Regresi Linier Sederhana dan Korelasi (3 sesi)

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Regresi Linier Sederhana dan Korelasi (3 sesi)"

Transkripsi

1 Regre Ler Sederhaa da Korela (3 e) Duu oleh Sgt Nugroho Uverta Begkulu

2 Pegerta Regre merupaka tekk tattka ag dguaka utuk mempelajar huuga fugoal dar atu atau eerapa peuah ea (peuah ag mempegaruh) terhadap atu peuah tak ea (peuah ag dpegaruh) Korela merupaka ukura kekuata huuga dua peuah (tdak haru memlk huuga ea akat) Sgt Nugroho 60

3 Regre Dar derajat (pagkat) tap peuah ea Ler (la pagkata ) No-ler (la pagkata uka ) Dar aaka peuah ea (ag mempegaruh) Sederhaa (la haa ada atu peuah ea) Bergada (la leh dar atu peuah ea) Sgt Nugroho 6

4 Regre Ler Sederhaa Model Y = 0 + X + e Y merupaka la pegamata ke-. 0 adalah parameter regre (terep) adalah parameter regre (lope) e kealaha ke-. Aum : peuah X terukur tapa kealaha; X tdak memlk dtru (uka radom varale) kealaha meear ormal dega rata-rata ol dega mpaga aku e. Sgt Nugroho 6

5 Telada Permaalaha Dar euah urva ag dlakuka d kampug Maju Makmur dguaka utuk megetahu huuga fugoal atara lua taah (hektar) da hargaa (Rp. 00 Juta). Bla data erpaaga tetag luaa da harga taah dperoleh, agamaa huuga fugoala? Lua Harga 0,75,45 0,55,0,00,80,5 3,60,50 5,80 3,00 7,40 4,50 9,00 3,75 8,50 5,00 0,00 3,5 8,00 3,5 7,50,75 6,00,75 6,5,00 4,00 Sgt Nugroho 4,00 8,00 63

6 Harga (Rp. juta) Dagram Pecar (Scatter Plot),00 0,00 8,00 6,00 4,00,00 0,00 0,00,00,00 3,00 4,00 5,00 6,00 Lua (Ha.) Sgt Nugroho 64

7 Harga (Rp. juta) Maa pedekata ag ak? Gar luru ag edemka rupa ehgga melewat eluruh ttk (data ) pada dagram pecar ag medekat,00 0,00 8,00 6,00 4,00,00 0,00 0,00,00,00 3,00 4,00 5,00 6,00 Lua (Ha.) Sgt Nugroho 65

8 Metode Jumlah Kuadrat Galat Terkecl (Leat Square Method) merupaka alah atu krtera ag memeuh, agar apala kuadrat dar kealaha tu djumlahka aka e mmum mugk.,00 0,00 8,00 6,00 4,00 Harga Regre,00 0,00 0,00,00 4,00 6,00 Sgt Nugroho 66

9 Sgt Nugroho 67 Peramaa Regre X Y 0 dmaa 0

10 Telada Htuga Lua X Harga Y XY X Y 0,75,45,8375 0,565 6,005 0,55,0,00 0,305 4,8400,00,80,8000,0000 7,8400,5 3,60 4,5000,565,9600,50 5,80 4,5000 6,500 33,6400 3,00 7,40,000 9, ,7600 4,50 9,00 40,5000 0,500 8,0000 3,75 8,50 3,8750 4,065 7,500 5,00 0,00 50,0000 5, ,0000 3,5 8,00 6,0000 0,565 64,0000 3,5 7,50 4,3750 0,565 56,500,75 6,00 6,5000 7,565 36,0000,75 6,5 7,875 7,565 39,065,00 4,00 8,0000 4,0000 6,0000 4,00 8,00 3,0000 6, , ,30 9,50 93, , ,6050,69 6,0 lope,835 terep,69 Sgt Nugroho 68

11 Peramaa Regre erta pejelaaa Y,69, 835 X Slope erla,835. Arta : dua luaa taah ag ereda elua atu hektar, taah ag leh lua aka memlk perkraa harga Rp.,835 juta leh tgg. JANGAN dartka : la lua taah megkat atu hektar, maka harga taah aka megkat Rp.,835 juta. Sgt Nugroho 69

12 Peramaa Regre erta pejelaaa Y,69, 835 X Slope erla,69. Utuk telada la terep tdak memlk art. JANGAN dartka : la lua taah () = 0 hektar, maka harga taah adalah Rp.,69 juta. Pegarta epert TIDAK ear. Keapa??? Sgt Nugroho 70

13 Peramaa Regre erta pejelaaa Y Y,69,835 (3) 3,69,835 () 6,675 4,840 Taah ag luaa 3 ha memlk perkraa harga Rp.,835 juta leh tgg dar ag ha Sgt Nugroho 7

14 Sgt Nugroho 7 Meguj Koeffe Regre 0 t ht H 0 : = 0 v H : 0 Krtera Peolaka: Tolak hpote ol jka t ht < -t a/;- atau t ht > t a/;- dmaa ) ( ) ( ) ( X JK XY JHK Y JK Stattk Uj

