertemuan 6 Fungsi Fungsi Misalkan A dan B himpunan. Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu elemen di dalam B. Jika f adalah fungsi

Lebih terperinci

Ada dua macam bentuk kanonik:

Ada dua macam bentuk kanonik: Ada dua macam bentuk kanonik: ) Penjumlahan dari hasil kali (sum-of-product atau SOP) 2) Perkalian dari hasil jumlah(product-of-sum atau POS) Contoh:. f(x, y, z) = x y z+ xy z + xyz SOP Setiap suku(term)

Lebih terperinci

Matriks, Relasi, dan Fungsi Teknik Neurofuzzy

Matriks, Relasi, dan Fungsi Teknik Neurofuzzy Matriks, Relasi, dan Fungsi Teknik Neurofuzzy Dosen Andi Hasad, S.T., M.Kom. Center for Information & Communication Technology Electrical Department, Engineering Faculty, UNISMA, Bekasi Email : andihasad@yahoo.com

Lebih terperinci

Oleh : Winda Aprianti

Oleh : Winda Aprianti Oleh : Winda Aprianti Relasi Definisi Relasi Relasi antara himpunan A dan himpunan B merupakan himpunan yang berisi pasangan terurut yang mengikuti aturan tertentu (relasi biner). Relasi biner R antara

Lebih terperinci

FUNGSI Misalkan A dan B himpunan. Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu

FUNGSI Misalkan A dan B himpunan. Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu FUNGSI FUNGSI Misalkan A dan B himpunan. Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu elemen di dalam B. Jika f adalah fungsi dari A ke

Lebih terperinci

a + b B a + b = b + a ( ii) a b = b. a

a + b B a + b = b + a ( ii) a b = b. a A ljabar Boolean M isalkan terdapat - Dua operator biner: + dan - S ebuah operator uner:. - B : himpunan ang didefinisikan pada opeartor +,, dan - dan adalah dua elemen ang berbeda dari B. T upel (B, +,,

Lebih terperinci

Aljabar Boolean. Disusun oleh: Tim dosen SLD Diedit ulang oleh: Endro Ariyanto. Prodi S1 Teknik Informatika Fakultas Informatika Universitas Telkom

Aljabar Boolean. Disusun oleh: Tim dosen SLD Diedit ulang oleh: Endro Ariyanto. Prodi S1 Teknik Informatika Fakultas Informatika Universitas Telkom Aljabar Boolean Disusun oleh: Tim dosen SLD Diedit ulang oleh: Endro Ariyanto Prodi S1 Teknik Informatika Fakultas Informatika Universitas Telkom September 2015 Representasi Fungsi Boolean Sistem dan Logika

Lebih terperinci

Logika Matematika Aljabar Boolean

Logika Matematika Aljabar Boolean Pertemuan ke-5 Logika Matematika Aljabar Boolean Oleh : Mellia Liyanthy 1 TEKNIK INFORMATIKA UNIVERSITAS PASUNDAN TAHUN AJARAN 2007/2008 Bentuk Kanonik dan Bentuk baku atau standar Fungsi boolean yang

Lebih terperinci

Materi Kuliah Matematika Komputasi FUNGSI

Materi Kuliah Matematika Komputasi FUNGSI Materi Kuliah Matematika Komputasi FUNGSI Misalkan A dan B himpunan. FUNGSI Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu elemen di dalam

Lebih terperinci

Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.

Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. 1 FUNGSI Misalkan A dan B himpunan. Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu elemen di dalam B. Jika f adalah fungsi dari A ke B kita

Lebih terperinci

Relasi dan Fungsi Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed

Relasi dan Fungsi Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Relasi dan Fungsi Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2013/2014 Himpunan. Mempunyai elemen atau anggota. Terdapat hubungan.