15 Sgt Nugroho 73 Meguj Koeffe Regre ) ( X JK e ) ( ) ( XY JHK Y JK e Jka kta malka erkut adalah mpaga aku galat, ag dotaka dega Maka mpaga aku ag peduga lope dapat dtulka eaga erkut X JK ) (

16 Meguj Koeffe Regre H 0 : 0 = 0 v H : 0 00 Stattk Uj dmaa t ht e JK ( X ) Krtera Peolaka: Tolak hpote ol jka t ht < -t a/;- atau t ht > t a/;- Sgt Nugroho 74

17 Nla Dugaa da Smpaga Bakua Apala dlakuka amplg ag erulag utuk la X = tertetu dar alah atu la ag kta guaka, maka la dugaa modela adalah o Dega mpaga aku e ( ) JK ( X ) Sgt Nugroho 75

18 Nla Dugaa da Smpaga Bakua Apala kau aru ddapat utuk la X = atu dar la ag ada dluar amata kta o Dega mpaga aku ~ e ( ~ ) JK ( X ) Sgt Nugroho 76

19 Sgt Nugroho 77 Peduga Iterval ag Koeffe Regre ; ; a a t t Selag Kepercaaa 00(-a)% ag adalah 0 0 ; 0 0 ; 0 a a t t Selag Kepercaaa 00(-a)% ag 0 adalah

20 Koeffe Korela Megukur keerata huuga dua peuah (tdak haru memlk huuga ea akat). Dotaka dega r atau gkata r aja. Nlaa - r + Jka r - kedua peuah erhuuga kuat tap erlawaa arah Jka r + kedua peuah erhuuga kuat da earah Jka r 0 kedua peuah tdak memlk huuga Koeffe korela cotoh (la tdak eluruh aggota popula damat) dotaka dega r atau r aja Tada +/- dar koeffe korela ama dega tada dar lope Sgt Nugroho 78

21 Sgt Nugroho 79 Koeffe Korela 0,983 (5,97)(90,46) 47,66 r ) ( ) ( ) ( Y JK X JK XY JHK r

22 Pejelaa art koeffe korela r 47,66 (5,97)(90,46) 0,983 Dar data ag kta mlk terlhat ahwa terdapat huuga ag cukup kuat atara lua taah da hargaa. Karea tadaa +, maka emak lua taah, emak tgg hargaa Sgt Nugroho 80

23 Sgt Nugroho 8 Meguj Koeffe Korela H 0 : r = r 0 v H : r r 0 Stattk uj 0 0 l 3 r r r r z ht Krtera Peolaka Hpote Nol: Tolak Hpote Nol jka z ht < z a/ atau z ht > z -a/

24 Meguj Koeffe Korela H 0 : r = 0 v H : r 0 Stattk uj ( > 30) z ht r r Krtera Peolaka Hpote Nol: Tolak Hpote Nol jka z ht < z a/ atau z ht > z -a/ Sgt Nugroho 8

25 Meguj Koeffe Korela H 0 : r = 0 v H : r 0 Stattk uj ( 30) t ht r r Krtera Peolaka Hpote Nol: Tolak Hpote Nol jka t ht < -t a/;- atau t ht > t a/;- Sgt Nugroho 83

Analisis Korelasi dan Regresi

Analisis Korelasi dan Regresi Aalss Korelas da Regres Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uad LOGO www.themegaller.com LOGO Data varat Data dega dua varael Terhadap satu pegamata dlakuka pegukurapegamata terhadap varael

Lebih terperinci

Regresi Linier Sederhana Definisi Pengaruh

Regresi Linier Sederhana Definisi Pengaruh Regres Ler Sederhaa Dah Idra Baga Bostatstka da Kepeduduka Fakultas Kesehata Masyarakat Uverstas Arlagga Defs Pegaruh Jka terdapat varabel, msalka da yag data-dataya dplot sepert gambar dbawah 3 Defs Pegaruh

Lebih terperinci

BAB 5. ANALISIS REGRESI DAN KORELASI

BAB 5. ANALISIS REGRESI DAN KORELASI BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh

Lebih terperinci

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal)

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal) LANGKAH-LANGKAH UJI HIPOTESIS DENGAN (Utuk Data Nomal). Merumuska hpotess (termasuk rumusa hpotess statstk). Data hasl peelta duat dalam etuk tael slag (tael frekues oservas) 3. Meetuka krtera uj atau

Lebih terperinci

Analisis Regresi dan Korelasi

Analisis Regresi dan Korelasi Metode Statstka Pertemua III Aalss Regres da Korelas Pegatar Apa tu aalss regres? Apa edaya dega korelas? Aalss Regres Aalss statstka yag memafaatka huuga atara dua atau leh peuah kuattatf sehgga salah

Lebih terperinci

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka

Lebih terperinci

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton,

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton, BAB LANDASAN TEORI Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut varabel tak bebas (depedet