Lebih terperinci

ALJABAR BOOLEAN R I R I I R A W A T I, M. K O M L O G I K A M A T E M A T I K A 3 S K S

ALJABAR BOOLEAN R I R I I R A W A T I, M. K O M L O G I K A M A T E M A T I K A 3 S K S ALJABAR BOOLEAN R I R I I R A W A T I, M. K O M L O G I K A M A T E M A T I K A 3 S K S AGENDA SISTEM BILANGAN DESIMAL, BINER, OCTAL, HEXADESIMAL DEFINISI ALJABAR BOOLEAN TABEL KEBENARAN ALJABAR BOOLEAN

Lebih terperinci

MAKALAH SISTEM DIGITAL

MAKALAH SISTEM DIGITAL MAKALAH SISTEM DIGITAL Konsep Dasar Teorema Boole & De Morgan Disusun Oleh : Anin Rodahad (12131307) Abdurrahman Ar-Rohim (12131299) Bayu Ari Utomo () TEKNIK INFORMATIKA STMIK EL RAHMA YOGYAKARTA Jl. Sisingamangaraja

Lebih terperinci

8 June 2011 MATEMATIKA DISKRIT 2

8 June 2011 MATEMATIKA DISKRIT 2 MisalkanterdapatDuaoperator biner: + dan Sebuah operator uner:. B: himpunanyang didefinisikanpadaoperator +,, dan dan1 adalahduaelemenyang berbedadarib. Tupel(B, +,, ) disebutaljabarbooleanjika untuksetiapa,

Lebih terperinci

Hasil kali kartesian antara himpunan A dan himpunan B, ditulis AxB adalah semua pasangan terurut (a, b) untuk a A dan b B.

Hasil kali kartesian antara himpunan A dan himpunan B, ditulis AxB adalah semua pasangan terurut (a, b) untuk a A dan b B. III Relasi Banyak hal yang dibicarakan berkaitan dengan relasi. Dalam kehidupan sehari-hari kita mengenal istilah relasi bisnis, relasi pertemanan, relasi antara dosen-mahasiswa yang disebut perwalian

Lebih terperinci

BAB IV PETA KARNAUGH (KARNAUGH MAPS)

BAB IV PETA KARNAUGH (KARNAUGH MAPS) TEKNIK DIGITAL-PETA KARNAUGH/HAL. 1 BAB IV PETA KARNAUGH (KARNAUGH MAPS) PETA KARNAUGH Selain dengan teorema boole, salah satu cara untuk memanipulasi dan menyederhanakan fungsi boole adalah dengan teknik

Lebih terperinci

Pertemuan ke-5 ALJABAR BOOLEAN III

Pertemuan ke-5 ALJABAR BOOLEAN III Pertemuan ke-5 ALJABAR BOOLEAN III Kompetensi Umum Setelah mengikuti perkuliah ini, diharapkan Anda dapat memahami bentuk kanonik dan menuliskan suatu ekspresi aljabar dalam bentuk kanonik. Kompetensi

Lebih terperinci

MATEMATIKA INFORMATIKA 2 FUNGSI

MATEMATIKA INFORMATIKA 2 FUNGSI MATEMATIKA INFORMATIKA 2 FUNGSI PENGERTIAN FUNGSI Definisi : Misalkan A dan B dua himpunan tak kosong. Fungsi dari A ke B adalah aturan yang mengaitkan setiap anggota A dengan tepat satu anggota B. ATURAN

Lebih terperinci

Pertemuan ke-4 ALJABAR BOOLEAN I

Pertemuan ke-4 ALJABAR BOOLEAN I Pertemuan ke-4 ALJABAR BOOLEAN I Materi Perkuliahan a. Pengertian Aljabar Boolean b. Ekspresi Boolean c Prinsip Dualitas Kompetensi Umum Setelah mengikuti perkuliah ini, diharapkan Anda dapat memahami

Lebih terperinci

PENERAPAN METODE QUINE-MC CLUSKEY UNTUK MENYEDERHANAKAN FUNGSI BOOLEAN

PENERAPAN METODE QUINE-MC CLUSKEY UNTUK MENYEDERHANAKAN FUNGSI BOOLEAN IJCCS, Vol.x, No.x, Julyxxxx, pp. 1~5ISSN: 1978-1520 PENERAPAN METODE QUINE-MC CLUSKEY UNTUK MENYEDERHANAKAN FUNGSI BOOLEAN Herman Saputra Program Studi Sistem Informasi, STMIK Royal Kisaran Jl. Prof.

Lebih terperinci

JUMANTAKA Halaman Jurnal: Halaman LPPM STMIK DCI:

JUMANTAKA Halaman Jurnal:  Halaman LPPM STMIK DCI: JUMANTAKA Vol 01 No 01 (2018) PISSN: 2613-9138 EISSN : 2613-9146 JUMANTAKA Halaman Jurnal: http://jurnal.stmik-dci.ac.id/index.php/jumantaka/ Halaman LPPM STMIK DCI: http://lppm.stmik-dci.ac.id/ PENYEDERHAAN

Lebih terperinci

BAB 5 POSET dan LATTICE

BAB 5 POSET dan LATTICE BAB 5 POSET dan LATTICE 1. Himpunan Urut Parsial Suatu relasi R pada himpunan S dikatakan urut parsial pada S, jika R bersifat : 1. Refleksif, yaitu a R a, untuk setiap a Є s 2. Anti simetris, yaitu a

Lebih terperinci

BAB III GERBANG LOGIKA DAN ALJABAR BOOLEAN

BAB III GERBANG LOGIKA DAN ALJABAR BOOLEAN A III GERANG LOGIKA DAN ALJAAR OOLEAN 3. Pendahuluan Komputer, kalkulator, dan peralatan digital lainnya kadang-kadang dianggap oleh orang awam sebagai sesuatu yang ajaib. Sebenarnya peralatan elektronika

Lebih terperinci

Modul Praktikum. Logika Dasar. Dosen Pengampu: Anie Rose Irawati M.Cs. Penyusun:

Modul Praktikum. Logika Dasar. Dosen Pengampu: Anie Rose Irawati M.Cs. Penyusun: Daftar Isi Modul Praktikum Logika Dasar Dosen Pengampu: Anie Rose Irawati M.Cs. Penyusun: Arif munandar Dinora Refiasari Gandi Laksana Putra Muhammad Saleh Firmansyah Feri Krisnanto Muammar Rizki F.I.

Lebih terperinci

Makalah Himpunan dan Logika Matematika Poset dan Lattice

Makalah Himpunan dan Logika Matematika Poset dan Lattice Makalah Himpunan dan Logika Matematika Poset dan Lattice Dosen : Dra. Linda Rosmery Tambunan, M.Si Disusun oleh : Zoelia Gurning (160384202050) Yoga (160384202054) Muhammad Wiriantara (160384202063) Eci

Lebih terperinci

Matematika Diskret. Mahmud Imrona Rian Febrian Umbara RELASI. Pemodelan dan Simulasi

Matematika Diskret. Mahmud Imrona Rian Febrian Umbara RELASI. Pemodelan dan Simulasi Matematika Diskret Mahmud Imrona Rian Febrian Umbara Pemodelan dan Simulasi RELASI 1 9/26/2017 Hasil Kali Kartesian Hasil kali kartesian antara himpunan A dan himpunan B, ditulis AxB adalah semua pasangan

Lebih terperinci

Pengantar Matematika Diskrit

Pengantar Matematika Diskrit Pengantar Matematika Diskrit Referensi : Rinaldi Munir, Matematika Diskrit, Informatika Bandung 2005 1 Matematika Diskrit? Bagian matematika yang mengkaji objek-objek diskrit Benda disebut diskrit jika

Lebih terperinci

STUDI METODE QUINE-McCLUSKEY UNTUK MENYEDERHANAKAN RANGKAIAN DIGITAL S A F R I N A A M A N A H S I T E P U

STUDI METODE QUINE-McCLUSKEY UNTUK MENYEDERHANAKAN RANGKAIAN DIGITAL S A F R I N A A M A N A H S I T E P U STUDI METODE QUINE-McCLUSKEY UNTUK MENYEDERHANAKAN RANGKAIAN DIGITAL S A F R I N A A M A N A H S I T E P U 0 3 0 8 2 3 0 4 2 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS

Lebih terperinci

Kata Pengantar... Daftar Isi... Apakah Matematika Diskrit Itu? Logika... 1

Kata Pengantar... Daftar Isi... Apakah Matematika Diskrit Itu? Logika... 1 Daftar Isi Kata Pengantar... Daftar Isi... Apakah Matematika Diskrit Itu?... iii v xi 1. Logika... 1 1.1 Proposisi... 2 1.2 Mengkombinasikan Proposisi... 4 1.3 Tabel kebenaran... 6 1.4 Disjungsi Eksklusif...