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Defes Aalss Korelas da Regres a Aalss Korelas adalah metode statstka yag dguaka utuk meetuka kuatya atau derajat huuga lear atara dua varael atau leh. Semak yata huuga ler gars lurus,

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres

Lebih terperinci

PENGUJIAN HIPOTESIS PROSEDUR UMUM PROSEDUR UMUM PROSEDUR UMUM. Langkah 1 : tentukan hipotesis 0 (H 0 ) dan anti hipotesis (H 1 )

PENGUJIAN HIPOTESIS PROSEDUR UMUM PROSEDUR UMUM PROSEDUR UMUM. Langkah 1 : tentukan hipotesis 0 (H 0 ) dan anti hipotesis (H 1 ) PENGUJIAN HIPOTESIS PROSEDUR UMUM Lagkah : tetuka hpote 0 (H 0 ) da at hpote (H ) malya: H 0 : µ 00 H : µ 00 atau H : µ > 00 atau H : µ < 00 PROSEDUR UMUM Lagkah : tetuka je dtrbu yag cocok: bla > 30 da

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu. BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska

Lebih terperinci

INTERPOLASI. FTI-Universitas Yarsi

INTERPOLASI. FTI-Universitas Yarsi BAB VI INTERPOLASI FTI-Uverstas Yars Pedahulua Bla dketahu taulas ttk-ttk (y seaga erkut (yag dalam hal rumus ugs y ( tdak dketahu secara eksplst: Htug taksra la y utuk 3.8! FTI-Uverstas Yars Persoala

Lebih terperinci

II. TINJAUAN PUSTAKA. variabel. Dalam regresi sederhana dikaji dua variabel, sedangkan dalam regresi

II. TINJAUAN PUSTAKA. variabel. Dalam regresi sederhana dikaji dua variabel, sedangkan dalam regresi 3 II. TINJAUAN PUSTAKA. Aalss Regres Aalss regres merupaka salah satu metode statstka ag dguaka utuk mempelajar da megukur huuga statstk ag terjad atara dua atau leh varael. Dalam regres sederhaa dkaj

Lebih terperinci

REGRESI & KORELASI LINIER SEDERHANA

REGRESI & KORELASI LINIER SEDERHANA 1. Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable)

Lebih terperinci

Regresi & Korelasi Linier Sederhana

Regresi & Korelasi Linier Sederhana Regres & Korelas Ler Sederhaa. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar la peubah

Lebih terperinci

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN // REGRESI LINEAR SEDERHANA DAN KORELASI. Model Regres Lear. Peaksr Kuadrat Terkecl 3. Predks Nla Respos 4. Iferes Utuk Parameter-parameter Regres 5. Kecocoka Model Regres 6. Korelas Utrwe Mukhayar MA

Lebih terperinci

Penarikan Contoh Acak Sederhana (Simple Random Sampling)

Penarikan Contoh Acak Sederhana (Simple Random Sampling) Pearka Cotoh Acak Sederhaa (Smple Radom Samplg) Defs Jka sebuah cotoh berukura dambl dar suatu populas sedemka rupa sehgga setap cotoh berukura ag mugk memlk peluag sama utuk terambl, maka prosedur tu

Lebih terperinci

III. METODE PENELITIAN. Populasi dalam penelitian ini adalah seluruh siswa kelas VII semester ganjil SMP

III. METODE PENELITIAN. Populasi dalam penelitian ini adalah seluruh siswa kelas VII semester ganjil SMP III. METODE PENELITIAN A. Popula da Sampel Popula dalam peelta adalah eluruh wa kela VII emeter gajl SMP Ba Mulya Badar Lampug Tahu Pelajara 0/0 dega jumlah wa ebayak 03 wa yag terbag dalam 3 kela. Sampel

Lebih terperinci

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

REGRESI & KORELASI LINIER SEDERHANA

REGRESI & KORELASI LINIER SEDERHANA . Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,

Lebih terperinci

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( )

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( ) Regres & Korelas Ler Sederhaa 1. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk yag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua

Lebih terperinci

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas:

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas: ANALISIS REGRESI Pedahulua Aalss regres berkata dega stud megea ketergatuga satu peubah (peubah terkat) terhadap satu atau lebh peubah laya (peubah pejelas). Jka Y dumpamaka sebaga peubah terkat da X1,X,...,X

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling BAB LANDASAN TEORI Kosep Dasar Aalss Regres Aalss regres adalah suatu proses memperkraka secara sstemats tetag apa yag palg mugk terjad dmasa yag aka datag berdasarka formas yag sekarag dmlk agar memperkecl

Lebih terperinci

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES * PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka

Lebih terperinci

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar

Lebih terperinci

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB Pearka Cotoh Gerombol (Cluster Samplg) Departeme Statstka FMIPA IPB Radom samplg (Revew) Smple radom samplg Stratfed radom samplg Rato, regresso, ad dfferece estmato Systematc radom samplg Cluster radom