Lebih terperinci

Matematika Komputasi RELASI. Gembong Edhi Setyawan

Matematika Komputasi RELASI. Gembong Edhi Setyawan Matematika Komputasi RELASI Gembong Edhi Setyawan DEFINISI Relasi dari himpunan A ke himpunan B adalah pemasangan anggota-anggota himpunan A dengan anggota-anggota himpunan B Relasi Biner : Hubungan antara

Lebih terperinci

BAB 6 ALJABAR BOOLE. 1. Definisi Dasar MATEMATIKA DISKRIT

BAB 6 ALJABAR BOOLE. 1. Definisi Dasar MATEMATIKA DISKRIT BAB 6 ALJABAR BOOLE 1. Definisi Dasar Himpunan dan proposisi mempunyai sifat yang serupa yaitu memenuhi hukum identitas. Hukum ini digunakan untuk mendefinisikan struktur matematika abstrak yang disebut

Lebih terperinci

MATEMATIKA DASAR PROGRAM STUDI AGROTEKNOLOGI

MATEMATIKA DASAR PROGRAM STUDI AGROTEKNOLOGI RELASI MATEMATIKA DASAR PROGRAM STUDI AGROTEKNOLOGI Apa itu Relasi? Relasi ( hubungan ) himpunan A ke B adalah pemasangan anggota-anggota A dengan anggota-anggota B. RELASI R : A B, artinya R relasi dari

Lebih terperinci

Logika Matematika. Bab 1: Aljabar Boolean. Andrian Rakhmatsyah Teknik Informatika STT Telkom Lab. Sistem Komputer dan Jaringan

Logika Matematika. Bab 1: Aljabar Boolean. Andrian Rakhmatsyah Teknik Informatika STT Telkom Lab. Sistem Komputer dan Jaringan Logika Matematika Bab 1: Aljabar Boolean Andrian Rakhmatsyah Teknik Informatika STT Telkom Lab. Sistem Komputer dan Jaringan 1 Nilai fungsi Fungsi Boolean dinyatakan nilainya pada setiap variabel yaitu

Lebih terperinci

BAB IV PENYEDERHANAAN RANGKAIAN LOGIKA

BAB IV PENYEDERHANAAN RANGKAIAN LOGIKA B IV PENYEDERHANAAN RANGKAIAN LOGIKA 4. Penyederhanaan Secara Aljabar Bentuk persamaan logika sum of minterm dan sum of maxterm yang diperoleh dari tabel kebenaran umumnya jika diimplementasikan ternyata

Lebih terperinci

POLITEKNIK TELKOM BANDUNG

POLITEKNIK TELKOM BANDUNG POLITEKNIK TELKOM BANDUNG 29 Penyusun dan Editor Adi Wijaya M.Si Dilarang menerbitkan kembali, menyebarluaskan atau menyimpan baik sebagian maupun seluruh isi buku dalam bentuk dan dengan cara apapun tanpa

Lebih terperinci

63 ISSN: (Print), (Online)

63 ISSN: (Print), (Online) Perancangan Aplikasi Penyederhanaan Fungsi Boolean Dengan Metode Quine-Mc Cluskey Wahyu Nugraha Program Studi Manajemen Informatika, AMIK BSI Pontianak wahyoe.nugraha@gmail.com ABSTRACT - Three way to

Lebih terperinci

II. TINJAUAN PUSTAKA. disebut vertex, sedangkan E(G) (mungkin kosong) adalah himpunan tak terurut dari

II. TINJAUAN PUSTAKA. disebut vertex, sedangkan E(G) (mungkin kosong) adalah himpunan tak terurut dari II. TINJAUAN PUSTAKA Definisi 2.1 Graf Graf G adalah suatu struktur (V,E) dengan V(G) himpunan tak kosong dengan elemenelemenya disebut vertex, sedangkan E(G) (mungkin kosong) adalah himpunan tak terurut

Lebih terperinci

Perancangan Aplikasi Penyederhanaan Fungsi Boolean Dengan Metode Quine-MC Cluskey