Lebih terperinci

Penelitian Operasional II Teori Permainan TEORI PERMAINAN

Penelitian Operasional II Teori Permainan TEORI PERMAINAN Peelta Operasoal II Teor Permaa 7 2 TEORI PERMAINAN 2 Pegatar 2 Krtera Tekk Permaa : () Terdapat persaga kepetga datara pelaku (2) Setap pema memlk stateg, bak terbatas maupu tak terbatas (3) Far Game

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi dalam statistika adalah salah satu metode untuk menentukan tingkat

BAB 2 LANDASAN TEORI. Regresi dalam statistika adalah salah satu metode untuk menentukan tingkat 0 BAB LANDASAN TEORI. Pegerta Regres Regres dalam statstka adalah salah satu metode utuk meetuka tgkat pegaruh suatu varael terhadap varael yag la. Varael yag pertama dseut dega ermacam-macam stlah: varael

Lebih terperinci

Uji Statistika yangb digunakan dikaitan dengan jenis data

Uji Statistika yangb digunakan dikaitan dengan jenis data Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas

Lebih terperinci

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas TEKNIK SAMPLING Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uverstas Adalas Defs Suatu cotoh gerombol adalah suatu cotoh acak sederhaa dmaa setap ut pearka cotoh adalah kelompok atau gerombol dar

Lebih terperinci

Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2

Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2 M 81 STTISTIK DSR SEMESTER II 11/1 KK STTISTIK, FMIP IT SOLUSI UJIN TENGH SEMESTER (UTS) Sabtu, 1 Me 1, Pukul 9. 1.4 WI (1 met) Kelas 1. Pegajar: Udjaa S. Pasarbu/Rr. Kura Novta Sar, Kelas. Pegajar: Utrwe

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA. Peahulua Dalam bab aka membahas megea teor-teor tetag statstka oparametrk, korelas parsal tau Keall a korelas parsal meurut Ebuh GU a Oeka ICA.. Statstka Noparametrk Istlah oparametrk

Lebih terperinci

BAB III TEOREMA GLEASON DAN t-desain

BAB III TEOREMA GLEASON DAN t-desain BAB III TEOREMA GLEASON DAN t-desain Dalam ubbab 3., kta aka mempelaar alah atu fat petg dar kode wa-dual geap. Sfat terebut dberka oleh Teorema 3.(Teorema Gleao), Teorema ecara megeaka telah meetuka betuk

Lebih terperinci

Pendugaan Parameter 1

Pendugaan Parameter 1 Topik Bahaa: Pedugaa Parameter 1 (Selag Pedugaa, Pedugaa Selag 1 Rata-Rata) Pertemua ke II 1 Ilutrai Statitika Ifereia : Mecakup emua metode yag diguaka utuk pearika keimpula atau geeraliai megeai populai

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan,

BAB 2 TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan, BAB TINJAUAN TEORITIS 1 Kosep Dasar Statstka Statstk merupaka cara cara tertetu yag dguaka dalam megumpulka, meyusu atau megatur, meyajka, megaalsa da member terpretas terhadap sekumpula data, sehgga kumpula

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Pedahulua Sebelum membahas megea prosedur peguja hpotess, terlebh dahulu aka djelaska beberapa teor da metode yag meujag utuk mempermudah pembahasa. Adapu teor da metode tersebut

Lebih terperinci

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah seluruh siswa kelas X SMA Negeri 1

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah seluruh siswa kelas X SMA Negeri 1 8 III. MEODOLOGI PEELIIA A. Popula da Sampel Popula dalam peelta adalah eluruh wa kela X SMA eger Bagurejo Lampug egah tahu pelajara 009/00 ebayak 75 orag yag terdtrbu dalam lma kela dmaa tgkat kemampua

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDAAN TEOR. Aal Regre alah atu tuua aal data adalah utuk memperkraka/memperhtugka beara efek kuattatf dar perubaha uatu keada terhadap keada laa. etap kebaka polc, bak dar pemertah maupu wata, elalu

Lebih terperinci

BAB III REVIEW SIFAT- SIFAT STATISTIK PENDUGAAN TIPE KERNEL BAGI FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN PERIODE GANDA

BAB III REVIEW SIFAT- SIFAT STATISTIK PENDUGAAN TIPE KERNEL BAGI FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN PERIODE GANDA 9 BAB III REVIEW SIFAT- SIFAT STATISTI PENDUGAAN TIPE ERNE BAGI FUNGSI INTENSITAS PROSES POISSON PERIODI DENGAN PERIODE GANDA 3. Perumua Peduga Malka adala proe Poo ag damat pada terval [0] dega fug teta

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA 4 II. TINJAUAN PUSTAKA. Pecla.. Defs Pecla Meurut Fergus 96, pecla ddefska seaga suatu data ag mempag dar sekumpula data ag la. Meurut Barett 98, pecla adalah pegamata ag tdak megkut seaga esar pla da

Lebih terperinci

ANALISIS MULTIVARIAT. Pengantar Analisis Multivariat Lanjutan. Irlandia Ginanjar M.Si

ANALISIS MULTIVARIAT. Pengantar Analisis Multivariat Lanjutan. Irlandia Ginanjar M.Si ANALISIS MULTIVARIAT Pegatar Aal Multvarat Lauta Irlada Gaar M.S Jurua Stattka FMIPA Uad Nota utuk varabel varabel berkala l terval atau rao k bl k Vektor varabel acak: Nla haraa vektor Nla haraa vektor

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB LANDASAN TEOR. Aal Regre Salah atu tuua aal data adalah utuk memperkraka/memperhtugka beara efek kuattatf dar perubaha uatu keada terhadap keada laa. Setap kebaka (polc), bak dar pemertah maupu wata,

Lebih terperinci

PENDUGAAN PARAMETER. Ledhyane Ika Harlyan

PENDUGAAN PARAMETER. Ledhyane Ika Harlyan PENDUGAAN PARAMETER Ledhyae Ika Harlya Jurua Pemafaata Sumberdaya Perikaa da Kelauta Uiverita Brawijaya 03 Statitik Ifereia Mecakup emua metode yag diguaka dalam pearika keimpula atau geeraliai megeai

Lebih terperinci

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP Msal dguaka kode ler C[, k, d] dega matrks pembagu G da matrks cek partas H. Sebuah blok formas x = x 1 x 2 x k, x = 0 atau 1, yag aka dkrm terlebh

Lebih terperinci

TINJAUAN PUSTAKA Evaluasi Pengajaran

TINJAUAN PUSTAKA Evaluasi Pengajaran TINJAUAN PUSTAKA Evaluas Pegajara Evaluas adalah suatu proses merecaaka, memperoleh da meyedaka formas yag sagat dperluka utuk membuat alteratf- alteratf keputusa. Dalam hubuga dega kegata pegajara evaluas

Lebih terperinci

Metode Statistika Pertemuan XII. Analisis Korelasi dan Regresi

Metode Statistika Pertemuan XII. Analisis Korelasi dan Regresi Metode Statstka Pertemua XII Aalss Korelas da Regres Aalss Hubuga Jes/tpe hubuga Ukura Keterkata Skala pegukura varabel Pemodela Keterkata Relatoshp vs Causal Relatoshp Tdak semua hubuga (relatoshp) berupa

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 0 BAB LANDASAN TEORI. Pegerta Regres da Korelas.. Pegerta Regres Regres adalah suatu metode statstka yag ergua utuk memerksa atau memodelka huuga datara varael-varael. Varael-varael terseut dega megguaka

Lebih terperinci

Pendahuluan. Relasi Antar Variabel. Relasi Antar Variabel. Relasi Antar Variabel 4/6/2015. Oleh : Fauzan Amin

Pendahuluan. Relasi Antar Variabel. Relasi Antar Variabel. Relasi Antar Variabel 4/6/2015. Oleh : Fauzan Amin 4/6/015 Oleh : Fauza Am Se, 06 Aprl 015 GDL 11 (07.30-10.50) Pedahulua Aalsa regres dguaka utuk mempelajar da megukur hubuga statstk ag terjad atara dua atau lebh varbel. Dalam regres sederhaa dkaj dua

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB METODE PENELTAN 3.1 Tempat da Waktu Peelta Peelta dlaksaaka d areal/wlaah koses huta PT. Sarmeto Parakata Tmber, Kalmata Tegah pada bula Aprl sampa dega Me 007. 3. Baha da Alat Baha ag dguaka utuk

Lebih terperinci

x = μ...? 2 2 s = σ...? x x s = σ...?

x = μ...? 2 2 s = σ...? x x s = σ...? Pedugaa Parameter x 2 sx s = μ...? 2 = σ x...? = σ...? Peduga Parameter Peduga titik yaitu parameter populasi p diduga dega suatu besara statistik, misal: rata-rata, proporsi, ragam, dll Peduga Selag (Iterval)

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: ANALISIS REGRESI LINEAR BERGANDA DENGAN SATU VARIABEL BONEKA (DUMMY VARIABLE)

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: ANALISIS REGRESI LINEAR BERGANDA DENGAN SATU VARIABEL BONEKA (DUMMY VARIABLE) Jural Matematka Mur da Terapa Vol. 4 No. esember : 4 - ANALISIS REGRESI LINEAR BERGANA ENGAN SATU VARIABEL BONEKA (UMMY VARIABLE Tat Krsawardha Nur Salam da ew Aggra Program Stud Matematka Uverstas Lambug

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Pegerta Regres Regres dalam statstka adalah salah satu metode utuk meetuka tgkat pegaruh suatu varael terhadap varael ag la. Varael ag pertama dseut dega ermacam-macam stlah: varael

Lebih terperinci

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real.