Perancangan Aplikasi Penyederhanaan Fungsi Boolean Dengan Metode Quine-MC Cluskey Perancangan Aplikasi Penyederhanaan Fungsi Boolean Dengan Metode Quine-MC Cluskey Wahyu Nugraha Program Studi Manajemen Informatika, AMIK BSI Pontianak Jl. Abdurahman Saleh No. 18A, Pontianak, Indonesia

Lebih terperinci

18/09/2017. Fakultas Teknologi dan Desain Program Studi Teknik Informatika

18/09/2017. Fakultas Teknologi dan Desain Program Studi Teknik Informatika 8/09/207 Fakultas Teknologi dan Desain Program Studi Teknik Informatika 8/09/207 Capaian Pembelajaran Mahasiswa mampu menyederhanakan persamaan logika menggunakan Karnaugh Map (K-Map). Mahasiswa mampu

Lebih terperinci

Aplikasi Aljabar Boolean dalam Komparator Digital

Aplikasi Aljabar Boolean dalam Komparator Digital Aplikasi Aljabar Boolean dalam Komparator Digital Ade Yusuf Rahardian / 13514079 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

MATERI 2 COMBINATIONAL LOGIC

MATERI 2 COMBINATIONAL LOGIC Pengantar : :. MATERI 2 COMBINATIONAL LOGIC Rangkaian digital adalah mrp komponen perangkat keras (hardware) yang memanipulasi informasi biner. Rangkaian diimplementasikan dengan menggunakan transistor-transistor

Lebih terperinci

Gambar 28 : contoh ekspresi beberapa logika dasar Tabel 3 : tabel kebenaran rangkaian gambar 28 A B C B.C Y = (A+B.C )

Gambar 28 : contoh ekspresi beberapa logika dasar Tabel 3 : tabel kebenaran rangkaian gambar 28 A B C B.C Y = (A+B.C ) 5. RANGKAIAN KOMBINASIONAL Pada dasarnya rangkaian logika (digital) yang dibentuk dari beberapa gabungan komponen elektronik yang terdiri dari bermacam-macam Gate dan rangkaian-rangkaian lainnya, sehingga

Lebih terperinci

MATEMATIKA SISTEM INFORMASI 1

MATEMATIKA SISTEM INFORMASI 1 RELASI MATEMATIKA SISTEM INFORMASI Apa itu Relasi? Relasi ( hubungan ) himpunan A ke B adalah pemasangan anggota-anggota A dengan anggota-anggota B. RELASI R : A B, artinya R relasi dari himpunan A ke

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 2

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 2 Relasi Relasi antara himpunan A dan himpunan B didefinisikan sebagai cara pengawanan anggota himpunan A dengan anggota himpunan B. ilustrasi grafis dapat dilihat sebagai berikut: - Relasi Biner Relasi

Lebih terperinci

Fungsi. Adri Priadana ilkomadri.com

Fungsi. Adri Priadana ilkomadri.com Fungsi Adri Priadana ilkomadri.com Fungsi Definisi : Misalkan A dan B himpunan. Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu elemen di dalam

Lebih terperinci

PERTEMUAN Relasi dan Fungsi

PERTEMUAN Relasi dan Fungsi 4-1 PERTEMUAN 4 Nama Mata Kuliah : Matematika Diskrit (3 SKS) Nama Dosen Pengampu : Dr. Suparman E-mail : matdis@netcourrier.com HP : 081328201198 Judul Pokok Bahasan Tujuan Pembelajaran : 4. Relasi dan

Lebih terperinci

Elektronika dan Instrumentasi: Elektronika Digital 2 Gerbang Logika, Aljabar Boolean. Yusron Sugiarto

Elektronika dan Instrumentasi: Elektronika Digital 2 Gerbang Logika, Aljabar Boolean. Yusron Sugiarto Elektronika dan Instrumentasi: Elektronika Digital 2 Gerbang Logika, Aljabar Boolean Yusron Sugiarto Materi Kuliah Rangkaian Logika Ada beberapa operasi-operasi dasar pada suatu rangkaian logika dan untuk

Lebih terperinci

I. LAMPIRAN TUGAS. Mata kuliah : Matematika Diskrit Program Studi : Sistem Informasi PA-31 Dosen Pengasuh : Ir. Bahder Djohan, MSc