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real. BAB 5 BARIAN DAN DERET KOMPLEK ecara eses, pembahasa tetag barsa da deret komlpeks sama dega barsa da deret real. 5. Barsa Barsa merupaka sebuah fugs dega doma berupa hmpua blaga asl N. ebuah barsa kompleks

Lebih terperinci

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS C. Pembelajara 3 1. Slabus N o STANDA R KOMPE TENSI KOMPE TENSI DASAR INDIKATOR MATERI TUGAS BUKTI BELAJAR KON TEN INDIKA TOR WAK TU SUM BER BELA JAR Meerap ka atura kosep statstka dalam pemecah a masalah

Lebih terperinci

Pendugaan Parameter Populasi (4 sesi)

Pendugaan Parameter Populasi (4 sesi) Pedugaa Parameter Populai (4 ei) Diuu oleh : Sigit Nugroho Uiverita Begkulu Pedugaa Dalam bagia ii aka dibaha tetag pedugaa titik da pedugaa iterval dari parameter populai yag tidak diketahui. Pedugaaa

Lebih terperinci

Mata Kuliah: Statistik Inferensial

Mata Kuliah: Statistik Inferensial STATISTIK INFERENSIAL Prof. Dr. H. Almadi Syahza, SE., MP Email: ayahza@yahoo.co.id PROGRAM STUDI PENDIDIKAN EKONOMI FKIP UNIVERSITAS RIAU DISTRIBUSI SAMPLING 2 Bagia I Statitik Iduktif Metode da Ditribui

Lebih terperinci

POLIGON TERBUKA TERIKAT SEMPURNA

POLIGON TERBUKA TERIKAT SEMPURNA MODUL KULIAH ILMU UKUR TANAH POLIGON TERBUKA TERIKAT SEMPURNA Pegerta : peetua azmuth awal da akhr, peetuat kesalaha peutup sudut,koreks sudut, kesalaha lear da koreks lear kearah sumbu X da Y, Peetua

Lebih terperinci

LAMPIRAN. Lampiran 1. Hasil pemeriksaan mutu minyak biji anggur

LAMPIRAN. Lampiran 1. Hasil pemeriksaan mutu minyak biji anggur LAMPIRAN Lampra 1. Hasl pemerksaa mutu myak bj aggur 45 Lampra. edaa myak bj aggur Gambar 1. Myak bj aggur 46 Lampra 3. Pewara pada formula lpstk Gambar. edaa pewara 47 Lampra 4. edaa lpstk F1 F F3 F4

Lebih terperinci

PRAKTIKUM 5 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel

PRAKTIKUM 5 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel Praktkum 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa

Lebih terperinci

PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel

PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel Praktkum 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4. Deskrps Peelta Berdasarka hasl peelta, d peroleh data megea kemempua sswa melakuka smash sebelum da sesudah latha power otot lega adalah sebaga berkut : Tabel.

Lebih terperinci

8. MENGANALISIS HASIL EVALUASI

8. MENGANALISIS HASIL EVALUASI 8. MENGANALISIS HASIL EVALUASI Tujua : Mampu megaalsa tgkat kesukara hasl evaluas utuk megkatka hasl proses pembelajara Kegata megaals hasl evaluas merupaka upaya utuk memperbak programprogram pembelajara

Lebih terperinci

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval Pedugaa Parameter Pedahulua Pedugaa Parameter Populai dilakuka dega megguaka ilai Statitik Sampel Mial :. x diguaka ebagai peduga bagi. diguaka ebagai peduga bagi 3. p atau p diguaka ebagai peduga bagi

Lebih terperinci

BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI

BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI 9.1. Dstrbus Kotu Dstrbus memlk sfat kotu dmaa data yag damat berjala secara kesambuga da tdak terputus. Maksudya adalah bahwa data yag damat tersebut tergatug

Lebih terperinci

MEKANISME KERUNTUHAN LINGKARAN (Circular Failure Mechanisms)

MEKANISME KERUNTUHAN LINGKARAN (Circular Failure Mechanisms) MEKANISME KERUNTUHAN LINGKARAN (Crcular alure Mechasms) Stabltas Lereg Moda kerutuha lereg umumya adalah rotatoal slp sepajag bdag rutuh yag medekat lgkara Kerutuha dagkal Kerutuha dalam Saat rutuh Stabltas

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 19 Desember 016 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 40%] Hasl pegukura sampel d beberapa sekolah da

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Tgg tekaa [m] UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 11 Desember 017 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 50%] Sebuah PDAM melakuka pegukura

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN 5 BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. Dekrp Data Hal Peelta Setelah melakuka peelta, peelt medapatka hal tud lapaga utuk memperoleh data dega tekk te, etelah dlakuka uatu pembelajara atara kelompok

Lebih terperinci

BAB III UKURAN PEMUSATAN DATA

BAB III UKURAN PEMUSATAN DATA BAB III UKURAN PEMUSATAN DATA A. Ukura Gejala Pusat Ukura pemusata adalah suatu ukura yag meujukka d maa suatu data memusat atau suatu kumpula pegamata memusat (megelompok). Ukura pemusata data adalah

Lebih terperinci

Teori Permainan (Game Theory) Disusun oleh : Prof. Ir.Sigit Nugroho, M.Sc. Ph.D. Universitas Bengkulu. smr

Teori Permainan (Game Theory) Disusun oleh : Prof. Ir.Sigit Nugroho, M.Sc. Ph.D. Universitas Bengkulu. smr Teor Peraa (Gae Theor) Dsusu oleh : Prof. Ir.Sgt Nugroho, M.Sc. Ph.D. Uverstas Begkulu sr Pa-off Matr Two erso zero su gae a = tdaka ag dabl ea ertaa; b = tdaka ag dabl ea kedua. eruaka aoff akbat teraks

Lebih terperinci

Pertemuan 3 Luas Daerah Bidang Datar, dan Volume Benda Padat dengan Metode Bidang Irisan Sejajar

Pertemuan 3 Luas Daerah Bidang Datar, dan Volume Benda Padat dengan Metode Bidang Irisan Sejajar ertemua 3 Luas Daerah Bdag Datar, da Volume Beda adat dega Metode Bdag Irsa Sejajar A. Luas Daerah Bdag Datar 1. Luas Daerah Bdag Datar Yag Datas Oleh Kura f, sumu X, Gars a da Gars DEFINISI: Msalka D

Lebih terperinci

Penarikan Contoh Acak Berlapis (Stratified Random Sampling) Pertemuan IV

Penarikan Contoh Acak Berlapis (Stratified Random Sampling) Pertemuan IV Pearka Cotoh Acak Berlas (Stratfed Radom Samlg Pertemua IV Defs Cotoh acak berlas ddaatka dega cara membag oulas mejad beberaa kelomok ag tdak salg tumag tdh, da kemuda megambl secara acak dar seta kelomokkelomok

Lebih terperinci

Tabel Distribusi Frekuensi

Tabel Distribusi Frekuensi Tabel Dstrbus Frekues Tabel dstrbus frekues adalah susua data meurut kelas-kelas terval tertetu atau meurut kategor tertetu dalam sebuah daftar. Dar dstrbus frekues, dapat dperoleh keteraga atau gambara

Lebih terperinci

BAB II TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan,

BAB II TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan, BAB II TINJAUAN TEORITIS.1 Kosep Dasar Statstka Statstk merupaka cara cara tertetu yag dguaka dalam megumpulka, meyusu atau megatur, meyajka, megaalsa da member terpretas terhadap sekumpula data, sehgga

Lebih terperinci

2.2.3 Ukuran Dispersi

2.2.3 Ukuran Dispersi 3 Ukura Dspers Yag aka dbahas ds adalah smpaga baku da varas karea dua ukura dspers yag palg serg dguaka Hubuga atara smpaga baku dega varas adalah Varas = Kuadrat dar Smpaga baku otas yag umum dguaka

Lebih terperinci

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS = 1 + + + + k k + u PowerPot Sldes baa Rohmaa Educato Uverst of Idoesa 007 Laboratorum Ekoom & Koperas Publshg Jl. Dr. Setabud

Lebih terperinci

X a, TINJAUAN PUSTAKA

X a, TINJAUAN PUSTAKA PENELITIAN SEBELUMNYA Statstka Deskrptf TINJAUAN PUSTAKA TINJAUAN STATISTIKA Uj Idepedes Uj depedes dguak utuk megetahu adaya hubuga atara dua varabel (Agrest, 1990). H 0 : tdak ada hubuga atara varabel

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Pegerta Regres Dalam kehdupa sehar-har, serg kta jumpa huuga atara satu varael terhadap satu atau leh varael. Seaga cotoh, esarya pedapata seseorag mempegaruh kosums, harga dar suatu

Lebih terperinci

3 Departemen Statistika FMIPA IPB

3 Departemen Statistika FMIPA IPB Supleme Respos Pertemua ANALISIS DATA KATEGORIK (STK51) Departeme Statstka FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referes Waktu U potess Tga Cotoh atau Lebh U Kruskal-Walls (aalss ragam satu-arah berdasarka

Lebih terperinci

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan Aalsa Numerk Baha Matrkulas PENDAHULUAN Metode umerk merupaka suatu tekk atau cara utuk megaalsa da meyelesaka masalah masalah d dalam bdag rekayasa tekk da sa dega megguaka operas perhtuga matematk Masalah-masalah

Lebih terperinci

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan dilapangan SMP Negeri 11 Tamalate

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan dilapangan SMP Negeri 11 Tamalate BAB III METODE PENELITIAN 3. Tempat Da Waktu Peelta a. Tempat Tempat peelta dlaksaaka dlapaga SMP Neger Tamalate. Waktu Waktu pelaksaaa peelta dlaksaaka dmula dar keluara surat z meelt. 3. Defs Operasoal

Lebih terperinci

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2 INTERVAL KEPERCAAAN UNTUK PERBEDAAN KOEFIIEN VARIAI DARI DITRIBUI LOGNORMAL I. Pebrya * Bustam. ugarto Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu Pegetahua Alam Uverstas

Lebih terperinci

100% r n. besarnya %. n. h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m =. 400

100% r n. besarnya %. n. h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m =. 400 h t t p : / / m a t e m a t r c k. b l o g p o t. c o m Meetuka uur-uur pada dagram lgkara atau batag Rgkaa Mater : Uur uur pada dagram lgkara yag pokok haya hal :. Meetuka bear baga dalam lgkara ( dapat