I. LAMPIRAN TUGAS. Mata kuliah : Matematika Diskrit Program Studi : Sistem Informasi PA-31 Dosen Pengasuh : Ir. Bahder Djohan, MSc I. LAMPIRAN TUGAS. Mata kuliah : Matematika Diskrit Program Studi : Sistem Informasi PA- Dosen Pengasuh : Ir. Bahder Djohan, MSc Tugas ke Pertemuan TIK Soal-soal Tugas. Mendefinisikan Proposisi Membedakan

Lebih terperinci

BAB 5 POSET dan LATTICE

BAB 5 POSET dan LATTICE BAB 5 POSET dan LATTICE 1. Himpunan Urut Parsial Suatu relasi R pada himpunan S dikatakan urut parsial pada S, jika R bersifat : 1. Refleksif, yaitu a R a, untuk setiap a Є s 2. Anti simetris, yaitu a

Lebih terperinci

BAB 6 ALJABAR BOOLE. 1. Definisi Dasar. Teorema 1 MATEMATIKA DISKRIT

BAB 6 ALJABAR BOOLE. 1. Definisi Dasar. Teorema 1 MATEMATIKA DISKRIT BAB 6 ALJABAR BOOLE 1. Definisi Dasar Himpunan dan proposisi mempunyai sifat yang serupa yaitu memenuhi hukum identitas. Hukum ini digunakan untuk mendefinisikan struktur matematika abstrak yang disebut

Lebih terperinci

RANGKAIAN KOMBINASIONAL

RANGKAIAN KOMBINASIONAL RANGKAIAN KOMBINASIONAL LUH KESUMA WARDHANI JurusanTIF UIN SUSKA Riau LOGIKA KOMBINASI Merupakan jenis rangkaian logika yang keadaan outputnya hanya tergantung dari kombinasi input nya saja. Aljabar Boolean

Lebih terperinci

Logika Matematika Bab 1: Aljabar Boolean. Andrian Rakhmatsyah Teknik Informatika IT Telkom

Logika Matematika Bab 1: Aljabar Boolean. Andrian Rakhmatsyah Teknik Informatika IT Telkom 1 Logika Matematika Bab 1: Aljabar Boolean Andrian Rakhmatsyah Teknik Informatika IT Telkom 2 Referensi Rosen, Kenneth H.,Discrete Mathematic and Its Applications, 4 th edition, McGraw Hill International

Lebih terperinci

2. Matrix, Relation and Function. Discrete Mathematics 1

2. Matrix, Relation and Function. Discrete Mathematics 1 2. Matrix, Relation and Function Discrete Mathematics Discrete Mathematics. Set and Logic 2. Relation 3. Function 4. Induction 5. Boolean Algebra and Number Theory MID 6. Graf dan Tree/Pohon 7. Combinatorial

Lebih terperinci

Perancangan Rangkaian Logika. Sintesis Rangkaian Logika

Perancangan Rangkaian Logika. Sintesis Rangkaian Logika Sintesis Rangkaian Logika Eko Didik Widianto (didik@undip.ac.id) 21 Maret 2011 Program Studi Sistem Komputer - Universitas Diponegoro Artikel ini menjelaskan secara khusus langkah-langkah sintesis untuk

Lebih terperinci

BAB I PENDAHULUAN. Fungsi Boolean seringkali mengandung operasi operasi yang tidak perlu, literal

BAB I PENDAHULUAN. Fungsi Boolean seringkali mengandung operasi operasi yang tidak perlu, literal BAB I PENDAHULUAN 1.1 Latar Belakang Fungsi Boolean seringkali mengandung operasi operasi yang tidak perlu, literal atau suku suku yang berlebihan. Oleh karena itu fungsi Boolean dapat disederhanakan lebih

Lebih terperinci

Pertemuan 8. Aplikasi dan penyederhanaan Aljabar Boolean

Pertemuan 8. Aplikasi dan penyederhanaan Aljabar Boolean Pertemuan 8 Aplikasi dan penyederhanaan Aljabar Boolean Dosen Ir. Hasanuddin Sirait, MT www.hsirait.wordpress.com STMIK Parna Raya Manado HP : 8356633766 Aplikasi Aljabar Boolean Aljabar Boolean mempunyai

Lebih terperinci