Lebih terperinci

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis STATISTIK Ukura Gejala Pusat Ukura Letak Ukura Smpaga, Dspers da Varas Mome, Kemrga, da Kurtoss Notas Varabel dyataka dega huruf besar Nla dar varabel dyataka dega huruf kecl basaya dtuls Tmes New Roma

Lebih terperinci

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN Idah Vltr, Harso, Haposa Srat Mahassa Program S Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu

Lebih terperinci

FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani

FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani FMDAM (2) Chartas Fbra Techque for Order Preferece by Smlarty to Ideal Soluto () ddasarka pada kosep dmaa alteratf terplh yag terbak tdak haya memlk jarak terpedek dar solus deal postf, amu juga memlk

Lebih terperinci

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan Selag Kepercayaa (Cofidece Iterval) Pegatar Peduga titik (poit estimator) telah dibahas pada kuliah-kuliah sebelumya. Walau statistikawa telah berusaha memperoleh peduga titik yag baik, amu hampir bisa

Lebih terperinci

PENGARUH MODAL KERJA TERHADAP PENDAPATAN PENGRAJIN INDUSTRI KECIL TEMPE DI DESA SAMBAK KECAMATAN KAJORAN KABUPATEN MAGELANG

PENGARUH MODAL KERJA TERHADAP PENDAPATAN PENGRAJIN INDUSTRI KECIL TEMPE DI DESA SAMBAK KECAMATAN KAJORAN KABUPATEN MAGELANG PENGARUH MODAL KERJA TERHADAP PENDAPATAN PENGRAJIN INDUSTRI KECIL TEMPE DI DESA SAMBAK KECAMATAN KAJORAN KABUPATEN MAGELANG Asa Kurat Peddka Ekoom, FKIP Uverstas Muhammadah Purworejo asachaca8@ahoo.com

Lebih terperinci

III BAHAN/OBJEK DAN METODE PENELITIAN. Objek yang digunakan dalam penelitian ini adalah 50 ekor sapi Pasundan

III BAHAN/OBJEK DAN METODE PENELITIAN. Objek yang digunakan dalam penelitian ini adalah 50 ekor sapi Pasundan III BAHAN/OBJEK DAN METODE PENELITIAN 3.1. Baha da Alat Peelta 3.1.1. Baha Peelta Objek yag dguaka dalam peelta adalah 50 ekor sap Pasuda jata da beta dewasa dega umur -3 tahu da tdak butg utuk meghdar

Lebih terperinci

Pengujian Hipotesis Statistika. Sigit Nugroho. Universitas Bengkulu. Disusun oleh. (7 sesi)

Pengujian Hipotesis Statistika. Sigit Nugroho. Universitas Bengkulu. Disusun oleh. (7 sesi) Pegujia Hipotesis Statistika (7 sesi) Disusu oleh Sigit Nugroho Uiversitas Begkulu Hipotesis Hipotesis merupaka dugaa semetara yag diaggap bear. Dalam Statistika, Hipotesis merupaka peryataa yag bisa diuji

Lebih terperinci

UKURAN GEJALA PUSAT DAN UKURAN LETAK

UKURAN GEJALA PUSAT DAN UKURAN LETAK UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu

Lebih terperinci

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl

Lebih terperinci

ANALISIS REGRESI. . Berdasarkan sample acak, persamaan regresi populasi (1) akan ditaksir, ini dilakukan dengan jalan menaksir parameter-parameter 1

ANALISIS REGRESI. . Berdasarkan sample acak, persamaan regresi populasi (1) akan ditaksir, ini dilakukan dengan jalan menaksir parameter-parameter 1 ANALII REGREI. PENDAHULUAN Jka kta memlk data yag terdr atas dua atau lebh varabel, adalah sewajarya utuk suatu cara bagamaa varabel-varabel tersebut berhubuga. Hubuga yag dperoleh pada umumya dyataka

Lebih terperinci

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara BAB LANDASAN TEORI Unverstas Sumatera Utara . Pengertan Regres Istlah regres pertama kal dperkenalkan oleh Francs Galtom. Menurut Galtom, analss regres erkenaan dengan stud ketergantungan dar satu varael

Lebih terperinci

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval Pedugaa Parameter. Pedahulua Pedugaa Parameter Popoulai dilakuka dega megguaka ilai Statitik Sampel Mial :. x diguaka ebagai peduga bagi. diguaka ebagai peduga bagi 3. p atau p diguaka ebagai peduga bagi

Lebih terperinci

SOLUSI TUGAS I HIMPUNAN

SOLUSI TUGAS I HIMPUNAN Program Stud S1 Tekk Iformatka Fakultas Iformatka, Telkom Uversty SOLUSI TUGAS I HIMPUNAN Matematka Dskrt (MUG2A3) Halama 1 dar 6 Soal 1 Tetukalah eleme-eleme dar hmpua berkut! 2 x x adalah blaga real

Lebih terperinci